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Based on _ _
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1. Introduction

Successful points in NC theories
e Appearance of new physical objects

» Description of real physics
e \/arious successful applications
to D-brane dynamics etc.

(Integrable!)

Final goal: NC extension of all soliton thé



Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang-MiIIs ed. NC extension
(instantons) F.. =-F.

3 Bogomol'nyi eq. NC extension
(monopoles) *

2 Kadomtsev-Petviashvili (KP) eg.  NC extension

(+1) | Davey-Stewartson (DS) eq. ... ‘

1 KdV eq. Boussinesq eqg. NC ex

(+1) |NLSeqg. Burgers eq.
T sine-Gordon eg. (affine) Toda field eq. .

Dim. of space




Ward’s conjecture: Many (perhaps all?)
Integrable equations are reductions of
the ASDYM eqgs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(”85)451

ASDYM eq.

| Reductions é

(KPeg.) (DSeqg.) Ward’s chiral model
KdV eq. Boussinesq eq.
NLS eq. oda field eq. ’

sine-Gordon eq. Liouville eq.
Painleve egs.  Tops ...
Almost confirmed by explicit examples !!!




NC Ward’s conjecture: Many (perhaps all?)
NC integrable equations are reductions of
the NC ASDYM egs.

MH&K.Toda, PLA316(“03)77[hep-th/0211148]

NC ASDYM eq.

| NC Reductions Redqgtions

Many (perhaps all?) Successful?
NC integrable egs.
/ Existence of physical pictures
NC Sato’s theory plays important N

: o ew physical objects
roles in revealing integrable Py J
25 gECs oL e Classfication of



Program of NC extension of soliton theories

@ (1) Confirmation of NC Ward’s conjecture
— NC twistor theory = geometrical origin
— D-brane interpretations = applications to physics

e (11) Completion of NC Sato’s theory
— Existence of "hierarchies” = various soliton egs.
— Existence of infinite conserved quantities
- Infinite-dim. hidden symmetry
— Construction of multi-soliton solutions

— Theory of tau-functions —> structure of the sqlition
spaces and the symmetry

(),(i) > complete understanding of the NC soliten theories



Plan of this talk

. Introduction

. NC gauge theory In 4-dim. (ASDY M eq.)

. NC Ward’s conjecture

--- Reduction of NC ASDYM to (1+1)-dim.
(KdV, NLS, ...)

. Towards NC Sato’s theory (KP, ...)

hierarchy, infinite conserved quantities,

exact multi-soliton solutions,...

. Conclusion and Discussion



2. NC Gauge Theory In 4-dimension

Here we discuss NC gauge theory of instantons.
(Ex.) 4-dim. (Euclidean) G=U(N) Yang-Mills theory

e Action
s:_%jd“xTr F,F* ==

e Eg. Of Motion:
[D".ID,.D,]1=0
e BPS eq. (=(A)SDYM eq.)

F —+F - instantons

(F,,+tF, =0 F,6 =0)

1 [d*xTr
4.
1 [d*xTr
4.

~

F.F.+F.F,)

UV uv v

(F,, *F, f+2F, ﬁwl

-0 BPS > C,

(F., =0,A -0,A +[A, A



(Q) How we get NC version of the theories?

(A) They are obtained from ordinary commutative
gauge theories by replacing products of fields

with ; f (x)g(x) > f(x)*g(x)
&
f(x)*g(x) = f(X)eXpGQijéfJg(XF f(X)g(X)+i%ij5if(X)@jg(X)+O(6’2)
A deformed product

f«(g=*h)=(f=*g)*h Associative

X', x'], =x"xx)—x)xx' =i0"  NC |

In this way, we get NC-deformed theories
with In NC directions. (integrable???)



