無鯊突粒子系のスピンドル重力崩壊

1611．07906（revised on 16th Feb．2017）
Yoo，Chulmoon（Nagoya U．）
with Tomohiro Harada（Rikkyo U．）
Hirotada Okawa（Waseda U．）

Introduction

OSpindle collapse with many collisionless particles
OThe system treated here

- Axi-symmetric on average but not exactly axi-sym. because of the random distribution of particles
- The same reference continuum as in Shapiro and Teukolsky(1991)

OWhat we focus on

- Singularity formation
- Black hole formation
- Comparison with Sphapiro-Tekolsky(ST)

OWhat we do not(cannot) address

- Generality of the results
- Event horizon - Strength of the singularity

Mon-spherioal Collapse

OCosmic Censorship Conjecture(GCC)[Penrose1969]

- "For spacetimes which contain physically reasonable matter fields and develop from generic nonsingular initial data, singularity should be clothed by a black hole horizon"

OHoop Conjecture[Thorne(1972)]

- "Black holes with horizons form when and only when a mass M gets compacted into a region whose circumference in every direction is C $\leq 4{ }^{3} M^{7}$

Olf hoop conjecture is correct

- Aspherical collapse might lead to naked singularity

Shapiro and Teukolsky

 OAxial sym. gravitational collapse- Exactly axi-symmetric(2+1 simulation)
- Collisionless ring sources

Kretschmann curvature invariant

- No horizon
- The Larger value of max $K_{\text {inv }}$ for a finer resolution
- The calculation breaks down because of the "singularity"
- The position of max $K_{\text {inv }}$ is outside the matter distribution

Singularity?

OWhat do we expect from the singularity? The end?

- Extremely high curvature \rightarrow Quantum gravity-.?
- Unknown high energy particle physics might take place

Naked "singularity" is
a window into a new physics beyond our knowledge!
OHow to numerically investigate the singularity?

- We cannot predict the causal future of the singularity in principle. How to discuss whether it is naked or not without analyticity?
- We are not really interested in the naked singularity but the naked very high curvature region
- In the simulation, the singularity is automatically smoothed out due to finite resolution \rightarrow the system can be practically analyzed

LEDGOG GORGERLS

Olntroduction
OSimulation Method
Olnitial Data Construction
OResults(1): Comparison with Shapiro-Tekolsky
OResults(2): Spindle collapse with horizon
OSummary

Simulation Method

Previous Morte EHC OLIE

OSimulation with collisionless particles

- Axisymmetric collapse[Shapiro-Teukolsky(1991)]
- Full 3D with BSSN[Shibata(1999)]
- Higher dim. spacetime axisymmetric[Yamada-Shinkai(2011)]

OOur work

- Basically follow [Shibata(1999)]
- Simulate a similar situation as [Shapiro-Teukolsky(1991)]
- Compare the results with [Shapiro-Teukolsky(1991)]

Outline of the Simulation

O2nd order leap frog with BSSN (with time filtering)

OMaximal slice condition for α (lapse)
OFIow of evolution

1. Evolve geometrical variables except for α (lapse)
2. Evolve particle variables solving geodesic eqs.
*2nd order interpolation for geometry at particle position

\because
\vdots
\vdots
\vdots

3. Set energy momentum tensor
*No α-dependence in our expression
4. Clean the Hamilitonian constraint
5. Set α by solving the elliptic eq. of the maximal slice condition

Geometrical Variables

OMetric

$$
\begin{gathered}
\mathrm{d} s^{2}=-\alpha^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\mathrm{~d} x^{i}+\beta^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+\beta^{j} \mathrm{~d} t\right) \\
\gamma_{i j}=\mathrm{e}^{4 \psi} \widetilde{\gamma}_{i j} \text { with } \operatorname{det} \widetilde{\gamma}=1
\end{gathered}
$$

OProjection tensor

$$
\gamma_{\mu}{ }^{v}=n_{\mu} n^{v}+g_{\mu}{ }^{v} \text { with unit normal } n_{\mu}:=-\alpha(\mathrm{d} t)_{\mu}
$$

