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» Scalar & gravitational wave in modified gravity theories

- General relativity: GW propagates at the light speed ¢
- Modified gravity : (GW sound speed) # ¢, environment dependent

Q1: Does it affect the definition of black hole horizon?

) Waveform distortion & Shock formation
Ex.) Burgers’ eq. ohu+ud,u=>0

\ u(t,x /
/L\ i

L Q2: Does this occurs for scalar & gravitational waves in modified gravity?j

» Study these phenomena in (bi-)Horndeski theory.
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(Ql: Black hole horizon in bi-Horndeski theory
GR: Horizon of the metric is the event horizon for any waves
Bi-Horndeski: Metric horizon may not be an event horizon

» We studied stationary black holes, and found that a metric horizon
becomes an event horizon only when the scalar fields are constant in
the stationary direction.
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Q2: Shock formation for scalar & gravitational waves in Horndeski theory
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» We developed a formalism to study shock formation in Horndeski theory.
» We found that, in Horndeski theory,

- shock formation occurs for scalar field wave

- shock formation does not occur for gravitational wave
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(Bi-)Horndeski theory

» Horndeski theory [Horndeski 1974]

> One scalar field ¢ & gravity in 4-dim. spacetime
- The most general covariant theory with 2"d-order EoM

L= K(¢,X) — G3(¢, X)06 + Ga(, X)R+ Gax [(O)? — (VuVu)?]

+G3(6, X)Gu V490 — T2 [(09)° = 306(V, 9,00)° + 27,V 0

{X _ _%wwm}

» Bi-Horndeski theory [Ohashi, NT, Kobayashi, Yamaguchi 2015]

> Two scalar field ¢4, ¢, & gravity in 4-dim. spacetime
- The most general covariant theory with 2"d-order EoM
- EoM has been constructed, not Lagrangian yet



Wave propagation surface = Characteristic surface

» Massless scalar in flat space

0=g""V,Vp = (=0 +0;) ¥

= Y= filt —z)+ fa(t + o)
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Wave propagation surface = Characteristic surface
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» Massless scalar in flat space [1/) — e""'n® wa

0= gV, V., = —g"n,n,e™ iy

= ¢Y=fit—x)+ fo(t+2) & ¢""n,n, =0

TLM: normal vector
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Wave propagation surface = Characteristic surface

» EoM E of dynamical variable

2 8E 2
0=FE (v,0v,0%v) = 5 (0% )(9 v+ -
OF
= 5 ((%8,/0) NyMyU =+ - -
» Characteristic equation
oF, _ 0
9 (0, 0,05) ™ T

» A surface whose normal n, satisfies this equation
is a Characteristic surface.

Physically, a characteristic surface is a wave propagation surface.



Wave propagation surface = Characteristic surface

» EoM of scalar-tensor theory:
8Eab 2 aEab

Jab EOM: 0 = E,;, = 0774 + OPdr 4 ...
" 9(02g.0) T T 9(020)) a2
OF oF
CDIEOM: 0= F; = ! 8264_ I Pdr4 ...
I 8(8?:2ng) t Jed a(atgcbj) tQSJ

» Characteristic equation

aEab 8Eab
det P=0 where P= NNy 8(8%%'9%) 3(5%%415(1)

I I
a(apaugcd) a(auavqbf)

» A surface whose normal n, satisfies detP =0
is a Characteristic surface

» detP=0 & P has eigenvectors v with eigenvalues =0
= Propagating modes (P-v=0)
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» Scalar & gravitational wave in modified gravity theories

- General relativity: GW propagates at the light speed ¢
- Modified gravity : (GW sound speed) # ¢, environment dependent

; Q1: Does it affect the definition of black hole horizon?




Causal structure in Bi-Horndeski theory

» Is a null surface a wave propagation surface?

0 1
X X [XO = const. surface is null]
null surface 8 00 . Oa 0 h
.’L'a 0
di11 — Jla —
. “ y
Ex.) General relativity + a canonical scalar field
O O ab 01 2 O a A\
b (") J11 GW modes X 2
Py 0 . Y (9M) 0 Of 9] _, —
g°* (g°%) 0 0 0f | Yab Scalar mode  x 1
0 0 0 0 ¢ g y

propagates at light speed



Causal structure in Bi-Horndeski theory

» Is a null surface a wave propagation surface?
v In Bi-Horndeski theory, a null surface is NOT characteristic
in general.
€ How about a BH horizon?

& Does a Killing horizon become a characteristic surface?

<
({%19@:3’ = (9519@:]' — (9x1 (%kgij =0

0 0 Al ab 3{1 g11

0 2-/410 1b Alc ab Blf gib )
? ’ C — O
Acagr 2Acay Acaar By Jab —> No propagation modes

c/, 20, ¢l D) \¢; .. K.H. is NOT characteristic
in general.

P.-v=



Causal structure in Bi-Horndeski theory

» Is a null surface a wave propagation surface?
v In Bi-Horndeski theory, a null surface is NOT characteristic
in general.
€ How about a BH horizon?

& Does a Killing horizon become a characteristic surface?

<
8$1gij = 85193'3' — 8$1 (9$1cg@-j =0

®ifalso 0,1 = 02107 = 0,1 0,xpr = 0 are satisfied,

0 0 Airar By gi1 ¢ ®
- oM, 1 0 0 1 GW modes X2
P-v= ’ =0 =
Acd 1 0 0 0 Yab Scalar mode x2
¢, 0 0 0 Q1 o J

= Killing horizon becomes an event horizon for GW & scalar wave.



