Model Independent Constraints from Eikonal Scattering

Kurt Hinterbichler (Case Western)

Kyoto, Mar. 2, 2018
arxiv: 1708.05716 w/ Austin Joyce and Rachel Rosen
arxiv: arXiv:1712.10020 w/ James Bonifacio, Austin Joyce and Rachel Rosen
arxiv: 1803:xxxxx w/ James Bonifacio

Isolated massive spinning particles?

Is it possible to have a theory with a spectrum like this:

Spin $0,1 / 2$: Yes (pseudo Goldstones)
Spin $1,3 / 2$: Yes (spontaneously broken weakly coupled gauge theory/SUGRA)
$\operatorname{Spin} \geq 2: \quad ?$

Common lore says No: a massive higher spin always comes with more states at parametrically the same mass

Isolated massive spinning particles?

Examples:

Kaluza Klein theory:
towers of spin $\leq 2 \quad m^{2} \sim \lambda_{\text {laplacian }}$

Confining gauge theory

$$
\text { towers of all spins } \quad m^{2} \sim \Lambda_{\mathrm{QCD}}^{2}
$$

String theory

towers of all spins $\quad m^{2} \sim \frac{1}{\alpha^{\prime}}$

Isolated massive spinning particles?

Can there be "elementary" particles with spin ≥ 2 ?

Are there Hadrons with Compton wavelength \gg intrinsic size?

Could the graviton have a small Hubble-scale mass?

$$
V(r) \sim \frac{1}{r} e^{-m r}, \quad m \sim H
$$

Isolated massive spinning particles?

If such isolated massive particles are possible, there must exist an effective field theory (EFT) for them with a cutoff parametrically larger than the mass:

$$
\Lambda \gg m
$$

If such an EFT doesn't exist: problem solved
If it does exist: must figure out if it can be UV completed
approach: look for such EFTs and find obstructions to UV completion.

Best possible EFT

What is the highest possible strong coupling scale in an EFT of a single massive particle?
e.g. Spin-2: Einstein-Hilbert + generic potential $\quad \Lambda_{5} \sim\left(M_{P} m^{4}\right)^{1 / 5}$

$$
\text { dRGT theory } \quad \Lambda_{3} \sim\left(M_{P} m^{2}\right)^{1 / 3}
$$

Equivalently: what is the softest possible UV behavior of the tree amplitude?

$$
\begin{array}{ll}
\text { Einstein-Hilbert }+ \text { generic potential } & \mathcal{A}_{4} \sim E^{10} \\
\text { dRGT theory } & \mathcal{A}_{4} \sim E^{6}
\end{array}
$$

Best possible EFT

KH, James Bonifacio (to appear)

Generic EFT:

$$
\begin{aligned}
\mathcal{L} \sim & (\partial h)^{2}+h^{2} \\
& +h^{3}+\partial^{2} h^{3}+\partial^{4} h^{3}+\cdots \\
& +h^{4}+\partial^{2} h^{4}+\partial^{4} h^{4}+\cdots
\end{aligned}
$$

Field redefinitions \rightarrow put fields on shell: transverse, traceless, $\square \rightarrow-m^{2}$

Classify all on-shell cubic and quartic vertices

cubic vertices

Polarization tensors:

$$
\epsilon_{\mu_{1} \ldots \mu_{s}} \rightarrow z_{\mu_{1}} z_{\mu_{2}} \ldots z_{\mu_{s}}, \quad z^{2}=0
$$

No on-shell non-trivial functions of momenta:

$$
p_{1}^{\mu}+p_{2}^{\mu}+p_{3}^{\mu}=0 \quad \Rightarrow \quad p_{1} \cdot p_{2}=\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}-m_{3}^{2}\right), \text { etc. }
$$

$$
\begin{gathered}
\mathcal{A}_{3} \sim z_{12}^{n_{12}} z_{13}^{n_{13}} z_{23}^{n_{23}} z p_{12}^{m_{12}} z p_{23}^{m_{23}} z p_{31}^{m_{31}} \\
n_{12}+n_{13}+m_{12}=s_{1} \\
n_{12}+n_{23}+m_{23}=s_{2} \\
n_{13}+n_{23}+m_{31}=s_{3} .
\end{gathered}
$$

Finite number of solutions. \rightarrow On-shell cubic amplitudes nailed down by Lorentz invariance.

