回転ブラックホール近傍における 高エネルギー粒子衝突と、 エネルギー引き抜き過程について

小笠原 康太 (立教大学)

with

原田 知広(立教大), 宮本 雲平(秋田県大)

伊形 尚久(立教大),Mandar Patil(IMPAN)

1-3/3/2017 若手による重力・宇宙論研究会 @京都大学

Outline

Introduction

High energy particle collision

Collisional Penrose process and efficiency

Super-Penrose process and escape probability

Summary

Introduction

as

- ・回転ブラックホールは粒子加速器として働く
- ・重心系エネルギー: $E_{\rm cm}^2 = -g_{ab} \left(p_1^a + p_2^a \right) \left(p_1^b + p_2^b \right)$

 $E_{\rm cm}^{\rm Kerr} \to \infty$ in the horizon limit

 $(E_{\rm cm}^{\rm Sch} \le 2\sqrt{5}m)$ (Bañados, Silk, West 2009)

Introduction

- ・BSW的な粒子衝突で高エネルギー粒子は作れるか? ⇒エネルギー源が必要
- ・ブラックホールをエネルギー源に出来る! ⇒粒子衝突を用いた、エネルギー引き抜き過程 (collisional) Penrose process

エルゴ領域内ではE < 0が可能

efficiency :
$$\eta := \frac{E_3}{E_1 + E_2}$$

Penrose process いろいろ

• Penrose process $\eta_{\rm max} \simeq 1.207$ 粒子分裂

・collisional Penrose process $\eta_{\max} \simeq 13.93$ 粒子衝突 衛突粒子は共に無限遠から

super-Penrose process
 _{η max} → ∞
 粒子衝突

衝突粒子の一方は r_H 近傍で生成

Introduction

 $\eta_{\rm max} \simeq 1.2$

 $E_{\rm cm} \to \infty$

Bardeen, Press, and Teukolsky 1972

Piran, Shaham, and Katz 1975

2009 Banados, Silk, and West

⇒ arbitrarily large center-of-mass energy

escape probability

2012 Bejger, Piran, Abramowicz, and Hakanson

Harada, Nemoto, and Miyamoto

 $\eta_{\rm max} \simeq 1.47$

2014 Schnittman

Berti, Brito, and Cardoso

2015 Leiderschneider, and Piran

K.O., Harada, Miyamoto

2016 K.O. et al. analytic approach

 $\eta_{\rm max} \simeq 14$

 $\eta_{
m max}
ightarrow \infty$

Outline

Introduction

· High energy particle collision

Collisional Penrose process and efficiency

Super-Penrose process and escape probability

Summary

Kerr 時空

$$\rho^{2} = r^{2} + a^{2} \cos^{2} \theta, \ \Delta = r^{2} - 2Mr + a^{2},$$

$$\Sigma = (r^{2} + a^{2})^{2} - a^{2} \Delta \sin^{2} \theta, \ \omega = 2Mar/\Sigma$$

• 計量

$$ds^{2} = -\frac{\rho^{2}\Delta}{\Sigma}dt^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + \frac{\Sigma}{\rho^{2}}\sin^{2}\theta(d\varphi - \omega dt)^{2}$$

- 地平面: $r_H = M + \sqrt{M^2 a^2}$
- ・エルゴ菌: $r_E = M + \sqrt{M^2 a^2 \cos^2 \theta}$
- 角速度: $\Omega_H = \frac{a}{r_H^2 + a^2}$

・最大回転 (a=M) の場合 $r_H=M, \ r_E=M(1+\sin^2\theta), \ \Omega_H=rac{1}{2N}$

赤道面の測地線方程式

- 保存量: $E = -p_t = -(\partial_t)^a p_a, L = p_\varphi = (\partial_\varphi)^a p_a$
- 4元運動量: p^a , $(m^2 = -p^a p_a)$
 - ⇒測地線方程式は一次元のポテンシャル問題

$$\frac{1}{2}(p^r)^2 + V(r) = 0 \implies p^r = \sigma\sqrt{-2V(r)}$$

$$V(r) = -\frac{Mm^2}{r} + \frac{L^2 - a^2(E^2 - m^2)}{2r^2} - \frac{M(L - aE)^2}{r^3} \left(-\frac{E^2 - m^2}{2}\right)$$

