Degenerate theories with higher derivatives

Hayato Motohashi IFIC, University of Valencia

2017.03.02 Workshop on gravity & cosmology for young researchers, YITP

Outline

Purpose

 To clarify how to construct theories evading Ostrogradsky ghost.

* Ostrogradsky ghost – Ghost (carrying negative energy) associated with general higher derivative theory.

Result

• We derived no-ghost condition (degeneracy condition) for various types of Lagrangians.

Simple example: $L = \frac{1}{2} \ddot{x}^2$

• 4th order EL eq

$$\ddot{x} = 0$$

 $z = \frac{x + y}{\sqrt{2}}, w = \frac{x - y}{\sqrt{2}}$

requires 4 initial conditions = 2 DOF.

Hamiltonian is unbounded

$$L = \ddot{x}y - \frac{1}{2}y^2 = -\dot{x}\dot{y} - \frac{1}{2}y^2$$
$$= \frac{1}{2}\dot{w}^2 - \frac{1}{2}\dot{z}^2 - \frac{1}{4}(w - z)^2$$
$$H = \frac{1}{2}p_w^2 - \frac{1}{2}p_z^2 + \frac{1}{4}(w - z)^2$$

Ostrogradsky theorem for $L(\ddot{\phi}, \dot{\phi}, \phi)$ For Lagrangian $L(\ddot{\phi}, \dot{\phi}, \phi)$ with $\phi = \phi(t)$, $\partial^2 L / \partial \ddot{\phi}^2 \neq 0 \implies H$ is unbounded.

¹ '*L* is nondegenerate'. Woodard, 1506.02210

• EL eq

$$\frac{\partial^2 L}{\partial \ddot{\phi}^2} \cdots + \frac{d}{dt} \left(\frac{\partial^2 L}{\partial \ddot{\phi}^2} \right) \ddot{\phi} = (\text{terms up to } \ddot{\phi})$$

$$\frac{\partial^2 L}{\partial \ddot{\phi}^2} \neq 0 \implies \text{4th order system} = 2 \text{ DOF}$$

Ostrogradsky theorem for $L(\dot{\phi}, \dot{\phi}, \phi)$ For Lagrangian $L(\ddot{\phi}, \dot{\phi}, \phi)$ with $\phi = \phi(t)$, $\partial^2 L/\partial \ddot{\phi}^2 \neq 0 \implies H$ is unbounded.

 Hamiltonian analysis Dirac, "Lectures on Quantum Mechanics" Henneaux, Teitelboim, "Quantization of Consider an equivalent form gauge systems" $L(\dot{Q}, Q, \phi) + \lambda(Q - \dot{\phi}) - 6$ ini. conds. Canonical momenta for ϕ , λ , Q: $P = \partial L / \partial \dot{Q}$ $p = -\lambda, \qquad \pi = 0,$ $\partial^2 L / \partial \ddot{\phi}^2 \neq 0$ 2 primary constraints $\Rightarrow \dot{Q} = \dot{Q}(P,Q,\phi)$

 $\{p + \lambda, \pi\} = 1 \implies$ second class, no secondary constraints $\implies (6 - 2)/2 = 2 \text{ DOF}$ Ostrogradsky theorem for $L(\ddot{\phi}, \dot{\phi}, \phi)$ For Lagrangian $L(\ddot{\phi}, \dot{\phi}, \phi)$ with $\phi = \phi(t)$, $\partial^2 L / \partial \ddot{\phi}^2 \neq 0 \implies H$ is unbounded.

Hamiltonian analysis

Consider an equivalent form $L(\dot{Q}, Q, \phi) + \lambda(Q - \dot{\phi})$

Canonical momenta for ϕ , λ , Q:

$$p = -\lambda$$
, $\pi = 0$, $P = \partial L / \partial \dot{Q}$

Total Hamiltonian

 $p \, sh$

His

$$H_T = pQ + P\dot{Q}(P,Q,\phi) - L(\dot{Q}(P,Q,\phi),Q,\phi)$$
ows up only linearly.
$$(6 - 2)/2 = 2 \text{ DOF}$$
unbounded.
$$= 1 \text{ healthy} + 1 \text{ gh}$$

Eliminating Ostrogradsky ghost

For Lagrangian $L(\ddot{\phi}, \dot{\phi}, \phi)$ with $\phi = \phi(t)$, $\frac{\partial^2 L}{\partial \ddot{\phi}^2} \neq 0 \implies H$ is unbounded.