Best possible scaling

Build the exchange diagrams:

Finite number of cubic vertices \rightarrow finite number of exchange diagrams \rightarrow bounded growth with energy

$$
\mathcal{A}_{\text {exchange }} \sim E^{\#}
$$

Best possible scaling

Classify all analytic quartic amplitudes (contact terms):
2 independent invariants made of momenta (2 Mandelstams)

$$
\begin{aligned}
& n_{12}+n_{13}+n_{14}+m_{13}+m_{14}=s_{1}, \\
& n_{12}+n_{23}+n_{24}+m_{21}+m_{24}=s_{2}, \\
& n_{13}+n_{23}+n_{34}+m_{31}+m_{32}=s_{3}, \\
& n_{14}+n_{24}+n_{34}+m_{42}+m_{43}=s_{4} .
\end{aligned}
$$

This is the contact diagram:

Best possible scaling

Try to cancel off highest energy scaling of exchange diagrams, working down:

$$
\mathcal{A}_{4}=\mathcal{A}_{\text {exchange }}+\mathcal{A}_{\text {contact }}
$$

Best possible scalings

Best scaling for spin-1:
E^{4}
$\Lambda_{2} \sim\left(M_{P} m\right)^{1 / 2}$
allow additional scalar \rightarrow can achieve $E^{0} \quad \rightarrow$ Higgs mechanism

Best scaling for spin-2:

$$
E^{6}
$$

$$
\Lambda_{3} \sim\left(M_{P} m^{2}\right)^{1 / 3}
$$

allow additional scalar+vector \rightarrow no simple gravitational Higgs mechanism
Christensen, Stefanus (2014)
Nima Arkani-Hamed, Huang, Huang (20I7)

Conjecture for higher spins:

$$
\begin{aligned}
\mathcal{A}_{4} & \sim \begin{cases}E^{3 s} & s \text { even, } \\
E^{3 s+1} & s \text { odd. }\end{cases} \\
\Lambda_{\max } & = \begin{cases}\Lambda_{\frac{3 s}{2}} & s \text { even, } \\
\Lambda_{\frac{3 s+1}{2}} & s \text { odd. }\end{cases}
\end{aligned}
$$

Best EFTs for spin-2

Spin-2 Result: Best possible scaling is E^{6}
Only theories that achieve this are dRGT theory and pseudo-linear

DRGT theory:

de Rham, Gabadadze, Tolley (20II)

$$
\frac{M_{P}^{D-2}}{2} \int d^{D} x|e| R[e]-m^{2} \sum_{n}{\underset{2}{ }}^{a_{n}} \int \epsilon_{A_{1} \cdots A_{D}} e^{A_{1}} \wedge \cdots \wedge e^{A_{n}} \wedge 1^{A_{n+1}} \wedge \cdots \wedge 1^{A_{n}}
$$

Pseudo-linear theory: KH: I305.7227

$$
\mathcal{L}=-\frac{1}{2} \partial_{\lambda} h_{\mu \nu} \partial^{\lambda} h^{\mu \nu}+\partial_{\mu} h_{\nu \lambda} \partial^{\nu} h^{\mu \lambda}-\partial_{\mu} h^{\mu \nu} \partial_{\nu} h+\frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h-\frac{1}{2} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)
$$

$$
\text { Also } 2 \text { parameters } \longrightarrow+\lambda_{3} \frac{m^{2}}{M_{p}} \eta^{\mu_{1} \nu_{1} \cdots \mu_{3} \nu_{3}} h_{\mu_{1} \nu_{1}} h_{\mu_{2} \nu_{2}} h_{\mu_{3} \nu_{3}}
$$

$$
+\frac{1}{M_{p}} \eta^{\mu_{1} \nu_{1} \cdots \mu_{4} \nu_{4}} \partial_{\mu_{1}} \partial_{\nu_{1}} h_{\mu_{2} \nu_{2}} h_{\mu_{3} \nu_{3}} h_{\mu_{4} \nu_{4}}
$$

