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Purpose

 To clarify how to construct theories evading
Ostrogradsky ghost.

* Ostrogradsky ghost — Ghost (carrying negative
energy) associated with general higher derivative theory.

Result

* We derived no-ghost condition (degeneracy
condition) for various types of Lagrangians.



Simple example: L = % it

* 4th order EL eq

X =0
requires 4 initial conditions = 2 DOF.

Z_x+y W_x—y
 Hamiltonian is unbounded V2 V2
| =i 1, o1
1 y 213’ 1 y 23’

— _ . D - ) = _ 2
zr’ 212 41(W 2)
=Py —5p; + g W —2)°

2 DOF = 1 healthy + 1 ghos}\ Problematic when coupled

to a normal system



Ostrogradsky theorem for L(¢, ¢, ¢)

For Lagrangian L(¢, ¢, ¢) with ¢ = ¢(t),
0%L/0¢p? # 0 = H is unbounded.

\ ‘L is nondegenerate’_ Woodard, 1506.02210
« ELeq
aZL....+d 0°LY .. X g
3579+ 7\ 55) # = Cerms up to &)

9%L/0¢p? # 0 = 4th order system = 2 DOF



Ostrogradsky theorem for L(¢, ¢, ¢)

For Lagrangian L(¢, ¢, ¢) with ¢ = ¢(t),
0%L/0¢p? # 0 = H is unbounded.

° Ham“tonian ana|ysis Dirac, “Lectures on Quantum Mechanics”

Henneaux, Teitelboim, “Quantization of

Consider an equivalent form gauge systems’
L(Q,0,0) + A(Q — ¢
. ( d)) ©=9) " 6 ini. conds.
Canonical momenta for ¢, A, Q:
p=-1, w=0 P=09L/0Q

NG/ N
2 primary constraints 0 L(agb .7& 0
= Q=0Q(P,0Q,9)
{p + A, 1} = 1 = second class, no secondary constraints
= (6—2)/2 =2 DOF



Ostrogradsky theorem for L(¢, ¢, ¢)

For Lagrangian L(¢, ¢, ¢) with ¢ = ¢(t),
0%L/0¢p? # 0 = H is unbounded.

* Hamiltonian analysis
Consider an equivalent form
L(Q.Q.9) +2(Q — ¢)
Canonical momenta for ¢, A, Q:
p = —A, m =0, P =0L/0Q
Total Hamiltonian

Hr =pQ + PQ(P,Q,¢) — L(Q(P,Q,$),Q,d)

p shows up only linearly. (6 —2)/2 =2 DOF
H is unbounded. = 1 healthy + 1 ghost



Eliminating Ostrogradsky ghost

For Lagrangian L(¢, ¢, ¢) with ¢ = ¢(t),
0%L/0¢p? # 0 = H is unbounded.

] ZL 149 )
Let us impose 0°L/d¢p~ =0 v Removes ¢ and ¢

v EL eq is 2nd order as from EOM

0°L ... d [(3°L\ ... .
FECAT (aci52> P ltermstpto®)

v Hamiltonian analysis
P = dL/0Q becomes additional 1 primary constraint
— Additional 1 secondary constraint

= (6—2-2)/2=1DOF. H is bounded.




Eliminating Ostrogradsky ghost

For Lagrangian L(¢, ¢, ¢) with ¢ = ¢(t),
0%L/0¢p? # 0 = H is unbounded.

0%L/d¢* = 0 :The degeneracy (ghost-free) condition.
v EL eqis 2nd order = 1 DOF
v H is bounded = healthy

The most genergl ghost-free ITagrangian. IS
L=¢f($¢) +9(d ¢) =G( )

so long as we consider L(¢, ¢, ¢).



Ostrogradsky ghost for L(¢%, 2, p%)

For L(¢%, ¢%, %) with ¢ = p%(t) anda = 1,---n,
det K # 0 = H is unbounded,

2L
where K, = 355950 -
‘kinetic matrix’
« ELeq

K., P = (terms up to qb“)
det K # 0 = 4th order system.

 H is unbounded.
n healthy + n ghost DOF.



