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Modification of gravity by adding field(s)

- Deeper understanding of gravity

- Unification of gravity and other physics
Kaluza (1921), Klein (1926), Jordan (1959), Brans, Dicke (1961)

" -Dark ep@-_rgy

- Inflationary model (1980-)

- Dark energy model (1998-) |

- Test of black hole spacetime -
by GWs (2016-)

Black holes

Inflation




UV theory Consistent with existing
I observational data

(or ‘better’ explanation)

‘Healthy’ modified gravity /
—s ]

* No ghost \

* Recover GR Predict observables

| |

Compare with
observational data

Correction to GR



1850
Ostrogradsky theorem
Nondegenerate higher-order Lagrangian — Ghost DOF

1971

Lovelock theory

- 4D diffeo. inv.

- Metric only

- 2nd order EL egs

1974 2011
Horndeski theory Generalized Galileon
- 4D diffeo. inv. Deffayet et al, 1103.3260

Rediscovery of Horndeski theory
Kobayashi et al, 1105.5723

- Metric + scalar field
- 2nd order EL egs




2014

Beyond Horndeski (GLPV)

Higher-order EL eqgs but no ghost DOF
Gleyzes et al, 1404.6495

Ostrogradsky theorem revisited

Nondegeneracy of next-highest order derivative - Ghost
HM, Suyama, 1411.3721

2015

Specific degenerate theory (DHOST)
Langlois, Noui, 1510.06930

General degenerate theories up to second-order derivatives
HM, Suyama, Yamaguchi, Langlois, Noui, 1603.09355

— Many applications for model building

2018
General degenerate theories with arbitrary higher-order derivatives
HM, Suyama, Yamaguchi, 1711.08125, 1804.07990



Testing gravity at strong field regime

- No deviation from GR solution in inspiral
- Quasi-normal mode at ringdown for future test

Inspiral Merger Ring-

— Numerical relativity
Reconstructed (template)
I

0.40




Theories allowing GR solution

Suppose: No deviation from GR solution detected

What kind of modified gravity allow GR solution?
Let us clarify condition for 3 GR solution.
(If GR solution is unique = No hair theorem)

c.f. Cosmology
ACDM expansion history
< ACDM, quintessence, f(R)



No-hair theorems for shift-sym. theories

Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel, 1702.01938

- Shift-sym. Horndeski or GLPV

- 9,v- Asymptotically flat, static, spherically sym.
- ¢ = ¢(r): Static

- Standard kinetic term

=
6 « OCKHAM
guv: Schwarzschild & ¢ = const. I\ p+RAZOR

Is the unique solution.

Vishveshwara (1980)



No-hair theorem for P(¢, X) theory

Graham, Jha, 1401.8203

-R+P(¢,X)
- g,v- Asymp. flat & [static or (stationary & axisym.)],

- ¢p: Same sym. as Iuv
-[PX>0&¢P¢SO]OF[PX<O&¢P¢ZO]
or [quX =0 & P¢PX =+ O] ..OCKHAM

&« RAZOR

— \ )
9uv- GR solution & ¢ = const.
Is the unique solution.

Vishveshwara (1980)




HM, Minamitsuji, 1901.04658

Juv % L
[18] Any GR solution Multi-scalar-tensor theories with
Gy = 8nGT,, — Aguw ¢ = const. arbitrary higher-order derivatives
in D-dimensional spacetime
[21] Sch(-a) o(r) Shift-sym. GLPV
(stealth) X = const.
[27] Vacuum GR solution R,, =0 o(r) Horndeski subclass where ¢; = ¢
(stealth) (shift sym. broken)
25, 26] Sch & S(A)dS o(t,r) = qt +P(r) Shift-sym. Horndeski
(stealth & self-tuned) X = const.
28, 29] SdS (self-tuned) o(t,r) = qt + (r) Shift-sym. GLPV
X = const.
[30] Sch & S(A)dS o(t,r) = qt +(r) Quadratic DHOST
(stealth & self-tuned) X =—¢° subclass where ¢; = ¢
This work Sch(-a) & S(A)dS o(t,r) = qt + (r) Shift-sym. quadratic DHOST
(stealth & self-tuned) X = const.
[18] HM, Minamitsuiji, 1804.01731 [27] Minamitsuji, HM, 1809.06611
[21] Babichev, Charmousis, Lehebel, 1702.01938 [28] Babichev, Esposito-Farese, 1609.09798
[25] Babichev, Charmousis, 1312.3204 [29] Babichev et al, 1702.04398
[26] Kobayashi, Tanahashi, 1403.4364 [30] Ben Achour, Liu, 1811.05369

