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1. Introduction

Successful points-in-NC theories
<+ Appearance of new physical objects
<*Description of real physics
<Various successful applications

to D-brane dynamics etc.

(Integrable!)

Final goal: NC extension of all soliton theories



Integrable equations In diverse dimensions

4 Anti-Self-Dual Yang-Mills eq. NC extension
(instantons)  F, =-F,,

£ Bogomol’'nyi eq. NC extension
(monopoles)

2 KP eq. BCS eq. NC extension

(+1) DS eq. ...

1 KdV eq. Boussinesq eq. NC extension

(+1) |NLS eq. Burgers eq.

T sine-Gordon eq. (affine) Toda field eq. ...

Dim. of space



Ward’s observation: Almost all
Integrable equations are
reductions of the ASDYM egs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(*85)451

ASDYM eq.

| Reductions

KP eq. BCSeqg. Ward’s chiral model
KdV eq. Boussinesq eq.
NLSeg. mKdV eq.
sine-Gordon eq. Burgers eq. ...
(Almost all 1?)

e.g. [The book of Mason&Woodhouse]




NC Ward’s observation: Almost all
NC integrable equations are
reductions of the NC ASDYM egs.

MH&K.Toda, PLA316(“03)77[hep-th/0211148]

NC ASDYM eq.

| NC Reductions  Reductions

NC KP eg. NC BCS eq. NC Ward’s chiral model
NC KdV eq. NC Boussinesq eq.

NC NLS eq. NC mKdV eq.
NC sine-Gordon eq. NC Burgers eq. ... |

(Almost all 1?) @

A general framework is needed



Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture
<+NC twistor theory - geometrical origin
<+D-brane interpretations - applications to physics

(i) Completion of NC Sato’s theory
<+Existence of " hierarchies” - various soliton egs.
< Existence of infinite conserved quantities
=2 Infinite-dim. hidden symmetry
<+»Construction of multi-soliton solutions

< Theory of tau-functions -2 structure of the
solution spaces and the symmetry

(1),() = complete understanding of the NC soliton theories



Brief notes on how to get NC equations
NC spaces: X', x']=i6" 6" : NC parameter
NC extension Is realized by replacing products
of fields with : T()g(x) = 1(x)*g(x)
f()*g(x) = f(x) expe H‘jéiéj]g(x)
Star products realize’ noncommutative” spaces:
[x', x'], =x'#x) —x'*x' =ig"

Some examples of NC integrable egs.

NC KP: = U+ (U rusu) + 200, 4 [0,0/u, ]

[X,y]=160
{[t,x]:ié’

NC Burgers: u,=u,+2u*u,  [tx]=id

Ordering of non-linear terms and additional terms
are determined to preserve integrable-like properties. (We discuss later.)
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Plan of this talk

. Introduction

. Review of soliton theories

. NC Sato’s theory

. Conservation Laws

. Exact Solutions and Ward'’s conjecture
. Conclusion and Discussion



2. Review of Soliton Theories

< KdV equation : describe shallow water waves

Experniment by
Scott-Russel,
1834

_

water
water tank

This configuration satisfies

:
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solitary wave = soliton

u = 2k* cosh ~* (kx — 4k °t)

U+u”+6uu=0 :Kagv eq. [Korteweg-de Vries,

This is a typical integrable equation.

1895]



| et’s solve it now |

Hirota’s method [PRL27(1971)1192]

U+u”+6u’'u=0 :naively hard to solve

u=20’logr

it -7t + 3"t -4t + " =0

Hirota’s bilinear relation : more complicated ?

A solution: 7 =1+e2®  5_ gk3

— U= 2k?*cosh ~(kx — 4k>t) : The solitary wave !
(1-soliton solution)



% 2-soliton solution

r =1+ Ae®" + Ae®” + BA Ae* "% — A determinant
2 of Wronski matrix
kl \ kz j

(general property
K, + K, of soliton sols.)

