Noncommutative Ward's Conjecture and Integrable Systems Masashi HAMANAKA Nagoya University, Dept. of Math. (visiting here until December) Relativity Seminar in Oxford on Nov. 14th Based on

- MH, ``NC Ward's conjecture and integrable systems," NPB741 (2006) 368, [hep-th/0601209]
- MH, ``Notes on exact multi-soliton solutions of NC integrable hierarchies ,'' [hep-th/0610006]
- MH, ``NC Backlund transforms,'' [hep-th/0ymmnnn]

1. Introduction

Successful points in NC theories Appearance of new physical objects Description of real physics Various successful applications to D-brane dynamics etc. NC Solitons play important roles (Integrable!)

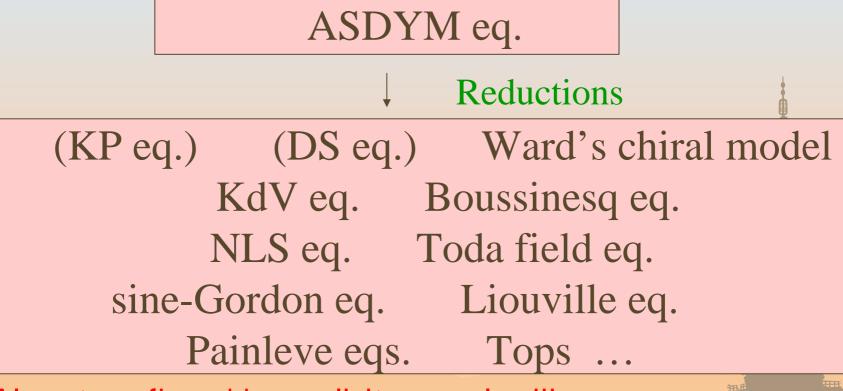
Final goal: NC extension of all soliton theories

Integrable equations in diverse dimensions

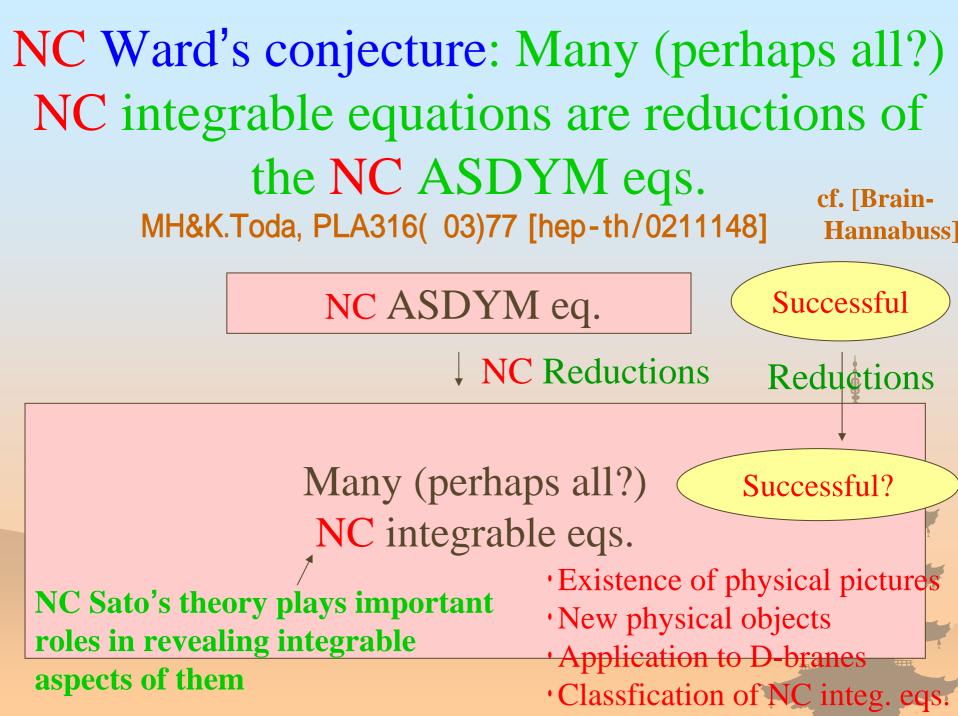
4	Anti-Self-Dual Yang-Mills eq. (instantons) $F_{\mu\nu} = -\tilde{F}_{\mu\nu}$	NC extension (Successful)
3	Bogomol'nyi eq. (monopoles)	NC extension (Successful)
2 (+1)	Kadomtsev-Petviashvili (KP) eq. Davey-Stewartson (DS) eq	NC extension (This talk)
1 (+1)	KdV eq. Boussinesq eq. NLS eq. Burgers eq. sine-Gordon eq. (affine) Toda fiel	NC extension (This talk)

