Exact black hole solutions in scalar－tensor theories

Hayato Motohashi（YITP）

2019．3．1第三回若手による重力•守宙論研究会

Modification of gravity by adding field(s)

- Deeper understanding of gravity
- Unification of gravity and other physics

Kaluza (1921), Klein (1926), Jordan (1959), Brans, Dicke (1961)

- Inflationary model (1980-)
- Dark energy model (1998-)
- Test of black hole spacetime by GWs (2016-)

UV theory

‘Healthy’ modified gravity

- No ghost
- Recover GR

Correction to GR

Consistent with existing observational data
(or 'better' explanation)

Ostrogradsky theorem
Nondegenerate higher-order Lagrangian \rightarrow Ghost DOF

Lovelock theory

- 4D diffeo. inv.
- Metric only
- 2nd order EL eqs

1974
Horndeski theory

- 4D diffeo. inv.
- Metric + scalar field
- 2nd order EL eqs

2011
Generalized Galileon
Deffayet et al, 1103.3260
Rediscovery of Horndeski theory
Kobayashi et al, 1105.5723

2014
Beyond Horndeski (GLPV)
Higher-order EL eqs but no ghost DOF
Gleyzes et al, 1404.6495
Ostrogradsky theorem revisited
Nondegeneracy of next-highest order derivative \rightarrow Ghost
HM, Suyama, 1411.3721

2015
Specific degenerate theory (DHOST)
Langlois, Noui, 1510.06930
General degenerate theories up to second-order derivatives
HM, Suyama, Yamaguchi, Langlois, Noui, 1603.09355
\rightarrow Many applications for model building

2018
General degenerate theories with arbitrary higher-order derivatives
HM, Suyama, Yamaguchi, 1711.08125, 1804.07990

Testing gravity at strong field regime

- No deviation from GR solution in inspiral
- Quasi-normal mode at ringdown for future test

Theories allowing GR solution

Suppose: No deviation from GR solution detected

What kind of modified gravity allow GR solution?
Let us clarify condition for \exists GR solution.
(If GR solution is unique \Rightarrow No hair theorem)
c.f. Cosmology
Λ CDM expansion history
$\Leftarrow \Lambda \mathrm{CDM}$, quintessence, $f(R)$

No-hair theorems for shift-sym. theories

Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel, 1702.01938

- Shift-sym. Horndeski or GLPV
- $g_{\mu \nu}$: Asymptotically flat, static, spherically sym.
- $\phi=\phi(r)$: Static
- Standard kinetic term
$g_{\mu \nu}$: Schwarzschild \& $\phi=$ const. is the unique solution.

No-hair theorem for $P(\phi, X)$ theory

Graham, Jha, 1401.8203
$-R+P(\phi, X)$

- $g_{\mu \nu}$: Asymp. flat \& [static or (stationary \& axisym.)],
- ϕ : Same sym. as $g_{\mu \nu}$
- $\left[P_{X}>0 \& \phi P_{\phi} \leq 0\right]$ or $\left[P_{X}<0 \& \phi P_{\phi} \geq 0\right]$ or $\left[P_{\phi X}=0 \& P_{\phi} P_{X} \neq 0\right]$
$g_{\mu \nu}$: GR solution \& $\phi=$ const. is the unique solution.

HM, Minamitsuji, 1901.04658

	$g_{\mu \nu}$	ϕ	\mathcal{L}
[18]	Any GR solution $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$	$\phi=$ const.	Multi-scalar-tensor theories with arbitrary higher-order derivatives in D-dimensional spacetime
[21]	$\operatorname{Sch}(-a)$ (stealth)	$\begin{gathered} \phi(r) \\ X=\text { const. } \end{gathered}$	Shift-sym. GLPV
[27]	Vacuum GR solution $R_{\mu \nu}=0$ (stealth)	$\phi(r)$	Horndeski subclass where $c_{t}=c$ (shift sym. broken)
[25, 26]	Sch \& S(A)dS (stealth \& self-tuned)	$\begin{gathered} \phi(t, r)=q t+\psi(r) \\ X=\text { const. } \end{gathered}$	Shift-sym. Horndeski
[28, 29]	SdS (self-tuned)	$\begin{gathered} \phi(t, r)=q t+\psi(r) \\ X=\text { const. } \end{gathered}$	Shift-sym. GLPV
[30]	$\begin{gathered} \text { Sch \& S(A)dS } \\ \text { (stealth \& self-tuned) } \end{gathered}$	$\begin{gathered} \phi(t, r)=q t+\psi(r) \\ X=-q^{2} \end{gathered}$	Quadratic DHOST subclass where $c_{t}=c$
This work	$\begin{gathered} \text { Sch(-a) \& S(A)dS } \\ \text { (stealth \& self-tuned) } \end{gathered}$	$\begin{gathered} \phi(t, r)=q t+\psi(r) \\ X=\text { const } . \end{gathered}$	Shift-sym. quadratic DHOST

