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1. Introduction

Successful points in NC theories
e Appearance of new physical objects

» Description of real physics
e \/arious successful applications
to D-brane dynamics etc.

(Integrable!)

Final goal: NC extension of all soliton thé



Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang;l\/lills eq. NC extension
(instantons) F.. =-F.

3 Bogomol'nyi eq. NC extension
(monopoles) *

2 Kadomtsev-Petviashvili (KP) eg. NC extension

(+1) | Davey-Stewartson (DS) eq. ... ‘

1 KdV eq. Boussinesq eq. NC ex

(+1) |NLSeq. Burgers eg. ‘

T sine-Gordon eq. (affine) Toda field eq

Dim. of space




Ward’s conjecture: Many (perhaps all?)
Integrable equations are reductions of
the ASDYM eqgs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(”85)451

ASDYM eq.

| Reductions é

(KPeg.) (DSeqg.) Ward’s chiral model
KdV eq. Boussinesq eq.
NLS eq. oda field eq. ’

sine-Gordon eq. Liouville eq.
Painleve egs.  Tops ...
Almost confirmed by explicit examples !!!




NC Ward’s conjecture: Many (perhaps all?)
NC integrable equations are reductions of
the NC ASDYM egs.

MH&K.Toda, PLA316(“03)77 [hep-th/0211148]  Hannabuss]

NC ASDYM eq.

| NC Reductions

cf. [Brain-

Redqgtions

/

NC Sato’s theory plays important N

roles in revealing integrable
aspects of them Classfication of

Many (perhaps all?)

NC integrable egs.

Existence of physical pictures
ew physical objects

Successful?




Program of NC extension of soliton theories

@ (1) Confirmation of NC Ward'’s conjecture
— NC twistor theory - geometrical origin
— D-brane interpretations = applications to physics

@ (11) Completion of NC Sato’s theory
— Existence of "hierarchies’ -> various soliton egs.
— Existence of infinite conserved quantities
- Infinite-dim. hidden symmetry
— Construction of multi-soliton solutions

— Theory of tau-functions -> structure of the,sSOIEEION
spaces and the symmetry

(),(if) > complete understanding of the NC soliten theories



Plan of this talk

1. Introduction
2. NC ASDYM equations (a master equation)

3. NC Ward'’s conjecture
--- Reduction of NC ASDYM to

KdV, mKdV, Tziteica, ...

4. Towards NC Sato’s theory (KP, ...)
hierarchy, infinite conserved quantities,

exact multi-soliton solutions. ...
5. Conclusion and Discussion



2. NC ASDYM equations
Here we discuss G=GL(N) (NC) ASDYM eqg. from the
viewpoint of linear systems with a spectral parameter ¢ .

e Linear systems

Wz x2+ix® x°—ixt

Ly =(D, —¢D;)y =0, . ('z” Wj_l(xoﬂxl x2—ix3j
My = (D, - ¢ Dy )y =0. 2
e Compatibility condition of the linear system:

[L.M]=[D,,D,]+¢([D,, D;]1-[D,, D;])+¢"[D;, D] =0

F.=[D,,D,]=0,
= F.. =[D,,D;]=0, :ASDY M equation
\Fz’z"_ WW:[DZ’DZ:_[DW’DVT/]:O

(F. =0,A -0,A, +[A,A])



Yang'’s form and Yang’s equation

e ASDYM eq. can be rewritten as follows
(F,=[D,,D,]=0, = 3h,D,h=0, D,h=0
F.s =[D;,Dz]1=0, = 3h,D;h =0, D;h =0

L Fz —Fus :[Dz’ Dz]_[DW’ Dw] =0

N\

If we define Yang’s matrix: J:=h"h
then we obtain from the third eq.:

0,(J70,1)-0,(170;))=0 :Yang'seq.
J The solution J reproduce the gauge fields as

A =-hh? A =hh7 A =-hh™, A, =hgh



(Q) How we get NC version of the theories?

(A) We have only to replace all products of fields In
ordinary commutative gauge theories

with C o T()9(X) = T(x)*g(x)

L2
f(x)*g(x):= f(x)exp(ize”éfjjg(x)z f(x)g(x)+i%ijaif(x)ajg(x)+0(6’2)
A deformed product
fx(g=*h)=(f*g)=*h Associative
[X', x'], =x"*x) —x)«x'=i0" NC |

In this way, we get NC-deformed theories
with In NC directions. (integrable???)



