無衝突粒子系のスピンドル重力崩壊

1611.07906(revised on 16th Feb. 2017)

Yoo, Chulmoon(Nagoya U.)

with Tomohiro Harada (Rikkyo U.) Hirotada Okawa (Waseda U.)

Introduction

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

What We Do

OSpindle collapse with many collisionless particles

OThe system treated here

- Axi-symmetric on average but not exactly axi-sym. because of the random distribution of particles
- The same reference continuum as in Shapiro and Teukolsky(1991)

OWhat we focus on

- Singularity formation
- Black hole formation
- Comparison with Sphapiro-Tekolsky(ST)

What we do not(cannot) address

- Generality of the results
- Event horizon Strength of the singularity

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Non-spherical Collapse

Ocosmic Censorship Conjecture(CCC)[Penrose1969]

 "For spacetimes which contain physically reasonable matter fields and develop from generic nonsingular initial data, singularity should be clothed by a black hole horizon"

OHOOP Conjecture[Thorne(1972)]

- "Black holes with horizons form when and only when a mass M gets compacted into a region whose circumference in every direction is C \lesssim 4 π M"

If hoop conjecture is correct

Wakate Grav Cosmo@YITP

- Aspherical collapse might lead to naked singularity

collapse

singularity

Sch. radi.

Chulmoon Yoo

violation of CCC?

Shapiro and Teukolsky

OAxial sym. gravitational collapse

- Exactly axi-symmetric(2+1 simulation)
- Collisionless ring sources

10 +/M=0 t/M=23 10

- No horizon

8

6 Axis

- The Larger value of max K_{inv} for a finer resolution
- The calculation breaks down because of the "singularity"

- The position of max K_{inv} is outside the matter distribution Wakate Grav Cosmo@YITP **Chulmoon Yoo**

Singularity?

What do we expect from the singularity? The end?

- Extremely high curvature \rightarrow Quantum gravity...?
- Unknown high energy particle physics might take place

Naked "singularity" is

a window into a new physics beyond our knowledge!

OHOW to numerically investigate the singularity?

- We cannot predict the causal future of the singularity in principle. How to discuss whether it is naked or not without analyticity?
- We are not really interested in the naked singularity but the naked very high curvature region
- In the simulation, the singularity is automatically smoothed out due to finite resolution \rightarrow the system can be practically analyzed

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Table of Contents

- **Output**Introduction
- **©Simulation Method**
- **OInitial Data Construction**
- **©Results(1): Comparison with Shapiro-Tekolsky**
- **©Results(2): Spindle collapse with horizon**
- **OSummary**

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Simulation Method

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Previous Works and Ours

- **©Simulation with collisionless particles**
 - Axisymmetric collapse[Shapiro-Teukolsky(1991)]
 - Full 3D with BSSN[Shibata(1999)]
 - Higher dim. spacetime axisymmetric[Yamada-Shinkai(2011)]

Our work

- Basically follow [Shibata(1999)]
- Simulate a similar situation as [Shapiro-Teukolsky(1991)]
- Compare the results with [Shapiro-Teukolsky(1991)]

Chulmoon Yoo

Outline of the Simulation

©2nd order leap frog with BSSN (with time filtering)

OMAXIMAL SLICE CONDITION FOR α **(lapse)**

©Flow of evolution

1. Evolve geometrical variables except for α (lapse)

2. Evolve particle variables solving geodesic eqs. *2nd order interpolation for geometry at particle position

3. Set energy momentum tensor *No α -dependence in our expression

4. Clean the Hamiltonian constraint

,5. Set α by solving the elliptic eq. of the maximal slice condition

Wakate_Grav_Cosmo@YITP

repeat

Chulmoon Yoo

Geometrical Variables

Metric

$$\mathrm{d}s^2 = -\alpha^2 \,\mathrm{d}t^2 + \gamma_{ij}(\mathrm{d}x^i + \beta^i \mathrm{d}t)(\mathrm{d}x^j + \beta^j \mathrm{d}t)$$