Let us impose $\partial^2 L/\partial \ddot{\phi}^2 = 0$ \checkmark Removes $\ddot{\phi}$ and $\ddot{\phi}$ from EOM $\frac{\partial^2 L}{\partial \ddot{\phi}^2} \ddot{\phi} + \frac{d}{dt} \left(\frac{\partial^2 L}{\partial \ddot{\phi}^2} \right) \ddot{\phi} = (\text{terms up to } \ddot{\phi})$

✓ Hamiltonian analysis

 $P = \partial L / \partial \dot{Q}$ becomes additional 1 primary constraint \Rightarrow Additional 1 secondary constraint

 $\Rightarrow (6 - 2 - 2)/2 = 1$ DOF. *H* is bounded.

Eliminating Ostrogradsky ghost

For Lagrangian $L(\ddot{\phi}, \dot{\phi}, \phi)$ with $\phi = \phi(t)$, $\frac{\partial^2 L}{\partial \ddot{\phi}^2} \neq 0 \implies H$ is unbounded.

 $\partial^2 L/\partial \ddot{\phi}^2 = 0$: The degeneracy (ghost-free) condition. \checkmark EL eq is 2nd order \Rightarrow 1 DOF \checkmark *H* is bounded \Rightarrow healthy

The most general ghost-free Lagrangian is $L = \ddot{\phi}f(\dot{\phi}, \phi) + g(\dot{\phi}, \phi) = G(\dot{\phi}, \phi)$ so long as we consider $L(\ddot{\phi}, \dot{\phi}, \phi)$.

Ostrogradsky ghost for $L(\ddot{\phi}^a, \dot{\phi}^a, \phi^a)$

For $L(\ddot{\phi}^a, \dot{\phi}^a, \phi^a)$ with $\phi^a = \phi^a(t)$ and $a = 1, \dots n$, det $K \neq 0 \implies H$ is unbounded,

where
$$K_{ab} = \frac{\partial^2 L}{\partial \ddot{\phi}^a \partial \ddot{\phi}^b}$$
.

'kinetic matrix'

• EL eq

$$K_{ab}\ddot{\phi}^{b} = (\text{terms up to }\ddot{\phi}^{a})$$

det $K \neq 0 \implies$ 4th order system.

H is unbounded.
 n healthy + *n* ghost DOF.

Eliminating Ostrogradsky ghost

• *H* is unbounded. 3n ini. conds. are required.

Eliminating Ostrogradsky ghost

For $L(\ddot{\phi}^a, \dot{\phi}^a, \phi^a)$ with $\phi^a = \phi^a(t)$ and $a = 1, \dots n$, det $K \neq 0$ or det $M \neq 0 \implies H$ is unbounded, where $K_{ab} = \frac{\partial^2 L}{\partial \ddot{\phi}^a \partial \ddot{\phi}^b}$ and $M_{ab} = \frac{\partial^2 L}{\partial \ddot{\phi}^a \partial \dot{\phi}^b} - \frac{\partial^2 L}{\partial \ddot{\phi}^b \partial \dot{\phi}^a}$. Ghost-free condition \checkmark Removes ϕ^a $K_{ab} = 0$ and $M_{ab} = 0$ \checkmark Removes $\ddot{\phi}^a$ \checkmark EL eq \Rightarrow 2nd order system \checkmark H is bounded.