Eliminating Ostrogradsky ghost

For L(¢%, ¢%, %) with ¢ = p%(t) anda = 1,---n,
det K # 0 = H is unbounded,

where K, = i
ab — a('i)aa("bb ;
Let us impose K,, =0 HM, Suyama, 1411.3721
_9%L d%L
Map = 9padpb o dpbagpa
 EL eq

Ko ®? + (Kqp + Mgy, )P = (terms up to ¢¢)
Clearly, imposing K,;, = 0 is no more sufficient.
K., =0, detM # 0 (n:even) = 3rd order system
* H Is unbounded. 3n ini. conds. are required.



Eliminating Ostrogradsky ghost

For L(¢%, ¢%, %) with ¢ = p%(t) anda = 1,---n,
detK # (0 Q,r..det_M,% 0 — H is unbounded,

9L 9L 9L
where K, = 353550 and M, = 355930 330957
Ghost-free condition v Removes ¢

K,, =0 and Mg, =0
v EL eq = 2nd order system
v H is bounded.

v Removes ¢

v It is possible to generalize the same logic to

L(¢a(m), gba(m—l)’ . ¢a)



Evading Ostrogradsky ghost

« If L(¢% 0% ¢%) has higher-order EL eq
— Ghost DOF.

* Does it hold for system with multiple variables with
different order of derivatives? ( o ST theory )

— Not always.

 If a set of higher-order EL eqs can be reduced to
2nd order system, the system does not suffer from

Ostrogradsky ghost.
—> There exists a healthy class of scalar-tensor

theory beyond Horndeski



Horndeski theory

3 DOF =2forg,, +1for¢

Most general theory for 2nd order EL eq is Horndeski

theory or generalized Galileon
Horndeski, 1974

Deffayet, Gao, Steer, Zahariade, 1103.3260

L, = Go(¢, X) X=0,¢V+¢
Kobayashi, Yamaguchi, Yokoyama, 1105.5723

L3 = GS(¢rX)D¢
L4 = G4_(¢;X)R _ ZG4X(¢IX) [(D¢)2 o (VHVV¢)2]

Ls = Gs($, X)GH'T, Wy + - Gsx (¢, X) [(D¢)3 - 300(V,%¢)" + (VMVV¢)3]

v 2nd order EL eq = Ostrogradsky ghost-free



beyond Horndeski: GLPV

In ADM formalism, Horndeski Lagrangian is written as
L = A2(¢1X) T A3(¢,X)K

+A4(¢' X)(Kz _ Klzj) + B4(d), X) (S)R

+As5(p, X)(K3 — 3KK?: + 2K3) + Bs(¢, X)(U — K ¥R /2)
W|th A4_ — 2XB4’X - B4, AS — _Xlex/B.

GLPV theory: same L without the two conditions
Gleyzes, Langlois, Piazza, Vernizzi, 1404.6495, 1408.1952
v 3 DOF

Domenech, Mukohyama, Namba, Naruko, Saitou, Watanabe, 1507.05390

v Higher order EL eq is reducible to 2nd order system.
Deffayet, Esposito-Farese, Steer, 1506.01974

 Includes subclass related to Horndeski through disformal
transformation.

Guv = A($, X) gy + B($, X)V, V¢



Example: L =~ (& — )2+

 EL eq is a priori 4th order
2

da . e
ZE@—YY—Q az@—y}ff—o

but can be rearranged to 2nd order system
X =0, y=0
* Invertible transformation
X=x—y, Y=y
(x=X+Y, y=Y)
leads Lagrangian to

1., 1.
L=>X2+=V?
2% T2

v General invertible transformation in field theory
— Kazufumi’s poster Takahashi, HM, Suyama, Kobayashi, 1702.01849



2
1 x 1. 2 Gabadadze, Hinterbichler, Khoury,

Example: L = EE + Ey Pirtskhalava, Trodden, 1208.5773

 EL eq is a priori 4th order

d(x)_o d? X2 =
a\1+y) 7 dez\a+yz) 7T

but can be rearranged to 2nd order system

=0, §=0

* |s it equivalent to L = %XZ + %Yz?

