Noncommutative Ward's Conjecture and Integrable Systems

Masashi HAMANAKA

Nagoya University, Dept. of Math. (visiting Oxford for one year)

13th NBMPS in Durham on Nov. 5th

Based on

- MH, ``On reductions of NC ASDYM eqs.,"
 PLB625 (2005) 324, [hep-th/0507112]
- e cf. MH, `NC solitons and integrable systems,"

 Proc. NCGP2004, [hep-th/0504001]

1. Introduction

Successful points in NC theories

- Appearance of new physical objects
- Description of real physics
- Various successful applications to D-brane dynamics etc.

NC Solitons play important roles (Integrable!)

Final goal: NC extension of all soliton theories

Integrable equations in diverse dimensions

4	Anti-Self-Dual Yang-Mills eq.	NC extension
	(instantons) $F_{\mu\nu} = -\tilde{F}_{\mu\nu}$	(Successful)
3	Bogomol'nyi eq.	NC extension
	(monopoles)	(Successful)
2	Kadomtsev-Petviashvili (KP) eq.	NC extension
(+1)	Davey-Stewartson (DS) eq	(This talk)
1	KdV eq. Boussinesq eq.	NC extension
(+1)	NLS eq. Burgers eq.	(This talk)
1	sine-Gordon eq. (affine) Toda field	eq

Dim. of space

Ward's conjecture: Many (perhaps all?) integrable equations are reductions of the ASDYM eqs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(85)451

ASDYM eq.

Reductions

KP eq. DS eq. Ward's chiral model

KdV eq. Boussinesq eq.

NLS eq. Toda field eq.

sine-Gordon eq. Burgers eq.

Painleve eqs. Tops ...

Almost confirmed by explicit examples !!!

NC Ward's conjecture: Many (perhaps all?) NC integrable equations are reductions of the NC ASDYM eqs.

MH&K.Toda, PLA316(03)77[hep-th/0211148]

Successful NC ASDYM eq. ↓ NC Reductions Reductions Many (perhaps all?) Successful? NC integrable eqs. •Existence of physical pictures New physical objects Application to D-branes 'Classfication of NC integ. eqs.

Plan of this talk

- 1. Introduction
- 2. NC gauge theory in 4-dim. (ASDYM eq.)
- 3. Reduction to 3-dim. (Bogomol'nyi eq.)
- 4. Reduction to (1+1)-dim. (KdV, NLS, Burgers)
- 5. Reduction to (2+1)-dim. (KP, DS)
- 6. Conclusion and Discussion

2. NC Gauge Theory in 4-dimension

Here we discuss NC gauge theory of instantons. (Ex.) 4-dim. (Euclidean) G=U(N) Yang-Mills theory

Action

$$S = -\frac{1}{2} \int d^4x Tr \, F_{\mu\nu} F^{\mu\nu} = -\frac{1}{4} \int d^4x Tr \left(F_{\mu\nu} F_{\mu\nu} + \tilde{F}_{\mu\nu} \tilde{F}_{\mu\nu} \right)$$

$$= -\frac{1}{4} \int d^4x Tr \left[\left(F_{\mu\nu} \mp \tilde{F}_{\mu\nu} \right)^2 \pm 2F_{\mu\nu} \tilde{F}_{\mu\nu} \right]$$

$$= 0 \Leftrightarrow \text{BPS} \iff C_2$$

$$(F_{\mu\nu} := \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}])$$

• Eq. Of Motion:

$$[D^{\nu}, [D_{\nu}, D_{\mu}]] = 0$$

■ BPS eq. (=(A)SDYM eq.)

$$F_{\mu\nu} = \pm \widetilde{F}_{\mu\nu}$$
 \rightarrow instantons

$$(\Leftrightarrow F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0, \quad F_{z_1z_2} = 0)$$

- (Q) How we get NC version of the theories?
- (A) They are obtained from ordinary commutative gauge theories by replacing products of fields with star-products: $f(x)g(x) \rightarrow f(x)*g(x)$
- The star product:

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2}\theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j\right) g(x) = f(x)g(x) + i\frac{\theta^{ij}}{2} \partial_i f(x) \partial_j g(x) + O(\theta^2)$$

f*(g*h) = (f*g)*h Associative

 $[x^{i}, x^{j}]_{*} := x^{i} * x^{j} - x^{j} * x^{i} = i\theta^{ij}$ NC!