✓ It is possible to generalize the same logic to $L(\phi^{a(m)}, \phi^{a(m-1)}, ..., \phi^a)$

Evading Ostrogradsky ghost

- If $L(\ddot{\phi}^a, \dot{\phi}^a, \phi^a)$ has higher-order EL eq \Rightarrow Ghost DOF.
- Does it hold for system with multiple variables with different order of derivatives? (⊃ ST theory)
- \Rightarrow Not always.
- If a set of higher-order EL eqs can be reduced to 2nd order system, the system does not suffer from Ostrogradsky ghost.
- ⇒ There exists a healthy class of scalar-tensor theory beyond Horndeski

Horndeski theory

3 DOF = 2 for $g_{\mu\nu}$ + 1 for ϕ

Most general theory for 2nd order EL eq is Horndeski theory or generalized Galileon

Horndeski, 1974

 $L_{2} = G_{2}(\phi, X) \qquad X \equiv \nabla_{\mu}\phi\nabla^{\mu}\phi \qquad \begin{array}{l} \text{Deffayet, Gao, Steer, Zahariade, 1103.3260} \\ \text{Kobayashi, Yamaguchi, Yokoyama, 1105.5723} \\ L_{4} = G_{4}(\phi, X)R - 2G_{4X}(\phi, X) \left[(\Box\phi)^{2} - \left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{2} \right] \\ L_{5} = G_{5}(\phi, X)G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi + \frac{1}{3}G_{5X}(\phi, X) \left[(\Box\phi)^{3} - 3\Box\phi \left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{2} + \left(\nabla_{\mu}\nabla_{\nu}\phi\right)^{3} \right] \end{array}$

 \checkmark 2nd order EL eq \Rightarrow Ostrogradsky ghost-free

beyond Horndeski: GLPV

In ADM formalism, Horndeski Lagrangian is written as $L = A_2(\phi, X) + A_3(\phi, X)K$ $+A_4(\phi, X)(K^2 - K_{ij}^2) + B_4(\phi, X)^{(3)}R$ $+A_5(\phi, X)(K^3 - 3KK_{ij}^2 + 2K_{ij}^3) + B_5(\phi, X)(U - K^{(3)}R/2)$ with $A_4 = 2XB_{4,X} - B_4$, $A_5 = -XB_{5,X}/3$.

GLPV theory: same *L* without the two conditions Gleyzes, Langlois, Piazza, Vernizzi, 1404.6495, 1408.1952

✓ 3 DOF

Domenech, Mukohyama, Namba, Naruko, Saitou, Watanabe, 1507.05390

✓ Higher order EL eq is reducible to 2nd order system.

Deffayet, Esposito-Farese, Steer, 1506.01974

Includes subclass related to Horndeski through disformal transformation.

 $g_{\mu\nu} \to A(\phi, X)g_{\mu\nu} + B(\phi, X)\nabla_{\!\mu}\phi\nabla_{\!\nu}\phi$

Example:
$$L = \frac{1}{2} (\dot{x} - \ddot{y})^2 + \frac{1}{2} \dot{y}^2$$

• EL eq is a priori 4th order

$$\frac{d}{dt}(\dot{x}-\ddot{y})=0, \qquad \frac{d^2}{dt^2}(\dot{x}-\ddot{y})+\ddot{y}=0$$

but can be rearranged to 2nd order system $\ddot{x} = 0$, $\ddot{y} = 0$

Invertible transformation

$$X = x - \dot{y}, \qquad Y = y$$

(x = X + \dot{Y} , y = Y)

leads Lagrangian to

$$L = \frac{1}{2}\dot{X}^2 + \frac{1}{2}\dot{Y}^2$$

✓ General invertible transformation in field theory
 ⇒ Kazufumi's poster Takahashi, HM, Suyama, Kobayashi, 1702.01849

Example:
$$L = \frac{1}{2} \frac{\dot{x}^2}{1+\ddot{y}} + \frac{1}{2} \dot{y}^2$$

Gabadadze, Hinterbichler, Khoury, Pirtskhalava, Trodden, 1208.5773

• EL eq is a priori 4th order

$$\frac{d}{dt}\left(\frac{\dot{x}}{1+\ddot{y}}\right) = 0, \qquad \frac{d^2}{dt^2}\left(\frac{\dot{x}^2}{(1+\ddot{y})^2}\right) + \ddot{y} = 0$$

but can be rearranged to 2nd order system $\ddot{x} = 0$, $\ddot{y} = 0$

• Is it equivalent to
$$L = \frac{1}{2}\dot{X}^2 + \frac{1}{2}\dot{Y}^2$$
?
At least, $X = x + a\dot{y}$, $Y = y$ cannot transform it.