 $V(r) \leq 0$:運動可能領域

$$V(r) > 0$$
 : 禁止領域

 $E^2 < m^2$: bound

 $E^2 = m^2$: marginally bound

 $\overline{E^2} > m^2$: unbound

臨界角運動量

- forward-in-time 条件: $\frac{dt}{d\lambda} = p^t > 0$ $\Rightarrow E - \Omega_H L \ge 0, \ (r \to r_H)$
- ・臨界 (critical) 角運動量: $L_c := \Omega_H^{-1} E$ $L < L_c$:subcritical $(a = M \mathcal{O}$ 場合 $\Omega_H^{-1} = 2M)$ $L = L_c$:critical

 $L > L_c$: supercritical

• horizon-generating Killing vector : χ^a

$$\chi^a = (\partial_t)^a + \Omega_H(\partial_\varphi)^a$$

$$L \le L_c \Leftrightarrow 0 \le -\chi^a p_a = E - \Omega_H L$$

ポテンシャルから見る粒子の運動

• a = M, m = 0 の場合: $L_c = 2ME$

ポテンシャルから見る粒子の運動

・V=0を $b_*:=L/(EM)$ について解く(turning point)

衝突粒子の重心系エネルギー

- ・重心系エネルギー: $E_{\rm cm}^2 = -g_{ab} (p_1^a + p_2^a) (p_1^b + p_2^b)$
 - ・・・「粒子1及び2が同じ時空点にあるとき、 その点で $p_1^a + p_2^a$ と平行な4元速度をもつ 観測者が観測するエネルギー。」
- ・Kerr時空の赤道面では

$$E_{\rm cm}^2 = m_1^2 + m_2^2 + \frac{2}{r^2} \left[\frac{P_1 P_2 - \sigma_1 \sigma_2 \sqrt{R_1} \sqrt{R_2}}{\Delta} - (L_1 - aE_1)(L_2 - aE_2) \right]$$

$$P = (r^{2} + a^{2})E - L$$

$$R = P^{2} - \Delta \left[m^{2}r^{2} + (L - aE)^{2}\right]$$

地平面近傍における衝突粒子の E_{cm}

- $r \rightarrow r_H$ の極限を考える
 - head-on : $\sigma_1 \sigma_2 = -1$

$$E_{\rm cm}^2 \propto \frac{1}{\Delta} \propto \frac{(r - r_H)^{-1}}{(r - r_H)^{-2}} \frac{(a < M)}{(a = M)}$$

• rear-end : $\sigma_1 \sigma_2 = 1$

$$E_{\rm cm}^2 = ({\rm const}) \times \frac{E_2 - \Omega_H L_2}{E_1 - \Omega_H L_1} + ({\rm const}) \times \frac{E_1 - \Omega_H L_1}{E_2 - \Omega_H L_2} + (\hat{\tau})$$

 $E_i - \Omega_H L_i \rightarrow 0$ (臨界極限)を取れば 重心系エネルギーは発散する

BSW 効果

• a = Mで $r \rightarrow r_H$ の極限を考える

$$\lim_{r \to r_H} E_{\rm cm} = \sqrt{2}m \left(\frac{\ell_1 - 2}{\ell_2 - 2} + \frac{\ell_2 - 2}{\ell_1 - 2} \right)^{\frac{1}{2}}$$

 $\ell := L/(Mm)$ (Banados, Silk, and West 2009)

- ・ $\ell_1 \rightarrow 2$ or $\ell_2 \rightarrow 2$ の極限で 重心系エネルギーは発散する
- ・ISCOによって自然に角運動量は 臨界値に調整される

(Harada, Kimura 2011)

BSW粒子衝突の概念図 矢印はBHの回転方向

粒子加速の直感的な解釈

A physical explanation

Figure: An infalling subcritical particle is accelerated to the light speed. If the observer can stay at a constant radius near the horizon, he or she will see the particle falling with almost the speed of light. (Harada, Kimura 2014, Zaslavskii 2011)

りのつ

Outline

Introduction

High energy particle collision

Collisional Penrose process and efficiency

· Super-Penrose process and escape probability

Summary

エネルギー引き抜きの原理

- ・エルゴ領域の存在が重要 $(\partial_t)^a$ が space like になる $\Rightarrow E = -(\partial_t)^a p_a < 0$ が可能
- ・エネルギー保存則 $E_3 = E_1 + E_2 E_4 > E_1 + E_2$
- ・エネルギー引き抜き効率 $\eta := \frac{E_3}{E_1 + E_2} > 1 が実現可能$

collisional Penrose process の概略図

・BSW的な粒子衝突は、高エネルギー粒子や 重質量粒子の生成が可能

保存則とパラメータ(赤道面の場合)