" “tau-functions”

0. =k x—4k’t, B :[

Scattering process

The shape and velocity
IS preserved ! (stable)
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The positions are shifted ! (Phase shift)




There are many other soliton egs.
with (similar) interesting properties
<+ KP equation (2-dim. KdV equation)
. describe 2-dim shallow water waves

Ug + Uy, +6uu+0,u, =0 KP “a KdV
=

ou >
U, =— o= dx etc.
OX X j

Sato’s theorem: [M.Sato & Y.Sato, 1981]
The solution space of KP eq. is an infinite-dim.
Grassmann mfd. (determined by tau-fcns.)

Many other soliton egs. are obtained from KP.
[See e.g. The book of Miwa-Jimbo-Date (Cambridge UP, 2000)]



3. NC Sato’s Theory

Sato’s Theory : one of the most beautiful
theory of solitons

Based on the exsitence of
hierarchies and tau-functions

Sato’s theory reveals essential aspects of
solitons:

Construction of exact solutions

Structure of solution spaces

Infinite conserved quantities

Hidden infinite-dim. symmetry

Let’s discuss NC extension of Sato’s theory



Derivation of soliton equations

<*Prepare a Lax operator which is a pseudo-
differential operator

L:=0, +U,0;" +U,0;° +U,0," +--- u, =u, (x,x5x%-)
® I I T
“+Introduce a differential operator o commutativity
B, =(L*---xL),, is introduced here:
| m times | [x', xi]=i0]
< Define NC (KP) hierarchy:
oL
—=[B,,, L], Here all products are
OX \ star product:
/ N
0, U,0," + f U)o+
amu3a;2+ fm3(u)a;2+ . .
1A R Each coefficient yields

a differential equation.



Negative powers of differential operators

00 n _ .
oo f :=Z( _j(a;f)agl

i—o\ J

T
nn-1)(n=2)---(n=U-D) . hinomial coefficient
10-D(1-2)--1 which can be extended

8o f =10°+3f0%2+3f0% + " 0 negati_ven
) i ' ' —> negative power of
Oyof="f0,+21f0, + 1" : :
differential operator
a—lo .I: _¥ f@‘l— f8—2 + f,8_3 . (WE”—dEmed I)
0lof=10°"-210>+3f0"—--.

Star product: F()*g(x) = f(x) exp(igﬁ”é-* | jg(x)

which makes theories noncommutative’:
[x', x1], = x"#+x! —=x'xx' =ig"



Closer look at NC KP hierarchy

For m=2
0) Ol =2u;+U;
0.°) 0,u,=2ul+ul+2u,*u,+2[u,,u,l,

6;3) 0,U, =2Ug +Uy +4u,*u, —2U, *U, + 2[u,,u,],

Infinite Kind of fields are represented au
in terms of one kind of field U, =U P
MH&K.Toda, [hep-th/0309265] 1 [ gy
For m=3 07 = o
87") BRERU =705 % SUSE Sl 13U ) Eakipat U, [ U etc.
1 3 3 (2+1)-dim.

1 3
Uu==u, +—(U, *u+u=*u)+—0.u, +—[u,o;u.l.
t 4 XXX 4( X x) 4 X yy 4[ X yy]

NC KP equation

and other NC equations ~ u=u(x",x*,x*,---)

(NC KP hierarchy equations) :( ¢y f[



reductions

(KP hierarchy) - (various hierarchies.)

< (Ex.) KdV hierarchy
Reduction condition
L* =B,(=:0; +u) : 2-reduction
gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq.:

1 3
u =—u,, +—(U, *u+us*u,)
4 4

Note iu =0 : dimensional reduction in X,y directions
2N
Kp o u(xh x5 x3, x5 X0,
| X - (2+1)-dim.
Kdv: u(x', x3, x3,..) |

X,
X : (1+1)-dim.



I-reduction of NC KP hierarchy yields
wide class of other NC hierarchies

< No-reduction > NCKP (X,y,1) = (X", X%, x°)
< 2-reduction => NC KdV (x,1) = (X}, x°)
<3-reduction = NC Boussinesq  (x,t) =(x", x°)
< 4-reduction - NC Coupled KdV
<+5-reduction - ...