[18] HM, Minamitsuji, 1804.01731
[21] Babichev, Charmousis, Lehebel, 1702.01938
[25] Babichev, Charmousis, 1312.3204
[26] Kobayashi, Tanahashi, 1403.4364
[27] Minamitsuji, HM, 1809.06611
[28] Babichev, Esposito-Farese, 1609.09798
[29] Babichev et al, 1702.04398
[30] Ben Achour, Liu, 1811.05369
"This work": HM, Minamitsuji, 1901.04658

Strategy

i) Set L and derive EL equations
ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

	$g_{\mu \nu}$	ϕ	L
(1)	Any GR solution $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$	$\phi=$ const.	Theories with multiple scalars and arbitrary higher-order derivs.
(2)	Vacuum GR solution $R_{\mu \nu}=0$ (stealth)	$\phi(r)$	Horndeski subclass where c $=\mathrm{c}$ (shiftsym.)
(3)	 Schwarzschild-(A)dS (stealth \& self-tuned)	$\phi=$ $q t+\psi(r)$ $X=$ const.	Shift-sym. quadratic DHOST theories

i) Set L and derive EL equations
ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

Action

$$
S=\int d^{D} x \sqrt{-g}\left[G_{2}(\phi, X)+G_{4}(\phi, X) R+L_{m}\left(g_{\mu v}, \psi\right)\right]
$$

NB: We shall include more terms later.

Case (1)
i) Set L and derive EL equations
ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

EOM for $g^{\mu \nu}$ and ϕ

$$
\begin{aligned}
0=\frac{1}{2} & g^{\mu \nu} G_{2}-G^{\mu v} G_{4}+\frac{1}{2} T^{\mu \nu} \\
& \quad-\frac{1}{2}\left(G_{2 X}+R G_{4 X}\right) \phi^{; \mu} \phi^{; v}+\left(\nabla^{\mu} \nabla^{v}-g^{\mu \nu} \square\right) G_{4} \\
0= & G_{2 \phi}+R G_{4 \phi} \\
& \quad+\frac{1}{2} \nabla_{\mu}\left(G_{2 X} \phi^{; \mu}\right)+\frac{1}{2} R \nabla_{\mu}\left(G_{4 X} \phi^{; \mu}\right)
\end{aligned}
$$

Case (1)

i) Set L and derive EL equations

ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

Substitute $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$ and $\phi=$ const.

$$
\begin{aligned}
& 0=\frac{1}{2} g^{\mu \nu} G_{2}-\left(8 \pi G T^{\mu \nu}-\Lambda g^{\mu \nu}\right) G_{4}+\frac{1}{2} T^{\mu \nu} \\
& 0=G_{2 \phi}+R G_{4 \phi}
\end{aligned}
$$

$$
\left.+\frac{1}{+\nabla_{1}\left(G_{2 v} ;\right.} ;\right)^{1} R \nabla\left(G_{-v} ; \mu\right) G_{2}, G_{4}, G_{2 X}, G_{4 X}, \cdots
$$

$$
+\frac{1}{2} \nabla_{\mu}\left(G_{2 X} \phi^{\prime \mu}\right)+\frac{1}{2} R \nabla_{\mu}\left(G_{4 X} \phi^{\prime \mu}\right) \text { are regular at }
$$

$$
\phi=\phi_{0} .
$$

Case (1)

