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Introduction
Linear perturbations of BHs to study

gravitational wave
slowly rotating BH
stability   etc

Linear gravitational perturbation on a 
highly symmetric BH usually reduces to
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modeunstable mode →
(negative energy bound state)

To prove (mode) stability, we need to
show the non-existence of            mode



3/30

implies non-existence of             mode

Sometimes,      contains negative regions
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In general, it is hard to find an appropriate
analytically

S-deformation

We can say             if  

In that case, numerical approach 
(e.g. solving PDE) was used so far

[Kodama and Ishibashi 2003] 

For continuous
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Today’s talk

We propose a simple method for 
finding an appropriate S-deformation

Also, extend this method to coupled 
systems
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Contents 
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Very easy method

At this stage, the existence of regular S  
is just a sufficient condition for the stability.  

Just solve                           numerically 

[Kimura 2017] 

In fact, we can (almost) always find 
a regular solution if the spacetime is 
stable  

[Kimura & Tanaka2018] 
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Comment
If we consider 

More difficult (or dangerous).

Solving the Eq with            is 
the most efficient.             

This corresponds to a deeper potential.
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Positive potential (manifestly stable case)

Proposition. If the potential is positive 
and bounded above in                      , 
there exists regular S

Sketch of proof: 
We only need to exclude 
the possibility that      is 
divergent at some point
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Toy model

・continuity at  

・

・
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typical case
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Existence condition 

Condition for existence of regular 

Condition for non-existence of bound state

Regular    exists if and only if spacetime
is stable (i.e., no             mode case)
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Relation with Schrödinger Eq.
is the Riccati equation

→

Schrödinger Eq. with zero energy

A solution which does not have any zero
corresponds to a regular S
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Nodal theorem
A theorem in the Sturm–Liouville theory

If we solve the Schrödinger Eq. with the 
boundary condition
at a sufficiently large distance, the number of 
zeros coincides with the number of the negative 
energy bound states.

There should exist a regular     for stable 
spacetime
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Proposition. There exists a regular 
S-deformation for stable spacetimes

Under some assumption, we can show that
S constructed from a sol. with decaying
boundary condition is regular if the 
spacetime is stable.
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general regular S
: decaying at

This satisfies

: decaying at

General regular S is given by

with
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Shaded region corresponds to 
boundary conditions for regular S

If V > 0 in asymptotic region,
there

at large    is an appropriate BC

Eq. for S
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10 Dim Schwarzschild BH

We can find regular S without fine-tuning
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If                               there exists an 
unstable mode

Black string

[Gregory and Laflamme, 1993]
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Extension to multiple degrees of freedom

:           Hermitian matrix 
:    components vector 

We assume the coupling term

If there exist two or more physical degrees 
of freedom, and they are coupled, master 
Eqs sometimes become
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For any Hermitian S,

If     is positive definite, spacetime is stable

We can still find a regular S by solving
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Comment
If V is bounded, S is bounded iff Tr S is
bounded 

We only need to plot Tr S 
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Schwarzschild BH in dCS
[Molina, Pani, Cardoso, Gualtieri 2010]
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Schwarzschild BH in dCS

We solve                              numerically

with the boundary condition 
S = 0  at a large distance
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Remarks for general case
The nodal theorem for coupled systems
suggest the existence of regular S
(we can explicitly show the existence of 
regular S for rapidly decaying potential)

seems to hold

If V > 0 in asymptotic region,
at large    is a candidate for 

an appropriate BC
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Merit of S-deformation method
・We do not need to care about boundary

condition at infinity very much, we can
solve equation from finite point

・Easy to show the non-existence of 

zero mode (by showing two different S)

・Any fine-tuning is not needed

・It is clear that the existence of regular S

is the sufficient condition for stability
(proof of nodal theorem is very difficult)
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We proposed a simple method for finding 
S-deformation by solving 

Summary

This is a good test for stability of BH

We can guess the threshold of the 
parameter where unstable mode appears

If stable, we can find regular S
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10 Dim Schwarzschild-dS BH
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10 Dim RN-dS BH

If                                  , there exists an
unstable mode [Konoplya and Zhidenko, 2008]
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Supersymmetric quantum mechanics

Supersymmetric quantum mechanics 
system

From 
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