Dim. of space

Ward's conjecture: Many (perhaps all?) integrable equations are reductions of the ASDYM eqs. R.Ward, Phil.Trans.Roy.Soc.Lond.A315(85)451



Almost confirmed by explicit examples !!!



Program of NC extension of soliton theories

- (i) Confirmation of NC Ward's conjecture
 - NC twistor theory → geometrical origin
 - D-brane interpretations → applications to physics
- (ii) Completion of NC Sato's theory
 - Existence of ``hierarchies'' → various soliton eqs.
 - Existence of infinite conserved quantities
 - → infinite-dim. hidden symmetry
 - Construction of multi-soliton solutions
 - Theory of tau-functions → structure of the solution spaces and the symmetry

(i),(ii) \rightarrow complete understanding of the NC soliton theories

Plan of this talk

1. Introduction 2. NC ASDYM equations (a master equation) 3. NC Ward's conjecture --- Reduction of NC ASDYM to KdV, mKdV, Tziteica, ... 4. Towards NC Sato's theory (KP, ...) hierarchy, infinite conserved quantities, exact multi-soliton solutions,... **5. Conclusion and Discussion**

2. NC ASDYM equations Here we discuss G=GL(N) (NC) ASDYM eq. from the viewpoint of linear systems with a spectral parameter ζ .

Linear systems (commutative case):

 $L\psi = (D_w - \zeta D_{\tilde{z}})\psi = 0,$ $M\psi = (D_z - \zeta D_{\tilde{w}})\psi = 0.$ e.g. $\begin{pmatrix} \tilde{z} & w \\ \tilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^0 + ix^1 & x^2 - ix^3 \\ x^2 + ix^3 & x^0 - ix^1 \end{pmatrix}$

• Compatibility condition of the linear system: $[L,M] = [D_w, D_z] + \zeta([D_z, D_{\tilde{z}}] - [D_w, D_{\tilde{w}}]) + \zeta^2 [D_{\tilde{z}}, D_{\tilde{w}}] = 0$

$$\Leftrightarrow \begin{cases} F_{zw} = [D_z, D_w] = 0, \\ F_{\tilde{z}\tilde{w}} = [D_{\tilde{z}}, D_{\tilde{w}}] = 0, \\ F_{\tilde{z}\tilde{z}} - F_{w\tilde{w}} = [D_z, D_{\tilde{z}}] - [D_w, D_{\tilde{w}}] = 0 \end{cases}$$

$$(ASDYM equation)$$

$$(F_{\mu\nu} \coloneqq \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}])$$

Yang's form and Yang's equation ASDYM eq. can be rewritten as follows $\begin{cases} F_{zw} = [D_z, D_w] = 0, \implies \exists h, D_z h = 0, D_w h = 0 \\ F_{\tilde{z}\tilde{w}} = [D_{\tilde{z}}, D_{\tilde{w}}] = 0, \implies \exists \tilde{h}, D_{\tilde{z}}\tilde{h} = 0, D_{\tilde{w}}\tilde{h} = 0 \\ F_{z\tilde{z}} - F_{w\tilde{w}} = [D_z, D_{\tilde{z}}] - [D_w, D_{\tilde{w}}] = 0 \end{cases}$ $J := h^{-1}h$ If we define Yang's matrix: then we obtain from the third eq.: $\partial_{z}(J^{-1}\partial_{\widetilde{z}}J) - \partial_{w}(J^{-1}\partial_{\widetilde{w}}J) = 0$:Yang's eq. The solution J reproduce the gauge fields as $A_{z} = -h_{z}h^{-1}, \quad A_{w} = h_{w}h^{-1}, \quad A_{\widetilde{z}} = -\widetilde{h}_{\widetilde{z}}\widetilde{h}^{-1}, \quad A_{\widetilde{w}} = \widetilde{h}_{\widetilde{w}}\widetilde{h}^{-1}$