“This work™ HM, Minamitsuji, 1901.04658



Strategy

1) Set L and derive EL equations
i) Substitute GR metric solution & scalar field ansatz
lii) Obtain conditions for model



Iuv

L

Any GR solution

Theories with multiple

(1) | G, =8nGT,, —Ag,, | ¢ =const. |scalars and arbitrary
higher-order derivs.

Vacuum GR solution Horndeski subclass

(2) Ry =0 o (1) where ¢, = c
(stealth) W
Schwarzschild & = Shift-sym. quadratic

(3) | Schwarzschild-(A)dS gt + Y (r) | DHOST theories
(stealth & self-tuned) X =const.




Case (1) HM, Minamitsuji, 1804.01731

1) Set L and derive EL equations

Action

5 = j 4P xy=G[Go (b X) + Ga () XOR + Lin(Gyun )]

NB: We shall include more terms later.



Case (1)

1) Set L and derive EL equations

EOM for g*¥ and ¢
0 =—ghG, — GHVGy + 5 TH
—%(sz + RGPV + (VAVY — g*vD)G,
0 — qub + RG4_¢

1 . 1 .
+EV/,L(GZX¢'M) + ERVM(GALXQ[)’“)



Case (1)

i) Substitute GR metric solution & scalar field ansatz

Substitute G, = 8nGT,, — Ag,, and ¢ = const.
0 = ghG, — (BTGTH — AgH)Gy +5TH

0 = Gy¢ + RGyyp so long as

GZJ G4' sz; G4X'



Case (1)

lii) Obtain conditions for model

Condition
1. Gy, Gy, Gyx, Guy, -+ @re regular at ¢ = ¢,.

2. 0=-g"G, — (BMGTH — AgrV)Gy + - TH

Erase R by using trace equation
(2—-D)R/2 = 8nGT — DA



Case (1)

lii) Obtain conditions for model

8nGTH =:8nGTL" — Apgh
Condition

1. Gy, Gy, Gyx, Guy, -+ @re regular at ¢ = ¢,.
GG,—
2. g" (Gy+ 206G, + 2= Ay ) = T (166G, — 1)
(D — 2)Gygp + 2D (A + Ap)Gag = 167G Gy Ty
at ¢ = ¢g
In particular, if T}" # 0,
Gy = (16mG)™1, G, = —A/(8BTG), Gogy = Gaep = 0




Generalization

Action

$ = [aPxy=gl6,(9. %) + Gy ($, R

+00Co "+ Lin(Guv )]
5" an arbitrary function

Céuv (gaﬁ: aBy 9aBysr """ ®, P.a) d);aﬁ» ¢;a,8y» "t Eaﬁy6)
including Horndeski, GLPV, (quadratic & cubic) DHOST
Chy = G3g" + Guax(¢"'0¢ — &) + GsGM
- %Gsx (g (O¢)? — 30 + 2647 4" ]
Clit = Fae®™ e g b.a0. 45
+ Fye®P et 6,56 53605
CL" = Fig" + A1d"” + Aag" 06 + Azdh ¢’ O + Asdh¢" dx + A5 ¢ ¢ papd”



Case (1)

Condition under which GR metric solution with
constant scalar field is allowed as exact solution:

1. Gy, Gy, Gox, Gux, C)°, -+ are regular at ¢ = ¢y

2. g" (Gy+ 206G, + 2= Ay ) = T (161G Gy — 1)

(D = 2)Gpg + 2D(A + Ap)Gagp = 16TGGay Ty,

at ¢ = ¢
3. ¢ _=0at¢ = ¢,.