(EX.) 4-dim. NC (Euclidean) G=U(N)
Yang-Mills theory

(All products are )
e Action .
S=—%jd4XTr FW*FW :_Z.d4XTr Fﬂv*Fuv+Fﬂv*FuV)
=—% [d*xTr|(F, ¥F,, | +2F, » EWI

=0< BPS © G,
(F,=0,A -0,A, +[A,,/A])

e« Eg. Of Motion:

V !
[D",[D,,D,].]. =0 Don’t omit even forG=U(1)
e BPS eg. (=NC (A)SDYM eq.) (v U ()2 U (0))

F.,=%F, > NC instantons

(F,,+tF, =0 F,6 =0)



ADHM construction of (NC) instantons
Atiyah-Drinfeld-Hitchin-Manin, PLA65(” 78)185

ADHM eg. (G=""U(k)”): k > k matrix eq.

[B,, B ]+[B,,B;]+11°=J"J =0
[B,,B,]+1J =0

ADHM data B,,:kxk, l:kxN, J:Nxk

1:1

Instantons A, :NxN
ASD eg. (G=U(N), C2=-k): N >< N PDE

F.+F,, =0

4Y4)

F,, =0

412y




ADHM construction of BPST instanton (N=2,k=1)

ADHM eq. (G="U(1)")

[B,,B]+[B,,B;]+11"=J3"J =0
[B,,B,]+1J =0

Bi,=a,, 1=(p0),J= (2)
} $ }
position size
i(x=b)" )

2

2ip

Final remark: matrices B and
coords. z always appear
In pair; z-B

=

(x=b)*+ p

ASD eg. (G=U(2), C2=-1)

lezl + F2222 =0
F. =0

412,

2T T (x=b) + p?)

Small instanton il
singulality



ADHM construction of NC BPST instanton (N=2,k=1)

Nekrasov&Schwarz,

ADHM eg. (G="U(1)”) 1 > 1 matrix eq. CMP198(*98)689
[hep-th/9802068]

[B,,B;]+[B,, B;]+11"=3"J =¢
[B,,B,]+1J =0

Bi,=a, |-= (\/,02+_6V’0)’ J= (g)
¢ :
position  size > slightly fat?

Regular!

A, F.,  something smooth (U(1) instogs
o0 —0 :
ASD eg. (G=U(2), Cz=-1)
lezl + F2222 =0
F,., =0 Resolution of

the singulality



D-brane’s interpretation of ADHM construction

Douglas, Witten, ...
Hashimoto-Terashima,
Tong’s excellent review

ADHM eg. (G=""U(k)”): k > k matrix eq.

[B,, B ]+[B,,B;]+11°=J"J =0 ‘ BPS
[B,,B,]+1J =0 )

k DO-branes

ADHM data B,,:kxk, l:kxN, J:Nxk

1:1

Instantons A, :NxN
ASD eg. (G=U(N), C2=-k): N >< N PDE

leil + Fzzfz =0 BPS

212y

String theory is a treasure box of dualities



3. NC Ward’s conjecture --- reduction to (1+1)-dim.

¢ From now on, we discuss reductions of NC ASDYM
on (2+2)-dimension, including KdV/, NLS, ...

& Reduction steps are as follows:
(1) take a simple dimensional reduction
with a gauge fixing.
(2) put further reduction conditions on gauge figlds.

@ The reduced egs. coincides with those obtained In
the framework of NC KP and GD hierarchies,

which possess infinite conserved guantities and
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq.

o (1) Reduced ASDYM eq.:X* —> (t,X) oo sh/oeoriso
() B'=0 |
y , A, B, C: 2 times 2
() A'—=B+[C,B], =0 matrices (gauge fields)
: D=0: fixi
(i) C'+A+[AC]. =0 (D=0: gauge fixing)

A ,q _1}5:(0 Oj’ NOT
ara=q =9 10 Traceless !