 Is there some other transformation? Not clear.

Healthy scalar-tensor theory

quadratic DHOST / EST

Langlois, Noui, 1510.06930, 1512.06820 Crisostomi, Koyama, Tasinato, 1602.03119 Achour, Langlois, Noui, 1602.08398

• Write down all possible derivative terms with coefficient functions at $(\nabla \nabla \phi)^2$, $(\partial \partial g)^2$ order

$$S = \int d^4x \sqrt{-g} \left[F_2(\phi, X)R + \sum_{i=1}^5 A_i(\phi, X)L_i^{(2)} \right]$$

$$L_1^{(2)} = (\phi_{;\mu\nu})^2, L_2^{(2)} = (\Box\phi)^2, L_3^{(2)} = (\Box\phi)\phi^{;\mu}\phi_{;\mu\nu}\phi^{;\nu},$$

$$L_4^{(2)} = \phi^{;\mu}\phi_{;\mu\nu}\phi^{;\nu\rho}\phi_{;\rho}, L_5^{(2)} = (\phi^{;\mu}\phi_{;\mu\nu}\phi^{;\nu})^2.$$

• Find degenerate condition on F_2 and A_i .

Healthy scalar-tensor theory

quadratic DHOST / EST

- Parallel to what we saw previously, but needs to deal with mixed orders of derivatives.
- Toy model was first studied $L = \frac{1}{2}a\ddot{\phi}^{2} + \frac{1}{2}k_{0}\dot{\phi}^{2} + \frac{1}{2}k_{ij}\dot{q}^{i}\dot{q}^{j} + b_{i}\ddot{\phi}\dot{q}^{i} + c_{i}\dot{\phi}\dot{q}^{i} - V(\phi,q)$ which applies to only $(\nabla\nabla\phi)^{2}$ order.
- More general analysis is required beyond $(\nabla \nabla \phi)^2$.

 $L(\dot{\phi}, \dot{\phi}, \phi; \dot{q}, q)$ HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355 $\phi(t), q(t)$ have different orders of derivatives. Equivalent form $L(\dot{Q}, Q, \phi; \dot{q}, q) + \lambda(\dot{\phi} - Q).$ Canonical momenta for ϕ and λ 8 ini. conds. \Rightarrow 2 primary constraints From $P = L_{\dot{O}}$ and $p = L_{\dot{q}}$ $(L_X \equiv \partial L/\partial X)$ $\begin{pmatrix} \delta P \\ \delta p \end{pmatrix} = \begin{pmatrix} L_{\dot{Q}\dot{Q}} & L_{\dot{q}\dot{Q}} \\ L_{\dot{a}\dot{O}} & L_{\dot{a}\dot{a}} \end{pmatrix} \begin{pmatrix} \delta \dot{Q} \\ \delta \dot{a} \end{pmatrix}.$ kinetic matrix K If det $K \neq 0 \implies$ No further primary constraints. We thus impose $\det K = 0$.

$L(\ddot{\phi},\dot{\phi},\phi;\dot{q},q)$

Several cases are possible. Let us consider the case $L_{\dot{q}\dot{q}} \neq 0$, and $L_{\dot{Q}\dot{Q}} - L_{\dot{q}\dot{Q}}^2/L_{\dot{q}\dot{q}} = 0$, as q-system is nondegenerate and we focus on how the degeneracy cures ϕ -system.

