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1. Introduction
Successful points in NC theories

<+ Appearance of new physical objects
<*Description of real physics
<Various successful applications

to D-brane dynamics etc.

(Integrable!)

Final goal: NC extension of all soliton theories



Integrable equations In diverse dimensions

4 Anti-Self-Dual Yang-Mills eq. NC extension
(instantons)  F, =-F,,

£ Bogomol’'nyi eq. NC extension
(monopoles)

2 KP eq. BCS eq. NC extension

(+1) DS eq. ...

1 KdV eq. Boussinesq eq. NC extension

(+1) |NLS eq. Burgers eq.

T sine-Gordon eq. (affine) Toda field eq. ...

Dim. of space



Ward’s observation: Almost all
Integrable equations are
reductions of the ASDYM eqgs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(*85)451

ASDYM eq.

| Reductions

KP eq. BCSeqg. Ward’s chiral model
KdV eq. Boussinesq eq.
NLS eqg. Toda field eq.
sine-Gordon eq. Burgers eq. ...
(Almost all 1?)

e.g. [The book of Mason&Woodhouse]




NC Ward’s observation: Almost all
NC integrable equations are
reductions of the NC ASDYM egs.

MH&K.Toda, PLA316(“03)77[hep-th/0211148]

NC ASDYM eq.
| NC Reductions

Reductions

NC KP eg. NC BCS eq. NC Ward’s chiral model
NC KdV eg. NC Boussinesq eq.

NC NLS eq. NC Toda field eq.
NC sine-Gordon eq. NC Burgers eq. ... |

(Almost all 1?) o ccessuinn ™

<4

B

Now it is time to study from more comprehensive framework.



Program of NC extension of soliton theories
MH, PLB625, 324 [hep-th/0507112]

< Confirmation of NC Ward’s conjecture (Going well
+NC twistor theory > geometrical origin Takat 13" NBMPS

in Duham on Nov.5

<+D-brane interpretations - applications to physics

<»Completion of NC Sato’s theory

<Existence of " hierarchies” -
<EXxistence of infinite conserved quantities @
- . : MH, JMP46 (20
= Infinite-dim. hidden symmetry ep-th/0311206
< Construction of multi-soliton solutions
<+ Theory of tau-functions -> description of the workin
symmetry and the soliton solutions progress



Plan of this talk

. Introduction

. Review of soliton theories (fun)

. NC Sato’s theory

(derivation of NC soliton eqgs.)

. Conservation Laws

(infinite conserved quantities)

. Exact Solutions and Ward’s conjecture
(solvability and physical pictures)

. Conclusion and Discussion



2. Review of Soliton Theories

< KdV equation : describe shallow water waves

Experniment by
Scott-Russel,
1834

_

water
water tank

This configuration satisfies

!
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solitary wave = soliton

u = 2k? cosh ~* (kx — 4k °t)

U+u”+6uu=0 :Kdgv eq. [Korteweg-de Vries,

This is a typical integrable equation.

1895]



| et’s solve 1t now |

Hirota’s method [PRL27(1971)1192]

U+Uu”+6u’'u=0 :naively hard to solve

u=20’logr

it -7t + 3"t -4t + " =0

Hirota’s bilinear relation : more complicated ?

A solution: 7 =1+e?®  5_ gk3

— U= 2k?*cosh ~(kx — 4k>t) : The solitary wave !
(1-soliton solution)



% 2-soliton solution

r =1+ A’ + Ae*” + BALAe* "™ — A determinant
2 of Wronski matrix
kl \ kz j

(general property
Ky + K, of soliton sols.)

~ “tau-functions”

0. =k x—4k’t, B :[

Scattering process

The shape and velocity
IS preserved ! (stable)
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The positions are shifted ! (Phase shift)




3. NC Sato’s Theory

<+Sato’s Theory : one of the most beautiful
theory of solitons

< Based on the exsitence of

hierarchies and tau-functions
A set of infinite A set of infinite
soliton equations - bilinear equations
u=20:log z
(in terms of | ) (interms of 7 )

Pluecker embedding maps
which define an infinite-dim.
Grassmann manifold.

| (=the solution space)

Infinite evolution eqgs.
whose flows are all
commuting

Infinite conserved quantities Infinite dimensional symmetry



Derivation of soliton equations

<*Prepare a Lax operator which iIs a pseudo-
differential operator

L:=0, +U,0;" +U,0;° +U,0 +--- u, =u, (x,x5x%-)
® I I T
“+Introduce a differential operator o commutativity
B, =(L*---xL),, is introduced here:
| m times | [x', xi]=i0]
< Define NC (KP) hierarchy:
oL
—=[B,,, L], Here all products are
OX \ star product:
/ \
0. U,0," + f (U)o, +
amu3a;2+ fm3(u)a;2+ e .
1A R Each coefficient yields

a differential equation.



