Nonlinear visco-elastic properties of granular materials near jamming transition

Michio Otsuki (Shimane Univ.) Hisao Hayakawa (Kyoto Univ.)

Granular materials (Assemblies of particles with dissipation)

Ginkaku-ji temple 📱

Rheology under steady shear

frictionless case

Theory for exponents M. Otsuki and H. Hayakawa, PRE, 80, 011308, (2009) Three Critical scaling laws Four Assumptions $\mathsf{T}(\dot{\mathsf{Y}}, \Phi) = |\Phi - \Phi_{|}|^{\mathsf{x}_{\Phi}} \tau_{\pm}(\dot{\mathsf{Y}} |\Phi - \Phi_{|}|^{-\alpha})$ • S / P is constant. Kinetic energy Coulomb's friction : Hatano (2007) P in high density region : $\sigma(\dot{\mathbf{Y}}, \Phi) = |\Phi - \Phi_{\mathbf{I}}|^{\mathbf{y}_{\Phi}} \mathsf{S}_{\pm}(\dot{\mathbf{Y}} |\Phi - \Phi_{\mathbf{I}}|^{-\alpha})$ **Ρ~**Φ Shear stress O'Hern, et al., (2003) Characteristic time : P^{-1/2} $\mathsf{P}(\dot{\mathsf{Y}}, \Phi) = |\Phi - \Phi_{\mathsf{I}}|^{\mathsf{y}_{\Phi'}} \mathsf{p}_{\pm}(\dot{\mathsf{Y}} |\Phi - \Phi_{\mathsf{I}}|^{-\alpha})$ Wyart, et al. (2005) Pressure Low density region : collision frequency $\propto T^{1/2}$ Fn¥kð Kinetic theory **Theoretical prediction for critical exponents** $x_{\Phi} = 3$, $y_{\Phi} = 1$, $y_{\Phi}' = 1$, $\alpha = 5/2$ (for disks) Linear repulsive force

Problem

- The system under steady shear is not suitable to study the rigidity near the jamming transition.
- In experiments, the steady shear is hard to realize.

- System : no mass, fixed contact networks, tangential friction
- Complex shear modulus exhibits critical scalings.

Purpose of this work

- In the previous work, the attention is restricted to the small shear limit and the change of the contact network is not considered.
- However, the change of the network dominates the rheological property near the jamming transition point.

*We investigate the rheological properties under OS in a wide range of shear amplitude.

Oscillatory shear

- Shear strain : $\gamma(t) = \gamma_0 \cos(\omega t)$
- Amplitude : γ_0 , Frequency : ω
- Shear stress : $\sigma(t)$
- Volume fraction : Φ
- Shear modulus : G* = G' + i G"
- G' ~ $\int dt \sigma(t) \cos(\omega t) / \gamma_0$ Real part : Storage modulus
- G" $\propto \int dt \, \sigma(t) \sin(\omega t) / \gamma_0$ Imaginary part : Loss modulus

We numerically investigate $G^*(\gamma_0, \omega, \Phi)$.

Oscillatory shear

- Shear strain : $\gamma(t) = \gamma_0 \cos(\omega t)$
- Amplitude : γ_0 , Frequency : ω
- Shear stress : $\sigma(t)$
- Volume fraction : Φ
- Shear modulus : G* = G' + i G"
- G' ~ $\int dt \sigma(t) \cos(\omega t) / \gamma_0$ Real part : Storage modulus

• G" $\propto - \int dt \, \sigma(t) \sin(\omega t) / \gamma_0$ Imaginary part : Loss modulus

We numerically investigate $G^*(\gamma_0, \omega, \Phi)$.

Critical scalings of G*

• We find three critical behaviors.

1. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 ≥ I$. (Large amplitude region)

2. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 < I$. (Small amplitude region)

3. $G^*(\gamma_0, \omega, \Phi)$ for $\omega \rightarrow 0$. (Quasi static limit)

As Φ approaches Φ_J , G^{*} shows a power-law dependence on ω with a non-trivial exponent.

Critical scalings of G*

• We find three critical behaviors.

1. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 > 1$. (Large amplitude region)

2. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 < I$. (Small amplitude region)

3. $G^*(\gamma_0, \omega, \Phi)$ for $\omega \rightarrow 0$. (Quasi static limit)

$G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 \ll 1$

The behavior of G* is consistent with the Voigt model. Storage modulus : G' \propto ($\Phi - \Phi_J$)^{1/2} (small ω -dependence) Loss modulus : G" $\propto \omega$

Critical scalings of G*

• We find three critical behaviors.

]. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 > I$. (Large amplitude region)

2. $G^*(\gamma_0, \omega, \Phi)$ for $\gamma_0 < I$. (Small amplitude region)

3. $G^*(\gamma_0, \omega, \Phi)$ for $\omega \rightarrow 0$. (Quasi static limit)

Summary

- We numerically investigate complex shear modulus of oscillatory sheared system.
- We find three critical scalings.

Thank you for your attention.

Model of granular materials

 $\Phi < \Phi_{I}$

Tangential force

• Friction coefficient : μ

 $\Phi > \Phi_{I}$

- $F_t < \mu F_n$ (Coulomb's friction)
- Frictionless : $\mu = 0$
- Frictional : $\mu > 0$

Important parameters : Δ , μ

Characteristic features

M. Otsuki and H. Hayakawa, Phys. Rev. E 83, 051301 (2011)

Frictionless ($\mu = 0.0$) Continuous transition

Frictional ($\mu = 2.0$) Discontinuous transition
Effect of friction (type of the transition)

Scaling relations

Solid branch

$$P \sim (\phi - \phi_S)^{\Delta}$$
, $S \sim (\phi - \phi_S)^{\Delta}$,

Exponents in other works

Author	УФ	y _Y = α / y _Φ	уф [°]	Χφ	α	system	critical point	shear rate	Number of particles
Olsson & Titel 2007	l.2 = Δ+0.2 (Δ=1)	0.413			2.9	foam	0.8415 (diameters 1:1.4)		1024
Hatano 2008	l.2 = Δ+0.2 (Δ=1)	0.63 (∆=1)	l.2 = Δ+0.2 (Δ=1)	2.5 (∆=1)	∣.9 (Δ=1)	granular	0.646 (diameters 1:1.4)	10 ⁻⁴ ~ 10 ⁰	1000
Otsuki, Hayakawa, 2009	Δ	2Δ / (Δ+4)	Δ	∆+2	(∆+4) / 2	granular	0.648 (diameters 1:1.4)	5 x 10 ⁻⁷ ~ 5 x 10- ⁵	4000
Tighe et al. 2010	∆+0.5	1/2				foam	0.8423 (diameters 1:1.4)	10 ⁻⁵ ~ 10 ⁻¹	1210
Hatano 2010	l.5 = Δ+0.5 (Δ=1)	0.6 (Δ=1)	l.5 = Δ+0.5 (Δ=1)	3.3 (∆=1)	2.5 (∆=1)	granular	0.6473 (diameters 1:1.4)	10 ⁻⁸ ~ 10 ⁻²	4000
Nordstrom et al. 2010	2.1 = Δ+0.6 (Δ=1.5)	0.48 (Δ=1.5)			4.1 (Δ=1.5)	foam	0.635		
Olsson & Titel 2010	1.08 = Δ +0.08 (Δ=1)	0.28 (∆=1)	$1.08 = \Delta$ +0.08 (Δ =1)		3.85 (∆=1)	foam	0.84347 (diameters 1:1.4)	10 ⁻⁸ ~ 10 ⁻⁶	

Correlation length

Scaling law

• high density region($\phi > \phi_{J}$) + low shear limit($\dot{\gamma} \rightarrow 0$)

$$\mathsf{P} \sim (\phi - \phi_{\mathsf{J}})^{\Delta}, \quad \mathsf{S} \sim (\phi - \phi_{\mathsf{J}})^{\Delta}$$

• low density region($\phi < \phi_{J}$) + low shear limit($\dot{\gamma} \rightarrow 0$)

 $P \sim \dot{\gamma}^2 (\phi \cup - \phi)^{-4},$

Protocol

• We sequentially change shear rate.

