Oscillators, Resonators, and the Instability of AdS

Benson Way (UBC)

Matthew Choptuik, Oscar Dias, Jorge Santos, B.W. arXiv:1706.06101, 1803.02830

Basic question:

What happens to small energy excitations in (global) AdS?

Nonlinear Stability

Do all finite, but small perturbations remain small?

DeSitter: Yes, 33 pages [G. Friedrich]

Minkowski: Yes, 526 pages [D. Christodoulou, S. Klainerman]

(Global) Anti-deSitter Space: ??

Nonlinear Stability

Proof of stability depends upon decay of linear fields.

DeSitter: Fast Decay, extend local results to global

Minkowski: Borderline Decay, nonlinearities matter

(Global) Anti-deSitter: No Decay (reflecting boundary)

Conjectured Instability

Reflecting boundary prevents dissipation, so nonlinear excitations may become large. [M. Dafermos and G. Holzegel]

If the Einstein equation is sufficiently ergogodic, generic perturbations will eventually explore black hole configurations. [M.T. Anderson] Part I: Spherical Symmetry

Instability of AdS

First evidence for instability with a scalar field.[P. Bizon and A. Rostworowski, arXiv:1104.3702]

Instability of AdS

First evidence for instability with a scalar field.[P. Bizon and A. Rostworowski, arXiv:1104.3702]

Stability of AdS

But not all initial data form black holes! (checked numerically for $t \gg 1/E$.)[V. Balasubramanian, A. Buchel, S.R.Green, S. L. Liebling, and L. Lehner; M. Maliborski and A. Rostworowski.]

We call the (open) set of non-collapsing initial data the "islands of stability".

Stability of AdS

Why do some data collapse and not others?

Can we characterise collapsing vs non-collapsing data? I.e. determine if initial data will collapse without doing the full evolution.

Stability of AdS

Why do some data collapse and not others?

Can we characterise collapsing vs non-collapsing data? I.e. determine if initial data will collapse without doing the full evolution.

Vague partial answer: Non-collapsing data resemble normal modes.

 $\varphi = \epsilon \varphi^{(1)} + \epsilon^3 \varphi^{(3)} + \dots, \qquad g = g^{(0)}_{AdS} + \epsilon^2 g^{(2)} + \dots$

$$\varphi = \epsilon \varphi^{(1)} + \epsilon^3 \varphi^{(3)} + \dots , \qquad g = g^{(0)}_{AdS} + \epsilon^2 g^{(2)} + \dots$$

$$\varphi^{(1)}(t,x) = \sum a_k \cos(\omega_k t) P_k(x) \qquad \omega_n = \omega_0 + 2n$$

Choice of a_k determines next order.

 $\varphi = \epsilon \varphi^{(1)} + \epsilon^3 \varphi^{(3)} + \dots, \qquad g = g_{AdS}^{(0)} + \epsilon^2 g^{(2)} + \dots$ $\varphi^{(1)}(t, x) = \sum a_k \cos(\omega_k t) P_k(x) \qquad \omega_n = \omega_0 + 2n$ Choice of a_k determines next order.

Almost all choices lead to secular terms, and a breakdown of perturbation theory

 $\varphi^{(3)} \sim t \sin(\omega_j t)$

 $t_{\rm pert} \sim 1/\epsilon^2 \sim 1/E.$ $t_{\rm collapse} \sim 1/E$

 $\varphi = \epsilon \varphi^{(1)} + \epsilon^3 \varphi^{(3)} + \dots, \qquad g = g_{AdS}^{(0)} + \epsilon^2 g^{(2)} + \dots$ $\varphi^{(1)}(t, x) = \sum a_k \cos(\omega_k t) P_k(x) \qquad \omega_n = \omega_0 + 2n$ Choice of a_k determines next order.

Almost all choices lead to secular terms, and a breakdown of perturbation theory

 $\varphi^{(3)} \sim t \sin(\omega_j t) \qquad t_{\text{pert}} \sim 1/\epsilon^2 \sim 1/E.$

But secular terms are absent if all but one a_k vanishes. Perturbation theory can continue to all orders.

Oscillons

Can construct a non-perturbative, harmonically oscillating solution: an oscillon.

[M. Maliborski and A. Rostworowski; arXiv:1303.3186]

Oscillons

[G. Fodor, P. Forgacs, and P. Grandclement; arXiv:1503.07746]

Islands of Stability

Oscillons are essentially non-linear normal modes.

Similar solutions exists for complex scalars (boson stars) and gravity (geons). Call these 'oscillators.'

All non-collapsing solutions that were found are 'close' to an oscillator (i.e. single-mode dominated)!

Islands of Stability

What do we mean by 'close'? How big are these islands, and what is their shape?

[Figure from G. Martinon; arXiv:1708.05600]

Oscillators and data near them are stable, yet they are multi-mode data. [Pert. theory has secular terms.]