Negative powers of differential operators

o0 n _ _
oo f :=Z( _j(a;f)agl

j:oi
il
Ul _12)_'"(2”_(11_1)) . binomial coefficient

J(=(1=2)- which can be extended

3of=10°+3f0%+3f0 +f" LM
; 2 -> negative power of
Oyof =f0:+210, + 1" : :
differential operator

a;lo .I: _3 f@;l— fa;Z + f,8;3 . (WE”—dEmed I)
0,00f=107-2f0+3f0" —---

Star product: £ *g(x) = f(x) exp(igﬁ”éf j jg(x)

which makes theories noncommutative:
[x', x1], = x"#+x) —=xT*xx' =ig"



Closer look at NC KP hierarchy

For m=2
0) 0ol =2u;+U;
0%) 0,u,=2ul+ul+2u,*ul+2[u,,u,l,

6;3) 0,U, =2Ug +Uy +4u,*u, —2U, *U, + 2[u,,u,],

Infinite Kind of fields are represented au
in terms of one kind of field U, =U P
MH&K.Toda, [hep-th/0309265] 1 [ gy
For m=3 07 = o
a7") BEERl /=07 & SUSE 31 18U, Eakipad U, [ U etc.
1 3 3 (2+1)-dim.

1 3
Uu==u, +—(U, *u+u=*u)+—0.u, +—[u,o;u,l.
t 4 XXX 4( X x) 4 X yy 4[ ]

=+ NC KP equation

and other NC equations  u =u(x',x*,x%,--)

(NC KP hierarchy equations) :( ¢y f[



reductions

(KP hierarchy) - (various hierarchies.)

< (Ex.) KdV hierarchy
Reduction condition
L =B,(=:0; +u) : 2-reduction
gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq.:

1 3
u =—u,, +—(U, *u+us*u,)
4 4

Note iu =0 : dimensional reduction in X,y directions
2N
Kp o u(xh XA x3 x X0,
| SO ] - (2+1)-dim.
Kdv: u(x', x3, x3,..) |

X
X : (1+1)-dim.



I-reduction of NC KP hierarchy yields
wide class of other NC (GD) hierarchies

< No-reduction > NC KP (X, y,t) = (X", x*, x°)
< 2-reduction > NC KdV (x,t) = (x',x°)
«3-reduction > NC Boussinesq  (X,t) =(x", x%)

w4-reo
*5-rec
*3-rec

e 2-rec

< Special 1-reduction of mKP - NC Burgers

N/

uction > NC Coupled KdV

uction - ...

uction of BKP - NC Sawada-Kotera
uction of mMKP = NC mKdV

** ... Noncommutativity should be introduced into space-time coords



4. Conservation Laws

Conservation laws: 6,0=0,J" o
time™ ~“space

Then Q:=|dxo is a conserved guantity.

space

2 0,Q=| dx0,0 = |satm dS;J' =0

space inf inity
Conservation laws for the hierarchies
n __ Ij ray
o,res,L" =0,J+60°0,&,

time ” space’
| have succeeded in the evaluation explicitly !

res_ L' : coefficient Noncommutativity should be introduced

ofé}" in L’ In space-time directions only. -

—
Il
>

0; should be space or time derivative
—



conserved densities for
the NC soliton egs.

m-1 Kk

o,=res,L"+6™> ( j (05 'res_,, L") 0 (o;res, L™)
k=0 I=

t=x" res.L": coefficient of 8 in L

Q : Strachan’s product (commutative and non-associative)

f(x)<>g(x)—f(x)[2 - 1)1),(1 ”ééj Jg(x)

MH, JMP46 (2005)

[hep-th/0311206] This suggests infinite-dimensional

symmetries would be hidden.




We can calculate the explicit forms
of conserved densities for the wide
class of NC soliton equations.

<»Space-Space noncommutativity:
NC deformation is slight: o, =res_L"
Involutive (integrable In Liouville’s sense)
<» Space-time noncommutativity

NC deformation is drastical:
<+Example: NC KP and KdV equations ([t,x]=16)
o=res_ L' —360((res,L")0u; +(res_,L")0u)
meaningful ?



5. Exact Solutions and Ward’s conjecture

We have found-exact-N-soliton-solutions
for the wide class of NC hierarchies.

1-soliton solutions are all the same as
commutative ones because of

f(x=vt)*g(x—vt)= f(x—-vt)g(x—vt)

Multi-soliton solutions behave in almost
the same way as commutative ones
except for phase shifts.

