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Can we always see the shape of a star?

Consider a star with a bumpy surface, and radius R ∈ [R1, R2].

The Schwarzschild solution describes the exterior of the star.

Do we always see the same outline of the star?

Pedro Cunha Shadows and strong gravitational lensing



Image bumpy star (3M < R)

If 3M < R:

2M 3M r

R2R1

Image of the star

The star’s image is what one might expect.

The star edge displays the bumpy surface of the star.
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Image bumpy star (3M < R)

If 3M < R:

2M 3M r

R2R1

Image of the star (no emission)

Black star→ radiation absorbent and no emission.

If the star is black, only the outline contains surface information.
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Image bumpy star (R < 3M )

If R < 3M :

2M 3M r

R2R1

Image of the star

The star’s edge becomes circular (no display of the bumpy surface).

The edge is actually an image of the photon sphere (r = 3M ).
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Image bumpy star (R < 3M )

If R < 3M :

2M 3M r

R2R1

Image of the star (no emission)

A black star image reveals no surface information.

This image coincides with the shadow of a BH.
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Backwards ray-tracing

Image defined as a grid of pixels in the observer’s screen.

Each pixel defines an initial condition for a light ray.

Shadow→ set of pixels with rays infalling into a BH.
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Shadows of BHs

Adapted K.Thorne.

The edge of the shadow corresponds to a scattering singularity.

Photons encircle the black hole an increasing number of times.

The shadow edge is determined by a special class of orbits.
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Light rings

Light ring (LR) ⇐⇒ circular photon orbit.

Tangent vector field is a linear combination of (only) ∂t, ∂ϕ.

Killing vectors ∂t, ∂ϕ connected to stationarity and axial-symmetry.

Kerr has two unstable LRs with opposite rotation.
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Spherical photon orbits (Kerr)
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Kerr→ Light rings generalize outside the equatorial plane.

In Boyer-Lindquist coordinates→ orbits with constant r.
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Geodesic motion

The HamiltonianH of geodesic motion does not depend on t, ϕ:

∂H
∂xµ

= −ṗµ =⇒ constant pt, pϕ

Constants of photon motion:

E = −pt → energy at infinity

L = pϕ → angular momentum

Motion depends on the impact parameter η = L/E.
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Spherical photon orbits (Kerr)
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η = const.

Q = const.

Besides η there is another constant of motion (Carter’s Q).

Each spherical orbit is uniquely identified by {η,Q}.

Spherical orbits determine the Kerr shadow edge.
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Spherical photon orbits (Kerr)
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Analytic Kerr shadow

(x, y)y

x

The Kerr shadow edge
{
x(r) , y(r)

}
is known analytically.

The parameter r is the spherical photon orbit radius.

Is it possible to represent y(x) directly?
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Analytic Kerr shadow

Consider an observer with robs � 1.

The Kerr spin is a. For simplicity, if θobs = π/2:

y = ±
√
r2(3r2 + a2 − x2)

r2 − a2

The parameter r satisfies the cubic equation:

r3 − 3r2 + a(a− x)r + a(a+ x) = 0
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Analytic Kerr shadow

The solution has three branches (in M units):

A ≡ 1− a

3
(a− x), B ≡ (1− a2)

|A|3/2
.

If A > 0, B 6 1:

r = 1 + 2
√
A cos

(
1

3
arccosB

)
If A > 0, B > 1:

r = 1 + 2
√
A cosh

(
1

3
log
[√
B2 − 1 + B

])
If A < 0:

r = 1− 2
√
|A| sinh

(
1

3
log
[√

1 + B2 − B
])
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Analytic Kerr shadow
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Kerr shadow edge function y(x) for a = 0.95.

All three branches are necessary to cover the entire edge.

The observer is at infinity and in the equatorial plane.
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Extreme Kerr shadow (a = 1)
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Extremal limit→ shadow expression simplifies considerably:

y(x) =

√
11 + 2x− x2 + 8

√
2 + x , −2 < x 6 7
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Event Horizon Telescope

Source: Doleman et al.

The shadow of a BH is a direct observable.

The EHT collaboration aims to capture the first BH shadow.

Network of VLBI stations→ creates a virtual Earth-sized telescope.
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Kerr’s Spherical Photon orbits revisited
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The geodesic motion is completely integrable in Kerr.

