Noncommutative Solitons and Integrable Systems

Masashi HAMANAKA

Nagoya University, Dept. of Math. (visiting Oxford for one year)

EMPG Seminar at Heiriot-Watt on Oct 27th

Based on

- * MH, JMP46 (2005) 052701 [hep-th/0311206]
- MH, PLB625 (2005) 324 [hep-th/0507112]
- cf. MH, ``NC solitons and integrable systems"
 Proc. of NCGP2004, [hep-th/0504001]

1. Introduction Successful points in NC theories

- Appearance of new physical objects
- Description of real physics
- Various successful applications to D-brane dynamics etc.

NC Solitons play important roles (Integrable!)

Final goal: NC extension of all soliton theories

Integrable equations in diverse dimensions

4	Anti-Self-Dual Yang-Mills eq.	NC extension
	(instantons) $F_{\mu\nu} = -\tilde{F}_{\mu\nu}$	(Successful)
3	Bogomol'nyi eq.	NC extension
	(monopoles)	(Successful)
2	KP eq. BCS eq.	NC extension
(+1)	DS eq	(This talk)
1	KdV eq. Boussinesq eq.	NC extension
(+1)	NLS eq. Burgers eq.	(This talk)
	sine-Gordon eq. (affine) Toda field eq	

Dim. of space

Ward's observation: Almost all integrable equations are reductions of the ASDYM eqs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(85)451

ASDYM eq.

Reductions

KP eq. BCS eq. Ward's chiral model

KdV eq. Boussinesq eq.

NLS eq. Toda field eq.

sine-Gordon eq. Burgers eq. ...

(Almost all !?)

e.g. [The book of Mason&Woodhouse]

NC Ward's observation: Almost all NC integrable equations are reductions of the NC ASDYM eqs.

MH&K.Toda, PLA316(03)77[hep-th/0211148]

NC ASDYM eq.

Successful

NC Reductions

Reductions

NC KP eq. NC BCS eq. NC Ward's chiral model

NC KdV eq. NC Boussinesq eq.

NC NLS eq. NC Toda field eq.

NC sine-Gordon eq. NC Burgers eq. ... \

(Almost all !?)

Successful!!!

Now it is time to study from more comprehensive framework.

Program of NC extension of soliton theories

- (i) Confirmation of NC Ward's conjecture
 - ♦NC twistor theory → geometrical origin
 - ❖D-brane interpretations → applications to physics
- (ii) Completion of NC Sato's theory
 - ♦ Existence of ``hierarchies" → various soliton eqs.
 - Existence of infinite conserved quantities
 - → infinite-dim. hidden symmetry
 - Construction of multi-soliton solutions
 - ❖Theory of tau-functions → structure of the solution spaces and the symmetry
 - (i),(ii) → complete understanding of the NC soliton theories

Plan of this talk

- 1. Introduction
- 2. Review of soliton theories
- 3. NC Sato's theory
- 4. Conservation Laws
- 5. Exact Solutions and Ward's conjecture
- 6. Conclusion and Discussion

2. Review of Soliton Theories

KdV equation : describe shallow water waves

This configuration satisfies

solitary wave = soliton

$$u = 2k^2 \cosh^{-2}(kx - 4k^3t)$$

$$\dot{u} + u''' + 6u'u = 0$$
: KdV eq. [Korteweg-de Vries, 1895]

This is a typical integrable equation.

Let's solve it now!

Hirota's method [PRL27(1971)1192]

$$\dot{u} + u''' + 6u'u = 0$$
 : naively hard to solve

$$u = 2\partial_x^2 \log \tau$$

$$\tau \dot{\tau}' - \tau' \dot{\tau} + 3\tau'' \tau'' - 4\tau' \tau''' + \tau \tau'''' = 0$$

Hirota s bilinear relation: more complicated?