At least, X = x + ay, Y = y cannot transform it.

* |s there some other transformation?
Not clear.



Healthy scalar-tensor theory
Langlois, Noui, 1510.06930, 1512.06820

quadratiC DHOST / EST Crisostomi, Koyama, Tasinato, 1602.03119

Achour, Langlois, Noui, 1602.08398

* Write down all possible derivative terms with
coefficient functions at (V7 ¢)?, (aag)z order

f d*x\[—g

LD = (¢.,,)" 1P = (mg)?, L@—(uqb)qbﬂqbwcpv
LD = gt P, LD = (¢t ) .

F, (&, X)R + ZA (¢, X)L

* Find degenerate condition on F, and A4;.



Healthy scalar-tensor theory
quadratic DHOST / EST

» Parallel to what we saw previously, but needs to
deal with mixed orders of derivatives.

« Toy model was first studied

1 . 1 : 1 . . ..
L= §a¢2 + Ekoﬁbz +5kija'q’ + bigq" + cipq” - Vo, q)

which applies to only (FV¢)?# order.

- More general analysis is required beyond (VV¢)?2.



L(¢, 9, 9;9,9)
HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355
¢ (t), g(t) have different orders of derivatives.

Equivalent form
L(Q,Q,¢:9.9) + A(p — Q).
Canonical momenta for ¢ and A N
. . 8 inl. conds.
— 2 primary constraints

FromP =Lsandp =L; (Lx =0JL/0X)

(ap) B (LQQ LC-IQ) (5(’2)
6p Lig Lgg)\6q)
Kinetic matrix K

If det K # 0 = No further primary constraints.
We thus impose detK = 0.



L($ b, 654 @)

Several cases are possible. Let us consider the case
qu + 0, and LQQ = LZQQ/qu =

as g-system is nondegenerate and we focus on how

the degeneracy cures ¢-system.

Diagonalization

L% ./Lss L. 0 0
K= 90/ 719 ~q¢ =0—1( 2 12 )0

Lgo ad
Thus,
LqQ . .
OP = E5p, op = L330Q + L4409

= P=F(p,q0Q,¢)



L(o, ¢, ¢;9,9)
The condition
qu + O; and LQQ - L%IQ/qu =
is equivalent to 1 primary constraint P = F(p,q, 0, ¢)

—> Additional 1 secondary constraint
= (8—-2-2)/2 =2DOF.

v' 2 DOF, H is bounded.
v EL eq can be reducible to 2nd order system.



L(p, b, 0;4,9) ~ L(Q,Q,$;4,9)

v EL eq
L dL O ) oo
L, | 003
— dL — . .
Lo ——2 =) 1
°odr 7 - 1=V —F
1 Le=4 = T
. $ =0, Lyg(@d + FQ) =v

= (Lag—LoG+F0) =w

€1 = Lggw — (Lgg — Log)v =0 !

From £, = 0 we can express pin = 2= 0

terms of 1st order derivatives 2nd order egs



L(p,d.¢:9°.9")
d(t), g () withi=1,---m
Equivalent form
L(Q. Q. ¢:4"q") + A(¢ — Q).

Canonical momenta for ¢ and A N o

. . 2m + 6 Ini. conds.
— 2 primary constraints
FromP =Lsandp; =L; (Lx =0JL/0X)

G- (5, )
Op; Lgig Lgig)\64)
Kinetic matrix K

If det K + 0 = No further primary constraints.
We thus impose detK = 0.



L($, b, $; 4" q")
To avoid removing healthy g DOF, let us assume
detL.i,; # 0, under which det K = 0 reads
LQQ — Lqu'kl]quQ- = @
where k"L .k = 6.

The condition is equivalent to additional 1 primary
constraint

P=F(p,q"Q ¢)
—> Additional 1 secondary constraint
= (2m+6—-2—-2)/2=m+1DOF.
v m+ 1 DOF, H is bounded.
v EL eq is reducible to 2nd order system.