i) Set L and derive EL equations

ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

Condition

1. $G_{2}, G_{4}, G_{2 X}, G_{4 X}, \cdots$ are regular at $\phi=\phi_{0}$.
2. $0=\frac{1}{2} g^{\mu \nu} G_{2}-\left(8 \pi G T^{\mu \nu}-\Lambda g^{\mu \nu}\right) G_{4}+\frac{1}{2} T^{\mu \nu}$

$$
0=G_{2 \phi}+R G_{4 \phi} \text { at } \phi=\phi_{0}
$$

Erase R by using trace equation

$$
(2-D) R / 2=8 \pi G T-D \Lambda
$$

Case (1)

i) Set L and derive EL equations

ii) Substitute GR metric solution \& scalar field ansatz
iii) Obtain conditions for model

Condition

$$
8 \pi G T^{\mu \nu}=: 8 \pi G T_{m}^{\mu \nu}-\Lambda_{m} g^{\mu \nu}
$$

1. $G_{2}, G_{4}, G_{2 X}, G_{4 X}, \cdots$ are regular at $\phi=\phi_{0}$.
2. $g^{\mu \nu}\left(G_{2}+2 \Lambda G_{4}+\frac{16 \pi G G_{4}-1}{8 \pi G} \Lambda_{m}\right)=T_{m}^{\mu \nu}\left(16 \pi G G_{4}-1\right)$

$$
(D-2) G_{2 \phi}+2 D\left(\Lambda+\Lambda_{m}\right) G_{4 \phi}=16 \pi G G_{4 \phi} T_{m}
$$

$$
\text { at } \phi=\phi_{0}
$$

In particular, if $T_{m}^{\mu \nu} \neq 0$,

$$
G_{4}=(16 \pi G)^{-1}, G_{2}=-\Lambda /(8 \pi G), G_{2 \phi}=G_{4 \phi}=0
$$

Generalization

Action

$$
\begin{aligned}
S=\int d^{D} x \sqrt{-g}[& G_{2}(\phi, X)+G_{4}(\phi, X) R \\
& \left.+\phi_{; \mu \nu} C_{2}^{\mu \nu}+L_{m}\left(g_{\mu \nu}, \psi\right)\right]
\end{aligned}
$$

$C_{2}^{\mu \nu}$: an arbitrary function

$$
C_{2}^{\mu \nu}\left(g_{\alpha \beta}, g_{\alpha \beta, \gamma}, g_{\alpha \beta, \gamma \delta}, \cdots ; \phi, \phi_{; \alpha}, \phi_{; \alpha \beta}, \phi_{; \alpha \beta \gamma}, \cdots ; \epsilon_{\alpha \beta \gamma \delta}\right)
$$ including Horndeski, GLPV, (quadratic \& cubic) DHOST

$$
\begin{aligned}
C_{\mathrm{H}}^{\mu \nu}= & G_{3} g^{\mu \nu}+G_{4 X}\left(g^{\mu \nu} \square \phi-\phi^{; \mu \nu}\right)+G_{5} G^{\mu \nu} \\
& -\frac{1}{6} G_{5 X}\left[g^{\mu \nu}(\square \phi)^{2}-3 \square \phi \phi^{; \mu \nu}+2 \phi^{; \mu \sigma} \phi_{; \sigma}^{; \nu}\right] \\
C_{\mathrm{bH}}^{\mu \nu}= & F_{4} \epsilon^{\alpha \beta \mu}{ }_{\gamma} \epsilon^{\tilde{\alpha} \tilde{\beta} \nu \gamma} \phi_{; \alpha} \phi_{; \tilde{\alpha} \phi_{; \beta \tilde{\beta}}} \\
& +F_{5} \epsilon^{\alpha \beta \gamma \mu} \epsilon^{\tilde{\alpha} \tilde{\beta} \tilde{\gamma} \nu} \phi_{; \alpha} \phi_{; \tilde{\alpha} \phi_{; \beta \tilde{\beta}} \phi_{; \gamma \tilde{\gamma}}}^{C_{2}^{\mu \nu}=F_{1} g^{\mu \nu}+A_{1} \phi^{\mu \nu}+A_{2} g^{\mu \nu} \square \phi+A_{3} \phi^{\mu} \phi^{\nu} \square \phi+A_{4} \phi^{\mu} \phi^{\nu \lambda} \phi_{\lambda}+A_{5} \phi^{\mu} \phi^{\nu} \phi^{\alpha} \phi_{\alpha \beta} \phi^{\beta}}
\end{aligned}
$$