There are special orbits with constant r→ Spherical Photon Orbits.

This is not a invariant statement that can be used generically.
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Fundamental photon orbits (FPOs)

A null geodesic curve s(λ) : R→M is a fundamental orbit if:

→ it is restricted to a spatial region;
→ there is a value T > 0 for which s(λ) = s(λ + T ), ∀λ ∈ R

up to isometries.

These orbits are not required to be periodic on the manifoldM.

They are periodic on {r, θ} (not connected to Killing vectors).

These orbits can exist even if the geodesics are not fully integrable.
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Example: BHs with Proca hair

 0.5

 1

 1.5

 2

 2.5

−4 x10
−4 0 4 x10

−4
8 x10

−4

θ

r − r̃ (M)

Perturbed
 				 B

B

 0.5

 1

 1.5

 2

 2.5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

θ

r − r̃ + 10
−5

 (M)

A
Perturbed 
 		 	A

Stable Unstable

Example of FPOs (in blue) and their perturbations (red).

Each orbit can be labeled by the value of r on the equatorial plane.

Their stability can analysed by taking θ = π/2 as a Poincaré section.
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Example: Shadow cusp in BHs with Proca hair
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Plot displays a continuous family of fundamental orbits (FPOs).

Cusp on shadow edge→ transition between unstable orbits.

This a non Kerr-like feature→ consequence different FPO structure.
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Example: Einstein-dilaton-Gauss-Bonnet (EdGB)

Einstein-dilaton-Gauss-Bonnet model

S =
1

16π

∫
d4x
√
−g
[
R− 1

2
(∂µφ)

2 + αe−γφR2
GB

]
.

The Gauss-Bonnet term (2nd Euler density) is:

R2
GB = RµνρσR

µνρσ − 4RµνR
µν +R2

RGB gives a dynamic contribution when coupled to scalar field φ.

BH solutions can have exotic effective matter close to the horizon.

Cunha+ PLB 768 373-379
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Example: Einstein-dilaton-Gauss-Bonnet (EdGB)
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Illustrative shadow example

EdGB shadow
Kerr shadow

Non-trivial horizon physics is cloaked by the shadow!

The structure of fundamental photon orbits (FPOs) is very Kerr-like.

Shadow observations are unlikely to exclude EdGB models.
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Example: Kerr shadow sketch
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Schw.
Kerr approx.

Kerr exact.

One can develop an approximate method to obtain a shadow.

Contribution of each FPO→ similar to a Schwarzschild FPO.

Manages to capture the main features of the Kerr shadow.
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Light rings (revisited)

Light ring (LR)→ assign a topological charge.

We can introduce 2D effective potential U(r, θ).

Along trajectory pr = pθ = U = 0 and ṗµ = 0.

2 ṗµ = −∂µU +O(pr, pθ).

At a LR: =⇒ U = ∇U = 0
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Effective potentials

Shortcoming of U → depending on parameters E,L.

Can be factorized as U = (L2gtt)(σ−H+)(σ−H−), σ ≡ E/L.

At a LR: =⇒ ∇H± = 0 (critical point of H±)

→ Next: we assign a topological quantity to a LR.
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Winding number
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Consider a closed 2D contour C with a 2D field V = ∇H± .

The circulation of V around C is mapped to a curve S(Vx, Vy).

The winding number around V = 0 is a topological quantity w.
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Winding number
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Light Ring types

w = +1w = −1 w = +1

Different types of LRs:

Saddle point of U → unstable LR (w = −1)→ Kerr, GW ringdown.

Local minimum of U → stable LR (w = +1)→ spacetime instability.

Local maximum of U → unstable LR (w = +1)→ violates NEC.
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Illustration Brouwer degree w

Local maximum
Saddle pointNo critical points

w = 0 w = 0

−1

+1

H±(r, θ)

Smooth deformation of H±(r, θ) (fixed asymptotics):

Total w is a constant.

LRs are created in pairs.
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Example: Proca Stars

Contour lines of H−

' flat spacetime→

x ≡ r/(1 + r)

Continuous families of spacetimes: Proca and Boson Stars.

Sequence of solutions→ deformation of H±.