・保存則は3本

$$E_1 + E_2 = E_3 + E_4$$
, $L_1 + L_2 = L_3 + L_4$, $p_1^r + p_2^r = p_3^r + p_4^r$

- ・パラメータは16個: $(E_i, L_i, m_i, \sigma_i)$, (i = 1, 2, 3, 4)
- 16-3(保存則)-8(粒子1,2のパラメータ)-4($m_3, m_4, \sigma_3, \sigma_4$)=1
 - ・残った自由度をパラメータにする $b_{*,3} := L_3/(ME_3) = 2 + \delta$ (臨界条件からのズレ)

 $\delta = 0$: critical

 $\delta < 0$: subcritical

解析的な取り扱い (near-horizon展開)

- ・高エネルギー粒子衝突は地平面近傍で起こる ⇒粒子衝突点 rc を地平面近傍として 解くべき方程式系を展開する
- 粒子衝突点: $r = r_{\rm c} = \frac{M}{1 \epsilon}$, $(0 < \epsilon \ll 1)$

例:critical粒子の場合

$$|p^r| = \sqrt{3E^2 - m^2}\epsilon + O(\epsilon^2)$$

subcritical粒子の場合

$$p_1^r + p_2^r = p_3^r + p_4^r$$

εのオーダー毎の 方程式を得る

$$|p^r| = (2E - L/M) - 2(E - L/M)\epsilon + O(\epsilon^2)$$

BSWの初期条件で考える

- ・粒子1をcritical、粒子2をsubcriticalでぶつける
 - ⇒脱出粒子(粒子3)はnear-criticalしか許されない

$$b_{*,3} = L_3/(ME_3) = 2 + \delta$$
 $\delta = \delta_{(1)}\epsilon + O(\epsilon^2)$

$$\eta_{\text{max}} = \frac{2A + \sqrt{3A^2 - m_3^2}}{E_1 + E_2}$$

where
$$A = A(E_1, m_1, \sigma_1) = 2E_1 + \sigma_1 \sqrt{3E_1^2 - m_1^2}$$

この η_{max} の最大値は

$$\sigma_1 = -\sigma_3 = 1, \ m_1 = m_3 = 0, \ E_1 \gg E_2$$
 のとき

$$\eta_{\text{max}} = (2 + \sqrt{3})^2 \simeq 13.93$$

BSWの初期条件で考える

- ・粒子1をcritical、
 - ⇒脱出粒子(粒子3

$$b_{*,3} = L_3/(ME_3)$$

$$\eta_{\text{max}} = \frac{2A + \sqrt{3A}}{E_1 + E_1}$$

where A = 1

この η_{\max} の最大

$$\sigma_1 = -\sigma_3 = 1, m$$

$$\eta_{\text{max}} = (2 + \sqrt{3})^2 \simeq 13.93$$

Outline

Introduction

High energy particle collision

Collisional Penrose process and efficiency

Super-Penrose process and escape probability

Summary

super-Penrose process

- ・ subcritical粒子のhead-on collision
- ・外向きsubcritical粒子は地平面近傍で生成される (この過程については今回は触れない)
- ・η→∞の粒子の脱出確率は? →衝突重心系で等方散乱の場合を考えてみる

Escape probabilityの一般論

・衝突重心系において等方散乱を仮定した場合の 全散乱角に対する脱出可能な角度の割合を 「escape probability」と定義する

$$P := \frac{S}{4\pi}$$

これらの計算のために テトラド変換と Lorentz変換で 衝突重心系へ移る

Locally Non-Rotating Frame

・Kerr時空の計量

$$ds^{2} = -\frac{\rho^{2} \Delta}{\Sigma} dt^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \rho^{2} d\theta^{2} + \frac{\Sigma}{\rho^{2}} \sin^{2} \theta (d\varphi - \omega dt)^{2}$$

・LNRFのテトラド (Bardeen, Press, and Teukolsky 1972)

$$e^{(t)} = \sqrt{\frac{\rho^2 \Delta}{\Sigma}} dt, \ e^{(r)} = \sqrt{\frac{\rho^2}{\Delta}} dr, \ e^{(\theta)} = \sqrt{\rho^2} d\theta, \ e^{(\phi)} = \sqrt{\frac{\Sigma}{\rho^2}} \sin \theta \left(d\phi - \omega dt \right)$$