A deformed product

Presence of background magnetic fields

In this way, we get NC-deformed theories with infinite derivatives in NC directions. (integrable???)

(Ex.) 4-dim. NC (Euclidean) G=U(N) Yang-Mills theory (All products are star products)

Action

$$S = -\frac{1}{2} \int d^4x Tr F_{\mu\nu} * F^{\mu\nu} = -\frac{1}{4} \int d^4x Tr \left(F_{\mu\nu} * F_{\mu\nu} + \tilde{F}_{\mu\nu} * \tilde{F}_{\mu\nu} \right)$$

$$= -\frac{1}{4} \int d^4x Tr \left[\left(F_{\mu\nu} \mp \tilde{F}_{\mu\nu} \right)_*^2 \pm 2F_{\mu\nu} * \tilde{F}_{\mu\nu} \right]$$

$$= 0 \Leftrightarrow \text{BPS} \iff C_2$$

$$(F_{\mu\nu} := \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu}, A_{\nu}]_*)$$

• Eq. Of Motion:

$$[D^{\nu}, [D_{\nu}, D_{\mu}]_{*}]_{*} = 0$$

● BPS eq. (=NC (A)SDYM eq.)

$$F_{\mu\nu} = \pm \widetilde{F}_{\mu\nu}$$
 \rightarrow NC instantons

$$(\Leftrightarrow F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0, \quad F_{z_1z_2} = 0)$$

Don t omit even for G=U(1)

$$(:: U(1) \cong U(\infty))$$

A deformed theory is obtained.

ADHM construction of (NC) instantons

Atiyah-Drinfeld-Hitchin-Manin, PLA65(78)185

ADHM eq. (G=``U(k)''): $k \times k$ matrix eq.

$$[B_1, B_1^*] + [B_2, B_2^*] + II^* - J^*J = 0$$
$$[B_1, B_2] + IJ = 0$$

ADHM data $B_{1,2}: k \times k$, $I: k \times N$, $J: N \times k$

1:1

Instantons $A_{\mu}: N \times N$

ASD eq. (G=U(N), C₂=-k): N \times N PDE

$$F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0$$

$$F_{z_1z_2} = 0$$

ADHM construction of BPST instanton (N=2,k=1)

ADHM eq. (G=``U(1) '')

$$[B_1, B_1^*] + [B_2, B_2^*] + II^* - J^*J = 0$$
$$[B_1, B_2] + IJ = 0$$

 $B_{1,2} = \alpha_{1,2}, \quad I = (\rho,0), J = \begin{pmatrix} 0 \\ \rho \end{pmatrix}$ \uparrow position

size

$$A_{\mu} = \frac{i(x-b)^{\nu} \eta_{\mu\nu}^{(-)}}{(x-b)^{2} + \rho^{2}}, F_{\mu\nu} = \frac{2i\rho^{2}}{((x-b)^{2} + \rho^{2})^{2}} \eta_{\mu\nu}^{(-)} \qquad \frac{\rho \to 0}{}$$

ASD eq. $(G=U(2), C_2=-1)$

$$F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0$$

$$F_{z_1z_2} = 0$$

Final remark: matrices B and coords. z always appear in pair: z-B

ADHM construction of NC BPST instanton (N=2,k=1)

ADHM eq. (G=``U(1)') 1 × 1 matrix eq.

$$[B_1, B_1^*] + [B_2, B_2^*] + II^* - J^*J = \zeta$$
$$[B_1, B_2] + IJ = 0$$

Nekrasov&Schwarz, CMP198(98)689 [hep-th/9802068]

$$B_{1,2} = \alpha_{1,2}, \quad I = (\sqrt{\rho^2 + \zeta}, 0), J = \begin{pmatrix} 0 \\ \rho \end{pmatrix}$$

position size → slightly fat?