Constraints from forward dispersion relations: dRGT theory allowed island

Constraints from forward dispersion relations: Pseudo-linear not allowed

$$
\mathcal{L}_{\text {int }}=\frac{1}{M_{p}} \lambda_{1} \mathcal{L}_{2,3}+\frac{m^{2}}{M_{p}} \lambda_{3} \mathcal{L}_{0,3}+\frac{m^{2}}{M_{p}^{2}} \lambda_{4} \mathcal{L}_{0,4}<\frac{1}{24}\left([h]^{4}-6[h]^{2}\left[h^{2}\right]+3\left[h^{2}\right]^{2}+8[h]\left[h^{3}\right]-6\left[h^{4}\right]\right)
$$

Forward amplitude: $\quad \mathcal{A}_{\text {forward }} \sim \frac{E^{4}}{M_{P}^{2} m^{2}}$

$$
\begin{aligned}
f(T T T T)_{-} & =\frac{\lambda_{1}^{2}}{m^{2} M_{p}^{2}} \\
f(V V V V)_{+} & =-\frac{15 \lambda_{1}^{2}+13 \lambda_{1} \lambda_{3}+5 \lambda_{3}^{2}}{12 m^{2} M_{p}^{2}} \\
f(S S S S) & =-\frac{5 \lambda_{1}^{2}+6 \lambda_{1} \lambda_{3}+\lambda_{3}^{2}+2 \lambda_{4}}{9 m^{2} M_{p}^{2}}
\end{aligned}
$$

Constraints from eikonal scattering

Another traditional constraint on EFTs:
Superluminality of small fluctuations on non-trivial Lorentz-violating backgrounds (e.g. Velo-Zwanziger problem)

Less problematic: superluminality in the S-matrix

Eikonal scattering:
high-energy, fixed impact parameter:

$$
s / t \rightarrow \infty
$$

Eikonal kinematics (massive)

Light-cone coordinates:
KH,Austin Joyce, Rachel A. Rosen (I708.057 I6)