Secular resonances imply breakdown of perturbation theory, not necessarily collapse!

Oscillators and data near them are stable, yet they are multi-mode data. [Pert. theory has secular terms.]

Secular resonances imply breakdown of perturbation theory, not necessarily collapse!

Need some way to handle resonances.

One approach: resum perturbation theory. [V. Balasubramanian, A. Buchel, S.R.Green, S. L. Liebling, and L. Lehner; B. Craps, O. Evnin, and J. Vanhoof; N. Deppe; F. V. Dimitrakopoulos, B. Freivogel, M. Lippert, J. F. Pedraza, I.-S. Yang] Two Timescale Formalism (TTF)

Introduce time dependence in modes:

$$a_k \to a_k(\epsilon^2 t) = a_k(\tau)$$

At third order, get new set of dynamical equations valid to $t \sim 1/\epsilon^2$: the TTF equations.

The TTF equations have additional conserved quantities and a scaling symmetry:

$$a_k(\tau) \to \epsilon a_k(\tau/\epsilon^2)$$

New Perturbation Theory Assuming late-time validity of TTF, scaling symmetry implies non-cuspy islands.

[F. Dimitrakopoulos, I.S. Yang; arXiv:1507.02684]

What about timescales much longer than $t \sim 1/\epsilon^2$?

Is it possible to chart the islands of stability?

Why are oscillators stable?

Try non-perturbative approach.

Oscillators are extensions of AdS normal modes.

 $\varphi \sim a \cos(\omega_{\rm AdS} t) P(x)$

$$\varphi_{\rm osc} = \sum a_{nk} \cos(n\omega_{\rm osc}t) P_k(x)$$

Oscillators are extensions of AdS normal modes.

 $\varphi \sim a \cos(\omega_{\rm AdS} t) P(x)$

$$\varphi_{\rm osc} = \sum a_{nk} \cos(n\omega_{\rm osc}t) P_k(x)$$

What about normal modes of oscillators?

$$\varphi \sim \varphi_{\rm osc} + e^{i\omega t} \underbrace{\delta \varphi_{\rm osc}(t, x)}_{}$$

freq. $\omega_{\rm osc}$

No resonances since φ_{osc} deforms AdS.

Oscillators are extensions of AdS normal modes.

 $\varphi \sim a \cos(\omega_{\rm AdS} t) P(x)$

$$\varphi_{\rm osc} = \sum a_{nk} \cos(n\omega_{\rm osc}t) P_k(x)$$

What about normal modes of oscillators?

$$\varphi \sim \varphi_{\rm osc} + e^{i\omega t} \underbrace{\delta\varphi_{\rm osc}(t,x)}_{c}$$

freq. $\omega_{\rm osc}$

$$\varphi = \sum a_{n_1 n_2 k} \cos(n_1 \omega_1 t) \cos(n_2 \omega_2 t) P_k(x)$$

A double-oscillator!

Why stop there?

$$\varphi = \sum a_{n_1 \dots n_N k} \cos(n_1 \omega_1 t) \dots \cos(n_N \omega_N t) P_k(x)$$

An infinite-parameter family of non-collapsing solutions!

Might account for apparent stability of singleoscillators. Many, perhaps all, perturbations of singleoscillators will land on a multi-oscillator.

Constructing Multioscillators

In exponential form,

$$\varphi(t,x) = \sum_{k_1...k_N} A_{k_1...k_N}(x) e^{ik_1\omega_1t + \ldots + ik_N\omega_Nt}$$

Constructing Multioscillators

In exponential form,

$$\varphi(t,x) = \sum_{k_1...k_N} A_{k_1...k_N}(x) e^{ik_1\omega_1t + \ldots + ik_N\omega_Nt}$$

Replace with expansion

$$\varphi(t_1,\ldots,t_N,x) = \sum_{k_1\ldots k_N} A_{k_1\ldots k_N}(x) e^{ik_1\omega_1 t_1 + \ldots + ik_N\omega_N t_N}$$

In equations of motion, replace $\partial_t \to \partial_{t_1} + \ldots + \partial_{t_N}$.

Constructing Multioscillators

In exponential form,

$$\varphi(t,x) = \sum_{k_1...k_N} A_{k_1...k_N}(x) e^{ik_1\omega_1t + \ldots + ik_N\omega_Nt}$$

Replace with expansion

$$\varphi(t_1,\ldots,t_N,x) = \sum_{k_1\ldots k_N} A_{k_1\ldots k_N}(x) e^{ik_1\omega_1 t_1 + \ldots + ik_N\omega_N t_N}$$

In equations of motion, replace $\partial_t \to \partial_{t_1} + \ldots + \partial_{t_N}$.

Solve N+1 dimensional PDE, where time coordinates have periodic boundary conditions.