< 3-reduction of BKP - NC Sawada-Kotera
< 2-reduction of mKP - NC mKdV

< Special 1-reduction of mKP - NC Burgers

\/
0‘0

" Noncommutativity should be introduced into space-time coords



4. Conservation Laws

Conservation laws: 06,0=0,J" o
time™ "“space

Then Q:=|dxo is a conserved guantity.

space

2 0,Q=| dx0,0 = |satm dS;J' =0

space inf inity
Conservation laws for the hierarchies
n Ij cany
o,res,L" =0,J+6°0,&,

time ” space’
| have succeeded in the evaluation explicitly !

res_ L": coefficient Noncommutativity should be introduced

oféy" in L In space-time directions only. -

—
Il
>

0; should be space or time derivative
—



conserved densities for
the NC soliton egs.

m-1 Kk

o,=res,L"+6™)» ( j (05 'res_,, L") 0 (o;res, L™)
k=0 I=

t=x" res.L": coefficient of ) in L

QO : Strachan’s product (commutative and non-associative)

f(x)<>g(x)—f(x)[2 = l(l 0" j Jg(x)

)

MH, JMP46 (2005)

[hep-th/0311206] This suggests infinite-dimensional

symmetries would be hidden.




We can calculate the explicit forms
of conserved densities for the wide
class of NC soliton equations.

<»Space-Space noncommutativity:
NC deformation is slight: o, =res_L"
Involutive (integrable In Liouville’s sense)
<» Space-time noncommutativity

NC deformation is drastical:
<+Example: NC KP and KdV equations ([t,x]=16)
o=res_ L' —360((res,L")0u; +(res_,L")0u)
meaningful ?



5. Exact Solutions and Ward’s conjecture

We have found-exact-N-soliton-solutions
for the wide class of NC hierarchies.

1-soliton solutions are all the same as
commutative ones because of

f(x=vt)*g(x—vt)= f(x—-vt)g(x—vt)

Multi-soliton solutions behave in almost
the same way as commutative ones
except for phase shifts.

Noncommutativity affects the phase shifts



Exact multi-soliton solutions of
the NC soliton egs.

L=do d" solves the NC Lax hierarchy !

- quasi-determinant
O fi=W(Yy Yy, T) N+LN+1  of Wronski matrix

Vi =€xp o (X, a;) +a; exp ¢ (X, 5;) Etingof-Gelfand-Retakh
E(X, @) = X, + X,&° + Xy +---  [4-2lg/9701008]

The exact solutions are actually N-soliton solutions !
Noncommutativity might affect the phase shift by 6'w.k

~7) expi(at —k;x) *expi(w;t -k, x) [MH, work in progress]

= exp(-i0’ wk;)expi((@, + @;)t - (k; +k;)x) Exactly solvable!




NC Burgers hierarchy

MH&K . Toda,JPA36(*03)11981[hep-th/0301213]

NC (1+1)-dim. Burgers equation: ([t,x]=i6)

U=u"+2u*uU" :Non-linear &
Infinite order diff. eq. w.r.t. time ! (Integrable?)

NC Cole-Hopf transformation

u=¢‘'*x7' (—22> 9 log 7)
(NC) lefu3|on equation:
T=7" :Linear & first order diff. eg. w.r.t. time

(Integrable I)

3
o aklttkx

A solution: 7= 1+Zek' 5 gTHIX —1+Z:e2
Deformed!



6. Conclusion and Discussion

<Confirmation of NC Ward’s conjecture @

+NC twistor theory - geometrical origin Takat 13" NBMPS

in Duham on Nov.5

<+D-brane interpretations - applications to physics

Work in progress > -> [NC book of Mason&Woodhouse ?]

<»Completion of NC Sato’s theory

<Existence of ~ hierarchies” =

<Existence of infinite conserved quantities @
- Infinite-dim. hidden symmetry

< Construction of multi-soliton solutions

<+ Theory of tau-functions -> description of the

symmetry and the soliton solutions @@
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