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e Shear-banding phenomena in granular and complex fluids

e Gradient Banding and Patterns in 2D granular PCF

Outline of Talk

(Landau-Stuart Eqn.)

* Vorticity Banding in 3D gPCF
e Theory for Mode Interactions

» Spatially Modulated Patterns
(Ginzburg-Landau Eqn.)

 Summary and Outlook
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Shear-banding ?

Sheared granular material (or any complex fluid)
does not flow homogeneously like a simple fluid,
but forms banded regions having inhomogeneous
gradients in hydrodynamic fields.
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Origin of Shear-banding?

Multiple Branches in Constitutive Curve

Non-monotonic Steady state Shear Stress vs. Shear Rate Curve

A Gradient Banding
8 [ / Shear Rate > ’Critical’ shear rate
‘g ) : Flow breaks into bands of high and
% / / low shear rates with same shear stress
— i ' ' '
P 7 along the gradient direction.
Shear Rate

s Vorticity Banding

Shear Stress > Critical Shear Stress
Flow breaks into bands of high and

B low shear stresses with same shear rates
along the vorticity direction.

Shear Rate
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Gradient Banding in 2D-gPCF
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Order-parameter description of shear-banding?

Shukla & Alam (2009, 2011a,b, 2013a,b)
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Granular Hydrodynamic Equations
(Savage, Jenkins, Goldhirsch, ...)

Balance Equations

D
Mass e S —pVuu
Dt

Du
Momentum p — = -V.
e >

Pseudo Thermal Energy

dim DT
=-V.g->:VYu-D
2 b Dt 9-2

¢ : Volume fraction of particles
T : Granular temperature
u : Streamwise velocity

v: Normal velocity

P=p,0

Navier-Stokes Order

Constitutive Model
Stress Y =(p-C(Vu))I-2uS
S = l(Vu +Vu') - ,L(V.u)l
2 dim

Flux of pseudo-thermal energy

q=-KVT

dim: Dimension of system
x: Thermal Conductivity
12: Shear Viscosity

D: Sink of granular energy
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Plane Couette Flow 7(gPCF)

U/2

d : Particle diameter

Reference Length  }
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> Base Flow : Steady, Fully developed.
»Boundary condition: No Slip, Zero heat flux.

i(ua—”f 0 Uniform Shear Solution
ay\ 9]
Z—p _ C—> | ¢’ =const. T° = const. -
Y : P - H=h/d Couette Gap
o ( aTy (du) u (y)=y
—|K—=z+u |—z -D=0 Control paramters € Restitution CoefT.
dy\ ] ay | Y -

¢0 Volume fraction or
mean density
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Linear Stability

Perturbation (X”)

q)“ = const. T = const.
i LAIVES

If the disturbances are of infinitesimal magnitude,
‘nonlinear terms’ in disturbance eqns. can be
neglected.

AY! ~
oX' _ 7' |Linear Problem

Ol

X’(x,y,z,t) ~ exp(\omega t)exp(ik x x +1k z7z) ﬂ I Normal Mode

S Eigenvalue
B°X'=0 |Problem
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Can ‘Linear Stability Analysis’ able to predict
‘Gradient-banding’ in Granular Couette flow as
observed in Particle Simulations?
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Can ‘Linear Stability Analysis’ able to predict
‘Gradient-banding’ in Granular Couette flow as
observed in Particle Simulations?

Not for all flow regime
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Linear Theory

Particle Simulation
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Flow remains
‘uniform’ in dilute limit

l

Density segregated
solutions are not possible
in dilute limit

6 ‘S SAYJ L66] Y2S41YploD P unj

Flow is ‘non-uniform’ in
dilute limit

l

Density Segregated
solutions are possible in
dilute limit

One must look beyond Linear Stability
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Nonlinear Stability Analysis: Center Manifold Reduction
(Carr 1981, Shukla & Alam, PRL 2009)

Dynamics close to critical situation is dominated by finitely many “critical” modes.