LNRFへの変換

$$V_{\rm L}^{(\alpha)} = e_{\mu}^{(\alpha)} V^{\mu}$$
 where $g_{\mu\nu} = \eta_{(\alpha)(\beta)} e_{\mu}^{(\alpha)} e_{\nu}^{(\beta)}$

$$\tilde{t} := p_{1,L}^{(t)} + p_{2,L}^{(t)}, \ \tilde{r} := p_{1,L}^{(r)} + p_{2,L}^{(r)}$$

$$\tilde{\theta} := p_{1,L}^{(\theta)} + p_{2,L}^{(\theta)}, \ \tilde{\varphi} := p_{1,L}^{(\varphi)} + p_{2,L}^{(\varphi)}$$
を定義。

Center-of-Mass Frame

・CMFへの変換 (Lorentz変換)

$$V_{\mathrm{C}}^{(\alpha)} = \Lambda^{(\alpha)}{}_{(\beta)}V_{\mathrm{L}}^{(\beta)} \quad \text{where } \Lambda^{(\alpha)}{}_{(\alpha')}\Lambda^{(\beta)}{}_{(\beta')}\eta^{(\alpha')(\beta')} = \eta^{(\alpha)(\beta)}$$

CMFでは

$$p_{1,C}^{(\alpha)} + p_{2,C}^{(\alpha)} = p_{3,C}^{(\alpha)} + p_{4,C}^{(\alpha)} = E_{cm}(1,0,0,0)$$

where
$$E_{\text{cm}}^2 = -\eta_{(\alpha)(\beta)} \left(p_{1,L}^{(\alpha)} + p_{2,L}^{(\alpha)} \right) \left(p_{1,L}^{(\beta)} + p_{2,L}^{(\beta)} \right)$$

= $(\tilde{t})^2 - (\tilde{r})^2 - (\tilde{\theta})^2 - (\tilde{\varphi})^2$

このフレームでescape coneを計算する

以下、最大回転 (a=M) の場合のみ考える

- まず、簡単な例で 同質量・角運動量ゼロ 対消滅過程
- LNRF成分

$$\tilde{t} = \frac{(E_1 + E_2)\sqrt{A}}{r - M} = E_{cm}$$

$$\tilde{r} = r \frac{\sqrt{-2V_1} - \sqrt{-2V_2}}{r - M} = 0$$

$$\tilde{\theta} = 0$$

$$\tilde{\varphi} = \frac{L_1 + L_2}{\sqrt{A}} = 0$$

LNRF=CMF

$$p_1^{(\mu)} + p_2^{(\mu)} = E_{cm}(1, 0, 0, 0)$$

$$p_3^{(\mu)} = \frac{E_{cm}}{2} (1, \cos \alpha, 0, \sin \alpha)$$

$$p_4^{(\mu)} = \frac{E_{cm}}{2} (1, -\cos \alpha, 0, -\sin \alpha)$$

where
$$\sin \alpha = \frac{p_3^{(\varphi)}}{\sqrt{(p_3^{(r)})^2 + (p_3^{(\varphi)})^2}} = \frac{p_3^{(\varphi)}}{p_3^{(t)}}$$
$$\cos \alpha = \frac{p_3^{(r)}}{\sqrt{(p_3^{(r)})^2 + (p_3^{(\varphi)})^2}} = \frac{p_3^{(r)}}{p_3^{(t)}}$$

・脱出可能範囲 ⇒対応するCMFでの角度 critical angles

$$\sin \alpha = \frac{p_3^{(\varphi)}}{\sqrt{(p_3^{(r)})^2 + (p_3^{(\varphi)})^2}} = \frac{p_3^{(\varphi)}}{p_3^{(t)}}$$

$$\cos \alpha = \frac{p_3^{(r)}}{\sqrt{(p_3^{(r)})^2 + (p_3^{(\varphi)})^2}} = \frac{p_3^{(r)}}{p_3^{(t)}}$$
を解く

