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1. Introduction

Successful points in NC theories
Appearance of new physical objects
Description of real physics
Various successful applications
to D-brane dynamics etc.

NC Solitons play important roles
(Integrable!)

Final goal: NC extension of all soliton theories



Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang-Mills eq.
(instantons)

2
(+1)

Kadomtsev-Petviashvili (KP) eq.  
Davey-Stewartson (DS) eq. …

3 Bogomol’nyi eq.
(monopoles)

1
(+1)

KdV eq.  Boussinesq eq.
NLS eq.  Burgers eq. 
sine-Gordon eq. (affine) Toda field eq. …

µνµν FF ~−=

Dim. of space

NC extension 
(Successful)

NC extension
(Successful)

NC extension
(This talk)

NC extension 
(This talk)



Ward’s conjecture: Many (perhaps all?) 
integrable equations are reductions of 

the ASDYM eqs.
R.Ward, Phil.Trans.Roy.Soc.Lond.A315(’85)451

ASDYM eq.

(KP eq.)  (DS eq.) Ward’s chiral model
KdV eq. Boussinesq eq.
NLS eq. Toda field eq. 

sine-Gordon eq.  Liouville eq.        
Painleve eqs.       Tops  …

Reductions

Almost confirmed by explicit examples !!!



NC Ward’s conjecture: Many (perhaps all?) 
NC integrable equations are reductions of 

the NC ASDYM eqs.
MH&K.Toda, PLA316(‘03)77[hep-th/0211148]

NC ASDYM eq.

Many (perhaps all?)
NC integrable eqs.

NC Reductions

Successful

Successful?

Reductions

・Existence of physical pictures 
・New physical objects
・Application to D-branes
・Classfication of NC integ. eqs.

NC Sato’s theory plays important 
roles in revealing integrable
aspects of them 



Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture 
– NC twistor theory geometrical origin
– D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory
– Existence of  ``hierarchies’’ various soliton eqs.
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
– Construction of multi-soliton solutions
– Theory of tau-functions structure of the solution 

spaces and the symmetry

(i),(ii) complete understanding of the NC soliton theories



Plan of this talk
1. Introduction
2. NC gauge theory in 4-dim. (ASDYM eq.) 
3. NC Ward’s conjecture

--- Reduction of NC ASDYM to (1+1)-dim. 
(KdV, NLS, …)

4. Towards NC Sato’s theory (KP, …)
hierarchy, infinite conserved quantities,
exact multi-soliton solutions,…

5. Conclusion and Discussion



2. NC Gauge Theory in 4-dimension
Here we discuss NC gauge theory of instantons.

(Ex.) 4-dim. (Euclidean) G=U(N)  Yang-Mills theory
Action

Eq. Of Motion:

BPS eq. (=(A)SDYM eq.)
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(Q) How we get NC version of the theories?
(A) They are obtained from ordinary commutative 

gauge theories by replacing products of fields 
with star-products:
The star product:

hgfhgf ∗∗=∗∗ )()(

)()()(
2

)()()(
2

exp)(:)()( 2θθθ Oxgxfixgxfxgixfxgxf ji

ij

ji
ij +∂∂+=⎟

⎠
⎞

⎜
⎝
⎛ ∂∂=∗

rs

ijijjiji ixxxxxx θ=∗−∗=∗ :],[ NC !

Associative

)()()()( xgxfxgxf

A deformed product
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Presence of 
background 
magnetic fields

In this way, we get NC-deformed theories
with infinite derivatives in NC directions. (integrable???)



(Ex.) 4-dim. NC (Euclidean) G=U(N) 
Yang-Mills theory

(All products are star products)
Action

Eq. Of Motion:

BPS eq. (=NC (A)SDYM eq.)
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A deformed theory
is obtained.



ADHM construction of (NC) instantons
Atiyah-Drinfeld-Hitchin-Manin, PLA65(’78)185

ADHM eq. (G=``U(k)’’): k × k matrix eq.
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ADHM construction of BPST instanton (N=2,k=1)

Final remark: matrices B and
coords. z always appear 
in pair: z-B 

ADHM eq. (G=``U(1)’’)
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ADHM construction of NC BPST instanton (N=2,k=1)
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Nekrasov&Schwarz,
CMP198(‘98)689
[hep-th/9802068]

ADHM eq. (G=``U(1)’’) 1 × 1 matrix eq.
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D-brane’s interpretation of ADHM construction
Douglas, Witten, …
Hashimoto-Terashima,
Tong’s excellent reviewADHM eq. (G=``U(k)’’): k × k matrix eq.
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String theory is a treasure box of dualities



3. NC Ward’s conjecture --- reduction to (1+1)-dim.

From now on, we discuss reductions of NC ASDYM 
on (2+2)-dimension, including KdV, NLS, ...
Reduction steps are as follows:
(1) take a simple dimensional reduction 

with a gauge fixing.
(2) put further reduction conditions on gauge fields.
The reduced eqs. coincides with those obtained in 
the framework of NC KP and GD hierarchies,
which possess infinite conserved quantities and
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq.
(1) Reduced ASDYM eq.: ),( xtx →µ

(2) Further
Reduction:
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The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

has exact N-soliton solutions: 
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Reduction to NC NLS eq.
),( xtx →µ Legare, 

[hep-th/0012077]
Reduced ASDYM eq.:
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In this way, we can obtain various NC 
integrable equations from NC ASDYM !!! 