$$
\begin{aligned}
& \text { large momenta small momentum transfer } \\
& p_{1}^{\mu}=\left(\frac{1}{2 p^{+}}\left(\frac{\vec{q}^{2}}{4}+m_{A}^{2}\right), p^{+}, \frac{q^{i}}{2}\right), \quad p_{3}^{\mu}=\left(\frac{1}{2 p^{+}}\left(\frac{\vec{q}^{2}}{4}+m_{A}^{2}\right), p^{+},-\frac{q^{i}}{2}\right) \\
& p_{2}^{\mu}=\left(p^{-}, \frac{1}{2 p^{-}}\left(\frac{\vec{q}^{2}}{4}+m_{B}^{2}\right),-\frac{q^{i}}{2}\right), \quad p_{4}^{\mu}=\left(p^{-}, \frac{1}{2 p^{-}}\left(\frac{\vec{q}^{2}}{4}+m_{B}^{2}\right), \frac{q^{i}}{2}\right) . \\
& \epsilon_{T}^{\mu}\left(p_{1}\right)=\left(\frac{\vec{q} \cdot \vec{e}_{1}}{2 p^{+}}, 0, e_{1}^{i}\right), \quad \quad \epsilon_{L}^{\mu}\left(p_{1}\right)=\left(\frac{1}{2 m_{A} p^{+}}\left(\frac{\vec{q}^{2}}{4}-m_{A}^{2}\right), \frac{p^{+}}{m_{A}}, \frac{q^{i}}{2 m_{A}}\right), \\
& \epsilon_{T}^{\mu}\left(p_{2}\right)=\left(0,-\frac{\vec{q} \cdot \vec{e}_{2}}{2 p^{-}}, e_{2}^{i}\right), \quad \epsilon_{L}^{\mu}\left(p_{2}\right)=\left(\frac{p^{-}}{m_{B}}, \frac{1}{2 m_{B} p^{-}}\left(\frac{\vec{q}^{2}}{4}-m_{B}^{2}\right),-\frac{q^{i}}{2 m_{B}}\right), \\
& \epsilon_{T}^{\mu}\left(p_{3}\right)=\left(-\frac{\vec{q} \cdot \vec{e}_{3}}{2 p^{+}}, 0, e_{3}^{i}\right), \quad \epsilon_{L}^{\mu}\left(p_{3}\right)=\left(\frac{1}{2 m_{A} p^{+}}\left(\frac{\vec{q}^{2}}{4}-m_{A}^{2}\right), \frac{p^{+}}{m_{A}},-\frac{q^{i}}{2 m_{A}}\right), \\
& \epsilon_{T}^{\mu}\left(p_{4}\right)=\left(0, \frac{\vec{q} \cdot \vec{e}_{4}}{2 p^{-}}, e_{4}^{i}\right), \quad \quad \epsilon_{L}^{\mu}\left(p_{4}\right)=\left(\frac{p^{-}}{m_{B}}, \frac{1}{2 m_{B} p^{-}}\left(\frac{\vec{q}^{2}}{4}-m_{B}^{2}\right), \frac{q^{i}}{2 m_{B}}\right) . \\
& \epsilon_{T}^{\mu \nu}\left(p_{a}\right)=\epsilon_{T}^{\mu}\left(p_{a}\right) \epsilon_{T}^{\nu}\left(p_{a}\right), \\
& \epsilon_{V}^{\mu \nu}\left(p_{a}\right)=\frac{i}{\sqrt{2}}\left(\epsilon_{T}^{\mu}\left(p_{a}\right) \epsilon_{L}^{\nu}\left(p_{a}\right)+\epsilon_{L}^{\mu}\left(p_{a}\right) \epsilon_{T}^{\nu}\left(p_{a}\right)\right) \\
& \epsilon_{S}^{\mu \nu}\left(p_{a}\right)=\sqrt{\frac{D-1}{D-2}}\left[\epsilon_{L}^{\mu}\left(p_{a}\right) \epsilon_{L}^{\nu}\left(p_{a}\right)-\frac{1}{D-1}\left(\eta^{\mu \nu}-\frac{1}{p_{a}^{2}} p_{a}^{\mu} p_{a}^{\nu}\right)\right]
\end{aligned}
$$

Eikonal limit

$i \mathcal{A}_{\text {eikonal }}=4 p^{-} p^{+} \int \mathrm{d}^{2} \mathbf{b} e^{i \mathbf{b} \cdot \mathbf{q}}\left(e^{i \delta(\mathbf{b})}-1\right) \quad, \quad \delta(\mathbf{b})=\frac{1}{4 p^{-} p^{+}} \int \frac{\mathrm{d}^{2} \mathbf{q}}{(2 \pi)^{2}} e^{-i \mathbf{b} \cdot \mathbf{q}} \mathcal{A}_{0}(\mathbf{q})$
Time delay: $\quad \Delta x^{-}=\frac{1}{p^{-}} \delta$

Eikonal

Eikonal phase depends only on on-shell three point amplitudes:

$$
\begin{aligned}
& \delta(\mathbf{b})=\frac{1}{4 p^{-} p^{+}} \int \frac{\mathrm{d}^{2} \mathbf{q}}{(2 \pi)^{2}} e^{-i \mathbf{b} \cdot \mathbf{q}} \mathcal{A}_{0}(\mathbf{q}) \\
& \mathcal{A}_{0}(\mathbf{q}) \sim \frac{1}{\mathbf{q}^{2}+m^{2}} \\
& \text { res } \mathcal{A}_{0} \sim \sum_{I} \mathcal{A}_{3}^{13 I} \mathcal{A}_{3}^{I 24} \\
& \delta(s, b)=\frac{\sum_{I} \mathcal{A}_{3}^{13 I}\left(i \partial_{\mathbf{b}}\right) \mathcal{A}_{3}^{I 24}\left(i \partial_{\mathbf{b}}\right)}{2 s} \int \frac{d^{2} \mathbf{q}}{(2 \pi)^{2}} \frac{e^{-i \mathbf{q} \cdot \mathbf{b}}}{\mathbf{q}^{2}+m^{2}} \\
& =\frac{\sum_{I} \mathcal{A}_{3}^{13 I}\left(i \partial_{\mathbf{b}}\right) \mathcal{A}_{3}^{I 24}\left(i \partial_{\mathbf{b}}\right)}{2 s}\left[\frac{1}{2 \pi} K_{0}(m b)\right]
\end{aligned}
$$