A solution:
$$\tau = 1 + e^{2(kx - \omega t)}$$
, $\omega = 4k^3$

$$\rightarrow u = 2k^2 \cosh^{-2}(kx - 4k^3t)$$
: The solitary wave! (1-soliton solution)

2-soliton solution

$$\tau = 1 + A_1 e^{2\theta_1} + A_2 e^{2\theta_2} + BA_1 A_2 e^{2(\theta_1 + \theta_2)}$$

$$\theta_i = k_i x - 4k_i^3 t, \quad B = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

Scattering process

A determinant
 of Wronski matrix
 (general property
 of soliton sols.)
 `tau-functions"

The positions are shifted! (Phase shift)

There are many other soliton eqs. with (similar) interesting properties

- KP equation (2-dim. KdV equation)
 - : describe 2-dim shallow water waves

$$u_{t} + u_{xxx} + 6u_{x}u + \partial_{x}^{-1}u_{yy} = 0 \quad \text{KP} \quad \xrightarrow{\partial_{y} = 0} \quad \text{KdV}$$

$$u_{x} \coloneqq \frac{\partial u}{\partial x} \qquad \partial_{x}^{-1} \coloneqq \int_{x}^{x} dx' \qquad \text{etc.}$$

Sato's theorem: [M.Sato & Y.Sato, 1981]

The solution space of KP eq. is an infinite-dim.

Grassmann mfd. (determined by tau-fcns.)

Many other soliton eqs. are obtained from KP.

[See e.g. The book of Miwa-Jimbo-Date (Cambridge UP, 2000)]

3. NC Sato's Theory

- Sato's Theory : one of the most beautiful theory of solitons
 - Based on the exsitence of hierarchies and tau-functions
- Sato's theory reveals essential aspects of solitons:
 - Construction of exact solutions
 - Structure of solution spaces
 - Infinite conserved quantities
 - Hidden infinite-dim. symmetry

Let's discuss NC extension of Sato's theory

Derivation of soliton equations

Prepare a Lax operator which is a pseudodifferential operator

$$L := \partial_x + u_2 \partial_x^{-1} + u_3 \partial_x^{-2} + u_4 \partial_x^{-3} + \cdots$$

$$u_k = u_k(x^1, x^2, x^3, \cdots)$$

Introduce a differential operator

$$B_m := (L * \cdots * L)_{\geq 0}$$
 $m \ times$

Noncommutativity is introduced here:

$$[x^i, x^j] = i\theta^{ij}$$

❖ Define NC (KP) hierarchy:

$$\frac{\partial L}{\partial x^m} = [B_m, L]_*$$

Here all products are star product:

$$\begin{array}{lll}
\partial_{m}u_{2}\partial_{x}^{-1} + & f_{m2}(u)\partial_{x}^{-1} + \\
\partial_{m}u_{3}\partial_{x}^{-2} + & f_{m3}(u)\partial_{x}^{-2} + \\
\partial_{m}u_{4}\partial_{x}^{-3} + \cdots & f_{m4}(u)\partial_{x}^{-3} + \cdots
\end{array}$$

Each coefficient yields a differential equation.

Negative powers of differential operators

$$\partial_x^n \circ f := \sum_{j=0}^{\infty} \binom{n}{j} (\partial_x^j f) \partial_x^{n-j}$$

$$\frac{n(n-1)(n-2)\cdots(n-(j-1))}{j(j-1)(j-2)\cdots 1}$$

$$\partial_x^3 \circ f = f\partial_x^3 + 3f\partial_x^2 + 3f''\partial_x^1 + f'''$$

$$\partial_x^2 \circ f = f\partial_x^2 + 2f\partial_x + f''$$

$$\partial_x^{-1} \circ f = f \partial_x^{-1} - f \partial_x^{-2} + f'' \partial_x^{-3} - \cdots$$
$$\partial_x^{-2} \circ f = f \partial_x^{-2} - 2 f \partial_x^{-3} + 3 f'' \partial_x^{-4} - \cdots$$

: binomial coefficient which can be extended to negative n

negative power of differential operator (well-defined!)