o G o&b Z (t): complex amplitude of
Qo N o . c‘b\ “finite-size’ perturbation
o)
x%&& 'x'&:b CO& A B
Q C‘ 00, [ ©O { A
L N, +N, 0 \ow _a aN
X ¢ -+ W 15 L|‘b |.(’_;_MIZ'\” N, + N,
(1:1] & -0 r ¢ ‘.
o =zx"+ ZX" |E-Llperem S Lly=N,+N,
K’ ot \ ’ ' .
&\‘\&e QP@
?,&Q . %@‘(‘Q Taking the inner product of slow mode equation with adjoint eigenfunction
A2 of the linear problem and separating the like-power terms in amplitude,
o p p g p p
\;\x\e we get Landau-Stuart equation
0 0 -7.(0
}c( '=a 4+ =
'3, P . . / R DR
9O _o|ZX, =N,+N, —— % —(0Z L cOZ|Z 12+ cOZIZI* +
Ot = 5 s di /
First Landau Coefficient Second Landau Coefficient
. 4 4)  .1.(4
c® =@ Lip® Y =qg® 1 ip®
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Cont...

Distortion of

Second
Adjoint mean flow harmonic

N | Nz(/\//ﬁo:zl,xil-ll)_*_Nz(/Xiz:zl'Xﬁl-ll)+N3(X21:1]'X21-1]'X21:1])

o // <Y'X:1:1])

(@ - L) Y = Nonlinear terms Enslaved Equation

dl
/

Represent all non-critical modes

]
(v, g(xiuil yloal ylzal yiial yizal ylzel yloaly
(v, xialy

(4
C 4

Other perturbation methods can be used:
e.g. Amplitude expansion method and multiple scale analysis
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1st Landau Coefficient

Linear Problem [ xBU = (O y It

Second Harmonic L22X[2?2] =G,
——Analytically solvable

Distortion to mean flow [0:2] _
L02X G02 Shukla & Alam (JFM 2011a)

Distortion to fundamental
L13X[1;3] =Pyl 4 G13 B
Analytical expression of first Landau coefficient

a1 a2 a3 a 4

L) _ O°G,+u"GL,+v'GL+ TGy,

(I)aq)[l;l] _I_uau[l;l] _l_VaV[l;l] _I_TaT[l;l]

Analytical solution exists

|, We have developed a spectral based numerical code to
calculate Landau coefficients.
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Numerical Method: comparison with analytical solution

(1) Spectral collocation method,

(ii) SVD for inhomogeneous eqns. Shukla & Alam (JFM, 2011a)

(111) Gauss-Chebyshev quadrature for integrals.

- 1 I _
. Distorted density eigenfunction
Real part of first Landau coefficient
0.5
H=50, e=0.8 )|
P i o I y ] {
- o i -
- ‘.
+ M=20 R, -05
o M=50 - -1 0 1
o M=100 )
O . > . ¢
0.05 0.1 0.5 0.2
(bO

This validates spectral-based numerical code
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Equilibrium Amplitude and Bifurcation

Cubic Landau Eqn: Z = 4™

aA
dt

=0

dzZ

dt

—=cYZ+PZ|Z)

dA
dt
do

dt

—aV4+a® 4, Real amplitude eqn.

=m0y 4

Phase eqn.

Cubic Solution

—

Supercritical Bifurcation 40 0, a?® <0

\Subcritical Bifurcation a? < 0, a? >0 }

b =0

Pitchfork (stationary) bifurcation

|

b = ()
Hopf (oscillatory) bifurcation
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Phase Diagram

Constitutive equations are function of radial

0.6— . : distribution function (RDF)
05l | ¢°:Mean Density Y (D) = 1 —
a(zi 0 ¢, : Maximum Mean Density 1- ((I) / (I)m)
¢0 0.4 ' H : Couette Gap S
o= 005 ]
0.3, @ = ' 05 (p =y 782 =5
i | ‘ . 0 Sifesiag St it
0.1f P A
80 005 0.05 l RS

20 40 60 0
H =HB'(1-¢) ¢
Gradient-banding in dilute flows

!