Here we discuss G=GL(N) ASDYM eq. from the
viewpoint of linear systems with a spectral parameter ¢ .
(All products are star-products.)

e Linear systems

L*W:(Dw_ng)*W:O’ eg ‘Z“ W 1 X0+ixl X2_ix3
My =(D, ~{Dg) %y =0. ( j ( j

~

W Z

J2
e Compatibility condition of the linear system:
[L1 M]* :[Dw1 Dz]>x< +§([Dz1 D'Z]* _[DW1 DvT/]*)_I_é/Z[D'Z’ DvT/]* :O
F.=[D,,D,]. =0,
=2 F.. =[D,,D;]. =0, N C ASDY M equation
— :Dz’ DZ]* _[DW’ DW]* =0
(F, =0,A -0,A,+[A,,A])

Don’t omit even for G=U(1) (.¥i{1)=U(e0))




Yang'’s form and Yang'’s equation

o ASDYM eq. can be rewritten as follows
(F,=[D,,D,.=0, = 3h,D,*h=0, D,*h=0

oy = [ D-].=0, = Hﬁ D~*r~1—0, DW*F\:O

F. —[D D.].-[D,.,D;]. =0

N\

E

\

If we define Yang's matrix: J:=h"'xh
then we obtain from the third eq.:

-1 -1 3
0,(J7*0,d)-0,(J " *0-J)=0 :1NC Yang’s eq.
l The solution J reproduces the gauge fields a3

AZ :_hz*h_l’ A\N:hw*h_11A'z‘ :_H'z‘*ﬁ_l; A\x,zﬁw*ﬁ_l

(All products are star-products:)



Backlund transformation for Yang'’s eq.
e Yang’s J matrix can be decomposed as follows
; :[Al—ﬁ*A*B —§*J&]

_ _ MH [hep-th/0601209, Oymmnnn]
A=B A

The book of Mason-Woodhouse

e« Then NC Yang’s eq. becomes

8(A* *A) 8(A*B~*A) 0, &(A*B * A)—O- (A* , FA) =0,
0,(A *A)*At—5 (A1*A)*A1+B *A*B, —B, *A*B_ =0,
Al%0, (A *AN—AT+0, (A *A1)+B, *A*B, —B. *A*B_ =0.

e The following trf. leaves Yang’s eq. asit Is:
0,B™" = A*B * A, 0,B™" = A*B~*A

0,B™" = A%B_*A 0.B™ =A*B, *A
ATew _ A1 Arew _ p-d We can generate new.solutions
- ) from known (trivial) solutions



3. NC Ward’s conjecture --- reduction to (1+1)-dim.

¢ From now on, we discuss reductions of NC
ASDYM on (2+2)-dimension, including NC KdV,
MmKdV, Tzitzeica...

» Reduction steps are as follows:
(1) take a simple dimensional reduction
with a gauge fixing.
(2) put further reduction condition on gauge field.

# T he reduced egs. coincides with those obtainedin
the framework of NC KP and GD hierarchies,

which possess infinite conserved quantities:and
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq. M PLB62s, 324

. _ _ [hep-th/0507112]
e (1) Take a dimensional reduction and gauge fixing:

(2,Z,W,W) = (t,X) =(z,Ww+W), A _[° 0)
The reduced NC ASDYM is: 10
) [A,AL =0
() A -A+[A AL -TA AL =0
(i) A-A,+[A, AL =0

e (2) Take a further reduction condition:

%q”+q’*q -’

NOT traceless !

et neons
q'+q*q —q) -

We can get NC KdV eq. in such a miracle was :

‘ 1 m
i = U=—-U
(1) 1

PN A 1 " f
f(9,9'.9",9") _Eq —0*q
J

+%(u’*u+u *U") u=2q "t x]=16

Note: A, B,C e gl(2) —22—sl(2) U(1) part ismecessary»




The NC KdV eaq. has integrable-like properties:

@ possesses infinite conserved densities;

o. =res_ L +Ze((res_1L”) ou"—2(res_,L")0u")

MH, JMP46 (2005)
- . P n
res L": coefficient of &, in L [hep-th/0311206]

() : Strachan’s product (commutative and non-associative)
N R e\ PP .
f(x)0g(x):= f(x)[; (2$+1)!(§6? aiajj ]g(x) [t, X] 3 |9
@ has exath N-soliton solutions: - ¢ cerrand-retas
_ [g-alg/9Z02008]
u =25XZ(@XVVi )+ W MH, [hep-th/0610006]
= . cf. Paniak, [hep-#HJ{QE0SI85}*
W, =W (f,,..., f;),,:quasi-determinant of Wronski matkix

f; =exps(x, ;) +a; exp(—=5(X, &;)) E(X,a)=Xa +ta’




Reduction to NC mKdV eg.VH NPB741, 568

. _ _ [hep-th/0601209]
e (1) Take a dimensional reduction and gauge fixing:

(z,Z,W,W) > (t,X) =(z,w+W), 5 _[° oj

The reduced NC ASDYM is: 10
) [A,AL =0
(i) A -A+[A AL-[A,A;].=0
(i) A -A,+[A, AL =0
e (2) Take a further reduction condition:

o O T L YN

1 1 1 1
We get a=->p-—p’b=—= p’+§ p*,  NOT traceléss !