Noncommutativity affects the phase shifts



Exact multi-soliton solutions of
the NC soliton egs.

L=®o d" solves the NC Lax hierarchy !

- quasi-determinant
O fi=W(Yy, Yy, T) N+LN+1  of Wronski matrix

Vi =€xp o (X, a;) +a; exp ¢ (X, 5;) Etingof-Gelfand-Retakh
E(X, @) = X, + X,&° + Xy +---  [0-2lg/9701008]

The exact solutions are actually N-soliton solutions !
Noncommutativity might affect the phase shift by 6"k

~7) expi(at —k;x) *expi(w;t -k x) [MH, work in progress]

= exp(-i0’ wk;)expi((@, + @;)t -k +k;)x) Exactly solvable!




Quasi-determinants

Defined inductively as follows [For a review, see
. Gelfand et al:
X|o=x =) x. (X" )Y*x. !
X =%, ZJ v (X1, x; math.QA/0208146]
n=1: | ‘., i
n=2: X11:X11_X12 X22 211 X‘ —X12_X11'X2_iL'X22’
X 212X21_X22 X12 1171 X‘ _X22_X21.X1_1|5L.X12’

: -1 il -1
n=3: X11:X11_X12‘(X22_ 23" 33' 32) 'X21_X13'(X32_X33°X23'Xzz) KXot

- 1 1 1
— X '(Xzs — Xy Xgp Xss) X3 — Xp3 '(X33 — X35 " Xy ’X23) " X31

f)— X, 1 X 2 X 'm

Wronski matrix:  W(f,, f,,--, f,) =

il ol NG o



NC Ward’s conjecture (NC NLS eq.)

Reduced ASDYM eq.:  X* — (t’ X) [Lhegsffr’]/omzow]
(i) B'=0

(i) C’_A+[A’C]* =0 A, B, C: 2 times 2
(iii)) A — B [C,B], =0 matrices (gauge fields)

Further_ A 0_ g ,sz— 1 0 o q*q _q_’
Reduction: -q 0 20 -1 g —g*g
- 0 iq—q"—2q*q *q NOT traceless
in=|.. y =0
Ig+q"-20*q*Q 0

Ig=q"+2q*g*g :NC NLS eqg. !l

| 930 [MH, PLB625,324]
Note: A,B,C eu(?2) >SU(2) U(1) part is necessary !




NC Ward'’s conjecture (NC Burgers eq.)

Reduced ASDYM eq.:  X“ — (t,X) MH&KToda JPA36
_ . [hep-th/0301213]
(i) A+[B,A], =0

(i) C-B'+[B,C], =0, A.B,C eu(l)

should remain ~(o0)

Further 2
Reduction: A=0,B=u'-u%,C =u

()= u=u"+2u=*U’
: NC Burgers eq. !!!

Note: Without the commutators [, |, (ii) yields:

U=U"+U"*u+u=*uU" : neither linearizable nor Lax form
Symmetric




NC Ward'’s conjecture (NC KdV eq.)

Reduced ASDYM eq.:  X* — (t, X) ?ﬂ;'pf’;%éﬁ?ﬁ;‘]
() B'=0

() C'+A+[AC] =0 A, B, C: 2 times 2
(i) A — B [C,B], =0 matrices (gauge fields)

q —1] [o oJ
A= , ; B= ,
q'+q9° —-¢g 1 0
Further |
Reduction:; 2 s e ~q NOT
g / " " 1 " ’ |
f(q,9'.9".9") -5 40 Traceless !

. ®@ 0
("):>(® @}0 CI=—O|’”+ q x(': NC pKdV eq. !!!
|, U=q > NC KdV
Note: A, B,C e gl(2)—2=2>5sl(2) U(1) part is necessary !




6. Conclusion and Discussion

We derived NC soliton egs.
In the frame work of NC KP or GD hierarchies.
We proved Infinite conserved

guantities and exact multi-soliton sols. for them.
We also gave some examples of

which guarantees physical pictures.
The results shows that they still have
very special properties though they include
Infinite (time!) derivatives.
Of course there are still many things to be seen




Further directions

<+ Completion of NC Sato’s theory
< Theory of tau-functions
- hidden symmetry (deformed affine Lie algebras?)
Quasi-determinants play crutial roles ?

< Geometrical descriptions from NC extension of the theories
of Krichever, Mulase and Segal-Wilson and so on.

< Confirmation of NC Ward’s conjecture

<» NC twistor theory
e.g. Kapustin&Kuznetsov&Orlov, Hannabuss, Hannover group,...

< D-brane interpretations - application to physics

< Foundation of Hamiltonian formalism for space-time
noncommutativity
< Liouville’s theorem, Noether’s theorem, etc.
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