This agrees with MD simulations of
Tan & Goldhirsch 1997

/\ Nonlinear Stability theory and MD simulations both support
gradient banding in 2D-GPCF  (PRL 2009)
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Cont... 0.6

Carnahan-Starling RDF 0.5}

(JEM 2011a)

1-¢/2
(1-¢/¢,,)’

% ()=

Change of constitutive
relations leads to three
degenerate points

Stable Solutions

— — — = Unstable Solutions
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H’ 0.559

Subcritical -> supercritical
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JFM, 2011a

Paradigm of Pitchfork A
Bifurcations

.. Supercritical
Supercritical Bifurcation
0 s2
(I) > (I)c | 4s2
Subcritical Subccl:*itical
i 0 ) og_ Bifurcation
O <0 <d°=0.559 =X
C C b C
Supercritical g Egg:rcrgyical
B) irarcation
S 0 sl -
O, <¢ <. =0.467 ¢
111 Subcritical
Subcritical Suberitical
[ 0 0y
0, <d <0, =0.196 N
b, )
Bifurcation from infinity Bifureation /
from * \ H,.= oo
0 [ 17 4 Infinity [‘ -l
(I) < q)c =~ (). Y (Tan & Goldhirsch |997) f oo .
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Plane Couette — U =1/2 A
F ’OW y= Jv . /
Bifurcation From e I_‘ III I _
Infinity U" 12 <_~—i ........ Re
Plane Poiseuille | y=1/2 4
Flow [_\'
Subcritical d I
Bifurcation J— —y=-1/2 = 5 -Re,
Rayleigh-Benard cold : A
Convection 72 L/
Supercritical ST J
Bifurcati -SHE 4 ' 1.
Irurcation Rac Ra
Taylor Couette A
Flow
Supercritical J
Bifurcation T < b

All in one!
Granular Plane Couette flow
admits all types of Pitchfork bifurcations
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Conclusions

» Problem is analytically solvable.

» Landau-Stuart equation describes gradient-banding transition in a sheared granular
fluid.

»Landau coefficients suggest that there is a “sub-critical” (bifurcation from infinity)
finite amplitude instability for “dilute” flows even though the dilute flow is stable
according to linear theory.

» This result agrees with previous MD-simulation of gPCF.

» gPCF serves as a paradigm of pitchfork bifurcations.

» Analytical solutions have been obtained.

» An spectral based numerical code has been validated.

References: Shukla & Alam (2011a), J. Fluid Mech., vol 666, 204-253
Shukla & Alam (2009) Phys. Rev. Lett., vol 103, 068001.
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" “Gradient-banding” and Saturn’s Ring?

»Self gravity?... other effects needed...

References: Schmitt & Tscharnuter (1995, 1999) Icarus
Salo, Schmidt & Spahn (2001) Icarus,
Schmidt & Salo (2003) Phys. Rev. Lett.
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Patterns in 2D-gPCF

Shukla & Alam , JEM (2011b) vol. 672, 147-195

> =

-t

Modulation in ‘x’-direction

Modulation in ‘y’-direction

Flow 1s linearly unstable due to stationary and traveling waves, leading to
particle clustering along the flow and gradient directions
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Particle Simulations of Granular PCF

(Conway and Glasser 2006)

®e0 o000 Jg00q0°®

Ble 0% o ® -X
°® .00.0 0% “000%
® %000 / |ee00 g %,®

Tuesday 2 July 13




Stability of 2D-gPCF when subject to “finite
amplitude perturbation”

Seeking an order parameter theory for
stationary and traveling wave instabilities...
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Linear Theory

Long-wave
instability

k =0

Ist peak

Standing wave instabilitv

k =~O0(1)

¢ =02 H=100,e=0.8

{l\aznd peak
0.2} .
Traveling
\@9»\ = wave
R instability
-0.2} . :
-04 E i?\Phase velocit
' u % '_: < q'? Growth rate
” . C,, Phase velocity
R O
Wavenumber —> Cop = —k—
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Long-Wave Instabilities F ~0

X
Supercritical pitchfork/Hopf bifurcation ¢ =02, H =100, e=0.8
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Stationary Instability ¢ =02, H=100,e=0.8