Case (1)

Condition under which GR metric solution with constant scalar field is allowed as exact solution:

1. $G_{2}, G_{4}, G_{2 X}, G_{4 X}, C_{2}^{\rho \sigma}, \cdots$ are regular at $\phi=\phi_{0}$.
2. $g^{\mu \nu}\left(G_{2}+2 \Lambda G_{4}+\frac{16 \pi G G_{4}-1}{8 \pi G} \Lambda_{m}\right)=T_{m}^{\mu \nu}\left(16 \pi G G_{4}-1\right)$
$(D-2) G_{2 \phi}+2 D\left(\Lambda+\Lambda_{m}\right) G_{4 \phi}=16 \pi G G_{4 \phi} T_{m}$ at $\phi=\phi_{0}$
3. $C_{2}^{\rho \sigma}{ }_{; \rho \sigma}=0$ at $\phi=\phi_{0}$.

Example: Horndeski

$C_{2}^{\mu \nu}=C_{\mathrm{H}}^{\mu \nu}$
Kobayashi, HM, Suyama, 1202.4893, 1402.6740

$$
\begin{aligned}
C_{\mathrm{H}}^{\mu \nu}= & G_{3} g^{\mu \nu}+G_{4 X}\left(g^{\mu \nu} \square \phi-\phi^{; \mu \nu}\right)+G_{5} G^{\mu \nu} \\
& -\frac{1}{6} G_{5 X}\left[g^{\mu \nu}(\square \phi)^{2}-3 \square \phi \phi^{; \mu \nu}+2 \phi^{; \mu \sigma} \phi_{; \sigma}^{; \nu}\right]
\end{aligned}
$$

Consider vacuum solution with $\Lambda=\Lambda_{m}=0$.
Conditions:

1. $G_{2}, G_{4}, G_{2 X}, G_{4 X}, C_{2}^{\rho \sigma}, \cdots$ are regular at $\Phi=\Phi_{0}$.
2. $G_{2}=G_{2 \phi}=0$ at $\Phi=\Phi_{0}$.
3. $C_{2}^{\rho \sigma} ; \rho \sigma=0$ identically holds.

Confirmed that EOMs for static, spherically sym. metric allow Schwarzschild solution under the three conditions.

Example: GLPV

$$
\begin{aligned}
C_{2}^{\mu \nu}=C_{\mathrm{H}}^{\mu \nu}+ & C_{\mathrm{bH}}^{\mu \nu} \\
C_{\mathrm{H}}^{\mu \nu}= & G_{3} g^{\mu \nu}+G_{4 X}\left(g^{\mu \nu} \square \phi-\phi^{; \mu \nu}\right)+G_{5} G^{\mu \nu} \\
& -\frac{1}{6} G_{5 X}\left[g^{\mu \nu}(\square \phi)^{2}-3 \square \phi \phi^{; \mu \nu}+2 \phi^{; \mu \sigma} \phi_{; \sigma}^{; \nu}\right] \\
C_{\mathrm{bH}}^{\mu \nu}= & F_{4} \epsilon^{\alpha \beta \mu}{ }_{\gamma} \epsilon^{\tilde{\alpha} \tilde{\beta} \nu \gamma} \phi_{; \alpha} \phi_{; \tilde{\alpha} \phi_{; \beta \tilde{\beta}}} \\
& +F_{5} \epsilon^{\alpha \beta \gamma \mu} \epsilon^{\tilde{\alpha} \tilde{\gamma} \nu} \phi_{; \alpha} \phi_{; \tilde{\alpha} \phi_{; \beta \tilde{\beta}} \phi_{; \gamma \tilde{\gamma}}}
\end{aligned}
$$

Consider vacuum solution with $\Lambda=\Lambda_{m}=0$. Same three conditions.
Derived EOMs for static, spherically sym metric ansatz. Checked that they allow Schwarzschild solution if the three conditions are satisfied.