Star product:

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2}\theta^{ij}\overleftarrow{\partial}_i\overrightarrow{\partial}_j\right)g(x)$$

which makes theories ``noncommutative":

$$[x^{i}, x^{j}]_{*} := x^{i} * x^{j} - x^{j} * x^{i} = i\theta^{ij}$$

Closer look at NC KP hierarchy

For m=2

$$\partial_x^{-1}) \qquad \partial_2 u_2 = 2u_3' + u_2''$$

$$\partial_x^{-2}$$
) $\partial_2 u_3 = 2u_4' + u_3'' + 2u_2 * u_2' + 2[u_2, u_3]_*$

$$\partial_x^{-3}) \quad \partial_2 u_4 = \underline{2u_5'} + u_4'' + 4u_3 * u_2' - 2u_2 * u_2'' + 2[u_2, u_4]_*$$

•

Infinite kind of fields are represented in terms of one kind of field $u_2 \equiv u$ MH&K.Toda, [hep-th/0309265]

$$u_x := \frac{\partial u}{\partial x}$$
$$\partial_x^{-1} := \int_x^x dx'$$

For m=3

$$\partial_x^{-1}$$
) $\partial_3 u_2 = u_2''' + 3u_3'' + 3u_4'' + 3u_2' * u_2 + 3u_2 * u_2'$

etc.

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x}) + \frac{3}{4}\partial_{x}^{-1}u_{yy} + \frac{3}{4}[u, \partial_{x}^{-1}u_{yy}]_{*}$$
 (2+1)-dim.
NC KP equation

and other NC equations $u = u(x^1, x^2, x^3, \cdots)$ (NC KP hierarchy equations) $\begin{array}{c} & \downarrow & \downarrow \\ & \chi & v & t \end{array}$

(KP hierarchy) → (various hierarchies.)

(Ex.) KdV hierarchy

Reduction condition

$$L^2 = B_2 (=: \partial_x^2 + u)$$
 : 2-reduction

gives rise to NC KdV hierarchy

which includes (1+1)-dim. NC KdV eq.:

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x})$$
Note $\frac{\partial u}{\partial x_{2N}} = 0$: dimensional reduction in x_{2N} directions

KP:
$$u(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}, ...)$$

 $x y t$
KdV: $u(x^{1}, x^{3}, x^{5}, ...)$
 $x t$
: (2+1)-dim.
: (1+1)-dim.

/-reduction of NC KP hierarchy yields wide class of other NC hierarchies

♦ No-reduction → NC KP
$$(x, y, t) = (x^1, x^2, x^3)$$

♦ 2-reduction → NC KdV
$$(x,t) = (x^1, x^3)$$

♦ 3-reduction → NC Boussinesq
$$(x,t) = (x^1, x^2)$$

- ❖ 4-reduction → NC Coupled KdV ...
- ❖ 5-reduction →
- ❖ 3-reduction of BKP → NC Sawada-Kotera
- ❖ 2-reduction of mKP → NC mKdV
- ♦ Special 1-reduction of mKP → NC Burgers

Noncommutativity should be introduced into space-time coords

4. Conservation Laws

$$\therefore \partial_t Q = \int_{space} dx \partial_t \sigma = \int_{spatial \atop inf \ inity} dS_i J^i = 0$$

Conservation laws for the hierarchies

$$\lim_{n \to \infty} \frac{\partial_{m} res_{-1} L^{n} = \partial_{x} J + \theta^{ij} \partial_{j} \Xi_{i}}{\operatorname{space}}$$

I have succeeded in the evaluation explicitly!

 $res_{-r}L^n$: coefficient of ∂_x^{-r} in L^n

Noncommutativity should be introduced in space-time directions only. \rightarrow

 $t \equiv x^m$

 ∂_i should be space or time derivative → ordinary conservation laws!

Infinite conserved densities for the NC soliton eqs. (n=1,2,...,

$$\sigma_{n} = res_{-1}L^{n} + \theta^{im} \sum_{k=0}^{m-1} \sum_{l=0}^{k} {k \choose l} (\partial_{x}^{k-l} res_{-(l+1)} L^{n}) \Diamond (\partial_{i} res_{k} L^{m})$$

$$t \equiv x^m$$
 $res_r L^n$: coefficient of ∂_x^r in L^n

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) := f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j \right)^{2s} \right) g(x)$$

MH, JMP46 (2005) [hep-th/0311206]

This suggests infinite-dimensional symmetries would be hidden.