Supercritical pitchfork bifurcation

kx = 0(1) B 04 v 20.3..6)
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Structural features are different from long-wave stationgu'y instability
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Travelling Instabilities 002, H=100,¢=08

Supercritical Hopf bifurcation k. =O(1)
X

2
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Supercritical Hoptf Bifurcation/ Limit Cycle Solutions

9z _ 07 407 1Z |

dad — g0 gy gD —> [a” +aP 4 Jexp(-2at) —aP 4]

dt ’ bPa®  [a® +4® 42(1-exp(-2a"7))

O 0 00 =0, +p -8 ln{ e

7 =b" +b'“ 4

t
A,=A(t=0),0,=0(t=0)
\ ¢=0.2, H=100
A, > A,

k.=0.935

/'/ Stable limit cycle —*
/ 4
0.5}

0.4 q(bs 0.98
X

Stable limit cycle
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Subcritical Hopf Bifurcation/ Limit Cycle Solutions
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Both orbits spiral away from the unstable limit cycle
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Dominant Stationary Instabilities

Non-linear

0.02 —

0.01}f

Non-linear

~0.04 i . / 021 " || Resonance
05 ~ 0.1 -3-5"\ /’
-0.06} 01 02 03 04 05
(a)‘ _ ‘ ‘ 0 o1 02 03 04 08
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o’ ¢°

Density patterns are structurally similar at all
densities

0" =03,k =0.77
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Dominant Traveling Instabilities

Supercritical Hopf Bifurcation  Subcritical Hopf Bifurcation
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onclusions

» The origin of nonlinear states at long-wave lengths is tied to the
corresponding subcritical / supercritical nonlinear gradient-banding
solutions (discussed in 1%t Part of talk).

» For the dominant stationary instability nonlinear solutions appear via
supercritical bifurcation.

» Structure of patterns of supercritical stationary solutions look similar
at any value of density and Couette gap.

» For the dominant traveling instability, there are supercritical and
subcritical Hopf bifurcations at small and large densities.
»Uncovered mean flow resonance at quadratic order.

References: Shukla & Alam (2011b), J. Fluid Mech., vol. 672, p. 147-195.
Shukla & Alam (2011a), J. Fluid Mech., vol 666, p. 204-253.
Shukla & Alam (2009) Phys. Rev. Lett., vol 103, 068001.
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Vorticity Banding in 3D-gPCF

Pure Spanwise Perturbations

0 J 0
=0, — =0, — =0
ox ay 0z
Gradient
y Vorticity
/4
X
Streamwise

Shukla & Alam (2013b, JFM)
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Linear Vorticity Banding

Ok 2 Dispersion relation
w
. oW+ —= _(u) +a,m +aoo+a) 0
Pure spanwise GPCF ( O'HT :
/ ' ) A Analytically solvable
|
1
o} 1, Stable 02r o |
k/H Py, ]
' &\ Cr (9] JEIEEEEE *T FAVEEFRERRRRRERRRBRERLELLLLFRLRLRNRT 0]
) "1
0.0 -0.2t SW ' ™
00"’“00 | : kZ=0.05, e=0.8
En able -04F TW .:.-'I SW
%05 o1 o015 02 o 0.2 0.3 0.4 0.5
¢ | Density >

Pitchfork bifurcation | Supercritical Hopf bifurcation
1

Gradient-banding modes stationary modes at all density.

Vorticity-banding modes  stationary at dilute limit &

traveling in moderate-to-dense limit.
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Nonlinear Stability

Shukla & Alam (2013b, JFM)

Linear Problem [ x B = o ythll

Second Harmonic Lsz[z?z] =G,

— Analytically solvable

Distortion to mean flow [ X% =G

Distortion to fundamental
[L3] _ .(2) y L]
L, X" =7 X" +G,
Analytical expression for first Landau coefficient
@) _ (I) aG113 + w G143 + T aG153 Adjoint Eigenfunction

ap (1], o oa [L1] | pag(l] @, w*, T
OO +ww+T°T

_/

C

Analytical solution exists at any order in amplitude‘
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Nonlinear Vorticity Banding
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Significance of higher order nonlinear correction

\ 2 o cube
+ quntc
Nonlinear disturbance (_ - LX"= 2 N ! )

awlncorrectwﬁw.