Further generalization нм, Minamitsuji, 1804.01731

Multi-scalar-tensor theories with arbitrary higher-order derivatives in D-dimensional spacetime

$$
\begin{aligned}
S= & \int d^{D} x \sqrt{-g}\left[G_{2}\left(\phi^{I}, X^{J K}\right)+G_{4}\left(\phi^{I}, X^{J K}\right) R\right. \\
& +\phi_{; \mu}^{I} C_{1 I}^{\mu}+\phi_{; \mu \nu}^{I} C_{2 I}^{\mu v}+\phi_{; \mu \nu \rho}^{I} C_{3 I}^{\mu v \rho}+\cdots \\
& \left.+L_{m}\left(g_{\mu \nu}, \psi\right)\right]
\end{aligned}
$$

We derived three conditions for the existence of any GR solution with/without matter.

NB: GR solution is guaranteed at $\phi=\phi_{0}$, but ϕ can be dynamical in general.
\leftrightarrow Stability or scalarization

	$g_{\mu \nu}$	ϕ	L
(1)	Any GR solution $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$	$\phi=$ const.	Theories with multiple scalars and arbitrary higher-order derivs.
(2)	Vacuum GR solution $R_{\mu \nu}=0$ (stealth)	$\phi(r)$	Horndeski subclass where c $=\mathrm{c}$ (shiftsym.)
(3)	 Schwarzschild-(A)dS (stealth \& self-tuned)	$\phi=$ $q t+\psi(r)$ $X=$ const.	Shift-sym. quadratic DHOST theories

Stealth Schwarzschild solution

Schwarzschild metric solution in non-GR theory which is independent of $\phi(r)$ and model parameters in L.

Previously found in shift-symmetric Horndeski theory where $G_{n}=G_{n}(X)$ with $\phi(t, r)=q t+\psi(r)$.

We find novel stealth Schwarzschild solution with $\phi=$ $\phi(r)$ in shift-symmetry breaking Horndeski subclass

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{P l}^{2}}{2} R+G_{2}(\phi, X)-G_{3}(\phi, X) \phi\right)
$$

Minamitsuji, HM, 1809.06611

Stealth Ricci-flat solution

Action

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{P l}^{2}}{2} R+G_{2}(\phi, X)-G_{3}(\phi, X) \phi\right)
$$

Derive EL eqs
Plug vacuum GR solution $R_{\mu \nu}=0$
Obtain conditions on G_{2} and G_{3}

NB: The no-hair theorem for shift-symmetric Horndeski theory does not apply.

Stealth Ricci-flat solution

For $G_{2} \neq 0$ and $G_{3}=0$ the conditions is

$$
G_{2}=G_{2 \phi}=G_{2 X}=G_{2 \phi \phi} G_{2 X X}-G_{2 \phi X}^{2}=0
$$

at $(\phi, X)=\left(\phi_{0}\left(x^{\mu}\right), X_{0}\left(x^{\mu}\right)\right)$.
Simple example

$$
G_{2}(\phi, X)=\left(m_{2} \phi+\frac{X}{M_{2}^{2}}\right)^{2}
$$

The condition is satisfied at $X_{0}(r)=-m_{2} M_{2}^{2} \phi_{0}(r)$.
For Schwarzschild solution,

$$
\phi_{0}(r)=2 m_{2} M_{2} M^{2}[\sqrt{x} \sqrt{x-1}+\log (\sqrt{x}+\sqrt{x-1})]^{2}
$$

which is regular at $r=r_{\text {Horizon }}:=2 M(x:=r / 2 M)$.

Linear perturbations

Stability conditions

- Odd-parity mode

$$
\mathcal{F}>0, \quad \mathcal{G}>0, \quad \mathcal{H}>0
$$

- Even-parity modes

$$
\ell(\ell+1) \mathcal{P}_{1}-\mathcal{F}>0[\ell \geq 2], \quad 2 \mathcal{P}_{1}-\mathcal{F}>0
$$

For the stealth solution, $2 \mathcal{P}_{1}-\mathcal{F}=0$ and hence the kinetic term of an even-parity mode vanish, indicating strong coupling.