1 14 1 3 1 [} 1 " 1 3 1 '
c=—p'-=p*-= — “p3i-=

"

——(p * Pk p+ p*p*p) NC mKdV/ !

and (i) = p=§p icr
t,x]=16



Relation between NC KdV and NC mKdV

e (1) Take a dimensional reduction and gauge fixing:
(z,Z,w,W) = (t,X) =(z, W+ W),

A = (O Oj Note: There Is a residual gauge symmetry:

‘ 1 O . y 1 0
A, —>9 *A *g+Q9g *0,0, g= 51

e (2) Take a further reduction condition:

1
qg -1 50" +0'%g -q’
NCKdV AW:( , . j’A‘N:O’AZ: 1
I LR f(9.0,9%09") -7a z@%ay
GaL_lgeI t The gauge trf. > #=0-p, 2q'=p'=p°
eqlflva - NC Miura map !

NCmKdV: A, z[p _1} A :(O Oj, A, :[C bj MH, NPB7415:363
0 -p a 0 0 d [hep-th/0601209]



. : - MH, NPB741, 368
Reduction to NC Tzitzeica eq. R

e Start with NC Yang'’s eq.
0, (J ‘152\1 )—02,,(J ‘18WJ) =0
e (1) Take a special reduction condition: 0 1o
J =exp(-E_w) *g(z,Z) *exp(E,w) E, (o 0 1]
We get a reduced Yang’s eq. LUt
0,(g7*0,9)-[E.,g"*E,gl.=0  _ [2 3 ;}
e (2) Take a further reduction condition: 0 1.0
g = exp( p) = diag (exp( @), exp(-w), 1)
We get (a set of) NC Tzitzeica eq.:

0, (eXp(-w) * 0; exp(w)) + 0, (exp(—w) *V *exp(w)) = exp(w) —exp(—2a),
0, (exp(w) * 0; eXp(-w)) + 0, (exp(w) *V *exp(-w)) = exp(—2w) —exp(w),
0,V =0,(exp(-p) *0; exp(p)) =0
(—=25 0, = exp(w) — exp(—2@) )




In this way, we can obtain various NC

Almost all ?

Integrable equations from NC ASDYM !!!

NC ASDYM

NC Zakharov

NC CBS

Summarized in MH
[hep-th/0601209]

‘NC Ward’s chiral

NC (affine) Toda
—_— Kd_v NG mKay NC sine-Gordon
H gauge equiv.] | 1 gauge equjiv.
NC NLS NC pKadV \ NC Liouville
l
NC Boussinesq ‘ ‘ NC N—Wave‘ NC Tzitzeica




4. Towards NC Sato’s Theory

@ Sato’s Theory : one of the most beautiful theory
of solitons

— Based on the exsitence of hierarchies and tau-
functions

— Various integrable equations in (1+1)-dim. can be
derived elegantly from (2+1)-dim. KP equation.

@ Sato’s theory reveals essential aspects of solitons:
— Construction of exact solutions
— Structure of solution spaces
— Infinite conserved guantities
— Hidden Infinite-dim. symmetry

Let’s discuss NC extension of Sato’s theorn




Derivation of soliton equations

e Prepare a Lax operator which Is a pseudo-
differential operator

L:=0, +2ud, + f (U)o, +g(u)o,” +--- u=u(x,x*,x,)
e w
e Introduce a differential operator e iy
B, =(L*---*L),, is introduced here:
| m times [x', xi]=i0"
e Define NC KP hierarchy:
oL . .
—=[B,,L]. __, yields NC KP equationgiand
OX N other NC hierarchyggs:
/ \
Ol + Fuz (U0} + Find a suitable L which
0, U0, + fos (U3 + satisfies NC KP hierarchy !

0, U, 0% +--- f ()2 +--- -> solutions of NC _KP eq.



