Gravitational Collapse of a Massless Scalar Field in a Periodic Box

Yoo, Chulmoon (Nagoya Univ.)

with Vitor Cardoso, Taishi Ikeda, Hirotada Okawa

Introduction

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Grav. Collapse in the Universe

- **OThe Universe is expanding**
- **©**Gravitational collapse in an expanding background
 - E.g., Primordial black hole formation

©Gravitational collapse with periodic boundaries

- Expansion is automatically induced by the integrability condition
- Overall expansion law would be dependent on the dynamics
- Massless scalar field
 - The simplest matter
 - Preliminary practice for gravitational collapse of gravitational waves

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Grav. Collapse in a Box

Calculation domain (octant region)

Dynamics in Strong Gravity Universe@YITP

Contents

OInitial data construction

©Time evolution starting from small initial amplitude

OBlack hole formation and its evolution

OExpansion law $a(t) \propto t^{2/3}$ (matter) or $a(t) \propto t^{1/2}$ (radiation)

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Initial Data Construction

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Setting

OScalar field

 $abla^\mu
abla_\mu \phi = 0$

momentum: $\Pi \coloneqq -n^\mu
abla_\mu \phi$

©Constraint equations

$$R + K^2 - K_{ij}K^{ij} = 16\pi\rho$$

 $D_jK^j_{\ i} - D_iK = 8\pi j_i = -8\pi\Pi\partial_i\phi$

OAssumption1: $K_{ij}^{\text{TL}} = 0$, $D_i K = 0$, $\Pi = 0$

 \Rightarrow make mom. constraint trivial

OAssumption2: conformally flat $dl^2 = e^{4\psi} \delta_{ij} dx^i dx^j$

OHamiltonian constraint

$$\Delta \psi + \delta^{ij} \partial_i \psi \partial_j \psi - \frac{1}{12} K^2 e^{4\psi} = -2\pi \rho e^{4\psi} = -\pi \delta^{ij} \partial_i \phi \partial_j \phi$$

Dynamics in Strong Gravity Universe@YITP

Scalar Field Profile

©Hamiltonian constraint

$$\Delta \psi + \delta^{ij} \partial_i \psi \partial_j \psi - \frac{1}{12} K^2 e^{4\psi} = -\pi \delta^{ij} \partial_i \phi \partial_j \phi$$

Oscalar field profile

$$\boldsymbol{\phi}(\boldsymbol{r}) = A \exp\left[-\frac{r^2}{\sigma^2}\right] W(\boldsymbol{r}; \boldsymbol{r}_{\text{in}}, \boldsymbol{L})$$

amplitude

window function for smoothing the tail of the Gaussian on the boundary

OParameters

 $\sigma = 3/10 L$ where *L*: box size

A = 0.05 - 100 for initial data

A = 0.1 and 10 for evolution

Dynamics in Strong Gravity Universe@YITP

Integrability Cond.

OHamiltonian constraint

$$\Delta \psi + \delta^{ij} \partial_i \psi \partial_j \psi - \frac{1}{12} K^2 e^{4\psi} = -\pi \delta^{ij} \partial_i \phi \partial_j \phi$$

OIntegral with no boundary(periodic)

$$\int dV \left(\partial_{t} \partial^{t} \Psi - \frac{1}{12} K^{2} e^{4\psi} \right) = -\int dV \left((\partial \psi)^{2} + \pi (\partial \phi)^{2} \right)$$
$$\Rightarrow K^{2} = 12 \frac{\int dV \left((\partial \psi)^{2} + \pi (\partial \phi)^{2} \right)}{\int dV e^{4\psi}}$$

integrability cond.

OFINITE value of $-\frac{K}{3} \sim H$:expansion rate
 Expansion is induced by the boundary cond.

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Scale-up Coordinates(1)

ONUMERICAL domain(X, Y, Z: Cartesian coordinates)

0 < X, Y, Z < L

ONew coordinates: (x, y, z)

 $(X, Y, Z) \rightarrow (x, y, z) = (F^{-1}(X), F^{-1}(Y), F^{-1}(Z))$

i.e.,
$$X = F(x) \coloneqq x - \frac{S}{1+S} \frac{L}{\pi} \sin(\frac{\pi}{L}x)$$

compatible with the boundary condition

x = 0 at X = 0 and x = L at X = L

$$\left(\frac{\Delta X}{\Delta x}\right)_{x=L} = \left(1 + 2S\right) \left(\frac{\Delta X}{\Delta x}\right)_{x=0}$$

- The central region is scaled up by the factor 1 + 2S in this coordinates

Dynamics in Strong Gravity Universe@YITP

Scale-up Coordinates(2)

Operation ϕ in the new coordinates

Scale-up coord.

