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) Introduction

¢ Disformal transformation
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¢ Healthy scalar-tensor theories with 2+1 DOFs
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¢ In general, the Euler-Lagrange (EL) equations in the new frame contain
derivatives of order higher than in the original frame due to the
derivative of ¢ in the transformation law.

Natural questions

¢ Why does the number of DOFs remain unchanged even with the
higher-order EL equations?
e What if we perform a more generic invertible transformation?

mm) We showed that the number of DOFs is not changed by any
invertible transformation that depends on field and their derivatives.
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¢ General field theory in D-dimensional spacetime
5= Jde L(¢' 0,0, 0m®"), ) = Oy, -+ Oy,
EL equations for ¢! are (2n)th-order differential equations:
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« Transformation to a new set of fields
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Invertibility: 3g* such that
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* Transformed action
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EL equations for ¥’ are (2n + 2m)th-order differential equations:
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Theorem
If the transformation is invertible, then the solution space for the old-
frame EL equations £i(¢) = 0 and the solution space for the new-frame

EL equations 8i(w) = 0 have a common number of DOFs.

i Proof of the theorem

Step 1: Linearization of the transformation law
We linearize ¢p* = f‘(l/}f, RTZIEEN 6(mn)11,[)1) to obtain
S . aft
5¢l =P'L5I,[}}, P'L EZ—.a(s).
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The inverse operator matrix @]L satisfies
Bol = 0F/ = of.
For an invertible transformation, Q]l- does not contain integral operators.

Step 2: Relation between the old- and new-frame EL equations
Variation of the action

55=6 fdﬂx L[¢'] = Jde P st
Substitute §¢* = P/ sy’
8S = f dPx €D (Plsy).
Then, integration by parts yields
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where IST]i- is the adjoint operator of 13; Therefore,
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meaning that the solution space for ¢! is mapped to a subspace of the
solution space for i*:
(the solution space for ¢*) c (the solution space for ?).

Step 3: Opposite direction
Since both FA’} and Q; are derivative-operator-valued matrices,

Q'L = %P = o
Thus, the inverse matrix of 13*} is given by Q*}, which allows us to write
@) _ patic@
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Then we have
(the solution space for q,')i) } (the solution space for l/)i).

Therefore, the two solution spaces have the same number of DOFs. This
completes the proof of the Theorem. m

@ Outlook — noninvertible transformation =

¢ A noninvertible transformation could change (either increase or
decrease) the number of DOFs.
e.g. mimetic gravity model
- obtained by a noninvertible disformal transformation from the
Einstein-Hilbert action:
M3
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¢ How is the number of DOFs changed by a noninvertible transformation?

¢ |f some DOFs are added by a noninvertible transformation, are the
additional DOFs healthy or ghost?

¢ If atheory has ghost DOFs, is it possible to kill them by some
noninvertible transformation?



