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1. Introduction

Successful points in NC theories
Appearance of new physical objects
Description of real physics
Various successful applications
to D-brane dynamics etc.

NC Solitons play important roles
(Integrable!)

Final goal: NC extension of all soliton theories



Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang-Mills eq.
(instantons)
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3 Bogomol’nyi eq.
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KdV eq.  Boussinesq eq.
NLS eq.  Burgers eq. 
sine-Gordon eq. (affine) Toda field eq. …
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Ward’s observation: Almost all 
integrable equations are 

reductions of the ASDYM eqs.
R.Ward, Phil.Trans.Roy.Soc.Lond.A315(’85)451

ASDYM eq.

KP eq.  BCS eq. Ward’s chiral model
KdV eq. Boussinesq eq.

NLS eq. mKdV eq. 
sine-Gordon eq.  Burgers eq. …

(Almost all !?)

Reductions

e.g. [The book of Mason&Woodhouse]



NC Ward’s observation: Almost all 
NC integrable equations are 

reductions of the NC ASDYM eqs.
MH&K.Toda, PLA316(‘03)77[hep-th/0211148]

NC ASDYM eq.

NC KP eq.  NC BCS eq. NC Ward’s chiral model
NC KdV eq. NC Boussinesq eq.

NC NLS eq. NC mKdV eq. 
NC sine-Gordon eq.  NC Burgers eq. …

(Almost all !?)

NC Reductions

Successful

Successful?

Reductions

A general framework is needed



Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture 
NC twistor theory geometrical origin
D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory
Existence of  ``hierarchies’’ various soliton eqs.
Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
Construction of multi-soliton solutions
Theory of tau-functions structure of the 
solution spaces and the symmetry   

(i),(ii) complete understanding of the NC soliton theories



Brief notes on how to get NC equations

NC spaces: ijji ixx θ=],[ ijθ : NC parameter

NC extension is realized by replacing products 
of fields with star-products:
Star-products:

Some examples of NC integrable eqs.
NC KP:
NC Burgers:
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Ordering of non-linear terms and additional terms 
are  determined to preserve integrable-like properties. (We discuss later.)
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Plan of this talk

1. Introduction
2. Review of soliton theories
3. NC Sato’s theory
4. Conservation Laws
5. Exact Solutions and Ward’s conjecture
6. Conclusion and Discussion



2. Review of Soliton Theories
KdV equation : describe shallow water waves

water

24k
22k

k/1Experiment by 
Scott-Russel,

1834

u

x
water tank

solitary wave = soliton
This configuration satisfies

)4(cosh2 322 tkkxku −= −

06 =′+′′′+ uuuu& : KdV eq. [Korteweg-de Vries,
1895]

This is a typical integrable equation.



Let’s solve it now !
Hirota’s method  [PRL27(1971)1192]

06 =′+′′′+ uuuu& : naively hard to solve
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Hirota’s bilinear relation : more complicated ?
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: The solitary wave !
(1-soliton solution)



2-soliton solution
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Scattering process

= A determinant 
of Wronski matrix
(general property
of soliton sols.)
``tau-functions’’

The shape and velocity
is preserved ! (stable) 

The positions are shifted ! (Phase shift)



There are many other soliton eqs.
with (similar) interesting properties

KP equation (2-dim. KdV equation)
: describe 2-dim shallow water waves

Sato’s theorem:  [M.Sato & Y.Sato, 1981]

The solution space of KP eq. is an infinite-dim.
Grassmann mfd. (determined by tau-fcns.)

Many other soliton eqs. are obtained from KP.
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[See e.g. The book of Miwa-Jimbo-Date (Cambridge UP, 2000)]



3. NC Sato’s Theory
Sato’s Theory : one of the most beautiful 
theory of solitons

Based on the exsitence of 
hierarchies and tau-functions

Sato’s theory reveals essential aspects of 
solitons:

Construction of exact solutions
Structure of solution spaces
Infinite conserved quantities
Hidden infinite-dim. symmetry

Let’s discuss NC extension of Sato’s theory



Derivation of soliton equations
Prepare a Lax operator which is a pseudo-
differential operator

Introduce a differential operator

Define NC (KP) hierarchy:
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Each coefficient yields
a differential equation.



Negative powers of differential operators
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negative power of

differential operator
(well-defined !)
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Closer look at NC KP hierarchy
For m=2
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MH&K.Toda, [hep-th/0309265]
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and other NC equations
(NC KP hierarchy equations)



(KP hierarchy) (various hierarchies.)
reductions

(Ex.) KdV hierarchy
Reduction condition

gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq.:
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: 2-reduction

: dimensional reduction in      directionsNx2

KP :

KdV :
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l-reduction of NC KP hierarchy yields 
wide class of other NC hierarchies

No-reduction NC KP 
2-reduction NC KdV
3-reduction NC Boussinesq
4-reduction NC Coupled KdV …
5-reduction …
3-reduction of BKP NC Sawada-Kotera
2-reduction of mKP NC mKdV
Special 1-reduction of mKP NC Burgers
…

),,(),,( 321 xxxtyx =
),(),( 31 xxtx =
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Noncommutativity should be introduced into space-time coords



4. Conservation Laws
Conservation laws:

Conservation laws for the hierarchies
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Then is a conserved quantity.

σ : Conserved density

I have succeeded in the evaluation explicitly !

Noncommutativity should be introduced
in space-time directions only. 
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ordinary conservation laws !
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Infinite conserved densities for 
the NC soliton eqs. (n=1,2,…, ∞)
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MH, JMP46 (2005) 
[hep-th/0311206]
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This suggests infinite-dimensional
symmetries would be hidden. 



We can calculate the explicit forms 
of conserved densities for the wide 

class of NC soliton equations.
Space-Space noncommutativity: 
NC deformation is slight:
involutive (integrable in Liouville’s sense)

Space-time noncommutativity
NC deformation is drastical:

Example: NC KP and KdV equations
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5. Exact Solutions and Ward’s conjecture

We have found exact N-soliton solutions 
for the wide class of NC hierarchies.
1-soliton solutions are all the same as 
commutative ones because of

Multi-soliton solutions behave in almost 
the same way as commutative ones 
except for phase shifts.
Noncommutativity affects the phase shifts
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Exact multi-soliton solutions of 
the NC soliton eqs. 
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The exact solutions are actually N-soliton solutions !
Noncommutativity might affect the phase shift by 

solves the NC Lax hierarchy !
quasi-determinant
of Wronski matrix

Etingof-Gelfand-Retakh,
[q-alg/9701008]
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NC Burgers hierarchy
MH&K.Toda,JPA36(‘03)11981[hep-th/0301213]

NC (1+1)-dim. Burgers equation: )],([ θixt =
uuuu ′∗+′′= 2& : Non-linear &
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ττ ′′=& : Linear & first order diff. eq. w.r.t. time

(Integrable !)

(NC) Diffusion equation:

Infinite order diff. eq. w.r.t. time ! (Integrable?)
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6. Conclusion and Discussion

Confirmation of NC Ward’s conjecture 
NC twistor theory geometrical origin   
D-brane interpretations applications to physics

Completion of NC Sato’s theory
Existence  of ``hierarchies’’
Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
Construction of multi-soliton solutions
Theory of  tau-functions description of the 
symmetry and the soliton solutions

Going well

Solved!

Successful

Successful

Work in progress

Work in progress [NC book of Mason&Woodhouse ?]

Talk at 13th NBMPS 
in Duham on Nov.5
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