We can calculate the explicit forms of conserved densities for the wide class of NC soliton equations.

- *Space-Space noncommutativity:

 NC deformation is slight: $\sigma_n = res_{-1}L^n$ involutive (integrable in Liouville's sense)
- Space-time noncommutativity
 NC deformation is drastical:
 - **Example:** NC KP and KdV equations $([t,x]=i\theta)$ $\sigma_n = res_{-1}L^n 3\theta((res_{-1}L^n) \diamond u_3' + (res_{-2}L^n) \diamond u_2')$ meaningful?

5. Exact Solutions and Ward's conjecture

- We have found exact N-soliton solutions for the wide class of NC hierarchies.
- 1-soliton solutions are all the same as commutative ones because of

$$f(x-vt)*g(x-vt) = f(x-vt)g(x-vt)$$

- Multi-soliton solutions behave in almost the same way as commutative ones except for phase shifts.
- Noncommutativity affects the phase shifts

Exact multi-soliton solutions of the NC soliton eqs.

$$L = \Phi \partial_x \Phi^{-1}$$
 solves the NC Lax hierarchy!
$$\Phi f \coloneqq \left| W(y_1, ..., y_N, f) \right|_{N+1, N+1}$$
 quasi-determinant of Wronski matrix
$$y_i = \exp \xi(x, \alpha_i) + a_i \exp \xi(x, \beta_i)$$
 Etingof-Gelfand-Retakh
$$\xi(x, \alpha) = x_1 \alpha + x_2 \alpha^2 + x_3 \alpha^3 + \cdots$$
 [q-alg/9701008]

The exact solutions are actually N-soliton solutions! Noncommutativity might affect the phase shift by $\theta^{ij}\omega_{i}k$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_j t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_j t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_j x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i x) * \exp i(\omega_i t - k_i x)$$

$$(x) \exp i(\omega_i t - k_i$$

Exactly solvable!

Quasi-determinants

Defined inductively as follows

$$|X|_{ij} = x_{ij} - \sum_{i' \ j'} x_{ii'} (|X^{ij}|_{i'j'})^{-1} x_{j'j}$$

[For a review, see Gelfand et al., math.QA/0208146]

$$n = 1: |X|_{ii} = x_{ij}$$

$$n = 2: |X|_{11} = x_{11} - x_{12} \cdot x_{22}^{-1} \cdot x_{21}, |X|_{12} = x_{12} - x_{11} \cdot x_{21}^{-1} \cdot x_{22},$$
$$|X|_{21} = x_{21} - x_{22} \cdot x_{12}^{-1} \cdot x_{11}, |X|_{22} = x_{22} - x_{21} \cdot x_{11}^{-1} \cdot x_{12},$$

$$n = 3: |X|_{11} = x_{11} - x_{12} \cdot (x_{22} - x_{23} \cdot x_{33}^{-1} \cdot x_{32})^{-1} \cdot x_{21} - x_{13} \cdot (x_{32} - x_{33} \cdot x_{23}^{-1} \cdot x_{22})^{-1} \cdot x_{21} - x_{12} \cdot (x_{23} - x_{22} \cdot x_{32}^{-1} \cdot x_{33})^{-1} \cdot x_{31} - x_{13} \cdot (x_{33} - x_{32} \cdot x_{22}^{-1} \cdot x_{23})^{-1} \cdot x_{31}$$

Wronski matrix:
$$W(f_1, f_2, \dots, f_m) = \begin{bmatrix} f_1 & f_2 & \cdots & f_m \\ \partial_x f_1 & \partial_x f_2 & \cdots & \partial_x f_m \\ \vdots & \vdots & \ddots & \vdots \\ \partial_x^{m-1} f_1 & \partial_x^{m-1} f_2 & \cdots & \partial_x^{m-1} f_m \end{bmatrix}$$

NC Ward's conjecture (NC NLS eq.)