Boson Star Normal Modes

(Complex scalar field)

 ω_1

Two-Frequency Oscillators (Complex scalar field)

Two-Frequency Oscillators (Complex scalar field)

Change in stability?

No Cusps

(Complex scalar field)

No Cusps

(Complex scalar field)

 a_0

Summary of Results

- Propose the existence of an infinite-parameter family of multi-oscillator solutions near single-oscillators.
- Constructed double-oscillators.
- Two-frequency oscillators contain turning points.
- Phase diagram does not cusp near AdS.

Further Questions

- Are some multi-oscillators linearly unstable? If so, what is their endpoint?
- Are all non-collapsing solutions in the multioscillator family?

Evidence for Multi-oscillator Islands

Nonlinear evolution with moderate energies to moderately long times find either:

- Regular collapse with $t \sim 1/E$.
- Irregular collapse not on this timescale.
- Stable non-collapse with quasi-periodic behaviour.

Part II: Angular Momentum

Adding Angular Momentum

With $J \neq 0$,

- Generic.
- Angular momentum barrier may affect collapse.
- Endpoint of instability is not just Schwarzschild-AdS. (Spoilers: not just Kerr-AdS either.)

There are typically three types of 'stationary' solutions in global AdS:

- 'Bald' black holes.
- (Multi)-oscillators.
- Hairy black holes.

[V. Cardoso O.C. Dias, G.S. Hartnett, G. Horowitz, L. Lehner, D. Marolf, J.E. Santos, B.W.]

With $J \neq 0$:

- What is the typical timescale for collapse?
- What is the final state after gravitational collapse?

With pure gravity, need 3+1 numerical computation!

Making Life Easier

Need to exploit lots of symmetry to make this problem easier.

- Go to 5 dimensions. Set $J \equiv J_1 = J_2$.
- Add a complex doublet scalar field that can carry angular momentum and also respect these symmetries.

Making Life Easier

Ansatz:

$$ds^{2} = \frac{1}{(1-\rho^{2})^{2}} \left\{ -\alpha^{2} \left[1-\rho^{2}(2-\rho^{2})\frac{\beta^{2}}{a} \right] dt^{2} + \frac{4\alpha\beta}{a}\rho \,dtd\rho + \frac{d\rho^{2}}{a(2-\rho^{2})} + \rho^{2}(2-\rho^{2}) \left[\frac{1}{b^{2}} \left(d\psi + \cos^{2}(\frac{\theta}{2})d\phi - \Omega dt \right)^{2} + \frac{b}{4} \left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2} \right) \right] \right\},$$

$$\Pi = (\Pi_{\mathfrak{R}} + i \,\Pi_{\mathfrak{I}}) \begin{bmatrix} e^{i\psi} \sin(\frac{\theta}{2}) \\ e^{i(\psi+\phi)} \cos(\frac{\theta}{2}) \end{bmatrix}$$

Ansatz with $1+1 \{\rho, t\}$ evolution! One limitation: restricted to azimuthal wavenumbers with m = 1.

Stationary Solutions

- 'Bald' black holes: Myers-Perry-AdS
- (Single) Oscillators: Boson Stars
- Hairy black holes (with complex scalar hair).

Collapse Timescale

Collapse Timescale

E

Final State

Final State

Summary of Doublet Model Results

- In our runs, angular momentum delays collapse, but does not change the time scaling.
- Final state for small E and nonzero J is a hairy black hole.

Generic Final State

What is the generic final state of the AdS instability?

- Schwarzschild? Not generic.
- The hairy black hole? No, it's unstable. (Our calculation needed m = 1 symmetry.)
- Some other hairy black hole? No, these are also unstable. [S.R. Green, S. Hollands, A. Ishibashi, R.M. Wald]

Generic Final State

What is the generic final state of the AdS instability?

- Schwarzschild? Not generic.
- The hairy black hole? No, it's unstable. (Our calculation needed m = 1 symmetry.)
- Some other hairy black hole? No, these are also unstable. [S.R. Green, S. Hollands, A. Ishibashi, R.M. Wald]

Our best guess: no stationary endpoint. Perpetual evolution, maybe to ever smaller length scales.

Evolution of Superradiance

Some Speculation

Can the final 'endpoint' be constructed?

- Do multi-oscillating geons exist? [Same arguments of scalar field multi-oscillators apply, so it seems likely.]
- Are there black multi-resonators?
- If so, can they be stable?

Another possibility: evolution continues to ever smaller scales, essentially a violation of cosmic censorship!

Summary

- AdS is unstable to the formation of black holes, but not all initial data leads to collapse.
- Non-collapsing data intimately tied to oscillating solutions and normal modes.
- Space of noncollapsing data is infinite-dimensional and non-vanishing near AdS.
- Typical collapsing data forms horizons on a timescale of $t \sim 1/E$, including data with angular momenta.
- There may be no final endpoint because of superradiance instabilities.

Thank you