 $\gamma_{ij} = e^{4\psi} \, \widetilde{\gamma}_{ij}$ with det $\widetilde{\gamma} = 1$

OProjection tensor

 $\gamma_{\mu}{}^{
u} = n_{\mu}n^{
u} + g_{\mu}{}^{
u}$ with unit normal $n_{\mu} \coloneqq -lpha(\mathrm{d}t)_{\mu}$ ©Extrinsic curvature

$$K_{ij} = -\gamma_i^{\ \mu} \gamma_j^{\ \nu} \nabla_{\mu} n_{\nu} = \mathrm{e}^{4\psi} \widetilde{A}_{ij} + \frac{1}{3} K \gamma_{ij}$$

©Equations based on BSSN scheme to be solved

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Stress-energy Tensor

©For a point particle system

$$E = n_{\mu}n_{\nu}T^{\mu\nu} = \sum_{p}m_{p}\Gamma_{p}\frac{\delta^{3}(\vec{x}-\vec{x}_{p})}{\sqrt{\gamma}}$$
$$J^{i} = -n_{\nu}\gamma^{i}{}_{\mu}T^{\mu\nu} = \sum_{p}m_{p}\Gamma_{p}V^{i}_{p}\frac{\delta^{3}(\vec{x}-\vec{x}_{p})}{\sqrt{\gamma}}$$
$$S^{ij} = \gamma^{i}{}_{\mu}\gamma^{j}{}_{\nu}T^{\mu\nu} = \sum_{p}m_{p}\Gamma_{p}V^{i}_{p}V^{j}_{p}\frac{\delta^{3}(\vec{x}-\vec{x}_{p})}{\sqrt{\gamma}}$$

with particle 4-velocity

$$u_p^\mu = \Gamma_p (n^\mu + V_p^\mu)$$

 \bigcirc No α -dependence

Smoothing

$$\bullet \delta^3(\vec{x} - \vec{x}_a) \to f_{\rm sp}(|\vec{x} - \vec{x}_a|, r_{\rm s})$$

Wakate_Grav_Cosmo@YITP

Spline Kernel

Smoothing

•
$$\delta^3(\vec{x} - \vec{x}_a) \rightarrow f_{\rm sp}(|\vec{x} - \vec{x}_a|, r_{\rm s})$$

- $r_{\rm s}$ gives typical size of each particle

©Specific form of the kernel is not essential

Wakate_Grav_Cosmo@YITP

Geodesic Equation

©3+1 decomposition of geodesic equations [Vincent et.al(1208.3927]

$$\frac{\frac{\mathrm{d}\tau_p}{\mathrm{d}t}}{\frac{\mathrm{d}x_p^i}{\mathrm{d}t}} = -\beta^i + \alpha V$$

$$\frac{d\Gamma_p}{dt} = \Gamma_p V_p^i (\alpha K_{ij} V_p^j - \partial_i \alpha)$$

$$\frac{\mathrm{d}V_p^i}{\mathrm{d}t} = \alpha V_p^j \Big[V_p^i \big(\partial_j \ln \alpha - K_{jk} V_p^k \big) + 2K^i_{\ j} - V_p^k \Gamma_{jk}^i \Big] - \gamma^{ij} \partial_j \alpha - V_p^j \partial_j \beta^i$$

with 2nd order interpolation for geometry at particle position

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Outline of the Simulation

©2nd order leap frog with BSSN (with time filtering)

OMAXIMAL SLICE CONDITION FOR α **(lapse)**

©Flow of evolution

1. Evolve geometrical variables except for α (lapse)

2. Evolve particle variables solving geodesic eqs. *2nd order interpolation for geometry at particle position

3. Set energy momentum tensor *No α -dependence in our expression

4. Clean the Hamiltonian constraint

,5. Set α by solving the elliptic eq. of the maximal slice condition

Wakate_Grav_Cosmo@YITP

repeat

Chulmoon Yoo

Constraint Cleaning

OHamiltonian constraint

$$\widetilde{D}_{i}\widetilde{D}^{i}\psi = -\widetilde{D}_{i}\psi\widetilde{D}^{i}\psi + \frac{1}{8}\widetilde{R} - e^{4\psi}(\frac{1}{8}\widetilde{A}_{ij}\widetilde{A}^{ij} + 2\pi E)$$