Flat spacetime 6= flat H±
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Example: Proca Stars

Contour lines of H−

x ≡ r/(1 + r)

Continuous families of spacetimes: Proca and Boson Stars.

Sequence of solutions→ deformation of H±.

Flat spacetime 6= flat H±
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Example: Proca Stars

Contour lines of H−
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Example: Proca Stars

Contour lines of H−

x ≡ r/(1 + r)

−1

+1

Continuous families of spacetimes: Proca and Boson Stars.

Sequence of solutions→ deformation of H±.

Flat spacetime 6= flat H±
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Example: Proca Stars

Contour lines of H−

x ≡ r/(1 + r)

−1

+1

Continuous families of spacetimes: Proca and Boson Stars.

Sequence of solutions→ deformation of H±.

Flat spacetime 6= flat H±
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Example: Majumdar-Papapetrou binary (MP)

Unstable LR
Stable LR     

w = −2

The MP binary describes two maximally charged BHs in equilibrium.

In the large separation limit→ each BH has an unstable LR.
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Example: Majumdar-Papapetrou binary (MP)

Unstable LR
Stable LR     

w = −2

The MP binary describes two maximally charged BHs in equilibrium.

By reducing the separation between the BHs→ a stable LR forms.
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Example: Majumdar-Papapetrou binary (MP)
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Stable LR     

w = −2

The MP binary describes two maximally charged BHs in equilibrium.

By reducing the separation between the BHs→ a stable LR forms.
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Example: Majumdar-Papapetrou binary (MP)

Unstable LR
Stable LR     

w = −2

The MP binary describes two maximally charged BHs in equilibrium.

Two unstable LRs created with different stability orientations.
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Shadow BH binary

Bohn+ CQG 065002

The shadow of a dynamical BH binary is computationally expensive.

Is it possible to obtain a binary shadow proxy from a static solution?
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Double Schwarzschild solution

One can start from the (static) 2-Schwarzschild vacuum solution.

Describes two equal BHs hold in equilibrium by a conical singularity.

Both BHs are uncharged, and the solution is axially symmetric.
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Double Schwarzschild solution

Upper BH

Lower BH

The shadow is disconnected: there are multiple components.

Despite the conical singularity, the shadows are smooth.

Could we mimic the rotation of a binary?
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Quasi-static binary

Light ray

Assume that BHs move much slower than light rays.

We can then implement a quasi-static approximation.
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Quasi-static binary

Light ray

At first order→ light rays follow geodesics in the static background.

By making periodic rotations we can account for the BHs’ motion.
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Quasi-static binary

Light ray

At first order→ light rays follow geodesics in the static background.

By making periodic rotations we can account for the BHs’ motion.
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Quasi-static binary

Light ray

At first order→ light rays follow geodesics in the static background.

By making periodic rotations we can account for the BHs’ motion.
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Shadows Quasi-static binary

(static) (quasi-static)

Using this naive rotation, the shadows are modified.

The secondary shadows are displaced with respect to the primary ones.
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Fully numerical vs. Quasi-static

(fully numerical) (quasi-static)
Bohn+ CQG 065002 Cunha+ PRD 98 044053

One can compare the approximation with the fully numerical result.

Despite some differences, the resemblance is uncanny.
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Recent results: shadows of the Rasheed solution

3D horizon embedding

arXiv:1808.06692

This solution is stationary, axially-symmetric and asymptotically flat.

Kaluza-Klein rotating dyonic BHs→ generically not Z2 symmetric.

The horizon can be North-South asymmetric.
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Recent results: shadows of the Rasheed solution

Observer at θ = π/2.

The lensing is not Z2 symmetric (no color permutation invariance).

However, the shadow is always Z2 symmetric!

The FPO structure is still much Kerr-like.

arXiv:1808.06692
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Recent results: BH rocket

Radiation

S
N

z
Net motion

Shadow (S)

Shadow (N)

BH

The shadow size is not the same as seen from the North (South) pole.

Infalling radiation can lead to asymmetric momentum absorption.

This would lead to a spontaneous thrust: a BH rocket effect!

arXiv:1808.06692
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Conclusions

The FPOs determine the shadow edge of BHs.

These orbits can exist even if the geodesic motion is not separable.

Very different phenomenology→ very different FPO structure.
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