Legare, * Reduced ASDYM eq.: $x^{\mu} \rightarrow (t, x)$ [hep-th/0012077]

$$(i) \quad B' = 0$$

(ii)
$$C' - \dot{A} + [A, C]_* = 0$$

(iii)
$$A' - \dot{B} + [C, B]_* = 0$$

A, B, C: 2 times 2 matrices (gauge fields)

Further Reduction:
$$A = \begin{pmatrix} 0 & q \\ -\overline{q} & 0 \end{pmatrix}, B = \frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = i \begin{pmatrix} q * \overline{q} & \overline{q}' \\ q' & -\overline{q} * q \end{pmatrix}$$

$$(ii) \Rightarrow \begin{pmatrix} 0 & i\dot{q} - q'' - 2q * \overline{q} * q \\ i\dot{\overline{q}} + \overline{q}'' - 2\overline{q} * q * \overline{q} & 0 \end{pmatrix} = 0$$
 NOT traceless

$$i\dot{q} = q'' + 2q * \overline{q} * q$$
 : NC NLS eq. !!!

 $A, B, C \in u(2) \xrightarrow{\theta \to 0} su(2)$ [MH, PLB625,324] U(1) part is necessary!

NC Ward's conjecture (NC Burgers eq.)

Reduced ASDYM eq.: $x^{\mu} \rightarrow (t, x)$ MH & K.Toda, JPA36 [hep-th/0301213]

(i)
$$\dot{A} + [B, A]_* = 0$$

(ii)
$$\dot{C} - B' + [B, C]_* = 0$$
,

$$A, B, C \in u(1)$$

$$\cong u(\infty)$$

should remain

Further

Reduction:
$$A = 0$$
, $B = u' - u^2$, $C = u$

$$(ii) \Rightarrow \dot{u} = u'' + 2u * u'$$

: NC Burgers eq. !!!

Note: Without the commutators [,], (ii) yields:

$$\dot{u} = u'' + \underline{u' * u + u * u'}$$
: neither linearizable nor Lax form

Symmetric

NC Ward's conjecture (NC KdV eq.)

MH, PLB625, 324 * Reduced ASDYM eq.: $x^{\mu} \rightarrow (t, x)$ [hep-th/0507112]

$$(i) \quad B' = 0$$

(ii)
$$C' + \dot{A} + [A, C]_* = 0$$

(iii)
$$A' - \dot{B} + [C, B]_* = 0$$

A, B, C: 2 times 2 matrices (gauge fields)

$$A = \begin{pmatrix} q & -1 \\ q' + q^2 & -q \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} \frac{1}{2}q'' + q' * q & -q' \\ f(q, q', q'', q''') & -\frac{1}{2}q'' - q * q' \end{pmatrix} \text{ NOT}$$
Traceless!

$$(ii) \Rightarrow \begin{pmatrix} \oplus & 0 \\ \otimes & - \oplus \end{pmatrix} = 0 \Rightarrow \dot{q} = \frac{1}{4}q''' + \frac{3}{4}q' * q' : \text{NC pKdV eq. } !!! \\ u = q' \rightarrow \text{NC KdV}$$

Note: $A, B, C \in gl(2) \xrightarrow{\theta \to 0} sl(2)$ U(1) part is necessary!

6. Conclusion and Discussion

- Confirmation of NC Ward's conjecture Going well
 NC twistor theory → geometrical origin Talk at 13th NBMPS in Duham on Nov.5
 D-brane interpretations → applications to physics
 Work in progress → [NC book of Mason&Woodhouse ?]
- Completion of NC Sato's theory
 - ❖ Existence of ``hierarchies" → Solved!
 - *Existence of infinite conserved quantities Successful
 - → infinite-dim. hidden symmetry
 - Construction of multi-soliton solutions Successful
 - ❖Theory of tau-functions → description of the symmetry and the soliton solutions work in progress

6. Conclusion and Discussion

There are still many things to be seen.

Welcome!