2 ;po




Example: Horndeski

cHv — cHv Kobayashi, HM, Suyama, 1202.4893, 1402.6740
2 ~— “H

Ch = G39" + Gux(g""0Op — ") + GG

— 2 Cox[g" ([O6)? — 3066™ +2676",]

Consider vacuum solution with A = A,,, = 0.

Conditions:

1. Gy, Gy, Gyx, Gy, C5°, -+ are regular at d = .

2. Gy =Gy =0at® =P,

3. ¢§°.,, = 0 identically holds.

Confirmed that EOMSs for static, spherically sym. metric
allow Schwarzschild solution under the three conditions.



Example: GLPV HM, Minamitsuji, 1804.01731
U _ AUV Uuv
(" =Cy + Gy
Ch = G39" + Gux(g""0Op — ") + GG
1 . o
— £ Gax[g" (O9)* = 30d¢™ +26™7¢" |
C{;}I—/I — F4EQBM’YE&BWY¢;&¢;07¢;BB
+ FSGO‘BW“€&B§V¢;a¢;d¢;53¢;’y’~y
Consider vacuum solution with A = A,,, = 0.
Same three conditions.

Derived EOMSs for static, spherically sym metric ansatz.

Checked that they allow Schwarzschild solution if the
three conditions are satisfied.



Further generalization Hwv, minamitsuji, 1804.01731

Multi-scalar-tensor theories with arbitrary higher-order
derivatives in D-dimensional spacetime

S = dex\/—g[Gz(qb’,XfK) + Gu (', X’IR
+¢;IHC]I_11 + ¢;I'[LVC£LIV + ¢;I‘quC?‘iLIV'D + .-

+Lm(guv» V)]

We derived three conditions for the existence of any GR
solution with/without matter.

NB: GR solution is guaranteed at ¢ = ¢, but ¢ can be
dynamical in general.

< Stability or scalarization



Iuv

L

Any GR solution

Theories with multiple

(1) | G, =8nGT,, —Ag,, | ¢ =const. |scalars and arbitrary
higher-order derivs.

Vacuum GR solution Horndeski subclass

(2) Ry =0 o (1) where ¢, = c
(stealth) W
Schwarzschild & = Shift-sym. quadratic

(3) | Schwarzschild-(A)dS gt + Y (r) | DHOST theories
(stealth & self-tuned) X =const.




Stealth Schwarzschild solution

Schwarzschild metric solution in non-GR theory which
Is independent of ¢(r) and model parameters in L.

Previously found in shift-symmetric Horndeski theory
where G,, = G,(X) with ¢(t,r) = qt + P (r).

Babichev, Charmousis, 1312.3204
Kobayashi, Tanahashi, 1403.4364

We find novel stealth Schwarzschild solution with ¢ =
¢ (r) in shift-symmetry breaking Horndeski subclass

M2
S = fd4x\/—79<TPlR + G2(¢, X) — 03(¢,X)¢>

Minamitsuji, HM, 1809.06611



Stealth Ricci-flat solution
Action
fd4xx/7<—R + G, (¢, X) — G3(9, X)(/))

Derive EL egs
Plug vacuum GR solution R, = 0

Obtain conditions on G, and G4

NB: The no-hair theorem for shift-symmetric Horndeski
theory does not apply. Hui, Nicolis, 1202.1296



Stealth Ricci-flat solution

For G, # 0 and G; = 0 the conditions is
Gy = G = Gox = Gapploaxx — Gzqux =0
at (¢, X) = (¢o(x"), Xo(x¥)).

Simple example

¥\ 2
G, (P, X) = (ngb +M_22>

The condition is satisfied at X,(r) = —m, M3 d, (7).

For Schwarzschild solution,
¢O(T) — ZszzMz[\/va - 1 + log(\/E‘F Vx - 1)]

which is regular at r = r4orizon: = 2M (x :==1r/2M).

2



Linear perturbations Kobayashi, HM. Suyama,
1202.4893, 1402.6740
Stability conditions

- Odd-parity mode
F >0, G >0, H >0

- Even-parity modes
+1)P,—F >0 [£=2], 2P, —F >0

For the stealth solution, 2P, — F = 0 and hence the
Kinetic term of an even-parity mode vanish, indicating
strong coupling.