0.5} M
C(n)=C(n)(N2,N3,N49N59K9Nn+1) -

0 st 0°=005 . ..-‘;-’v:’
"“’W"”’“
Cubic correction -0.5}
4 4 Correct
()—C( )(N2»N3»/&49/¢) 1
Quintic correction -1.5 0.65 - 0j1 015
W =c®(N,,N,,N,,N,) 2

. 4

n-th order Landau coeff. need (n+1)-th order nonlinear term
for correct results.

Tuesday 2 July 13




Vorticity Banding in Dilute 3D Granular Flow
(Conway and Glasser. Phys. Fluids, 2006)

Particle density 1so-surfaces for ¢ =0.05,e=0.6
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Dense 3D Granular Flow
(Grebenkov, Ciamarra, Nicodemi, Coniglio, PRL 2008, vol 100)
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Analytical solution exists at any order.

2 Vorticity Banding Gradient Banding
= - 0.6
g :
04
'?':) 0.5 A
(=) K. 0 04 ).
° ) «a"'=0
o 0.3
0.2
0102 03 04 05 0.1 (a0
[ Supercritical Region 20 * 40 1 60 : 80
[ Subcritical Region H =HB y(l-e)
¢’ =0.1
. . o< }
Pitchfork Bifurcation| | |Hopf Bifurcation
Subcritical and supercritical : Subcritical Pitchfork Bifurcation
. >
Density Density

Higher order nonlinear terms are important to get correct bifurcation scenario.
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Patterns in three-dimensional gPCF

Gradient

y Spanwise

-
3 \ “
\ |
.
AP
| L ]
|
| v
e\ X

Streamwise

Shukla & Alam (2013c, preprint)
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Nonlinear Stability

Shukla & Alam (2013) (Preprint for PoF)

—_—

Linear Problem LX"" =@ xtH

Second Harmonic L,X 12l o G,, Analvticall
y y

Distortion to mean flow L,X'% =G, solved

Distortion to fundamental 7, X131 = ¢ x4 G |

_/

Analytical Expression of first Landau Coetficient

a1 a2 a3 a4 a5
@) _ O°GL+u ' GL+v' G, +w Gl +T7G,
(I)aq)[l;l] +uau[1;1] +Vav[1;1] +Waw[1;1] +TaT[1;1]

¢ Adjoint Eigenfunction

((I)a,ua,vajwa,Ta)

Analytical solution exists
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Dilute Flows

Supercritical bifurcation

[l
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Subcritical bifurcation

Linear Stability Curve

Large wavenumbers

L

Stable

¢’ =0.02
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Small wavenumbers
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Moderate-to-Dense Flows

Linear Stability Curve

6

Moderate Flows ; ' Dense Flows
N .. . . Stable Subcritical bifurcation
Supercritical bifurcation 4 -
e K 0.025
SXA0° _ _ , 3 p
= 1_5:(10" 3 0.02 '\
1 A. / ‘ 2 \‘\T ﬁ
! ; 05 | a0o1% .
Unstable 0.01 l e
de 0—"%0 100 150 200 250 N
H 0.00% N
A 4 \
p=2 1
140 120 180 200

P30 131 132 133 134 135
$° =0.2 ¢’ =0.5
k.=2,e=0.8 k.=2,e=0.8
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Linear and Nonlinear Density Patterns

Nonlinear Linear

Stable, supercritical
patterns

H =135,¢"=0.2,
e=0.8k =2

Nonlinear Linear

N

Unstable, subcritical |
patterns {x}

2

H =140, ¢$° = 0.5,
e=0.8k =2

0 ns 1
22,

» Patterns exists in streamwise and gradient direction.
» Nonlinear pattern looks very different from linear patterns.
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Conclusions

»In dilute limit finite amplitude solutions occur via supercritical
bifurcation for large wavenumbers and via subcritical bifurcation for
small wavenumbers.