(2) Further 1 ’
59" +a'*q 0

Reduction: . _

iq’”+£q'2+3{q” qF +0*q'*q —iq”—q*q'
4 2 2 - 2

(i) = uzlu’”+§(u’*u+u*u’) : NC KdV_eg. I
1 1 ; eq. !
[t,X]=16

Note: A B,C e gl(2)—=2>sl(2) U(1) part issnecessaryn




The NC KdV eaq. has integrable-like properties:

e possesses infinite conserved densities:

o.=res_ L"—36((res,L")Ou;+(res_,L")0u))

MH, JMP46 (2005)
- . P n
res L": coefficient of &, in L [hep-th/0311206]

() : Strachan’s product (commutative and non-associative)
N R e\ PP .
f(x)0g(x):= f(x)[; (2$+1)!(§6? aiajj ]g(x) [t, X] 3 |9
@ has exath N-soliton solutions: - ¢ ceirand-retas
_ [g-alg/9Z02008]
u =25XZ(@XVVi )+ W MH, [hep-th/0610006]
= . cf. Paniak, [hep-#HJ{QE0SI85}*
W, =W (f,,..., f;),,:quasi-determinant of Wronski matkix

f; =exps(x, ;) +a; exp(—=5(X, &;)) E(X,a)=Xa +ta’




Reduction to NC NLS eaq.
e Reduced ASDYMeg.: Xx* > (t, X) Legare,

[hep-th/0012077]
(i) B'=0
T - A, B, C: 2 times 2
(m A-B+[C,B].=0 matrices (gauge fields)
(iii) C'+A+ [A, C]* =0 (D=0: gauge fixing)

Further 0 vy i(1 O (y*y -y

. A: . ,B:_ 1C:| N
Reduction: -y 0 2\0 -1 ' sy xy
0 iy —y" -2+ x| NOIdraceless
= .. - .y
—\y +y" =2y xy *y 0
ly=y"+2y*y *y : NC NLS eqg. !

| 930 [MH, PLEG25;824]
Note: A,B,C eu(2) >SU(2) u(1) part isecessary”




In this way, we can obtain various NC

Almost all ?

Integrable equations from NC ASDYM !!!

NC ASDYM

Infinite gadge group

Summarized in MH
[hep-th/0601209]

NC Ds ‘NC Ward'’s chiral
NC KP
NC Zakharov NC CBS NC (affine) Toda
—_— Kd_v NG mKay NC sine-Gordon
‘ | gauge equiv.] | 1 gauge equiv.
NC NLS NC pKdV \ NC Liouville
/
NC Boussinesq ‘ ‘ NC N—Wave‘ NC Tzitzeica




4. Towards NC Sato’s Theory

@ Sato’s Theory : one of the most beautiful theory of
solitons

— Based on the exsitence of hierarchies and tau-functions

— Various Integrable equations in (1+1)-dim. can be
derived elegantly from (2+1)-dim. KP equation.

e Sato’s theory reveals essential aspects of solitons:
— Construction of exact solutions
— Structure of solution spaces
— Infinite conserved quantities
— Hidden infinite-dim. symmetry

Let’s discuss NC extension of Sato’s theory




Derivation of soliton equations

e Prepare a Lax operator which Is a pseudo-
differential operator

L:=8, +U,0 + U022 +U, 03 +--- Uy = U, (X5, X%, %%,
L x
¢ Introduce a differential operator Neraam A iy
B, = (Lx*:--*L)., is introduced here:
_ m times _ [Xi’Xj:ieij
e Define NC (KP) hierarchy:
oL
—=[B,,, L], Here all products 3
OX \ star product:
Y \
0, U0, + f (U)o, +
) f -2
a"‘”ﬁf T "‘3(U)af3+ _, Each coefficient.y
6mu4ax3+--- fm4(u)6x T

a differentialee



Negative powers of differential operators

00 n _ _
"o f :=Z[J(a;f)agl
=0\ J/

il
n(n-H(n-2)---(n-(j-1))
10-D(J-2)---1

0lof =10 +3f0°+3f0 +f"

: binomial coefficient
which can be extended
to negative n

Oyof =10, +210,+ 1" - negative power of
differential operator
Oy of =10, — 107 +10°— (well-defined !)