Cubic massive spin-2 vertices

\mathcal{A}_{1}	$z_{1} \cdot z_{2} z_{2} \cdot z_{3} \quad z_{3} \cdot z_{1}$	$h_{\mu \nu}^{3}$
\mathcal{A}_{2}	$\left(p_{1} \cdot z_{3} z_{1} \cdot z_{2}+p_{3} \cdot z_{2} z_{1} \cdot z_{3}+p_{2} \cdot z_{1} z_{2} \cdot z_{3}\right)^{2}$	$\left.\sqrt{-g} R\right\|_{(3)}$
\mathcal{A}_{3}	$\left(p_{1} \cdot z_{3}\right)^{2}\left(z_{1} \cdot z_{2}\right)^{2}+\left(p_{3} \cdot z_{2}\right)^{2}\left(z_{1} \cdot z_{3}\right)^{2}+\left(p_{2} \cdot z_{1}\right)^{2}\left(z_{2} \cdot z_{3}\right)^{2}$	$\delta_{\nu_{1}}^{\left[\mu_{1}\right.} \delta_{\nu_{2}}^{\mu_{2}} \delta_{\nu_{3}}^{\mu_{3}} \delta_{\nu_{4}}^{\left.\mu_{4}\right]} \partial_{\mu_{1}} \partial^{\nu_{1}} h_{\mu_{2}}^{\nu_{2}} h_{\mu_{3}}^{\nu_{3}} h_{\mu_{4}}^{\nu_{4}}$
\mathcal{A}_{4}	$p_{1} \cdot z_{3} p_{2} \cdot z_{1} p_{3} \cdot z_{2}\left(p_{1} \cdot z_{3} z_{1} \cdot z_{2}+p_{3} \cdot z_{2} z_{1} \cdot z_{3}+p_{2} \cdot z_{1} z_{2} \cdot z_{3}\right)$	$\left.\sqrt{-g}\left(R_{\mu \nu \rho \sigma}^{2}-4 R_{\mu \nu}^{2}+R^{2}\right)\right\|_{(3)}$
\mathcal{A}_{5}	$\left(p_{1} \cdot z_{3}\right)^{2}\left(p_{2} \cdot z_{1}\right)^{2}\left(p_{3} \cdot z_{2}\right)^{2}$	$\left.\sqrt{-g} R^{\mu \nu}{ }_{\rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta} R^{\alpha \beta}{ }_{\mu \nu}\right\|_{(3)}$

$D=4$: no $\mathcal{A}_{4}, 2$ additional parity violating amplitudes

Massive spin-2 eikonal

$\alpha_{1} \quad \leftrightarrow \quad h_{\mu \nu}^{3}$
$\alpha_{2} \leftrightarrow \quad$ Einstein-Hilbert
$\alpha_{3} \leftrightarrow \quad$ Pseudo-linear
$\alpha_{4} \leftrightarrow$ Gauss-Bonnet
$\alpha_{5} \leftrightarrow$ Riemann 3