We obtain similar solutions for other cases:
Gz=0and63¢O/G2¢0andG3¢0



Stealth Ricci-flat solution

For G, = 0 and G; # 0 another stealth solution exists

9,G3 =0
at (¢, X) = (¢py(x"), Xy (x*)), which satisfies
O¢py =0

Function G5 is not constrained much.

For Schwarzschild solution,

Qo(r) = C; + C,ln (1 — Z—M)

r

Regarding perturbation, in general 2P, — F # 0.



Iuv

L

Any GR solution

Theories with multiple

(1) | G, =8nGT,, —Ag,, | ¢ =const. |scalars and arbitrary
higher-order derivs.

Vacuum GR solution Horndeski subclass

(2) Ry =0 o (1) where ¢, = c
(stealth) W
Schwarzschild & = Shift-sym. quadratic

(3) | Schwarzschild-(A)dS gt + Y (r) | DHOST theories
(stealth & self-tuned) X =const.




o (t,r) = gt + Y(r) in shift-sym. theories

Why? | ‘Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel, 1702.01938

- Compatible with static spacetime
- Circumvent static scalar assump. of no-hair theorem.

GR metric solutions in shift-sym. Horndeski
. . Babichev, Charmousis, 1312.3204

- Self-tuned Sch-(A)dS solution | i,
(A in metric is independent of
Apare in the action)

Stable or unstable ?

Ogawa et al (2015), Takahashi et al (2015),
Takahashi et al (2016), Maselli et al (2016),
Babichev et al (2017), Babichev et al (2018)




Exact BH solutions in DHOST

We find novel exact BH solutions. MM, Minamitsuji, 1901.04658

« Shift-sym. qaud. DHOST with F; = F;(X), A; = A;(X)

* ¢(t,v) =qt +Y(r) and X =const. Langlois et al (2019)
_ _ _ Crisostomi et al (2016)

« Static spherically symmetric spacetlme

-

S=J d*x\—g

1P = g, 1P = (0p)?, LD = oy By
LY = ¢“¢W¢VP¢,),L@ (¢t ™)’

Fo + F,0¢ + F,R + EA L

cf. BH solutions in subclass for ¢, = ¢ and X = —¢g*
Ben Achour, Liu, 1811.05369



Static spherically sym. spacetime

Static spherically symmetric spacetime
2

B(r)
with ¢ (t,r) = gt + Y (r)

ds? = —A(r)dt? + + 2C(r)dtdr + D(r)r?dQ?

HM, Suyama, Takahashi, 1608.00071
Caveat on gauge fixing at the action level:

With time dep ¢,

D(r) =1: OK

C(r) = 0: leads to a loss of independent EL eq.
It should be substituted after deriving EL eq.
The argument is indep. of the form of the action.



Gauge fixing at action level
HM, Suyama, Takahashi, 1608.00071

Simple toy model L = %(3& -2 - %XZ
which is invariant under gauge transformation
x - x+¢, y-=>y+<€

Euler-Lagrange eqgs

E,=—X+y=0, E,=—-Xx+y=0
Off-shell identity (a.k.a.o Noether identity)

—E,+E, =0

= E,, is redundant eq.
Gauge fixing at action level:
1)x=0: B4, E, Independent EOM was lost !

2)y=0: E,, B, Fine



X X
Ea = =2QoA; — e“” °f

Q \f/ ’Q
9Q% + ( 1
€p = 7 ( 22;; 2() - Q“) (A + A2) — 7 ((2(1‘41 + 251))
( 9 (30 + ( 30 + Q)2
2./2_2 |k21'—F()4\- + ,((22]—+22(])F1\ + %( Aix + Aax) — 2Q0(2A: x + A3)],

q 9Q% + Q3

E(' _———— |i2(2().41 - (

— Q()) (A1 + A2) +2fEp +51)] .