We obtain similar solutions for other cases:
$G_{2}=0$ and $G_{3} \neq 0 / G_{2} \neq 0$ and $G_{3} \neq 0$

Stealth Ricci-flat solution

For $G_{2}=0$ and $G_{3} \neq 0$ another stealth solution exists

$$
\partial_{\mu} G_{3}=0
$$

at $(\phi, X)=\left(\phi_{0}\left(x^{\mu}\right), X_{0}\left(x^{\mu}\right)\right)$, which satisfies

$$
\square \phi_{0}=0
$$

Function G_{3} is not constrained much.
For Schwarzschild solution,

$$
\phi_{0}(r)=C_{1}+C_{2} \ln \left(1-\frac{2 M}{r}\right)
$$

Regarding perturbation, in general $2 \mathcal{P}_{1}-\mathcal{F} \neq 0$.

	$g_{\mu \nu}$	ϕ	L
(1)	Any GR solution $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$	$\phi=$ const.	Theories with multiple scalars and arbitrary higher-order derivs.
(2)	Vacuum GR solution $R_{\mu \nu}=0$ (stealth)	$\phi(r)$	Horndeski subclass where c $=\mathrm{c}$ (shiftsym.)
(3)	 Schwarzschild-(A)dS (stealth \& self-tuned)	$\phi=$ $q t+\psi(r)$ $X=$ const.	Shift-sym. quadratic DHOST theories

$\phi(t, r)=q t+\psi(r)$ in shift-sym. theories

Why?
Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel, 1702.01938

- Compatible with static spacetime
- Circumvent static scalar assump. of no-hair theorem.

GR metric solutions in shift-sym. Horndeski

- Stealth Schwarzschild solution

Babichev, Charmousis, 1312.3204
Kobayashi, Tanahashi, 1403.4364

- Self-tuned Sch-(A)dS solution
(Λ in metric is independent of $\Lambda_{\text {bare }}$ in the action)

Stable or unstable?

$$
\begin{aligned}
& \text { Ogawa et al (2015), Takahashi et al (2015), } \\
& \text { Takahashi et al (2016), Maselli et al (2016), } \\
& \text { Babichev et al (2017), Babichev et al (2018) }
\end{aligned}
$$

Exact BH solutions in DHOST

We find novel exact BH solutions. HM, Minamitsuji, 1901.04658

- Shift-sym. qaud. DHOST with $F_{i}=F_{i}(X), A_{I}=A_{I}(X)$
- $\phi(t, r)=q t+\psi(r)$ and $X=$ const. Langlois et al (2015)
- Static spherically symmetric spacetime

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left[F_{0}+F_{1} \square \phi+F_{2} R+\sum_{I=1}^{5} A_{I} L_{I}^{(2)}\right] \\
L_{1}^{(2)}=\phi^{; \mu v} \phi_{; \mu \nu}, L_{2}^{(2)}=(\square \phi)^{2}, L_{3}^{(2)}=(\square \phi) \phi^{; \mu} \phi_{; \mu \nu} \phi^{; v}, \\
L_{4}^{(2)}=\phi^{; \mu} \phi_{; \mu \nu} \phi^{; v \rho} \phi_{; \rho}, L_{5}^{(2)}=\left(\phi^{; \mu} \phi_{; \mu \nu} \phi^{i v}\right)^{2} .
\end{gathered}
$$

cf. BH solutions in subclass for $c_{t}=c$ and $X=-q^{2}$

Static spherically sym. spacetime

Static spherically symmetric spacetime

$$
d s^{2}=-A(r) d t^{2}+\frac{d r^{2}}{B(r)}+2 C(r) d t d r+D(r) r^{2} d \Omega^{2}
$$

with $\phi(t, r)=q t+\psi(r)$
HM, Suyama, Takahashi, 1608.00071
Caveat on gauge fixing at the action level:
With time dep ϕ,
$D(r)=1$: OK
$C(r)=0$: leads to a loss of independent EL eq.
It should be substituted after deriving EL eq.
The argument is indep. of the form of the action.