 $A_{\mu}, F_{\mu\nu}$: something smooth

ASD eq. $(G=U(2), C_2=-1)$

$$F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0$$
 $F_{z_1z_2} = 0$

Regular! (U(1) instanton!) the singulality

D-brane's interpretation of ADHM construction

Douglas, Witten

k D0-branes

ADHM eq. (G=``U(k)''): $k \times k$ matrix eq.

$$[B_1, B_1^*] + [B_2, B_2^*] + II^* - J^*J = 0$$
$$[B_1, B_2] + IJ = 0$$

BPS

ADHM data $B_{1,2}: k \times k$, $I: k \times N$, $J: N \times k$

1:1

Instantons $A_u: N \times N$

$$A_u: N \times N$$

ASD eq. (G=U(N), C₂=-k): N \times N PDE

$$F_{z_1\bar{z}_1} + F_{z_2\bar{z}_2} = 0$$

$$F_{z_1z_2} = 0$$

N D4-branes

BPS

String theory is a treasure box of dualities

3. Reduction to 3-dimension

- Let's take a simple dimensional reduction of ASDYM to 3-dimension. ($\partial_4 = 0$)
- The reduced equation is known as Bogomol'yi eq.

$$B_i = \pm D_i \Phi$$
 \rightarrow monopoles

$$(B_i = \varepsilon_{ijk} F_{jk}]$$
 :magnetic fields, Φ : Higgs field)

Monopoles are also constructed from ADHM-like
 procedure (=Nahm constraction)

Nahm construction of (NC) monopoles

Nahm, in ``Monopoles in QFT (1982)

Nahm eq. (G=``U(k)''): $k \times k$ ODE

$$\frac{dT_i}{d\xi} = i\varepsilon_{ijk}[T_j, T_k]$$

Nahm data $T_i: k \times k$

1:1

monopoles Φ , $A_i: N \times N$

Bogomol nyi eq. (G=U(N), k): N × N PDE

$$B_i = \partial_i \Phi$$

D-brane s interpretation

Diaconescu

BPS

k D1-branes

N D3-branes

BPS

A T-dualized configration of the D0-D4 brane systems

Nahm construction of NC Dirac monopoles

Gross&Nekrasov, JHEP[hep-th/0005204]

Nahm eq.
$$(G=)U(1)'$$
: 1 × 1 ODE

$$\frac{dT_i}{d\xi} = i\varepsilon_{ijk}[T_j, T_k] - \theta\delta_{i3}$$

Nahm data $T_{1,2} = 0, T_3 = -\theta \xi$

Bogomol nyi eq. (G=U(1), k=1): 1 x 1 PDE

$$B_i = \partial_i \Phi$$

a D1-brane

a D3-brane Magnetic field Slope of D1-brane ← pulls the end point

$$A_i =$$
(smooth config.)

Φ :represents position of D3-brane

 T_i :represents positions of D1-brane

Magnetic flux of Dirac monopoles

$$B_3 = \partial_3 \Phi = \frac{-x_3}{2r^3} + \frac{2}{\theta} \exp\left(-\frac{x_1^2 + x_2^2}{\theta}\right)$$

On commutative space

On NC space (roughly)

Solutions show interesting behaviors, though the moduli space is the same as commutative one.

4. Reduction to (1+1)-dimension

- From now on, we discuss reductions of NC ASDYM on (2+2)-dimension, including KdV, NLS, Burgers...
- Reduction steps are as follows:
 - (1) take a simple dimensional reduction with a gauge fixing.
 - (2) put further reduction conditions on gauge fields.
- The reduced eqs. coincides with those obtained in the framework of NC KP or GD hierarchies, which possess infinite conserved quantities and exact multi-soliton solutions. (integrable-like)

Reduction to NC KdV eq.