020f=10°-2f0"+3f0 " —-..

Star product: F)*g(x) = f(x) exp(%ﬁ”éié | jg(x)

which makes theories noncommutative:
[x', x'], =x"*x) —x'*xx'=i@g"



Closer look at NC KP hierarchy

For m=2
07) Ol =2U;+U;

0°) 0,uy=2u) +Uuf+2u, *uj)+ 2[u,,u,],

0.°) 8,u, =2ul +uj +4u,*uj —2u, *ul +2[u,,u,l.

Infinite Kind of fields are represented au
in terms of one kind of field Y, =U b= o
MH&K.Toda, [hep-th/0309265] o [y
For m=3 = [ ox
0;) 0, = ué”+3“5'+3“15"+3“; e etc.
(2+1)=dim.

1 3 3.1 3 -1
u=-—u,+—(U, *u+u*u )+—0,u, +—[u,o, u,l,
t 4 XXX 4( X x) 4 X Yy 4[ ]

“»* NC KE.equation

and other NC equations  u =u(x*, x*,x%:+)

(NC KP hierarchy equations) :( ¢y f[



reductions

(KP hierarchy) = (various hierarchies.)

e (Ex.) KdV hierarchy
Reduction condition
> =B,(=62+u) : 2-reduction
gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq..

u, =ZuXXX+Z(uX *U+U*U )

Note iu =0 : dimensional reduction In X, directiog
2N
KP u(xt, x%, x%, x%, x°,...)
l XY t . (2+1)-dim.
Kav: u(x, x°, x°,..) | T



l-reduction of NC KP hierarchy yields
wide class of other NC hierarchies

e No-reduction = NC KP (X, y,t) = (X", x*, x°)
e 2-reduction > NC KdV (x,1) = (X', x%)
e 3-reduction - NC Boussinesq (X,1) = (X, x°)
e 4-reduction - NC Coupled KdV

e 5-reduction - ...

» 3-reduction of BKP - NC Sawada-Kotera

& 2-reC

e Special 1-reduction of mKP - NC Burger?

& ..

" Noncommutativity should be introduced into space

uction of mMKP = NC mKdV



Conservation Laws for the NC hierarchies

e Conservation laws:  9,0=0,J' o
time ~ " space
Then Q:=|dxo is a conserved quantity.

space

e @tQ = dX@tG = |spatial dSiJi =0

space inf inity
Conservation laws for the hierarchies
n Ij -
o,res,L" =0,J+60°0,&,

time ” space’
| have succeeded in the evaluation explicitly !

res_ L' : coefficient Noncommutativity should be introduced

ofd" in L in space-time directions only, =

(o
Il
>

0; should be space or time derivative
-



conserved densities for

the NC KP hierarchy.

m-1 Kk

o, =res,L"+6™> ( j (05 'res_,, L") 0 (o;res, L™)
k=0 I=

t=x" res.L": coefficient of 8] in L

Q : Strachan’s product (commutative and non-associative)

f(x)0g(x):= f(x)[z(z( 1)1)(1 uééj ]g(X)

MH, JMP46 (2005)

[hep-th/70311206] This suggests infinite-dimensional

symmetries would be hidden.




We can calculate the explicit forms of
conserved densities for the wide class
of NC soliton equations.

@ Space-Space noncommutativity:
NC deformation is slight: &, =res_L"
Involutive (integrable in Liouville’s sense)
& Space-time noncommutativity

NC deformation is drastical: ([t,x]=16)
— Example: NC KP and KdV equations
o=res_ L' —360((res,L")Ou; +(res_,L")ou;)
meaningfal ?



Exact N-soliton Solutions of NC KP hierarchy

¢ \We have found exact N-soliton solutions for the
wide class of NC hierarchies.

& Physical interpretations are non-trivial because
when f(x), g(x) are real, f(x)*g(x) Is not in general.

