Critical behavior of a domain wall collapse and Oscillon with gravity

Taishi Ikeda with Chul-Moon Yoo & Vitor Cardoso
What is Oscillon?

- Let’s consider time evolution of scalar field.
 - scalar field + double well potential
 - EOM
 \[
 \frac{\partial^2 \Phi}{\partial t^2} - \nabla^2 \Phi = -V'(\Phi) \quad V(\Phi) = \frac{1}{4}(\Phi^2 - \sigma^2)^2
 \]
 - initial data : Gaussian bubble
 \[
 \Phi(t = 0, r) = 2\sigma e^{-r^2/R_0^2} - \sigma
 \]
 \[
 \Pi(t = 0, r) = 0
 \]
What is Oscillon?

- Oscillon = extremely long-lived time dependent solution of scalar field
 - typical initial data
 - Gaussian bubble
 \[\Phi(t = 0, r) = (\Phi_c + \sigma)e^{-r^2/R_0^2} - \sigma \]
 - tanh bubble
 \[\Phi(t = 0, r) = \frac{1}{2}[(-\sigma - \Phi_c) \tanh(r - R_0) - \sigma + \Phi_c] \]

\[\Phi_c : \text{value of the scalar field at the bubble's core} \]
Life time vs bubble radius

- Oscillon = extremely long-lived time dependent solution of scalar field
- Oscillon naturally appears during the collapse of bubble.
- Definition of life time: t_f

$$E(t; r_0) = \int_0^{r_0} \left\{ \Phi^2 + (\nabla \Phi)^2 + V(\Phi) \right\} 4\pi r^2 dr$$

$$\frac{E(t_f; r_0)}{E(t = 0; r_0)} < \text{(some small value)}$$

$t = 0$ \hspace{1cm} $t = t_f$

![Diagram showing life time vs bubble radius](image)

1. About Oscillon

Wakate
Fine structure of Oscillon

- Fine structure of lifetime (Honda et al. 2002)
 - When we tune the initial parameter, resonance structure of lifetime appears.

- Critical behavior appears around the fine structure. (critical solution exist)

\[t_f \sim \gamma \ln |R_0 - R_*| \]
What we want to do?

- We want to construct Oscillon with gravity.
 - Does it exist (not only in weak gravity case but also strong gravity case) ?
 - Its property ?
 - It may be one of the final state or intermediate state of gravitational collapse.

- What is interesting ?
 - Can Oscillon collapse to black hole ?
 - If critical behavior appears, there are special solutions associated with critical behavior.

➡️ We need to develop the numerical code for spherically symmetric spacetime.
System and initial data

- EOM
 \[G_{\mu\nu} = 8\pi GT_{\mu\nu} \]
 \[\nabla^2 \Phi = V'(\Phi) \quad V(\Phi) = \frac{1}{4}(\Phi^2 - 1)^2 \]
 \(G \): Newton constant

- initial data
 - momentary static bubble

\[
\begin{align*}
 \Phi(t = 0, r) &= -1 + 2e^{-r^2/R_0^2} \\
 \Pi(t = 0, r) &= 0 \\
 \tilde{\gamma}_{ij} dx^i dx^j &= dr^2 + r^2 d^2\Omega \\
 K_{ij} &= 0
\end{align*}
\]

- \(\phi \) is given from the solution of Hamiltonian constraint.

2.GBSSN formulation

Wakate
Our numerical code

- Our numerical code
 - It is written in C++.
 - GBSSN formulation - spherically symmetric case
 - free evolution
 - time integration : iterative Crank Nicolson scheme
 - spatial derivative : central difference
 - totally second order accuracy
 - We add 2nd order numerical dissipation term in each time evolution equation.
 - We use inhomogeneous grid
 - parallel computation by using Open MP
Kodama mass

- Kodama mass = locally conserved energy in the spherically symmetric system
 - definition
 - Kodama vector
 \[K^A = \epsilon^{AB} \partial_B R \]
 (extend) (vector on 2-dim manifold charted by t and r)
 \[K^\mu \] (vector on 4-dim manifold)
 - Kodama mass
 \[S^{\mu} = T^{\mu}_{\nu} K^{\nu} \]
 \[M(t; r_0) = \int_{\Sigma} S^t \alpha \sqrt{\gamma} dx^3 \]

\[ds^2 = G_{AB} dx^A dx^B + R^2 d^2 \Omega \]

\[\epsilon_{AB} = \sqrt{-G} \epsilon_{AB} \]

\[\epsilon_{tr} = 1 \]
Kodama mass

- proof

\[ds^2 = G_{AB}dx^A dx^B + r^2 d\Omega^2 = -\alpha^2(t, r)dt^2 + a^2(t, r)dr^2 + r^2 d\Omega^2 \]

\[K^A = \epsilon^{AB} \partial_B r \]

\[K^t = \epsilon^{tr} \partial_r r = -\frac{1}{\alpha a}, \quad K^r = 0 \]

\[\epsilon_{AB} = \sqrt{-g} \epsilon_{AB} \]

\[\epsilon_{tr} = 1 \]

\[\epsilon_{tr} = \alpha a \]

\[S^\mu = T^\mu_\nu K^\nu \]

\[S^t = \frac{1}{\alpha^3 a} T_{tt} = \frac{1}{\alpha^3 a} G_{tt} = \frac{1}{\alpha^3 a} \left(\frac{2\alpha^2 \partial_r a}{ra^3} + \frac{\alpha^2}{r^2} - \frac{\alpha^2}{r^2 a^2} \right) \]

\[S^r = \frac{1}{\alpha a^3} T_{rt} = \frac{1}{\alpha a^3} G_{rt} = -\frac{2\partial_t a}{r a a^4} \]

\[\partial_\mu (\sqrt{-g} S^\mu) = 0 \]
Kodama mass

- conservation law of Kodama mass

\[\nabla_\mu S^\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} S^\mu) = 0 \]

\[M(t = 0; r_0) + P(t = 0, t; r_0) = M(t; r_0) \]

\[
\begin{cases}
M(t; r_0) = \int_\Sigma S^t \alpha \sqrt{\gamma} dx^3 \\
P(t = 0, t; r_0) = \int_0^t dt \int_{\partial \Sigma} d^2 x \ n_\mu S^\mu
\end{cases}
\]

- We define the lifetime of Oscillon from Kodama mass in the case of Oscillon with gravity.
Oscillon with gravity (preliminary result)

- Some examples of numerical simulation

$$\Phi(t, r = 0)$$

Kodama mass

$G = 0$

$R_0 = 2.2750$

no Oscillon

$G = 10^{-5}$

$R_0 = 2.2750$

no Oscillon

3.Oscillon with gravity

Wakate
Oscillon with gravity (preliminary result)

\[G = 10^{-4} \]
\[R_0 = 2.2750 \]

\[G = 10^{-3} \]
\[R_0 = 2.2750 \]
Life time of Oscillon with gravity (preliminary result)

- initial bubble radius vs life time of Oscillon with gravity

\[G = 10^{-4} \]
Life time of Oscillon with gravity (preliminary result)

\[R_0 < R_\ast \]

\[R_0 > R_\ast \]

3. Oscillon with gravity
Summary and future work

• Summary
 - Oscillon = long lifetime localized solution of scalar field on Minkowski background
 - It is the product of nonlinear effect of scalar field.
 - We construct the Oscillon with gravity.
 - We get sign of its fine structure in the life time.

• Future work
 - Can Oscillon collapse to black hole?
 - Can we check the critical behavior?
 - What is the properties of the critical solution?