• (1) Reduced ASDYM eq.: $\chi^{\mu} \rightarrow (t, \chi)$ MH, PLB625, 324 [hep-th/0507112]

(*i*)
$$B' = 0$$

(ii)
$$A' - \dot{B} + [C, B]_* = 0$$

(iii)
$$C' + \dot{A} + [A, C]_* = 0$$

A, B, C: 2 times 2 matrices (gauge fields)

(2) Further Reduction:
$$C = \begin{pmatrix} q & -1 \ q' + q^2 & -q \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} \frac{1}{2}q'' + q'*q & -q' \ \frac{1}{4}q''' + \frac{1}{2}q'^2 + \frac{1}{2}\{q'', q\}_* + q*q'*q & -\frac{1}{2}q'' - q*q' \end{pmatrix}$$

(iii)
$$\Rightarrow \dot{u} = \frac{1}{4}u''' + \frac{3}{4}(u'*u + u*u') : \text{NC KdV eq. } ||| [t, x] = i\theta$$

Note: $A, B, C \in gl(2) \xrightarrow{\theta \to 0} sl(2)$ U(1) part is necessary!

The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

Explicit!

$$\sigma_n = res_{-1}L^n - 3\theta((res_{-1}L^n) \diamond u_3' + (res_{-2}L^n) \diamond u_2')$$

 $res_{x}L^{n}$: coefficient of ∂_{x}^{r} in L^{n}

MH, JMP46 (2005) [hep-th/0311206]

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) := f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overline{\partial}_i \overline{\partial}_j \right)^{2s} \right) g(x)$$

$$[t,x] = i\theta$$

has exact N-soliton solutions:

$$u = 2\partial_x \sum_{i=1}^{N} (\partial_x W_i) * W_i^{-1}$$
 Explicit!

Etingof-Gelfand-Retakh, [q-alg/9701008] MH, work in progress cf. Paniak, [hep-th/0105185]

 $W_i := |W(y_1,...,y_i)|_{i,i}$:quasi-determinant of Wronski matrix

$$y_i = \exp \xi(x, \alpha_i) + a_i \exp(-\xi(x, \alpha_i))$$

$$\xi(x,\alpha) = x\alpha + t\alpha^3$$

Reduction to NC NLS eq.

Legare, $x^{\mu} \rightarrow (t, x)$ Reduced ASDYM eq.: [hep-th/0012077]

$$(i) \quad B' = 0$$

(ii)
$$A' - \dot{B} + [C, B]_* = 0$$

(*iii*)
$$C' + \dot{A} + [A, C]_* = 0$$

A, B, C: 2 times 2 matrices (gauge fields)

Further Reduction:
$$A = \begin{pmatrix} 0 & \psi \\ -\overline{\psi} & 0 \end{pmatrix}, B = \frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = i \begin{pmatrix} \psi * \overline{\psi} & \overline{\psi}' \\ \overline{\psi}' & \overline{\psi} * \psi \end{pmatrix}$$

$$(iii) \Rightarrow \begin{pmatrix} 0 & i\dot{\psi} - \psi'' - 2\psi * \overline{\psi} * \psi \\ -i\dot{\overline{\psi}} + \overline{\psi}'' - 2\overline{\psi} * \psi * \overline{\psi} & 0 \end{pmatrix} = 0$$
NOT traceless

$$i\dot{\psi} = \psi'' + 2\psi * \overline{\psi} * \psi$$
: NC NLS eq. !!!

 $A, B, C \in u(2) \xrightarrow{\theta \to 0} su(2)$ U(1) part is necessary! Note:

[MH, PLB625,324]

Reduction to NC Burgers eq.

• Reduced ASDYM eq.: $x^{\mu} \rightarrow (t, x)$

$$x^{\mu} \rightarrow (t, x)$$

MH & K.Toda, JPA36 [hep-th/0301213]

$$(i) \quad \dot{A} + [B, A]_* = 0$$

(ii)
$$\dot{C} - B' + [B, C]_* = 0$$
,

$$A, B, C \in u(1)$$

should remain

 $\cong u(\infty)$

Further

Reduction: A = 0, $B = u' - u^2$, C = u

$$(ii) \Rightarrow \dot{u} = u'' + 2u * u'$$

$$\dot{\tau} = \tau''$$

$$u = \tau^{-1} * \tau'$$
Linear eq

: NC Burgers eq. !!!

Linear eq. (Integrable !!!)