Ocleaning

- Perform a few iteration steps to solve it(SOR method)

Others

©BSSN with 2nd order finite differences

OMAXIMAL SLICE: $K = 0 \Rightarrow$ elliptic eq. for α

ONUMERICAL REGION: $0 \le X, Y, Z \le L$ (*X*, *Y*, *Z*:Cartesian)

©Kreiss-Oligar dissipation term

Wakate_Grav_Cosmo@YITP

Initial Data Construction

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Initial Data

OAssumptions

- Conformally flat: $dl^2 = \Psi^4 \delta_{ij} dx^i dx^j$
- Momentarily static: $K_{ij} = 0$

OMomentum constraint

- Trivially satisfied by $J^i=0 \ \leftarrow \ V^i_p=0$, $arGamma_p=1$

©Hamiltonian constraint

$$\Delta \Psi = -2\pi E \Psi^5 = -2m \sum_p f_{sp}(\left| ec{x} - ec{x}_p \right|, r_s)/\Psi$$
 with $\Psi = \mathrm{e}^\psi$

- It can be numerically solved for given particle distribution

Reference Continuum

©The same reference continuum as ST

Our Example 1 Sector $\overline{\Psi}$ and the conformal factor $\overline{\Psi}$

- Assumption:
$$\frac{1}{2}\overline{E}\overline{\Psi}^{5} = E_{N} = \frac{3M_{N}}{4\pi a^{2}b}$$
 for $\frac{x^{2}+y^{2}}{a^{2}} + \frac{z^{2}}{b^{2}} \le 1$
= 0 for $\frac{x^{2}+y^{2}}{a^{2}} + \frac{z^{2}}{b^{2}} \ge 1$

- for $\pmb{\Phi}$: = $1-\overline{\pmb{\Psi}}$

Hamiltonian constraint $\Rightarrow \Delta \Phi = 4\pi E_N$

$$\Phi = -\frac{3M_{\rm N}}{2be}\beta - \frac{3M_{\rm N}}{4b^3e^3}(\beta - \sinh\beta\cosh\beta)R^2 - \frac{3M_{\rm N}}{2b^3e^3}(\tanh\beta - \beta)z^2$$

where $\sinh\beta = \frac{be}{a}$, $e = \sqrt{1 - a^2/b^2}$, $R = \sqrt{x^2 + y^2}$

©The continuum initial data set is analytically given

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

[Nakamura et. al(PRD38,2972)]

Continuum to Particles

20

OMass of the continuum

 $\lim_{r\to\infty} \overline{\Psi} = \mathbf{1} - \lim_{r\to\infty} \Phi = \mathbf{1} + \frac{M_N}{r} \Rightarrow \text{ total mass: } M = 2M_N$

rest mass: $M_0 = \int \overline{E}\overline{\Psi}^6 d^3x = 2M_N + \frac{6}{5}\frac{M_N^2}{be}\ln\frac{1+e}{1-e}$

OParticle distribution

- Number of particles ΔN in a grid box ΔV

Results(1) Comparison with ST

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Convergence Check

ONUMERICAL DOMAIN: AN OCTANT REGION WITH REFLECTION SYM.

0 < x, y, z < L with L/M = 20

Operameters for the spheroid (the same as ST) b/M = 10, e = 0.9

©Numerical parameters for convergence check Number of particles N = 125000Particle size $r_s = 2L/75$

Convergence Check

©Clear 2nd order convergence

z[M]

Wakate_Grav_Cosmo@YITP

Resolution Dependence

If we fix the particle size, the resolution for the geometry is limited by the particle size

©Numerical parameters for main calculations Finest: grid interval $\Delta = L/120$, $N = 10^6$, $r_s = L/75$ Others: $N \propto \Delta^{-3}$, $r_s \propto \Delta$

Wakate_Grav_Cosmo@YITP

Parameters

ONUMERICAL DOMAIN: AN OCTANT REGION WITH REFLECTION SYM.