OExtrinsic curvature

$$
K_{i j}=-\gamma_{i}{ }^{\mu} \gamma_{j}{ }^{v} \nabla_{\mu} n_{v}=\mathrm{e}^{4 \psi} \widetilde{A}_{i j}+\frac{1}{3} K \gamma_{i j}
$$

OEquations based on BSSN scheme to be solved

Stress-energy Tensor

OFor a point particle system

$$
\begin{aligned}
& E=n_{\mu} n_{v} T^{\mu \nu}=\sum_{p} m_{p} \Gamma_{p} \frac{\delta^{3}\left(\vec{x}-\vec{x}_{p}\right)}{\sqrt{\gamma}} \\
& J^{i}=-n_{\nu} \gamma^{i}{ }_{\mu} T^{\mu \nu}=\sum_{p} m_{p} \Gamma_{p} V_{p}^{i} \frac{\delta^{3}\left(\vec{x}-\vec{x}_{p}\right)}{\sqrt{\gamma}} \\
& S^{i j}=\gamma^{i}{ }_{\mu} \gamma^{j}{ }_{v} T^{\mu \nu}=\sum_{p} m_{p} \Gamma_{p} V_{p}^{i} V_{p}^{j} \frac{\delta^{3}\left(\vec{x}-\vec{x}_{p}\right)}{\sqrt{\gamma}}
\end{aligned}
$$

with particle 4-velocity

$$
u_{p}^{\mu}=\Gamma_{p}\left(n^{\mu}+V_{p}^{\mu}\right)
$$

ONo α-dependence
OSmoothing

$$
\cdot \delta^{3}\left(\vec{x}-\vec{x}_{a}\right) \rightarrow f_{\mathrm{sp}}\left(\left|\vec{x}-\vec{x}_{a}\right|, r_{\mathrm{s}}\right)
$$

Spline Kernel

OSmoothing

$$
\cdot \delta^{3}\left(\vec{x}-\vec{x}_{a}\right) \rightarrow f_{\mathrm{sp}}\left(\left|\vec{x}-\vec{x}_{a}\right|, r_{\mathrm{s}}\right)
$$

- $r_{\text {s }}$ gives typical size of each particle

OSpecific form of the kernel is not essential

Geodesic Equation

O3+1 decomposition of geodesic equations
[Vincent et-al(1208.3927]

$$
\begin{aligned}
\frac{\mathrm{d} \tau_{p}}{\mathrm{~d} t} & =\alpha / \Gamma_{p} \\
\frac{\mathrm{~d} x_{p}^{i}}{\mathrm{~d} t} & =-\beta^{i}+\alpha V^{i} \\
\frac{d \Gamma_{p}}{\mathrm{~d} t} & =\Gamma_{p} V_{p}^{i}\left(\alpha K_{i j} V_{p}^{j}-\partial_{i} \alpha\right) \\
\frac{\mathrm{d} V_{p}^{i}}{\mathrm{~d} t} & =\alpha V_{p}^{j}\left[V_{p}^{i}\left(\partial_{j} \ln \alpha-K_{j k} V_{p}^{k}\right)+2 K_{j}^{i}-V_{p}^{k} \Gamma_{j k}^{i}\right]-\gamma^{i j} \partial_{j} \alpha-V_{p}^{j} \partial_{j} \beta^{i}
\end{aligned}
$$

with $2^{\text {nd }}$ order interpolation for geometry at particle position

Outline of the Simulation

O2nd order leap frog with BSSN (with time filtering)

OMaximal slice condition for α (lapse)

OFIow of evolution

1. Evolve geometrical variables except for α (lapse)
2. Evolve particle variables solving geodesic eqs.
*2nd order interpolation for geometry at particle position
4
\vdots
\vdots
\vdots
3. Set energy momentum tensor
*No α-dependence in our expression
4. Clean the Hamilitonian constraint
5. Set α by solving the elliptic eq. of the maximal slice condition

