Critical behavior of a domain wall collapse and Oscillon with gravity Taishi Ikeda with Chul-Moon Yoo & Vitor Cardoso

What is Oscillon?

- · Let's consider time evolution of scalar field.
 - scalar field + double well potential
 - ► EOM

$$\frac{\partial^2}{\partial t^2} \Phi - \nabla^2 \Phi = -V'(\Phi) \qquad V(\Phi) = \frac{1}{4} (\Phi^2 - \sigma^2)^2$$

Wakate

2

1.About Oscillon

Oscillon = extremely long-lived time dependent solution of scalar field

- typical initial data
 - Gaussian bubble $\Phi_c : \text{value of the scalar field} at the bubble's core$ $\Phi(t = 0, r) = (\Phi_c + \sigma)e^{-r^2/R_0^2} - \sigma$ • tanh bubble $\Phi(t = 0, r) = \frac{1}{2}[(-\sigma - \Phi_c) \tanh(r - R_0) - \sigma + \Phi_c]$

Life time vs bubble radius

Oscillon = extremely long-lived time dependent solution of scalar field

4

Wakate

Oscillon naturally appears during the collapse of bubble.

1.About Oscillon

Fine structure of Oscillon

- Fine structure of lifetime (Honda et al 2002)
 - When we tune the initial parameter, resonance structure of lifetime

5

Wakate

- Critical behavior appears around the fine structure. (critical solution

1.About Oscillon

What we want to do?

- We want to construct Oscillon with gravity.
 - Dose it exist (not only in week gravity case but also strong gravity case) ?
 - its property ?
 - It may be one of the final state or intermediate state of gravitational collapse.
- What is interesting ?
 - Can Oscillon collapse to black hole ?
 - If critical behavior appears, there are special solutions associated with critical behavior.
- We need to develop the numerical code for spherically symmetric spacetime.

1.About Oscillon

Wakate

System and initial data

· EOM

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

 $\nabla^2 \Phi = V'(\Phi)$ $V(\Phi) = \frac{1}{4}(\Phi^2 - 1)^2$ G : Newton constant

- initial data
 - momentary static bubble

$$\begin{cases} \Phi(t = 0, r) = -1 + 2e^{-r^2/R_0^2} & \Phi \\ \Pi(t = 0, r) = 0 & \sigma \\ \begin{cases} \tilde{\gamma}_{ij} dx^i dx^j = dr^2 + r^2 d^2 \Omega \\ K_{ij} = 0 & -\sigma \end{cases}$$

Wakate

• ϕ is given from the solution of Hamiltonian constraint.

2.GBSSN formulation

Our numerical code

- Our numerical code
 - It is written in C++.
 - GBSSN formulation spherically symmetric case
 - free evolution
 - time integration : iterative Crank Nicolson shceme
 - spatial derivative : central difference
 - totally second order accuracy
 - We add 2nd order numerical dissipation term in each time evolution equation.
 - We use inhomogeneous grid
 - parallel computation by using Open MP

Kodama mass = locally conserved energy in the spherically

Kodama mass

symmetric system

- definition
 - Kodama vector

$$K^A = \epsilon^{AB} \partial_B R$$

 $ds^{2} = \mathcal{G}_{AB} dx^{A} dx^{B} + R^{2} d^{2} \Omega$ (t, r) $\epsilon_{AB} = \sqrt{-\mathcal{G}} \varepsilon_{AB} \quad \varepsilon_{tr} = 1$

Q

(vector on 2-dim manifold charted by t and r)

- → K^{μ} (vector on 4-din manifold)
- Kodama mass

$$S^{\mu} = T^{\mu}_{\ \nu} K^{\nu}$$
$$M(t; r_0) = \int_{\Sigma} S^t \alpha \sqrt{\gamma} dx^3$$

Wakate

2.GBSSN formulation

$ds^2 = \mathcal{G}_{AB}dx^A dx^B + r^2 d^2 \Omega$

- proof

$$= -\alpha^{2}(t,r)dt^{2} + a^{2}(t,r)dr^{2} + r^{2}d^{2}\Omega$$

• component of $K^A = \epsilon^{AB} \partial_B r$

$$K^t = \epsilon^{tr} \partial_r r = -\frac{1}{\alpha a}, \ K^r = 0$$

• component of
$$S^{\mu} = T^{\mu}_{\ \nu} K^{\nu}$$

component of
$$S^{\mu} = T^{\mu}_{\ \nu} K^{\nu}$$

$$\begin{cases} S^{t} = \frac{1}{\alpha^{3}a} T_{tt} = \frac{1}{\alpha^{3}a} G_{tt} = \frac{1}{\alpha^{3}a} (\frac{2\alpha^{2}\partial_{r}a}{ra^{3}} + \frac{\alpha^{2}}{r^{2}} - \frac{\alpha^{2}}{r^{2}a^{2}}) \\ S^{r} = \frac{1}{\alpha a^{3}} T_{rt} = \frac{1}{\alpha a^{3}} G_{rt} = -\frac{2\partial_{t}a}{r\alpha a^{4}} \\ \partial_{\mu} (\sqrt{-g} S^{\mu}) = 0 \end{cases}$$

$$\epsilon_{AB} = \sqrt{-\mathcal{G}}\varepsilon_{AB}$$
$$\varepsilon_{tr} = 1$$
$$\epsilon_{tr} = \alpha a$$

2.GBSSN formulation

Wakate

Kodama mass

2.GBSSN formulation

Kodama mass

- conservation law of Kodama mass

$$\nabla_{\mu}S^{\mu} = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}S^{\mu}) = 0$$

$$M(t = 0; r_0) + P(t = 0, t; r_0) = M(t; r_0)$$

$$\begin{cases} M(t;r_0) = \int_{\Sigma} S^t \alpha \sqrt{\gamma} dx^3 \\ P(t=0,t;r_0) = \int_0^t dt \int_{\partial \Sigma} d^2 x \ n_\mu S^\mu \end{cases}$$

 We define the lifetime of Oscillon from Kodama mass in the case of Oscillon with gravity.

Oscillon with gravity (preliminary result) 12

Some examples of numerical simulation

Wakate

3.Oscillon with gravity

Oscillon with gravity (preliminary result) 13

3.Oscillon with gravity

Wakate

Life time of Oscillon with gravity (preliminary result)

initial bubble radius vs life time of Oscillon with gravity

14

Wakate

3.Oscillon with gravity

Life time of Oscillon with gravity (preliminary result)

3.Oscillon with gravity

Wakate

Summary and future work

- Summary
 - Oscillon = long lifetime localized solution of scalar filed on Minkwski background
 - It is the product of nonlinear effect of scalar field.
 - We construct the Oscillon with gravity.
 - We get sign of its fine structure in the life time.
- Future work
 - Can Oscillon collapse to black hole ?
 - Can we check the critical behavior ?
 - What is the properties of the critical solution ?