Shear stress

• Similar behavior to the frictionless case

Iow density $S \propto \dot{\gamma}^2$ critical density $S \sim \dot{\gamma}^{y_{\gamma}}$ high density $S(\gamma) \rightarrow S_{\gamma}$

• Hysteresis loop appears around the critical point

Critical exponents

$$\begin{split} T &= |\Phi|^{x_{\Phi}} \mathcal{T}_{\pm} \left(\dot{\gamma} |\Phi|^{-\alpha} \right), \\ \hline \text{Temperature} \\ S &= |\Phi|^{y_{\Phi}} \mathcal{S}_{\pm} \left(\dot{\gamma} |\Phi|^{-\alpha} \right), \\ \hline \text{Shear stress} \\ P &= |\Phi|^{y'_{\Phi}} \mathcal{P}_{\pm} \left(\dot{\gamma} |\Phi|^{-\alpha} \right), \\ \hline \text{Pressure} \\ \omega &= |\Phi|^{z_{\Phi}} \mathcal{W}_{\pm} \left(\dot{\gamma} |\Phi|^{-\alpha} \right), \\ \hline \text{Characteristic frequency} \end{split}$$

n : number density

 ω characterizes the dissipation of the energy

$$\frac{Dn}{2}\frac{d}{dt}T = \dot{\gamma}S - n\omega T$$
D: dimension

The exponent for the interaction : Δ

Dissipative force between the contacting particles

Characteristic frequency

The first peak of g(r) changes drastically near Φ_{J} .

• The first peak diverges as the shear rate gets smaller.

The results are consistent with our predictions

System size D=3, mono-disperse, $\Delta=1$

Point G?

Berthier and Witten (2008)

Equilibrium simulation

Point G?

 $\phi = 0.635, \phi = 0.642$

There is no singularity other than point J.

$$\begin{split} & \text{Theory for } g(\mathbf{r}) = \frac{V}{N^2} \left\langle \sum_{i} \sum_{j \neq i} \delta(\mathbf{r} - \mathbf{r}_{ij}) \right\rangle, \\ g(\mathbf{r}) &= \frac{V}{N^2} \left\langle \sum_{i} \sum_{j \neq i} \delta(\mathbf{r} - \mathbf{r}_{ij}) \right\rangle, \\ & = \frac{1}{N} \int_0^{\sigma_0} dr \left\langle \frac{1}{2} \sum_{i} \sum_{j \neq i} \delta(r - r_{ij}) \right\rangle \\ & = \frac{S_D n}{2} \int_0^{\sigma_0} dr r^{D-1} \bar{g}(r) \\ & = \frac{1}{2DV} \left\langle \sum_{i} \sum_{j \neq i} r_{ij} f_{el}(r_{ij}) \Theta(\sigma_0 - r_{ij}) \right\rangle \\ & = \frac{1}{2DV} \int_0^{\infty} dr r_{f_{el}}(r) \Theta(\sigma_0 - r) \left\langle \sum_{i} \sum_{j \neq i} r_{ij} \delta(r - r_{ij}) \right\rangle \\ & = \frac{S_D n^2}{2} \int_0^{\sigma_0} dr r^D f_{el}(r) \bar{g}(r), \end{split} \qquad \begin{aligned} & \bar{g}(r) &= \int \frac{d\Omega}{S_D} g(r) \\ & = \frac{1}{N} \int_0^{\sigma_0} dr r^D f_{el}(r) \bar{g}(r) \\ & = \frac{S_D n^2}{2} \int_0^{\sigma_0} dr r^D f_{el}(r) \bar{g}(r), \end{aligned}$$

$$\begin{array}{c} \textbf{general force} \\ F(r) = k(r - \sigma_0)^{\Delta} \\ \hline x_{\Phi} = 2 + \Delta, \quad y_{\Phi} = \Delta, \quad y_{\Phi}' = \Delta, \quad z_{\Phi} = \frac{\Delta}{2}, \quad \alpha = \frac{\Delta + 4}{2} \\ \textbf{general case} : \lim_{r \to \sigma_0} F(r) \sim (r - \sigma_0)^{\Delta} \\ \hline \textbf{D} = 3, \quad \textbf{repulsive Lennard-Jones} \\ F(r) = \epsilon \left\{ \left(\frac{\sigma_0}{r}\right)^{13} - \left(\frac{\sigma_0}{r}\right)^{7} \right\} \quad \textbf{for } r < \sigma_0 \\ \hline \textbf{The exponents are} \\ \textbf{estimated with } \Delta = . \end{array}$$

Discussion : previous works