Constraint Cleaning

OHamilitonian constraint

$$
\widetilde{D}_{i} \widetilde{D}^{i} \psi=-\widetilde{D}_{i} \psi \widetilde{D}^{i} \psi+\frac{1}{8} \widetilde{R}-\mathrm{e}^{4 \psi}\left(\frac{1}{8} \widetilde{A}_{i j} \widetilde{A}^{i j}+2 \pi E\right)
$$

OCleaning

- Perform a few iteration steps to solve it(SOR method)

$$
0)=3
$$

OBSSN with 2nd order finite differences
OMaximal slice: $K=0 \Rightarrow$ elliptic eq, for α
ONumerical region: $0 \leq X, Y, Z \leq L$ (X,Y, Z:Cartesian)
OKreiss-Oligar dissipation term

Initial Data Construction

Intial Data

OAssumptions

- Conformally flatz $d l^{2}=\Psi^{4} \delta_{i j} d x^{i} d x^{j}$
- Momentarily statict $K_{i j}=0$

OMomentum constraint

- Trivially satisfied by $J^{i}=0 \Leftarrow V_{p}^{i}=0, \Gamma_{p}=1$

OFamiltonian constraint

$$
\Delta \Psi=-2 \pi E \Psi^{5}=-2 m \sum_{p} f_{s p}\left(\left|\vec{x}-\vec{x}_{p}\right|, r_{s}\right) / \Psi \quad \text { with } \Psi=\mathrm{e}^{\psi}
$$

- It can be numerically solved for given particle distribution

Reference Continumin

OThe same reference continuum as ST

OEnergy density \bar{E} and the conformal factor $\bar{\Psi}$

- Assumption $\frac{1}{2} \bar{E}^{\Psi} \bar{\Psi}^{5}=E_{\mathrm{N}}=\frac{3 M_{\mathrm{N}}}{4 \pi a^{2} b} \quad$ for $\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}} \leq 1$

$$
=0 \quad \text { for } \frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}>1
$$

- for $\boldsymbol{\Phi}:=1-\bar{\Psi}$

Hamiltonian constraint $\Rightarrow \Delta \Phi=4 \pi E_{\mathrm{N}}$

$$
\begin{array}{r}
\Phi=-\frac{3 M_{N}}{2 b e} \beta-\frac{3 M_{N}}{4 b^{3} e^{3}}(\beta-\sinh \beta \cosh \beta) R^{2}-\frac{3 M_{N}}{2 b^{3} e^{3}}(\tanh \beta-\beta) z^{2} \\
\text { where } \sinh \beta=\frac{b e}{a}, e=\sqrt{1-a^{2} / b^{2}}, R=\sqrt{x^{2}+y^{2}}
\end{array}
$$

OThe continuum initial data set is analytically given

Continuum to Particles

OMass of the continuum

$$
\lim _{r \rightarrow \infty} \bar{\Psi}=1-\lim _{r \rightarrow \infty} \Phi=1+\frac{M_{\mathrm{N}}}{r} \Rightarrow \text { total mass: } M=2 M_{\mathrm{N}}
$$

rest mass: $M_{0}=\int \bar{E} \bar{\Psi}^{6} \mathrm{~d}^{3} x=2 M_{\mathrm{N}}+\frac{6}{5} \frac{M_{N}^{2}}{b e} \ln \frac{1+e}{1-e}$

OParticle distribution

- Number of particles ΔN in a grid box ΔV

$$
\Delta N=\frac{\bar{E} \bar{\Psi}^{6} \Delta V}{m}=\frac{E_{N} \bar{\Psi} \Delta V}{m} \quad \text { with } m=\frac{M_{0}}{N}
$$

Numerically Solve
Hamiltonian constraint for Ψ

Results(1) Comparison with ST

Gonvergence Check

ONumerical domaint an octant region with refiection sym.

$$
0<x, y, z<L \text { with } L / M=20
$$

OParameters for the spheroid(the same as ST)

$$
b / M=10, e=0.9
$$

ONumerical parameters for convergence check Number of particles $N=125000$

Particle size $r_{s}=2 L / 75$

Wakate_Grav_Cosmo@YITP
finer resolution

Chulmoon Yoo

Convergence Check

OClear 2nd order convergence

(

Resolution Dependence

OIf we fix the particle size, the resolution for the geometry is limited by the particle size