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC KP
NC DS

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Summarized in MH
[hep-th/0601209]

Infinite gauge group

Almost all ?

NC TzitzeicaNC Boussinesq NC N-wave



4. Towards NC Sato’s Theory
Sato’s Theory : one of the most beautiful theory of 
solitons
– Based on the exsitence of hierarchies and tau-functions
– Various integrable equations in (1+1)-dim. can be 

derived elegantly from (2+1)-dim. KP equation. 
Sato’s theory reveals essential aspects of solitons:
– Construction of exact solutions
– Structure of solution spaces
– Infinite conserved quantities
– Hidden infinite-dim. symmetry
Let’s discuss NC extension of Sato’s theory



Derivation of soliton equations
Prepare a Lax operator which is a pseudo-
differential operator

Introduce a differential operator

Define NC (KP) hierarchy:
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Negative powers of differential operators
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Closer look at NC KP hierarchy
For m=2
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(KP hierarchy) (various hierarchies.)
reductions

(Ex.) KdV hierarchy
Reduction condition

gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq.:
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l-reduction of NC KP hierarchy yields 
wide class of other NC hierarchies

No-reduction NC KP 
2-reduction NC KdV
3-reduction NC Boussinesq
4-reduction NC Coupled KdV …
5-reduction …
3-reduction of BKP NC Sawada-Kotera
2-reduction of mKP NC mKdV
Special 1-reduction of mKP NC Burgers
…

),,(),,( 321 xxxtyx =
),(),( 31 xxtx =

),(),( 21 xxtx =

Noncommutativity should be introduced into space-time coords



Conservation Laws for the NC hierarchies
Conservation laws:

Conservation laws for the hierarchies
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I have succeeded in the evaluation explicitly !
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in space-time directions only. 
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Infinite conserved densities for 
the NC KP hierarchy. (n=1,2,…, ∞)
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This suggests infinite-dimensional
symmetries would be hidden. 



We can calculate the explicit forms of 
conserved densities for the wide class 

of NC soliton equations.
Space-Space noncommutativity: 
NC deformation is slight:
involutive (integrable in Liouville’s sense)

Space-time noncommutativity
NC deformation is drastical:
– Example: NC KP and KdV equations
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Exact N-soliton Solutions of NC KP hierarchy

We have found exact N-soliton solutions for the 
wide class of NC hierarchies.
Physical interpretations are non-trivial because
when                  are real,                  is not in general.
However, the solutions could be real in some cases.
– (i) 1-soliton solutions are all the same as commutative   

ones because of

– (ii) In asymptotic region, configurations of multi-soliton
solutions could be real in soliton scatterings and the same 
as commutative ones. 
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Exact N-soliton solutions of 
the NC KP hierarchy 
1−Φ∂Φ= xL
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in asymptotic region !
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Quasi-determinants
Quasi-determinant is not just a generalization of 
commutative determinant, but rather related to 
inverse matrices. 
For an n by n matrice and  the inverse        
of X, quasi-determinant of X is directly defined by

Recall that   
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Quasi-determinants
Defined inductively as follows [For a review, see

Gelfand et al.,
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2-soliton solution of NC KdV
each packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiii
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Scattering process

The shape and velocity
is preserved ! (stable) 

The positions are shifted ! (Phase shift)



NC Burgers hierarchy
MH&K.Toda,JPA36(‘03)11981[hep-th/0301213]

NC (1+1)-dim. Burgers equation:
uuuu ′∗+′′= 2& : Non-linear &

Infinite order diff. eq. w.r.t. time ! (Integrable?)

NC Cole-Hopf transformation
)log( 01 τττ θ
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ττ ′′=&
(NC) Diffusion equation:

: Linear & first order diff. eq. w.r.t. time

(Completely Integrable !)



5. Conclusion and Discussion

Confirmation of NC Ward’s conjecture 
– NC twistor theory geometrical origin   
– D-brane interpretations applications to physics

Completion of NC Sato’s theory
– Existence  of ``hierarchies’’
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry?
– Construction of multi-soliton solutions
– Theory of  tau-functions description of the symmetry 

and the soliton solutions

Solved!

Solved!

Successful

Successful

Near at hand ?

Work in progress [NC book of Mason&Woodhouse ?]
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