(Q) How we get NC version of the theories?
(A) We have only to replace all products of fields in ordinary commutative gauge theories

with star-products: $f(x)g(x) \rightarrow f(x)*g(x)$

The star product:

$$f(x) * g(x) \coloneqq f(x) \exp\left(\frac{i}{2}\theta^{ij}\overline{\partial}_i\overline{\partial}_j\right)g(x) = f(x)g(x) + i\frac{\theta^{ij}}{2}\partial_i f(x)\partial_j g(x) + O(\theta^2)$$

A deformed product

Presence of

background

f * (g * h) = (f * g) * h Associative

$$[x^{i}, x^{j}]_{*} \coloneqq x^{i} * x^{j} - x^{j} * x^{i} = i\theta^{ij} \quad \mathsf{NC} \; !$$

magnetic fields In this way, we get NC-deformed theories with infinite derivatives in NC directions. (integrable???) Here we discuss G=GL(N) NC ASDYM eq. from the viewpoint of linear systems with a spectral parameter ζ . (All products are star-products.)

Linear systems (NC case):

 $L * \psi = (D_w - \zeta D_{\tilde{z}}) * \psi = 0,$ $M * \psi = (D_z - \zeta D_{\tilde{w}}) * \psi = 0.$ e.g. $\begin{pmatrix} \tilde{z} & w \\ \tilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^0 + ix^1 & x^2 - ix^3 \\ x^2 + ix^3 & x^0 - ix^1 \end{pmatrix}$ Compatibility condition of the linear system: $[L,M]_{*} = [D_{w}, D_{z}]_{*} + \zeta([D_{z}, D_{\tilde{z}}]_{*} - [D_{w}, D_{\tilde{w}}]_{*}) + \zeta^{2}[D_{\tilde{z}}, D_{\tilde{w}}]_{*} = 0$ $\Leftrightarrow \begin{cases} F_{zw} = [D_z, D_w]_* = 0, \\ F_{\tilde{z}\tilde{w}} = [D_{\tilde{z}}, D_{\tilde{w}}]_* = 0, \\ F_{\tilde{z}\tilde{z}} - F_{w\tilde{w}} = [D_z, D_{\tilde{z}}]_* - [D_w, D_{\tilde{w}}]_* = 0 \end{cases}$ in the second sec $(F_{\mu\nu} \coloneqq \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]_{*})$ Don t omit even for G=U(1) $(:: U(1) \cong U(\infty))$

Yang's form and NC Yang's equation NC ASDYM eq. can be rewritten as follows $[F_{zw} = [D_z, D_w]_* = 0, \implies \exists h, D_z * h = 0, D_w * h = 0$ $\left\{ F_{\widetilde{z}\widetilde{w}} = [D_{\widetilde{z}}, D_{\widetilde{w}}]_* = 0, \quad \Rightarrow \quad \exists \widetilde{h}, D_{\widetilde{z}} * \widetilde{h} = 0, \quad D_{\widetilde{w}} * \widetilde{h} = 0 \right\}$ $F_{z\tilde{z}} - F_{w\tilde{w}} = [D_{z}, D_{\tilde{z}}]_{*} - [D_{w}, D_{\tilde{w}}]_{*} = 0$ $J := h^{-1} * h$ If we define Yang's matrix: then we obtain from the third eq.: $\partial_{\mathcal{I}}(J^{-1} * \partial_{\tilde{\mathcal{I}}}J) - \partial_{w}(J^{-1} * \partial_{\tilde{w}}J) = 0$:NC Yang's eq. The solution *J* reproduces the gauge fields as $A_{z} = -h_{z} * h^{-1}, A_{w} = h_{w} * h^{-1}, A_{\tilde{z}} = -\tilde{h}_{\tilde{z}} * \tilde{h}^{-1}, A_{\tilde{w}} = \tilde{h}_{\tilde{w}} * \tilde{h}^{-1}$ (All products are star-products.)