:ax _|_Ea;l_|_...
2

@ f=|W(F,.., fy, )

N+1,N+1

E(X,a) = X + X,a’ + Xa° + -

| Wronski matrix:
Wi -:‘W(fl""’ fi)‘i,i W(fl’ fz,”"fm):

- Exact N-soliton solutions of the NC KP hierarchy —
L=o+0,0 Solves the NC KP hierarchy !

f = exp §(X,ai) +a, exp f(X,,Bi) Etingof-Gelfand-Retakh,

N
u=20,> (OW)*W~5 —22> 20; logdetW(f,,--, fy)
=1 _

quasi-determinant
of Wronski matrix

[g-alg/9701008]

f, f, TS
o f 0. f, T Of

X

By ™




Quasi-determinants

e Quasi-determinants are not just a generalization of

commutative determinants, but rather related to inverse
matrices.

e Forann by nmatrix X =(x;)and theinverse Y =(¥;)
of X, quasi-determinant of X IS directly defined by

i+
‘X‘ij:yj‘il ( 00 ((je’? detX]

e Recall that some factor
A B
= =
C D :
vy [Al +A'B(D-CA'B)'CA* -~ A'B(D-CA'E

—(D-CA'B)'CA™ (D-CA™B)
-> We can also define quasi-determinants rec




Quasi-determinants

e Defined inductively as follows [For a review, see
i Gelfand et al.
— _ Jy-1 ’
‘X i = i ;j'xii'((x ) )i X math.QA/0208146]

il -1
= Xjj _ini'(‘x U‘j,i,) Xji

X U : the matrix obtained from X
deleting I-th row and j-th columg

n=1: |X[ =x
N=2: |X|, =X =X, Xop + X1, |X|12 = Xip = X4 " X1 * X,
X o1 Xo1 — Xy 'X1_21’X11’ |X|22 = Xy _X21'X1_11'X12’
N=3: |X|, =Xy =X, (Xop — Xpg - Xz * Xgp) ™+ Xy — Xg3* (Xg — X

-1 1 B
— X '(X23 — Xy Xgp X33) " X3 — Xi3 '(X33 — X3 " Xy < K



Interpretation of the exact N-soliton solutions

¢ \We have found exact N-soliton solutions for the
wide class of NC hierarchies.

& Physical interpretations are non-trivial because
when f(x), g(x) are real, f(x)*g(x) Is not in general.

e However, the solutions could be real In some cases.

— (1) 1-soliton solutions are all the same as commutative
ones because of

f(x—=vt)*g(x—vt)=f(x—vt)g(x—Vt)
—()ln asymptotic region, configurations of mcitis

soliton solutions could be real in soliton scattegings
and the same as commutative ones.

MH [hep-th/0610006]




@ 2-soliton solution of KdV
each packet has the configuration:

u® = 2k.“ cosh 2(k.x —4k’t), v, =4k?, h =2k’

velocity height
Scattering process (commutative case)

is preserveds

T FOy N
0 8 %, N
\ T N
\ RN N
% N
g 3 N
\ 5 N
\ R N
Y - N
\ ) N
\ K N
L N
\ Y %, N
\ 5 N
¥ B ~
U 3 N
\ 3 N
\ g >
\ N
\ 3 N
0y N
\ L N
8 3 N
\ g N
\ ) N

> >

The positions are shifted ! (Phase shifg




@ 2-soliton solution of NC KdV
each packet has the configuration:

u® =2k.* cosh ?(k-x—4k.’t), v, =4k?, h =2k?

velocity height
Scattering process (NC case)
/\ A In general, complex
y; Unknown in the middle gegion

Asymptotically real
and the same as

commutative
gonfigukations

\ 5 N
\ 5 N
k! N
Voo EREERN
\ ) N
\ B
\ R
. - N is
5 .'._ N
\ H N
\ K N
\ 3 >
\ \\
\ B N
v RN R
U 8 N
\, ) N .
Y A Asym N

The positions are shifted ! (Phase shifg



5. Conclusion and Discussion

NC twistors and N=2 strings
[Brain-Hannabuss]
| NcasDYM |

.
a®
a®
“““
.
a®
a®

a®
a®
a®

'\IC Ward’s chirai

NC Zakharov [Ncces | INC (affine) Toda]

LT
‘ NC KdV ‘ ‘NC mKdV‘

‘NC sine-Gordon

gauge equiv.

| | gauge equiv.
NC NLS ‘ ‘NC pKdV‘ \ ‘ NC Liouville

‘ NC Boussinesq \ ‘NC N—Wave‘ ‘ NC Tzitzeica
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