VQ 2Q
Ep = 12Fy + 29 QIgQ —9Q0) (4, 4 a),
. WF(“ COuFis (Q — Qo)[27Q% — (11¢2 + j,\{,())(();; (3¢° + X0)QoQ + 3¢*Q3) (A, +
SRR TR =20 (i + o) — S Qu(2 A0 + o),
where

Q(r) ==q¢* + Xof(r), Qo:=¢q" + Xo,

EL eqgs with Schwarzschild solution are satisfied if
Fo = Fox = Fix = QoA = A1 + A, = A1x + Ay
= Qo(241x + A3) =

at X = X,. = Several branches: Cases 1, 2

(19)

(20)



Conditions

EL eqgs with Schwarzschild solution are satisfied if
Fo = Fox = Fix = QoA1 = 41 + Ay = A1x + Axx
= Qo(241x +A43) =0
at X = X,. = Several branches: Cases 1, 2
For ¢ = ¢ = const, the condition is F, = 0 (Case 1-c)

DHOST classes o (t, 1) = qt +P(r)
- Class |, lll: OK.

- Class Il: No go for Sch & SdS with nonzero q or .

Similar conditions for S(A)dS were also derived.



Novel exact solutions

By using the conditions one can generate novel exact
solutions.

Simple examples in DHOST subclass where ¢; = c:

o Stealth Schwarzschild solution

Fy = M*a(X), F, = MPI + M2b(X), Az =<2

o Self-tuned S(A)dS solutlon

2
Fy = —M&4A, + M*h(X), F, = % +2M2h(X), A3 = —8FM?

h1(X)
b'¢

Stabi”ty for perturbations Takahashi, HM, Minamitsuji, in prep.



Iuv

L

Any GR solution

Theories with multiple

(1) | G, =8nGT,, —Ag,, | ¢ =const. |scalars and arbitrary
higher-order derivs.

Vacuum GR solution Horndeski subclass

(2) Ry =0 o (1) where ¢, = c
(stealth) W
Schwarzschild & = Shift-sym. quadratic

(3) | Schwarzschild-(A)dS gt + Y (r) | DHOST theories
(stealth & self-tuned) X =const.




Given a theory: 3¢, s.t. the conditions are satisfied?

Yes l \ No



Given a theory: 3¢, s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Yes ( \ No Do Cardoso, 0902569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622

Hairy solutions only.
(except fine-tuning)
Gn ~ log |X]|



Given a theory: 3¢, s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Yes Pani, Cardoso, 0902.1569
NO  Kieibaus, Kunz, Radu, 1101.2868

Ayzenberg, Yunes, 1405.2133

Allows GR solutions and Sotiriou, Zhou, 1312.3622

may or may not allow hairy Hairy solutions only.
solutions. (except fine-tuning)

G, ~ log | X|



Given a theory: 3¢, s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Yes Pani, Cardoso, 0902.1569
NO  Kieibaus, Kunz, Radu, 1101.2868

Ayzenberg, Yunes, 1405.2133

Allows GR solutions and Sotiriou, Zhou, 1312.3622

may or may not allow hairy Hairy solutions only.
solutions. (except fine-tuning)

G, ~ log | X|
‘ Unique GR "
solutions

Not unique



Given a theory: 3¢, s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

YeS Pani, Cardoso, 0902.1569
No Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
: Sotiriou, Zhou, 1312.3622
Allows GR solutions and 1o, £hou

may or may not allow hairy Hairy solutions only.
solutions. (except fine-tuning)

Gp ~ log |X]|
‘ Unique GR
solutions

No hair theorem

No deviation from GR

Sotiriou, Faraoni, 1109.6324
Hui, Nicolis, 1202.1296

Babichev, Charmousis, Lehebel,
1702.01938

Not unique



Given a theory: 3¢, s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Yes N Pani, Cardoso, 0902.1569
O  Kieihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
i Sotiriou, Zhou, 1312.3622
Allows GR solutions and ofiriou, Zhou

may or may not allow hairy Hairy solutions only.
solutions. (except fine-tuning)

G, ~ log | X|
‘ Unigue GR "
solutions
Stealth solution

No hair theorem BBMB solution (1970, 1974)

No deviation from GR Babichev, Charmousis, 1312.3204
Herdeiro, Radu, 1403.2757

Not unique

Sotiriou, Faraoni, 1109.6324

Hui, Nicolis, 1202.1296 Spontaneous scalarization

Babichev, Charmousis, Lehebel, : :
1702 01938 Dynamical no hair theorem