Backlund transformation for NC Yang's eq. Yang's J matrix can be decomposed as follows

$$J = egin{pmatrix} A^{-1} - \widetilde{B} * A * B & - \widetilde{B} * \widetilde{A} \ \widetilde{A} * B & \widetilde{A} \end{pmatrix}$$

MH [hep-th/0601209, 0ymmnn] The book of Mason-Woodhouse

Then NC Yang's eq. becomes

$$\partial_{z}(A * \widetilde{B}_{\tilde{z}} * \widetilde{A}) - \partial_{w}(A * \widetilde{B}_{\tilde{w}} * \widetilde{A}) = 0, \quad \partial_{\tilde{z}}(\widetilde{A} * B_{z} * A) - \partial_{\tilde{w}}(\widetilde{A} * B_{w} * A) = 0,$$

$$\partial_{z}(\widetilde{A}^{-1} * \widetilde{A}_{\tilde{z}}) * \widetilde{A}^{-1} - \partial_{w}(\widetilde{A}^{-1} * \widetilde{A}_{\tilde{w}}) * \widetilde{A}^{-1} + B_{z} * A * \widetilde{B}_{\tilde{z}} - B_{w} * A * \widetilde{B}_{\tilde{w}} = 0,$$

$$A^{-1} * \partial_{z}(A_{\tilde{z}} * A^{-1}) - A^{-1} * \partial_{w}(A_{\tilde{w}} * A^{-1}) + \widetilde{B}_{\tilde{z}} * \widetilde{A} * B_{z} - \widetilde{B}_{\tilde{w}} * \widetilde{A} * B_{w} = 0.$$

The following trf. leaves NC Yang's eq. as it is: $\partial_{z}B^{new} = A * \widetilde{B}_{\widetilde{w}} * \widetilde{A}, \ \partial_{w}B^{new} = A * \widetilde{B}_{\widetilde{z}} * \widetilde{A},$ $\partial_{\widetilde{z}}\widetilde{B}^{new} = \widetilde{A} * B_{w} * A, \ \partial_{\widetilde{w}}\widetilde{B}^{new} = \widetilde{A} * B_{z} * A,$ We can generate new solutions $A^{new} = \widetilde{A}^{-1}, \quad \widetilde{A}^{new} = A^{-1}$

from known (trivial) solutions

- 3. NC Ward's conjecture --- reduction to (1+1)-dim.
- From now on, we discuss reductions of NC ASDYM on (2+2)-dimension, including NC KdV, mKdV, Tzitzeica...
- Reduction steps are as follows:
 - (1) take a simple dimensional reduction with a gauge fixing.
 - (2) put further reduction condition on gauge field.
- The reduced eqs. coincides with those obtained in the framework of NC KP and GD hierarchies, which possess infinite conserved quantities and exact multi-soliton solutions. (integrable-like)

Reduction to NC KdV eq. MH, PLB625, 324 [hep-th/0507112]

NOT traceless !

(1) Take a dimensional reduction and gauge fixing:

$$(z, \tilde{z}, w, \tilde{w}) \rightarrow (t, x) = (z, w + \tilde{w}), \qquad A_{\tilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

The reduced NC ASDYM is:

$$(i) \quad [A_w, A_{\tilde{z}}]_* = 0$$

(*ii*)
$$A'_{w} - A'_{\widetilde{w}} + [A_{z}, A_{\widetilde{z}}]_{*} - [A_{w}, A_{\widetilde{w}}]_{*} = 0$$

(*iii*)
$$A'_{z} - A_{w} + [A_{w}, A_{z}]_{*} = 0$$

(2) Take a further reduction condition:

$$A_{w} = \begin{pmatrix} q & -1 \\ q' + q * q & -q \end{pmatrix}, A_{\tilde{w}} = O, A_{z} = \begin{pmatrix} \frac{1}{2}q'' + q' * q & -q' \\ \frac{1}{2}q'' - q' * q' \\ f(q, q', q'', q''') & -\frac{1}{2}q'' - q * q' \end{pmatrix}$$

We can get NC KdV eq. in such a miracle way! (*iii*) $\Rightarrow \dot{u} = \frac{1}{4}u''' + \frac{3}{4}(u'*u+u*u')$ u = 2q' $[t, x] = i\theta$

Note: $A, B, C \in gl(2) \xrightarrow{\theta \to 0} sl(2)$ U(1) part is necessary !