Diagonalization

$$K = \begin{pmatrix} L_{\dot{q}\dot{Q}}^{2}/L_{\dot{q}\dot{q}} & L_{\dot{q}\dot{Q}} \\ L_{\dot{q}\dot{Q}} & L_{\dot{q}\dot{q}} \end{pmatrix} = O^{-1} \begin{pmatrix} 0 & 0 \\ 0 & L_{\dot{q}\dot{q}}(L_{\dot{q}\dot{Q}}^{2}/L_{\dot{q}\dot{q}}^{2}+1) \end{pmatrix} O$$

Thus,

$$\delta P = \frac{L_{\dot{q}\dot{Q}}}{L_{\dot{q}\dot{q}}}\delta p, \qquad \delta p = L_{\dot{q}\dot{Q}}\delta\dot{Q} + L_{\dot{q}\dot{q}}\delta\dot{q}$$
$$\implies P = F(p,q,Q,\phi)$$

$L(\ddot{\phi},\dot{\phi},\phi;\dot{q},q)$

The condition

 $L_{\dot{q}\dot{q}} \neq 0$, and $L_{\dot{Q}\dot{Q}} - L_{\dot{q}\dot{Q}}^2/L_{\dot{q}\dot{q}} = 0$, is equivalent to 1 primary constraint $P = F(p, q, Q, \phi)$ \Rightarrow Additional 1 secondary constraint $\Rightarrow (8 - 2 - 2)/2 = 2$ DOF.

- ✓ 2 DOF, *H* is bounded.
- \checkmark EL eq can be reducible to 2nd order system.

 $L(\phi, \phi, \phi; \dot{q}, q) \sim L(\dot{Q}, Q, \phi; \dot{q}, q)$

✓ EL eq

$$\Rightarrow (L_{\dot{q}Q} - L_{\dot{Q}q})(\ddot{q} + F_p \ddot{Q}) = w$$

$$\mathcal{E}_1 \equiv L_{\dot{q}\dot{q}}w - (L_{\dot{q}Q} - L_{\dot{Q}q})v = 0$$

From $\dot{\mathcal{E}}_1 = 0$ we can express $\ddot{\phi}$ in terms of 1st order derivatives

 $\mathcal{E}_2 = 0$

2nd order eqs

$L(\dot{\phi}, \dot{\phi}, \phi; \dot{q}^{i}, q^{i})$ $\phi(t), q^{i}(t)$ with $i = 1, \cdots m$. Equivalent form $L(\dot{Q}, Q, \phi; \dot{q}^i, q^i) + \lambda(\dot{\phi} - Q).$ Canonical momenta for ϕ and λ 2m + 6 ini. conds. \Rightarrow 2 primary constraints From $P = L_{\dot{O}}$ and $p_i = L_{\dot{q}}$ $(L_X \equiv \partial L / \partial X)$ $\binom{\delta P}{\delta p_{i}} = \binom{L_{\dot{Q}\dot{Q}} \quad L_{\dot{q}^{j}\dot{Q}}}{L_{\dot{\alpha}\dot{i}\dot{\alpha}} \quad L_{\dot{\alpha}\dot{i}\dot{\alpha}\dot{i}}} \binom{\delta \dot{Q}}{\delta \dot{\alpha}j}.$ kinetic matrix K If det $K \neq 0 \implies$ No further primary constraints.

We thus impose $\det K = 0$.

$$L(\ddot{\phi},\dot{\phi},\phi;\dot{q}^i,q^i)$$

To avoid removing healthy q^i DOF, let us assume $\det L_{\dot{q}^i\dot{q}^j} \neq 0$, under which $\det K = 0$ reads $L_{\dot{Q}\dot{Q}} - L_{\dot{q}^i\dot{Q}}k^{ij}L_{\dot{q}^j\dot{Q}} = 0$,

where $k^{ij}L_{\dot{q}^{j}\dot{q}^{k}} = \delta_{k}^{i}$.

The condition is equivalent to additional 1 primary constraint

 $P = F(p_i, q^i, Q, \phi)$

- \Rightarrow Additional 1 secondary constraint
- $\Rightarrow (2m + 6 2 2)/2 = m + 1$ DOF.

✓ m + 1 DOF, H is bounded.

 \checkmark EL eq is reducible to 2nd order system.