• escape cone $\alpha \in (\alpha_2, \alpha_1) \cup (\alpha_4, \alpha_3)$

• critical angles: $\alpha_1 = \frac{5\pi}{6}$, $\alpha_2 = \alpha_3 = \frac{\pi}{2}$, $\alpha_4 = -\frac{7}{18}\epsilon$

where
$$r_c = \frac{M}{1 - \epsilon}$$

• escape probability: $P = \frac{1}{2\pi} \left(\frac{5\pi}{6} + \frac{7}{18} \epsilon \right) \rightarrow \frac{5}{12}$

in the limit $\epsilon \to 0$

つまり、このセットアップで super-Penrose過程が起こると 約40%の粒子は脱出可能

・脱出粒子のエネルギー: $E = -\eta_{\mu\nu}p^{(\mu)}(\partial_t)^{(\nu)}$ $E_3(\alpha) = \frac{2m}{\epsilon} \sin \alpha \text{ (unless } \alpha \text{ is close to 0)}$ $E_3(\alpha_4) = \frac{2m}{\epsilon} \quad (\alpha \text{ is close to 0, i.e., } \alpha = \alpha_4 = O(\epsilon))$

escape pone内の ほとんどは 高エネルギー粒子

このセットアップが特殊?

⇒ではない!

LNRF ≠ CMF の場合は Lorentz変換でCMFへ

⇒先程と同様の計算でescape probabilityが求まる

$$P = P(E_1, E_2, L_1, L_2; \epsilon)$$

$$X := \frac{2E_2 - L_2/M}{2E_1 - L_1/M}$$

- ・先程と同様に 同質量・角運動量ゼロ 対消滅過程
- ・衝突粒子は赤道面内生成粒子は全方向に等方散乱
- ・初期条件が先程と同じ ⇒今回もLNRF=CMF

$$p^{(\alpha)} = \left(\frac{\Sigma E - 2M^2 r L}{(r - M)\sqrt{\rho^2 \Sigma}}, \frac{\sigma_r \sqrt{R}}{(r - M)\sqrt{\rho^2}}, \frac{\sigma_\theta \sqrt{\Theta}}{\sqrt{\rho^2}}, \frac{\sqrt{\rho^2} L}{\sqrt{\Sigma} \sin \theta}\right)$$

$$p_3^{(\alpha)} = \frac{E_{\text{cm}}}{2} (1, \cos \alpha \sin \beta, -\cos \beta, \sin \alpha \sin \beta)$$

・emission angles (α,β) 重心系での衝突点から

粒子3のspatial velocityが

なす角で定義

$$\alpha = \alpha(\sigma_r, b, q, x)$$

$$\beta = \beta(\sigma_{\theta}, b, q, x)$$

where
$$\sigma_r = \text{sgn}(p_3^r), \ \sigma_\theta = \text{sgn}(p_3^\theta)$$

 $b = L_3/(E_3M), \ q = \sqrt{Q_3}/(E_3M), \ x = r/M$

turning point

$$b = b_{\pm}(x, q) = \frac{-2 \pm (x - 1)\sqrt{x^2 + (2/x - 1)q^2}}{x - 2}$$

$$\alpha = \alpha(\sigma_r, b, q, x)$$

$$\beta = \beta(\sigma_{\theta}, b, q, x)$$

FIG. The radial turning point for particle 3 with q=1, 3, 5. The orange band indicates the range of b for the massless particle with q=5 that escapes infinity.

escape probability

$$P := \frac{1}{4\pi} \int_{S} d\alpha \, d\beta \sin \beta$$

In the case of $\theta = \pi/2$ $P = 5/12 \simeq 42\%$

$$P \simeq 30\%$$

$$\eta = \frac{1}{2} \left(1 + \frac{2}{x_*(x_* - 1)} \sin \alpha \sin \beta \right)$$

Outline

Introduction

High energy particle collision

Collisional Penrose process and efficiency

· Super-Penrose process and escape probability

Summary

Summary

- ・回転ブラックホール近傍ではかなり一般的な状況で 高エネルギー粒子衝突がおこりうる
- ・無限遠から投入した2粒子でのエネルギー引き抜き ⇒約1400%の効率
- ・衝突粒子の一方が地平面近傍で生成されれば 非常に大きなエネルギー引き抜きが可能
- ・高エネルギー粒子は有限の脱出確率:約30% ⇒脱出粒子の大半は高エネルギー粒子

Discussion

- ・粒子衝突の詳細は何も言っていない・・
- ・地平面近傍でどうやって外向き粒子を用意する?⇒何か具体的なプロセスを考える
- ・引き抜き効率 ∞ とは?
 - ⇒上限はあるだろう (back reaction, 量子効果)
- ・最大回転ブラックホール以外は?
- ・宇宙物理学的にどう?