Gauge fixing at action level

HM, Suyama, Takahashi, 1608.00071
Simple toy model $L=\frac{1}{2}(\dot{x}-\ddot{y})^{2} \rightarrow \frac{1}{2} \dot{X}^{2}$
which is invariant under gauge transformation

$$
x \rightarrow x+\dot{\xi}, \quad y \rightarrow y+\xi
$$

Euler-Lagrange eqs

$$
E_{x}=-\ddot{x}+\dddot{y}=0, \quad E_{y}=-\dddot{x}+\dddot{y}=0
$$

Off-shell identity (a.k.a. Noether identity)

$$
-\dot{E}_{x}+E_{y}=0
$$

$\Rightarrow E_{y}$ is redundant eq.
Gauge fixing at action level:

1) $x=0: E_{x}, E_{y}$ Independent EOM was lost !
2) $y=0: E_{x}, E_{y}^{\prime}$ Fine

$$
\begin{align*}
\mathcal{E}_{A}= & \frac{X_{0}}{Q} Q_{0} A_{1}-\frac{q^{2}}{Q} \mathcal{E}_{B}+\frac{q}{\sqrt{Q} f} \mathcal{E}_{C}+\frac{X_{0}}{2 Q} \mathcal{E}_{D} \tag{15}\\
\mathcal{E}_{B}= & \frac{1}{f}\left(\frac{9 Q^{2}+Q_{0}^{2}}{2 Q}-Q_{0}\right)\left(A_{1}+A_{2}\right)-\frac{1}{f}\left(Q_{0} A_{1}+\frac{1}{2} \mathcal{E}_{D}\right) \\
& +\frac{Q}{2 f^{2}}\left[2 r^{2} F_{0 X}+\frac{r\left(3 Q+Q_{0}\right)}{Q^{1 / 2}} F_{1 X}+\frac{\left(3 Q+Q_{0}\right)^{2}}{2 Q}\left(A_{1 X}+A_{2 X}\right)-2 Q_{0}\left(2 A_{1 X}+A_{3}\right)\right] \tag{16}\\
\mathcal{E}_{C}= & \frac{q}{\sqrt{Q}}\left[2 Q_{0} A_{1}-\left(\frac{9 Q^{2}+Q_{0}^{2}}{2 Q}-Q_{0}\right)\left(A_{1}+A_{2}\right)+2 f \mathcal{E}_{B}+\mathcal{E}_{D}\right] \tag{17}\\
\mathcal{E}_{D}= & r^{2} F_{0}+\frac{\left(9 Q-Q_{0}\right)\left(Q-Q_{0}\right)}{4 Q}\left(A_{1}+A_{2}\right) \tag{18}\\
\mathcal{E}_{\psi}= & -\frac{r\left(3 Q+Q_{0}\right)}{Q^{1 / 2}} F_{0 X}-4 Q_{0} F_{1 X}+\frac{\left(Q-Q_{0}\right)\left[27 Q^{3}-\left(11 q^{2}+2 X_{0}\right) Q^{2}-\left(3 q^{2}+X_{0}\right) Q_{0} Q+3 q^{2} Q_{0}^{2}\right]}{4 r X_{0} Q^{5 / 2}}\left(A_{1}+A_{2}\right) \\
& +\frac{\left(9 Q-Q_{0}\right)\left(3 Q+Q_{0}\right)\left(Q-Q_{0}\right)}{4 r Q^{3 / 2}}\left(A_{1 X}+A_{2 X}\right)-\frac{Q-Q_{0}}{r Q^{1 / 2}} Q_{0}\left(2 A_{1 X}+A_{3}\right) \tag{19}
\end{align*}
$$

where

$$
\begin{equation*}
Q(r):=q^{2}+X_{0} f(r), \quad Q_{0}:=q^{2}+X_{0} \tag{20}
\end{equation*}
$$