» Transition from supercritical to subcritical in moderate-to-dense
limit.

» The finite amplitude nonlinear patterns look very different from its
linear analogue.

Shukla & Alam (2013c, preprint for PolF)
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Theory for Spatially Modulated

Patterns
Complex Ginzburg Landau Equation (CGLE)

Landau Equation

" N Ordinary differential equation
%:C((”A-FC("AIAI‘ ry J
| Holds for spatially periodic patterns
Complex Ginzburg Landau Equation
azA - 3 " a:x";‘ ~(2) / / 2
3 — C A+ a ax2 T ¢ ATAI Partial differential equation

Holds for spatially modulated patterns
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Under which condition CGLE arises?

19 v v v 0.01
stable OF;
2
@ -0.01}
—
=
© -0.02¢
S
-0.03f
(H K _)=(35.8095,1.6975)
-0.0?

5 16 Lf? 18 19
X

For |4 < H_|all modes are decaying : Homogeneous state is stable,

H =H |at k_=k_a critical wave number gains neutral stability,
H > H |there is a narrow band of wavenumbers around the critical
value where the growth rate is slightly positive.

width of the unstable wavenumbers: o« (H-H)"*
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Theory (Multiple scale analysis)

9 _ )y _ N
(at L}.X(x,y,t) ;Ni

Growth rate is of order H - H, Stewartson & Stuart (1971)

The timescale at which nonlinear interaction affects the
evolution of fundamental mode is of order 1/(growth rate)

82=a’1r|I{_I{c|

T =¢2t » Slow time scale

S=e(x-ct) — 5gqlow length scale

v

Group velocity

- N W E 0N O
& &6

1 UL*' _ OA Y c l,.-, A _ - |
dy 0H ' 97T Gl Al QA(E, T) dy

A 1 [OL, s 1TPDLT < ) T d
¢ = x [I.I e = (_ r (
¢? [( AT [rﬂ:r D ! 2 [ k3 ]'\'] ]r

(Wl =Ly, ) X13 =

Tuesday 2 July 13




Patterns in Vibrated Bed

Patterns in Vibrated bed can be predicted by the complex Ginzburg LE
(Tsimring and Aranson 1997, Blair et. al. 2000)

cy

Ot

=vy —(l-iow +(1+ib)Vy—-|y | wv-py

Recent work of Saitoh and Hayakawa (Granular Matter 2011) on TDGL in
“unbounded” shear flow.

Conclusions

»Complex Ginzburg Landau equation has been derived that describes
spatio-temporal patterns in a * bounded’” sheared granular fluid.

» Numerical results awaited...
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Summary

» Landau-type order parameter theory for the gradient banding in gPCF has been
developed using center manifold reduction. Ref: PRL, vol. 103, 068001, (2009)

» Analytical solution for the shearbanding instability, comparison with numerics &
bifurcation scenario have been obtained. Ref: JFM, vol. 666, 204-253, (2011a)

» The order parameter theory for the 2D and 3D gPCF has been developed. Nonlinear
patterns and bifurcations have been studied. Ref: JFM, vol. 672, 147-195 (2011b)

» Nonlinear states and bistability for vorticity banding have been analysed.
Ref: JFM, vol. 718 (2013b)

» Coupled Landau equations for resonating and non-resonating cases have been derived.
Preprint

»Complex Ginzburg Landau equation has been derived for bounded shear flow.
Preprint
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Outlook

Present order-parameter theory can be modified for other pattern forming problems,
¢.g. granular convection, granular Taylor-Couette flow, inclined Chute flow, etc.

Standing Wave Patterns Oscillons

® L _
'... e
A LM [ PRSI

Kelvin-Helmholtz Instability

Granular Convection
H il R Zeath 7
- l:. ‘ . . ‘I :4' . | :!l. ' .

Granular Chute Flow: Longitudinal Vortices

Granular Poiscuille Flow
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Revisit nonlinear theory of Saturn’s Ring

» Non-isothermal model with spin, stress
anisotropy & self-gravity ...??

» Spatially modulated waves ...

» Wave interactions ...

» Secondary instability, ....
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