The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities: **Explicit!** $\sigma_n = res_{-1}L^n + \frac{3}{4}\theta((res_{-1}L^n) \diamond u'' - 2(res_{-2}L^n) \diamond u')$ MH, JMP46 (2005) $res_{r}L^{n}$: coefficient of ∂_{x}^{r} in L^{n} [hep-th/0311206] Strachan's product (commutative and non-associative) $f(x) \diamond g(x) \coloneqq f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overline{\partial}_i \overline{\partial}_j \right)^{2s} \right) g(x)$ $[t, x] = i\theta$ has exact N-soliton solutions: Etingof-Gelfand-Retakh, [q-alg/9701008] $u = 2\partial_x \sum_{i=1}^{N} (\partial_x W_i) * W_i^{-1}$ Explicit! MH, [hep-th/0610006] cf. Paniak, [hep-th/0105185] $W_i := |W(f_1, ..., f_i)|_{i,i}$:quasi-determinant of Wronski matrix $f_i = \exp \xi(x, \alpha_i) + a_i \exp(-\xi(x, \alpha_i))$ $\xi(x,\alpha) = x\alpha + t\alpha^3$ Reduction to NC mKdV eq.^{MH, NPB741, 368} [hep-th/0601209]

(1) Take a dimensional reduction and gauge fixing:

$$(z, \tilde{z}, w, \tilde{w}) \rightarrow (t, x) = (z, w + \tilde{w}), \qquad A_{\tilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

The reduced NC ASDYM is:

(i)
$$[A_w, A_{\tilde{z}}]_* = 0$$

(*ii*)
$$A'_{w} - A'_{\widetilde{w}} + [A_{z}, A_{\widetilde{z}}]_{*} - [A_{w}, A_{\widetilde{w}}]_{*} = 0$$

(*iii*)
$$A'_{z} - A_{w} + [A_{w}, A_{z}]_{*} = 0$$

(2) Take a further reduction condition:

$$A_{w} = \begin{pmatrix} p & -1 \\ 0 & -p \end{pmatrix}, A_{\widetilde{w}} = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}, A_{z} = \begin{pmatrix} c & b \\ 0 & d \end{pmatrix}$$

We get $a = -\frac{1}{2}p' - \frac{1}{2}p^2, b = -\frac{1}{2}p' + \frac{1}{2}p^2,$ NOT traceless ! $c = \frac{1}{4}p'' - \frac{1}{2}p^3 - \frac{1}{4}[p, p']_*, d = -\frac{1}{4}p'' + \frac{1}{2}p^3 - \frac{1}{4}[p, p']_*$ and (*iii*) $\Rightarrow \dot{p} = \frac{1}{4}p''' - \frac{3}{4}(p'*p*p+p*p*p')$ NC mKdV ! $[t, x] = i\theta$ Relation between NC KdV and NC mKdV (1) Take a dimensional reduction and gauge fixing: $(z, \tilde{z}, w, \tilde{w}) \rightarrow (t, x) = (z, w + \tilde{w}),$

> $A_{\tilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Note: There is a residual gauge symmetry: $A_{\mu} \to g^{-1} * A_{\mu} * g + g^{-1} * \partial_{\mu}g, \quad g = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$

(2) Take a further reduction condition:

NCKdV:
$$A_w = \begin{pmatrix} q & -1 \\ q'+q*q & -q \end{pmatrix}, A_{\tilde{w}} = O, A_z = \begin{pmatrix} \frac{1}{2}q''+q'*q & -q' \\ f(q,q',q'',q''') & -\frac{1}{2}q''-q*q' \end{pmatrix}$$

Gauge
equivalent
NCmKdV: $A_w = \begin{pmatrix} p & -1 \\ 0 & -p \end{pmatrix}, A_{\tilde{w}} = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}, A_z = \begin{pmatrix} c & b \\ 0 & d \end{pmatrix}$
MH, NPB741, 368
[hep-th/0601209]

Reduction to NC Tzitzeica eq.