L(¢% ¢ 0% 4" q")
»2(t),qt(t) witha=1,---nandi=1,---m.
An equivalent form

L(Q% Q% ¢%¢% q") + Aa(0® — @%).
Canonical momenta for ¢¢ and A, N
— 2n primary constraints
As a natural generalization, we assume det Lqiqj 0
and impose detK = 0, i.e.
Loagb — Lqu'akiqu-jQ'b = 0, «—v Removes ¢%
which is equivalent to additional n primary constraints

Ea = Pu — Fa(piq', Q% 9%) = 0.
In this case, the number of constraints is not sufficient.

2m + 6m Ini. conds.



L(¢% %, 0% 4" q")
From the consistency condition
Ea — {Ea» H} + Sb{Ea: Eb} = 0.
If {Z,, Z,} is invertible, the Lagrange multipliers &? are
determined and there are no secondary constraints.
We thus impose
{24, 8p} = 0, «— v/ Removes qb“

or 5z 02L 2L 2L 92L 92L
iy 117 mn
90laggvl  9Qlaggt

2q70¢% T 91907 T agiaqm " agnaoh]
— n secondary constraints: {£,, H} = 0.

= (Zm+6n—-—2n—n—-n)/2 =m+n DOF.

v m + n DOF, H is bounded.

v EL eq is reducible into 2nd order system.



Healthy scalar-tensor theory

cubic DHOST / EST

Achour, Crisostomi, Koyama, Langlois, Noui, Tasinato, 1608.08135

« At (VV¢)3,(009)*VV¢ order
j d*x/=g | Fs(¢p, X)R + z B; (¢, X)L

1¥ = @¢)%, LS = 0 ()’ L“) Py P D,
LELS) — (D¢) ¢ qu;[,wq5 'LE‘,S) —

* Find degenerate condition on F5; and B;.



Healthy scalar-tensor theory

quadratic & cubic DHOST / EST

v’ Ghost-free Lagrangian for (VV¢)? and (VV¢)3 is
constructed using the above approach with ADM
decomposition.

Open questions of. HM, Suyama, Takahashi, 1608.00071

* DOF counting differs in the unitary gauge
(nondegenerate vs degenerate).

« Can we check whether 3 redefinition of fields for
given higher-order theory?

« Higher powers? Third order derivatives? Multi-field?
HM, Suyama, Yamaguchi, in progress



L, ¥, 9, 9;4,9)

Equivalent form

L(Q2 Q2 Q1,%;4,q) + 41(¥ — Q1) + 22(Q1 — Q2).
Canonical momenta for (g, ¥, 14, 1,) N
= 4 primary constraints 12 ini. conds.
Need more constraints from (P, P,)
Impose det K = 0 with detL;; # 0, I.e.

LQzQz qu/qu =0
which is equivalent to additional 1 primary constraint

CDS —PZ F(P,Qz,Qpl/J,CI) — O;
Generates 1 secondary constraint from & = 0

o, = 0. v Removes
l/)(6) and 1/J(5)



LG, ., q,q)

Additional condition to obtain 1 secondary constraint

{ P, P:}=0 = b, =0
Then {®,, -} = 0 identically holds and generates 1
secondary constraint &g = 0 from.
Finally we impose ¥ Removes

Yv® and ¢(3)

to make Dirac algorithm end with &g and
(12—4—-2—-2)/2 =2 DOF.
v Hamiltonian analysis
v EL eqgs should be reducible to 2nd order system

— explicitly checked removing up to ¥©), y®) &),



Summary

« Ostrogradsky ghost can be eliminated by imposing
constraints, or degeneracy conditions.

* They play a crucial role for construction of healthy
scalar-tensor theories, and allowed one to construct
healthy theories with (PV¢)? and (V7 ¢)3.

It may be possible to construct more general healthy
theories e.g. with VVV .



Summary

We derived the degeneracy condition for various

Lagrangians: HM, Suyama, 1411.3721
HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355
HM, Suyama, Yamaguchi, in progress

v L($p%, ¢%, D)

v L(¢, b, 94, 9)

VL(,d d;dLq) ~ b+ gy

v L($% d% 0% 459 ~ ¢% + gy

VLW, i q,q)

LY Y4 q)

... Healthy theory with 3rd order derivative!