(Ql: Black hole horizon in bi-Horndeski theory
GR: Horizon of the metric is the event horizon for any waves
Bi-Horndeski: Metric horizon may not be an event horizon
» We studied stationary black holes, and found that a metric horizon

becomes an event horizon only when the scalar fields are constant in
the stationary direction.
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Shock formation in Horndeski theory

» Shock formation = Divergence in gradient of waveform
Ex.) Burgers’eq. Oyt + u O, u = ()
u(t,x) !
>

» For simplicity, we look at wave with discontinuity in second derivative:

N
ﬂ n n
t A <——— Characteristic surface
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Shock formation in Horndeski theory

» Discontinuity = High-frequency wave

» Look at amplitude of discontinuity H(t) — [8390,5} , [8?&(;5}

> Evolution equation of II(t):

I+ MII+NII?2 =0

» For simplicity, we look at wave with discontinuity in second derivative:

N

u
t A \o/<— Characteristic surface

I1(¢): Amplitude of
discontinuity
N

8?;,9’0,3;, a.?z,(b




» Amplitude of discontinuity: TI(t) = [87219(1,3)} : [@%ﬁﬂ

« Our “shock formation” = 2"d derivative II(t) — « at finite t
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* In terms of g, and ¢, it corresponds to “sharpening”:

gab’ ¢
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Eab = Bfab ﬁﬁgcd —+ 8E2}ab a;szng +...=0 8Eab aEab
1. EOM: 9(92g.q) 0(02¢7) p— [ P9cann  90sn
' B A S LY ¥ —\ 2 L
I = 3(@%9061) nYed 8(8,%¢j) n®¥J - Sgcd,nn agbzf,n
Write them collectively as
b 02
E,=P,3uv,+---=0

2. Take discontinuous part
E.| = p,b [822)5} =0 = [&gvb} = II(z")r

(discontinuous part)

For r, s.t. P-r=0

3. Transport equation of amplitude I1(x)

(0,Ey] =0

= I+ MII+NII? =0
where

8Pab
N = TaTbTc

0 (Onve)

|



€ What happens when N#07?
M+ MI+ NTII? =0
/[Q)(t) = / t M (t’)dt’}
I1(0)e~*®

= II(t) = -
1+H(0)/ N(t)e®®) gt/
0

K GR - N=0 = TII(s) stays finite
« Modified grav.: N0 = Denominator may vanish
due to N#£0
= Amplitude II(t) diverges
3 — Shock formation 21




Shock formation in Horndeski theory

» Discontinuity propagates on the characteristic surface.

» Look at amplitude of discontinuity H(t) — [8?«2;,90,1)} , [8?&@
> Evolution equation of II(t):

[T+ MII+NTIIZ =0

| » N =0:1II(t) remains finite in time evolution. < GR & canonical scalar

» N #0 :II(t) diverges within finite time < Shock formation

u
t A \o/<— Characteristic surface

I1(¢): Amplitude of
discontinuity
N

8?;,9’0,3;, a.?z,(b




Shock formation in Horndeski theory

» Discontinuity propagates on the characteristic surface.

» Look at amplitude of discontinuity H(t) — [8?«2;,90,1)} , [8?&@
> Evolution equation of II(t):

H+MH+NH2—L1 =
on-
> N =0:TI(t) remains finite in time evolution. { Non-canonical scalar

| > N #0:TI(t) diverges within finite time & Shock formation J

/<— Characteristic surface

I1(¢): Amplitude of
discontinuity




Shock formation on Plane wave background

» Example: Perturbations on Plane wave solution

ds® = a;;z'a’ du® + 2dudv + 6;;dz'dx’, ¢ = d(u)
u v

o,

» Scalar & Gravitational perturbations propagate at different speeds
. [Babichev 2016]
v Scalar N # 0 9 ShOCk formatlon [Mukohyama, Namba, Watanabe 2016]
[de Rham, Motohashi 2016]

v+GW : N=0 - No shock formation

[Babichev 201 2]




Shock formation on Plane wave background

» Example: 2D maximally-symmetric dynamical spacetime
ds® = f(1,x) (—=dr* +dx?) + p(1,x)dQ*, ¢ = (7, X)

2-dim. flat or S% or H?
and consider waves propagating in (z, y) direction.

/"« Plane wave in FRW universe - Spherical wave around N
spherically-sym. star/BH

t N
. [T P _
» Scalar & Gravitational perturbations propagate at different speeds

. [Babichev ]
v Scalar N # 0 9 ShOCk formatlon [Mukohyama, Namba, V\I?atanabg 3812]
[de Rham, Motohashi 2016]

vGW : N=0 > No shock formation




Summary

» Causal structure & Shock formation in (Bi-)Horndeski theory

- Result 1: BH horizon in bi-Horndeski theory

In Bi-Horndeski theory, a Killing horizon becomes an event

horizon for ® and GW if @ is constant in the spacetime
symmetry direction.

= Result 2: Shock formation in Horndeski theory

In shift-symmetric Horndeski theory, and for fluctuations on
plane wave and 2D maximally symmetric background,

- Shock formation occurs for scalar field wave
- Shock formation does not occur for gravitational wave

—

- More complicated background in HorndesKki

<‘. Bi-Horndeski theory
Shock formation occurs even for gravitational wave?
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