Cartesian coord.

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Numerical Integration

OHamiltonian constraint

$$\Delta \psi + \delta^{ij} \partial_i \psi \partial_j \psi - \frac{1}{12} K^2 e^{4\psi} = -\pi \delta^{ij} \partial_i \phi \partial_j \phi$$

Overview

- Replace the Laplacian by finite differences
- Use iterative method(Successive-Over-Relaxation method)
- Update the value of *K* at each step

Dynamics in Strong Gravity Universe@YITP

Amplitude - $1/(H\sigma)$

©Super-horizon inhomogeneity?

Dynamics in Strong Gravity Universe@YITP

Time Evolution with small initial amplitude

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Simulation Scheme

- **@4th order Runge-Kutta with BSSN**
- **Opynamical slice for lapse(modified 1+log slice)**
- **©Gamma driver for shift**
- **OUni-grid with Cartesian coordinates for small amplitude**

Time Evolution(1)

©Small initial amplitude(A=0.1)

- Diffusion \rightarrow small oscillation : effective radiation fluid

ψ on x-y plane

Dynamics in Strong Gravity Universe@YITP

Time Evolution(2)

OtrK

- Expansion \rightarrow the absolute value gets smaller with time

Dynamics in Strong Gravity Universe@YITP

Expansion Law

©Effective scale factor $a(\tau)$

- Surface area of the cubic box ${\mathcal A}$ on the constant proper time slice

- $a(\tau) \coloneqq \sqrt{\mathcal{A}(\tau)/(24L^2)}$

OThe expansion law approaches to rad. dom. universe

Dynamics in Strong Gravity Universe@YITP

Time Evolution with large initial amplitude

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Simulation Scheme

@4th order Runge-Kutta with BSSN

Opynamical slice for lapse(modified 1+log slice)

©Gamma driver for shift

OScale-up coordinate

©Excision of a black hole interior region

Chulmoon Yoo

Evolution of $oldsymbol{\phi}$

\bigcirc on z = 0 surface

©Constraints are violated near the cusp at the center But, we ignore it because not likely to be causally connected to the outside

Dynamics in Strong Gravity Universe@YITP

Constraint Violation

OMax norm of the violation

©The violation is acceptably small outside the horizon

Dynamics in Strong Gravity Universe@YITP

BH Formation

©Large initial amplitude(A=10)

©The coordinate radius shrinks with time

Dynamics in Strong Gravity Universe@YITP

Horizon Area

OInitially decreasing, and begin to increase

©Contradict the area law...?

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo

Trapping Horizons [Hayward(1994)]

 \bigcirc null expansion $\theta_{\pm} \coloneqq \pm D_i s^i + K_{ij} s^i s^j - K$, where

tetrad n^{μ} , s^{μ} , e^{μ}_{A} \rightarrow null vectors $(n^{\mu} \pm s^{\mu})/\sqrt{2}$ \rightarrow associated null expansion θ_{\pm}

- FOTH(POTH): future(past) outer trapping horizon
 - $heta_+=0$ and $heta_-<0$ for FOTH
 - $heta_+=0$ and $heta_->0$ for POTH
- Theorem[Hayward(1994)]:
 "Area of FOTH(POTH) increases(decreases) with time"

©Only possibility is the transition from POTH to FOTH

The transition has been found in a spherical system
[Harada,Carr(2005)]

Dynamics in Strong Gravity Universe@YITP

$\mathsf{POTH} \to \mathsf{FOTH}$

\odot max. and min. of the null expansion θ_{-} on the horizon

Roughly consistent

Chulmoon Yoo

Scale Factor Evolution

Operation of the scale factor: $\sqrt{\text{area of the boundary}}$

Small amplitude(no BH)

Large amplitude(BH)

©Small amplitude: $a \propto \tau^{1/2}$, large amplitude: $a \propto \tau^{2/3}$

Dynamics in Strong Gravity Universe@YITP

Summary

©Sequence of the initial data is given

©The threshold for BH formation exists

©The asymptotic expansion law depends on the fate of gravitational collapse $a(t) \propto t^{2/3}$ (MD) for BH formation $a(t) \propto t^{1/2}$ (RD) for scalar field diffusion

©Transition from POTH to FOTH is found

Thank you for your attention!

Dynamics in Strong Gravity Universe@YITP

Chulmoon Yoo