Note: Without the commutators [,], (ii) yields:

$$\dot{u} = u'' + \underline{u' * u + u * u'}$$
: neither linearizable nor Lax form

Symmetric

5. Reduction to (2+1)-dimension

- From now on, we discuss reductions of NC ASDYM with infinite-dimensional gauge group, including KP, DS, N-wave ...
- This time, gauge fields value operators algebras s.t.:

$$g = \{a_0(x, y, t) + a_1(x, y, t)\partial_y + a_2(x, y, t)\partial_y^2\}$$

- Reduction steps are as follows:
 - (1) take a simple dimensional reduction with a gauge fixing.
 - (2) replace spectral parameters in linear systems with derivatives of y
 - (3) put further reduction conditions on gauge fields.

ASDYM from Linear systems

• ASDYM can be derived from compatibility condition of linear systems:

$$D_{w} * \Psi = \zeta D_{\tilde{z}} * \Psi$$

$$D_{z} * \Psi = \zeta D_{\tilde{w}} * \Psi$$

$$\downarrow (1) \text{ Dim. reduction into 2-dim.: } (t, x) = (z, w + \tilde{w})$$

$$\partial_{x} \Psi = (A_{w} + \zeta A_{\tilde{z}}) * \Psi$$

$$\partial_{t} \Psi = (A_{z} + \zeta D_{\tilde{w}}) * \Psi = (A_{z} + \zeta (A_{w} + A_{\tilde{w}}) + \zeta^{2} A_{\tilde{z}}) * \Psi$$

$$(2) \text{ Replace } \zeta \text{ with } \partial_{y} \text{ as follows:}$$

$$A_{w} = U + A \partial_{y}, A_{z} = V + \tilde{U} \partial_{y} + A \partial_{y}^{2}, A_{\tilde{z}} = A, A_{\tilde{w}} = \tilde{U} - U + A \partial_{y}, \Psi = e^{-\zeta y} \Phi$$

$$\frac{\partial_{x} \Phi = (U + A \partial_{y}) * \Phi}{\partial_{t} \Phi = (V + \tilde{U} \partial_{y} + A \partial_{y}^{2}) * \Phi} \right\} \rightarrow \frac{[U - U, A]_{*} = 0}{-\tilde{U}_{x} + A * \tilde{U}_{y} - 2A * U_{y} + [A, V]_{*} + [U, \tilde{U}]_{*} = 0}{U_{t} - V_{x} + [U, V]_{*} + A * (V - U_{y})_{y} - \tilde{U} * U_{y} = 0}$$

Reduction to DS eq.

The reduced ASDYM

$$\begin{aligned} &(i) \, [U - \widetilde{U}, A]_* = 0 \\ &(ii) - \widetilde{U}_x + A * \widetilde{U}_y - 2A * U_y + [A, V]_* + [U, \widetilde{U}]_* = 0 \\ &(iii) \, U_t - V_x + [U, V]_* + A * (V - U_y)_y - \widetilde{U} * U_y = 0 \end{aligned}$$

$$A = \kappa \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, U = \widetilde{U} = \begin{pmatrix} 0 & q \\ r & 0 \end{pmatrix},$$

$$V = \frac{1}{2\kappa} \begin{pmatrix} R_1 & (\partial_x + \kappa \partial_y)q \\ -(\partial_x - \kappa \partial_y)r & R_2 \end{pmatrix}$$

$$\begin{cases}
2\kappa\dot{q} = (\partial_{x}^{2} + \kappa^{2}\partial_{y}^{2})q + R_{1} * q - q * R_{2} \\
2\kappa\dot{r} = -(\partial_{x}^{2} + \kappa^{2}\partial_{y}^{2})r + R_{2} * r - r * R_{1} \\
(\partial_{x} - \kappa\partial_{y})R_{1} = -(\partial_{x} + \kappa\partial_{y})(q * r) \\
(\partial_{x} + \kappa\partial_{y})R_{2} = (\partial_{x} - \kappa\partial_{y})(r * q)
\end{cases}$$

NC Davey-Stewartson eq.

(New eq.)

(2-dim. generalization of NC NLS)

Reduction to KP eq.