EL eqs with Schwarzschild solution are satisfied if

$$
\begin{aligned}
& F_{0}=F_{0 X}=F_{1 X}=Q_{0} A_{1}=A_{1}+A_{2}=A_{1 X}+A_{2 X} \\
& =Q_{0}\left(2 A_{1 X}+A_{3}\right)=0
\end{aligned}
$$

at $X=X_{0} . \Rightarrow$ Several branches: Cases 1,2

Conditions

EL eqs with Schwarzschild solution are satisfied if

$$
\begin{aligned}
& F_{0}=F_{0 X}=F_{1 X}=Q_{0} A_{1}=A_{1}+A_{2}=A_{1 X}+A_{2 X} \\
& =Q_{0}\left(2 A_{1 X}+A_{3}\right)=0
\end{aligned}
$$

at $X=X_{0} . \Rightarrow$ Several branches: Cases 1,2
For $\phi=\phi_{0}=$ const, the condition is $F_{0}=0$ (Case 1-c)

DHOST classes

$$
\phi(t, r)=q t+\psi(r)
$$

- Class I, III: OK.
- Class II: No go for Sch \& SdS with nonzero q or ψ^{\prime}.

Similar conditions for $S(A) d S$ were also derived.

Novel exact solutions

By using the conditions one can generate novel exact solutions.

Simple examples in DHOST subclass where $c_{t}=c$:

- Stealth Schwarzschild solution

$$
F_{0}=M^{4} a(X), \quad F_{2}=\frac{M_{\mathrm{Pl}}^{2}}{2}+M^{2} b(X), \quad A_{3}=\frac{c(X)}{M^{6}}
$$

- Self-tuned S(A)dS solution

$$
F_{0}=-M_{\mathrm{Pl}}^{2} \Lambda_{\mathrm{b}}+M^{4} h(X), F_{2}=\frac{M_{\mathrm{Pl}}^{2}}{2}+\frac{\alpha}{2} M^{2} h(X), A_{3}=-8 \beta M^{2} \frac{h \prime(X)}{X}
$$

Stability for perturbations

	$g_{\mu \nu}$	ϕ	L
(1)	Any GR solution $G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu}$	$\phi=$ const.	Theories with multiple scalars and arbitrary higher-order derivs.
(2)	Vacuum GR solution $R_{\mu \nu}=0$ (stealth)	$\phi(r)$	Horndeski subclass where c $=\mathrm{c}$ (shiftsym.)
(3)	 Schwarzschild-(A)dS (stealth \& self-tuned)	$\phi=$ $q t+\psi(r)$ $X=$ const.	Shift-sym. quadratic DHOST theories

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?

Yes

No

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Pani, Cardoso, 0902.1569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622
Hairy solutions only.
(except fine-tuning)

$$
G_{n} \sim \log |X|
$$

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?

Kanti et al, hep-th/9511071
Pani, Cardoso, 0902.1569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622
Allows GR solutions and may or may not allow hairy solutions.

Hairy solutions only.
(except fine-tuning)

$$
G_{n} \sim \log |X|
$$

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?

Kanti et al, hep-th/9511071

Allows GR solutions and may or may not allow hairy solutions.

Unique GR solutions

Pani, Cardoso, 0902.1569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622
Hairy solutions only.
(except fine-tuning)

$$
G_{n} \sim \log |X|
$$

Not unique

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Allows GR solutions and may or may not allow hairy solutions.

\downarrow

Unique GR solutions

Pani, Cardoso, 0902.1569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622
Hairy solutions only.
(except fine-tuning)

$$
G_{n} \sim \log |X|
$$

Not unique
No hair theorem
No deviation from GR
Sotiriou, Faraoni, 1109.6324
Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel,
1702.01938

Given a theory: $\exists \phi_{0}$ s.t. the conditions are satisfied?
Kanti et al, hep-th/9511071

Allows GR solutions and may or may not allow hairy solutions.

Pani, Cardoso, 0902.1569
Kleihaus, Kunz, Radu, 1101.2868
Ayzenberg, Yunes, 1405.2133
Sotiriou, Zhou, 1312.3622
Hairy solutions only.
(except fine-tuning)

$$
G_{n} \sim \log |X|
$$

Not unique
Stealth solution
BBMB solution $(1970,1974)$
Babichev, Charmousis, 1312.3204
Herdeiro, Radu, 1403.2757
Spontaneous scalarization
Dynamical no hair theorem