Massive spin-2 eikonal

diagonalize in powers of $1 / b$

$$
\frac{1}{S} \delta^{\lambda, \lambda^{\prime}} \rightarrow\left(\begin{array}{ccccc}
\frac{\Sigma_{0}[b m) \alpha_{2}}{2 \mathrm{M} p^{2}} & 0 & 0 & 0 & 0 \\
0 & \frac{K_{0}(b, n) \alpha_{2}}{2 \mathrm{M} p^{2} \tau} & 0 & 0 & 0 \\
0 & 0 & \frac{K_{0}(b \pi)_{2}}{4 \mathrm{M}^{2} \pi} & 0 & 0 \\
0 & 0 & 0 & \frac{K_{0}(b m) x_{2}}{4 \mathrm{Mp}^{2} \pi} & 0 \\
0 & 0 & 0 & 0 & \frac{K_{0}(b \mathrm{~m}) \alpha_{2}}{4 \mathrm{M}^{2} \pi}
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{1}{-} \delta^{\lambda, \lambda^{\prime}} \rightarrow\left(\begin{array}{ccccc}
\frac{144 a_{5}}{b^{4} m^{4} \mathrm{Mp}^{2} \pi} & 0 & 0 & 0 & 0 \\
0 & -\frac{144 a_{5}}{b^{4} \mathrm{~m}^{4} \mathrm{Mp}^{2} \pi} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \alpha_{5}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{-} \delta^{\lambda} \lambda, \lambda^{\prime} \rightarrow\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\alpha_{1}-3 \alpha_{2}}{2 \sqrt{3} b m \mathrm{Mp}^{2} \pi} \\
0 & 0 & 0 & 0 & 0
\end{array} \quad \underset{\text { eigenvalues }}{\longrightarrow} \quad\left\{-\frac{\alpha_{1}-3 \alpha_{2}}{2 \sqrt{3} \pi b m \mathrm{Mp}^{2}}, \frac{\alpha_{1}-3 \alpha_{2}}{2 \sqrt{3} \pi b m \mathrm{Mp}^{2}}, 0,0,0\right\} \quad \alpha_{2}=3 \alpha_{2}\right.
\end{aligned}
$$

Massive spin-2 eikonal constraints

Allowed cubic vertex: $\quad \mathcal{L}_{3} \propto \frac{1}{2 M_{\mathrm{Pl}}} R_{\mathrm{EH}}^{(3)}+\frac{m^{2}}{2 M_{\mathrm{Pl}}} h_{\mu \nu}^{3}$

Vertex not of this form \rightarrow new physics at m

KK reduction of Einstein-Hilbert

Conjecture: massive time delay avoided in KK theory by using this cubic vertex, not by cancellations among the KK tower

Massive spin-2 eikonal constraints

Constraints on dRGT theory:

Massless higher spins

Cubic vertices:

Spin-1

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{YM}} \sim\left(p_{1} \cdot z_{3}\right)\left(z_{1} \cdot z_{2}\right)+\left(p_{3} \cdot z_{2}\right)\left(z_{1} \cdot z_{3}\right)+\left(p_{2} \cdot z_{1}\right)\left(z_{2} \cdot z_{3}\right) \\
& \mathcal{A}_{F^{3}} \sim\left(p_{1} \cdot z_{3}\right)\left(p_{2} \cdot z_{1}\right)\left(p_{3} \cdot z_{2}\right)
\end{aligned}
$$

Spin-2
Einstein-Hilbert $\sim\left(\mathcal{A}_{\mathrm{YM}}\right)^{2}$

$(\text { Riemann })^{3} \sim\left(\mathcal{A}_{F^{3}}\right)^{2}$

Spin- s

vanish in $D=4$
(linear curvature) $)^{3} \sim\left(\mathcal{A}_{F^{3}}\right)^{s}$

Massless higher spins

KH,Austin Joyce, Rachel Rosen (1712.I002I)

Spin-s vertices:	$\left(\mathcal{A}_{\mathrm{YM}}\right)^{s}$	$\left(\mathcal{A}_{F^{3}}\right)^{s}$		
gauge symmetry:	deforms	does not deform (linear)		
Consistency/locality at				
quartic order (4 particle test)				
Benincasa, Cachazo (2007)			$:$	X
:---				
Eikonal constraints				

Conclusions

- Eikonal scattering and dispersion relations can provide useful model independent constraints on massive theories.
- An isolated massive spin-2 is not completely ruled out.
- Going beyond leading interactions: dispersion relations beyond the forward limit, subleading corrections to the Eikonal approximation may provide more information.
- May be useful as part of a bootstrap to solve large N QCD.