The reduced ASDYM

$$(i) [U - \widetilde{U}, A]_* = 0$$

$$(ii) \widetilde{V}_* + \widetilde{V}_* = 0$$

$$(ii) - \tilde{U}_x + A * \tilde{U}_y - 2A * U_y + [A, V]_* + [U, \tilde{U}]_* = 0$$

$$(iii) U_t - V_x + [U, V]_* + A * (V - U_y)_y - \tilde{U} * U_y = 0$$

(3) Further
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, U = \begin{pmatrix} 0 & 1 \\ u & 0 \end{pmatrix}, \widetilde{U} = \begin{pmatrix} 0 & 1 \\ u/2 & 0 \end{pmatrix},$$
 Reduction:
$$1 \begin{pmatrix} u_x - 3\partial_x^{-1} u_y & -2u \end{pmatrix}$$

$$V = \frac{1}{4} \begin{pmatrix} u_x - 3\partial_x^{-1} u_y & -2u \\ u_{xx} - 2u * u + u_y & -u_x - 3\partial_x^{-1} u_y \end{pmatrix}$$

$$u_{t} = \frac{1}{4}u_{xxx} - \frac{3}{4}(u_{x} * u + u * u_{x}) + \frac{3}{4}\partial_{x}^{-1}u_{yy} + \frac{3}{4}[u, \partial_{x}^{-1}u_{yy}]_{*}$$
:NC KP eq. !

$$\partial_{y} = 0$$

$$u_t = \frac{1}{4}u_{xxx} - \frac{3}{4}(u_x * u + u * u_x)$$
 :NC KdV eq. previous result $g = \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$

Note: This reduction to KdV is gauge equivalent to the

Infinite conserved densities for the NC KP hierarchy. (n=1,2,...,

$$\sigma_{n} = res_{-1}L^{n} + \theta^{im} \sum_{k=0}^{m-1} \sum_{l=0}^{k} {k \choose l} (\partial_{x}^{k-l} res_{-(l+1)} L^{n}) \Diamond (\partial_{i} res_{k} L^{m})$$

$$t \equiv x^m$$
 $res_r L^n$: coefficient of ∂_x^r in L^n

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) \coloneqq f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j \right)^{2s} \right) g(x)$$

MH, JMP46 (2005) [hep-th/0311206]

This suggests infinite-dimensional symmetries would be hidden.

Exact N-soliton solutions of the NC KP hierarchy

$$L = \Phi \partial_x \Phi^{-1}$$
 solves the NC KP hierarchy! $\Phi f := \left| W(y_1, ..., y_N, f) \right|_{N+1, N+1}$ quasi-determinant of Wronski matrix $y_i = \exp \xi(x, \alpha_i) + a_i \exp \xi(x, \beta_i)$ Etingof-Gelfand-Retakh $\xi(x, \alpha) = x_1 \alpha + x_2 \alpha^2 + x_3 \alpha^3 + \cdots$ [q-alg/9701008]

The exact solutions are actually N-soliton solutions! Noncommutativity might affect the phase shift by $\theta^{ij}\omega_{i}k$

Exactly solvable!

6. Conclusion and Discussion

- We derived many of NC integrable eqs. from NC ASDYM eqs. by reductions.
- This result could be a strong evidence for NC Ward's conjecture, which guarantees the existence of physical pictures.
- The derived eqs. coincide with those from the framework of NC KP or GD hierarchies, which possess infinite conserved quantities and exact multi-soliton solutions.
- Application to D-brane dynamics and description from NC twistor theory are expected.

NC Ward's conjecture: Many (perhaps all?) NC integrable equations are reductions of the NC ASDYM eqs.

MH&K.Toda, PLA316(03)77[hep-th/0211148]

NC ASDYM eq.

Successful

↓ NC Reductions

Reductions

NC KP eq. NC DS eq. NC Ward's chiral model
NC KdV eq. NC Boussinesq eq.
NC NLS eq. NC Toda field eq.

NC sine-Gordon eq. NC Burgers eq. ...

(Many! Perhaps all?)

Successful!!!

In near future, almost confirmed by explicit examples !?