 $L(\ddot{\phi}^a, \dot{\phi}^a, \phi^a; \dot{q}^i, q^i)$

 $\phi^{a}(t), q^{i}(t)$ with $a = 1, \dots n$ and $i = 1, \dots m$. An equivalent form

$$L(\dot{Q}^a, Q^a, \phi^a; \dot{q}^i, q^i) + \lambda_a(\dot{\phi}^a - Q^a).$$

Canonical momenta for ϕ^a and λ_a $\Rightarrow 2n$ primary constraints As a natural generalization, we assume $\det L_{\dot{q}i\dot{q}j} \neq 0$, and impose $\det K = 0$, i.e.

 $L_{\dot{Q}^{a}\dot{Q}^{b}} - L_{\dot{q}^{i}\dot{Q}^{a}}k^{ij}L_{\dot{q}^{j}\dot{Q}^{b}} = 0, \quad \longleftarrow \quad \text{Removes } \overleftarrow{\phi}^{a}$

which is equivalent to additional *n* primary constraints $\Xi_a \equiv P_a - F_a(p_i, q^i, Q^b, \phi^b) = 0.$

In this case, the number of constraints is not sufficient.

$$L(\ddot{\phi}^a,\dot{\phi}^a,\phi^a;\dot{q}^i,q^i)$$

From the consistency condition

$$\dot{\Xi}_a = \{\Xi_a, H\} + \xi^b \{\Xi_a, \Xi_b\} = 0.$$

If $\{\Xi_a, \Xi_b\}$ is invertible, the Lagrange multipliers ξ^b are determined and there are no secondary constraints. We thus impose

$$\{\Xi_{a}, \Xi_{b}\} = 0, \quad \longleftarrow \quad \text{Removes } \ddot{\phi}^{a}$$
or
$$\frac{\partial^{2}L}{\partial \dot{Q}^{[a}\partial \dot{\phi}^{b]}} + \frac{\partial^{2}L}{\partial \dot{Q}^{[a}\partial \dot{q}^{i}} k^{ij} \left(-\frac{\partial^{2}L}{\partial \dot{q}^{j}\partial \dot{\phi}^{b]}} + \frac{\partial^{2}L}{\partial q^{j}\partial \dot{Q}^{b]}} + \frac{\partial^{2}L}{\partial \dot{q}^{j}\partial q^{m}} k^{mn} \frac{\partial^{2}L}{\partial \dot{q}^{n}\partial \dot{Q}^{b]}}\right) = 0$$

- \Rightarrow *n* secondary constraints: { Ξ_a , *H*} = 0.
- $\Rightarrow (2m + 6n 2n n n)/2 = m + n \text{ DOF}.$
- ✓ m + n DOF, H is bounded.
- ✓ EL eq is reducible into 2nd order system.

Healthy scalar-tensor theory

cubic DHOST / EST

Achour, Crisostomi, Koyama, Langlois, Noui, Tasinato, 1608.08135

- At $(\nabla \nabla \phi)^3$, $(\partial \partial g)^2 \nabla \nabla \phi$ order $S = \int d^4 x \sqrt{-g} \left[F_3(\phi, X) R + \sum_{i=1}^{10} B_i(\phi, X) L_i^{(3)} \right]$ $L_1^{(3)} = (\Box \phi)^3, L_2^{(3)} = \Box \phi (\phi_{;\mu\nu})^2, L_3^{(3)} = \phi_{;\mu\nu} \phi^{;\nu\rho} \phi_{;\rho}^{;\mu},$ $L_4^{(3)} = (\Box \phi)^2 \phi^{;\mu} \phi_{;\mu\nu} \phi^{;\nu}, L_5^{(3)} = \cdots.$
- Find degenerate condition on F_3 and B_i .

Healthy scalar-tensor theory

quadratic & cubic DHOST / EST

✓ Ghost-free Lagrangian for $(\nabla \nabla \phi)^2$ and $(\nabla \nabla \phi)^3$ is constructed using the above approach with ADM decomposition.