¢ However, the solutions could be real In some cases.

— (1) 1-soliton solutions are all the same as commutatgve
ones because of

f(x—=vt)*g(x—vt)=f(x—vt)g(x—Vt)
—(1):In asymptotic region, configurations of mult(S@len

solutions-could be real in soliton scatterings arfcPtagssarie
as commutative ones.



Exact N-soliton solutions of
the NC KP hierarchy

L=®06,0™ solves the NC KP hierarchy !

@ f =|W(f,..., fy,f)| ., duasi-determinant
’ of Wronski matrix
Ty = exp S(X,a;) + & exp ¢(X, §;) Etingof-Gelfand-Retakh

(X, a) =Xoa+ X2a2 + X3a3 + ... [9-alg/9701008}

N

U, =0, ) (BW)*W7 —2%> ologdetW(f,,---, fy)
=1

W, =W (f,,..., f)) [,

The exact solutions could be actually N-soliton"selutions

In asymptotic region ! (vH, hep-th/0610006]
Exactly solvable!




Quasi-determinants

e Quasi-determinant Is not just a generalization of
commutative determinant, but rather related to
INvVerse matrices.

e For ann by n matrice X =(x;)and the inverse Y =(y;)
of X, quasi-determinant of X is directly defined by

X, = Y5 ( o0, )™ detxj

det X
some factor

e Recall that A
1~ -1

Y — A B oy oyt (A—-BD C) (C
C D (B—AC‘lD)‘1 (D~

- We can also define quasi-determinants rect




Quasi-determinants

e Defined inductively as follows [For a review, see
i Gelfand et al,
Xy =% = 2% (X ") % math.QA/0208146]
n=1: |X[ =x,
N=2: |X|, =Xy =X Xap - Xops |X],, = Xip = Xu - Xa1 * X,
21 = X1 — Xop - Xi + Xags | X —x22—x21-x1‘11-x12,
N=3: |X|, =X — Xy (Xp = Xp3 - Xgg - Xgp) ™ - Xog = Xgg - (Xap = Xgg - Xg3 - Xpp) ™ - X

1 1 1 E1
— X ‘(Xzs — Xy Xy X33) X3 — Xi3° (X33 — X3y " Xy X23) " X31

f)— x 1 X 2 X 'm

Wronskl matrix;  W(f, f,,--, f,) =

By

21



@ 2-soliton solution of NC KdV
each packet has the configuration:

u® = 2k.? cosh ? (k. x —4k.’t), v, =4k2, h

— 2k?

Scattering process

is preservegi

T FOy N
\ K ."._ N
\ EY N
\ RN N
% ~
8 & N
\ 5 N
\ R \
Y - N
\ ) N
\ Y N
L ~
\ Y -, N
\ 5 N
¥ B ~
U 8 N
\ 3 N
\ g >
\ N
\ 3 N
S N
0 ) N
\ B N
\ Y N
\ ) N

> >

The positions are shifted ! (Phase shifg




NC Burgers hierarchy

MH&K.Toda,JPA36(“03)11981[hep-th/0301213]

e NC (1+1)-dim. Burgers equation:
U=u"+2u*u'":Non-linear &
Infinite order diff. eq. w.r.t. time ! (Integrable?)

NC Cole-Hopf transformation
g (—22> 0, log 7)

u=r7

(NC) Diffusion equation:
T=7" :Linear & first order diff. eq. W.r.tgtime

(Completely Integrable 1



5. Conclusion and Discussion

e Confirmation of NC Ward’s conjecture

— NC twistor theory = geometrical origin
— D-brane interpretations = applications to physics

Work in progress > > [NC book of Mason&Woodhouse ?]

« Completion of NC Sato’s theory
— Existence of "hierarchies” -
— Existence of infinite conserved guantities Successful
= Infinite-dim. hidden symmetry?
— Construction of multi-soliton solutions

— Theory of tau-functions > description of thes§
and the soliton solutions Near at hand 2
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