0 < x, y, z < L with L/M = 20

OParameters for the spheroid(the same as ST)

b/M = 10, e = 0.9

©Numerical parameters Finest: grid interval $\Delta = L/120$, $N = 10^6$, $r_s = L/75$ Others: $N \propto \Delta^{-3}$, $r_s \propto \Delta$

Chulmoon Yoo

Constraint Violation

Snapshots: particles

Wakate_Grav_Cosmo@YITP

Apparent Shape at t=23M

Shapiro-Teukolsky

*Note: shift gauge condition is different from each other

Our simulation t = 23M6

Wakate_Grav_Cosmo@YITP

Snapshots: Kretschmann

On y=0 plane Peak on z-axis

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Evolution of K_{peak}

 OK_{peak} : peak value of Kretschmann inv. at each time OK_{peak} of K_{peak} starts to increase around t~20M OK_{peak} for the finer resolution.

Shapiro-Teukolsky

Our simulation

Resolution Dependence

 OK_{max} : maximum value of K_{peak} for one realization

©The larger value of K_{max} for the finer resolution

Wakate_Grav_Cosmo@YITP

Peak Position

OShape of Kretschmann traces the density distribution

©Peak position is inside the matter contrary to ST

No Horizon?

OWe searched for a horizon enclosing the origin but could not find it \rightarrow no horizon?

What about small horizon just encloses the top?

To address this possibility, we plot the value of the expansion

$$\Theta = D_i s^i + K_{ij} s^i s^j - K$$

on spheres centered at the peak of Kretschmann inv. instead of using our apparent horizon finder which cannot find a small horizon

Expansion

Overage expansion on a sphere centered at the top as a function of the radius

©No trapped region(at least within our resolution)

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Results(2) Spindle Collapse with a Horizon

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Parameters

We keep the shape and increase the mass

$$L/M = 20 \longrightarrow L/M = 13/2$$

$$e = 0.9 \longrightarrow e = 0.9$$

$$b/M = 10 \longrightarrow b/M = 13/4$$

of particles $N = 10^6$ Particle size $r_s = L/75$

Wakate_Grav_Cosmo@YITP

Snapshots: particles

Wakate_Grav_Cosmo@YITP

Evolution of K_{peak}

OHORIZON FORMATION AFTER THE MAX Kretschmann inv.

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

At Horizon Formation Time

Wakate_Grav_Cosmo@YITP

Elongated Horizon?

©Elongate horizon for finer resolution?

time evolution

finer resolution

time evolution

???

40

Wakate_Grav_Cosmo@YITP

Resolution Dependence

©Convergence of the formation time and the shape ⇒No horizon when $K_{peak} = K_{max}$ even for finer resolution

Wakate_Grav_Cosmo@YITP

Summary —Comparison with ST—

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo

Comparison with ST

OShapiro-Tekolsky

- Axi-symmetric
- Collisionless ring sources

- particles

- not exactly in our case

Our setting

OHOW the results changes

- No horizon at the time of max. Kretschmann \rightarrow Same
- The larger value of max. Kretschmann for the finer resolution \rightarrow Same in our case(support naked singularity formation)
- The calculation breaks down because of the "singularity" in ST
 - \rightarrow Does not crash and finally collapses to BH for some cases
- The position of max K-inv. is outside the matter distribution in ST
 - → Inside the matter distribution, mainly from Ricci part The reason for this discrepancy is not clear. Is ST type singularity unstable without exact symmetry?

Wakate_Grav_Cosmo@YITP

Open Questions

©Event horizon

- The singularity could be covered by the global event horizon

OHOW General? Other initial data?

- Effects of velocity dispersion?

OWhat is the reason for the discrepancy with ST?

- Is the vacuum singularity formation with axi-sym. unstable under the general non-symmetric perturbation?

Ocharacter of the singularity

- Is the singularity weaker than the shell focusing singularity? Is this Spacelike?

Wakate_Grav_Cosmo@YITP

Thank you for your attention!

Wakate_Grav_Cosmo@YITP

Chulmoon Yoo