Open questions

cf. HM, Suyama, Takahashi, 1608.00071

- DOF counting differs in the unitary gauge (nondegenerate vs degenerate).
- Can we check whether ∃ redefinition of fields for given higher-order theory?
- Higher powers? Third order derivatives? Multi-field?

HM, Suyama, Yamaguchi, in progress

 $L(\ddot{\psi}, \ddot{\psi}, \dot{\psi}, \psi; \dot{q}, q)$

 \Rightarrow 4 primary constraints

Equivalent form

 $L(\dot{Q}_2, Q_2, Q_1, \psi; \dot{q}, q) + \lambda_1(\dot{\psi} - Q_1) + \lambda_2(\dot{Q}_1 - Q_2).$

Canonical momenta for $(q, \psi, \lambda_1, \lambda_2)$

12 ini. conds.

Need more constraints from (P_1, P_2) Impose det K = 0 with $\det L_{\dot{a}\dot{a}} \neq 0$, i.e.

$$\begin{split} L_{\dot{Q}_{2}\dot{Q}_{2}} - L_{\dot{Q}_{2}\dot{q}}^{2}/L_{\dot{q}\dot{q}} &= 0, \\ \text{which is equivalent to additional 1 primary constraint} \\ \Phi_{5} &\equiv P_{2} - F(p, Q_{2}, Q_{1}, \psi, q) = 0, \\ \text{Generates 1 secondary constraint from } \dot{\Phi}_{5} &= 0 \\ \Phi_{6} &= 0. \qquad \checkmark \text{Removes} \\ \psi^{(6)} \text{ and } \psi^{(5)} \end{split}$$

$L(\ddot{\psi}, \ddot{\psi}, \dot{\psi}, \psi; \dot{q}, q)$

Additional condition to obtain 1 secondary constraint

$$\{\Phi_6, \Phi_5\} = \mathbf{0} \implies \Phi_7 = \mathbf{0}$$

Then $\{\Phi_7, \Phi_5\} = 0$ identically holds and generates 1 secondary constraint $\Phi_8 = 0$ from. Finally we impose

 $\{\Phi_7, \Phi_6\} \neq 0$ $\psi^{(4)}$ and $\psi^{(3)}$

to make Dirac algorithm end with Φ_8 and

$$(12 - 4 - 2 - 2)/2 = 2$$
 DOF.

✓ Hamiltonian analysis

✓ EL eqs should be reducible to 2nd order system

– explicitly checked removing up to $\psi^{(6)}$, $\psi^{(5)}$, $\psi^{(4)}$.

Summary

- Ostrogradsky ghost can be eliminated by imposing constraints, or degeneracy conditions.
- They play a crucial role for construction of healthy scalar-tensor theories, and allowed one to construct healthy theories with $(\nabla \nabla \phi)^2$ and $(\nabla \nabla \phi)^3$.
- It may be possible to construct more general healthy theories e.g. with $\nabla \nabla \nabla \phi$.

Summary

We derived the degeneracy condition for various Lagrangians: HM, Suyama, 1411.3721

> HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355 HM, Suyama, Yamaguchi, in progress

 $\checkmark L(\ddot{\phi}^{a}, \dot{\phi}^{a}, \phi^{a})$ $\checkmark L(\ddot{\phi}, \dot{\phi}, \phi; \dot{q}, q)$ $\checkmark L(\ddot{\phi}, \dot{\phi}, \phi; \dot{q}^{i}, q^{i}) \sim \phi + g_{\mu\nu}$ $\checkmark L(\ddot{\phi}^{a}, \dot{\phi}^{a}, \phi^{a}; \dot{q}^{i}, q^{i}) \sim \phi^{a} + g_{\mu\nu}$ $\checkmark L(\ddot{\psi}, \ddot{\psi}, \dot{\psi}, \psi; \dot{q}, q)$ $\checkmark L(\ddot{\psi}, \ddot{\psi}, \dot{\psi}, \psi; \dot{q}^{i}, q^{i})$

... Healthy theory with 3rd order derivative!