ONumerical parameters for main calculations
Finestt grid interval $\Delta=L / 120, N=10^{6}, r_{s}=L / 75$
Others: $N \propto \Delta^{-3}, r_{s} \propto \Delta$

finer resolution

Parameters

ONumerical domaint an octant region with refiection sym.

$$
0<x, y, z<L \text { with } L / M=20
$$

OParameters for the spheroid(the same as ST)

$$
b / M=10, e=0.9
$$

ONumerical parameters
Finesta grid interval $\Delta=L / 120, N=10^{6}, r_{s}=L / 75$
Others: $N \propto \Delta^{-3}, r_{s} \propto \Delta$

Constraint Violation

Snapshots: particles

Apparent Shape at t=23M

Shapiro-Teukolsky

*Noter shift gauge condifion is different from each other

Our simulation

Snapshots\# Kretschmann

OOn y=0 plane OPeak on z-axis

Evolution of $K_{\text {peak }}$

OK peak $^{\text {: peak value of Kretschmann inv. at each time }}$
OValue of $\mathrm{K}_{\text {peak }}$ starts to increase around t~20M
OThe faster growth for the finer resolution.

Shapiro-Teukolsky

Our simulation

Chulmoon Yoo

Resolution Dependence

OK max $^{\text {; maximum value of }} \mathbf{K}_{\text {peak }}$ for one realization

OThe larger value of $\mathbf{K}_{\max }$ for the finer resolution

 similarly to ST

Peak Position

OShape of Kretschmann traces the density distribution OPeak position is inside the matter contrary to ST

particles

density

Kretschmann

No Horizon?

OWe searched for a horizon enclosing the origin but could not find it \rightarrow no horizon?

OWhat about small horizon just encloses the top?
OTo address this possibility, we plot the value of the expansion

$$
\Theta=D_{i} s^{i}+K_{i j} s^{i} s^{j}-K
$$

on spheres centered at the peak of Kretschmann inv, instead of using our apparent horizon finder which cannot find a small horizon

Expansion

OAverage expansion on a sphere centered at the top as a function of the radius

ONo trapped region(at least within our resolution)

Results(2) Spindle Collapse with a Horizon

Parameters

OWe keep the shape and increase the mass

$L / M=20 \longrightarrow L / M=13 / 2$

$$
e=0.9 \longrightarrow e=0.9
$$

$$
b / M=10 \longrightarrow b / M=13 / 4
$$

\# of particles $N=10^{6}$
Particle size $r_{s}=L / 75$

Snapshotst particles

Evolution of $K_{\text {peak }}$

OHorizon formation after the max Kretschmann iny

At Horizon Formation Time

Fongated Horizon?

OElongate horizon for finer resolution?

finer resolution

$9 ?$

Resolution Dependence

OConvergence of the formation time and the shape \Rightarrow No horizon when $K_{\text {peak }}=K_{\text {max }}$ even for finer resolution

Summary -Comparison with ST-

OShapiro-Tekolsky

- Axi-symmetric
- Collisionless ring sources

OOur setting

- not exactly in our case
- particles

OHow the results changes

- No horizon at the time of max. Kretschmann \rightarrow Same
- The larger value of max. Kretschmann for the finer resolution \rightarrow Same in our case(support naked singularity formation)
- The calculation breaks down because of the "singularity" in ST \rightarrow Does not crash and finally collapses to BH for some cases
- The position of max K-iny. is outside the matter distribution in ST \rightarrow Inside the matter distribution, mainly from Ricei part The reason for this discrepancy is not clear. Is ST type singularity unstable without exact symmetry?

Open Questions

OEvent horizon

- The singularity could be covered by the global event horizon

OHow general? Other initial data?

- Effects of velocity dispersion?

OWhat is the reason for the discrepancy with ST?

- Is the vacuum singularity formation with axi-sym. unstable under the general non-symmetric perturbation?

OCharacter of the singularity

- Is the singularity weaker than the shell focusing singularity? Is this Spacelike?

Thank you for your attention!