• Start with NC Yang's eq. $\partial_z (J^{-1} \partial_{\widetilde{z}} J) - \partial_w (J^{-1} \partial_{\widetilde{w}} J) = 0$

- (1) Take a special reduction condition:
 - $J = \exp(-E_{-}\widetilde{w}) * g(z,\widetilde{z}) * \exp(E_{+}w)$

We get a reduced Yang's eq.

$$\partial_z (g^{-1} * \partial_{\widetilde{z}} g) - [E_-, g^{-1} * E_+ g]_* = 0$$

• (2) Take a further reduction condition: $g = \exp(\rho) * diag (\exp(\omega), \exp(-\omega), 1)$

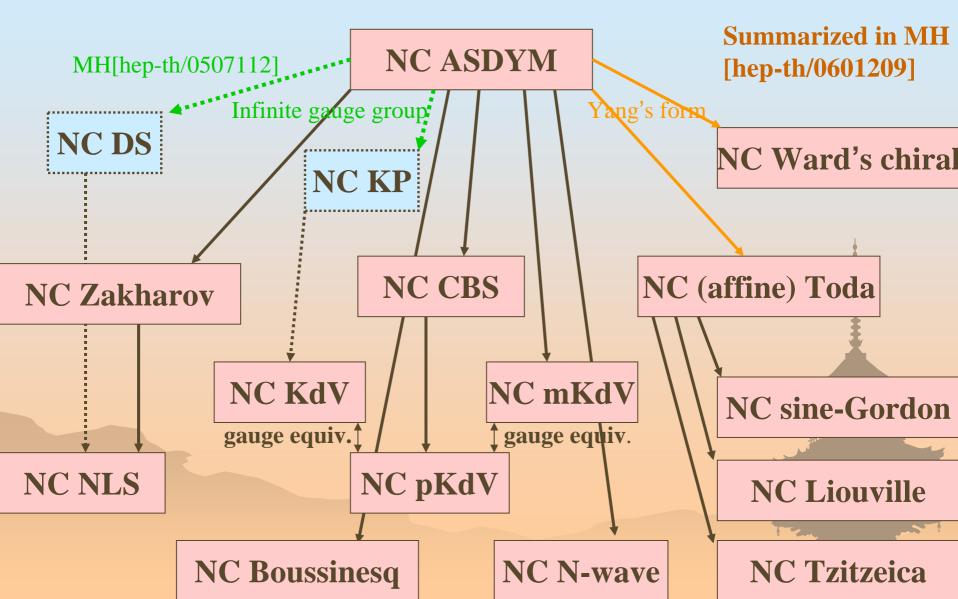
We get (a set of) NC Tzitzeica eq.:

 $\partial_{z} (\exp(-\omega) * \partial_{\tilde{z}} \exp(\omega)) + \partial_{z} (\exp(-\omega) * V * \exp(\omega)) = \exp(\omega) - \exp(-2\omega),$ $\partial_{z} (\exp(\omega) * \partial_{\tilde{z}} \exp(-\omega)) + \partial_{z} (\exp(\omega) * V * \exp(-\omega)) = \exp(-2\omega) - \exp(\omega),$ $\partial_{z} V = \partial_{z} (\exp(-\rho) * \partial_{\tilde{z}} \exp(\rho)) = 0$ $(\xrightarrow{\theta \to 0} \omega_{z\tilde{z}} = \exp(\omega) - \exp(-2\omega))$

MH, NPB741, 368 [hep-th/0601209]

 $E_{+} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ $E_{-} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

In this way, we can obtain various NC Almost all? integrable equations from NC ASDYM !!!



4. Towards NC Sato's Theory
 Sato's Theory : one of the most beautiful theory of solitons

- Based on the exsitence of hierarchies and taufunctions
- Various integrable equations in (1+1)-dim. can be derived elegantly from (2+1)-dim. KP equation.
- Sato's theory reveals essential aspects of solitons:
 - Construction of exact solutions
 - Structure of solution spaces
 - Infinite conserved quantities
 - Hidden infinite-dim. symmetry

Let's discuss NC extension of Sato's theory

Derivation of soliton equations Prepare a Lax operator which is a pseudodifferential operator

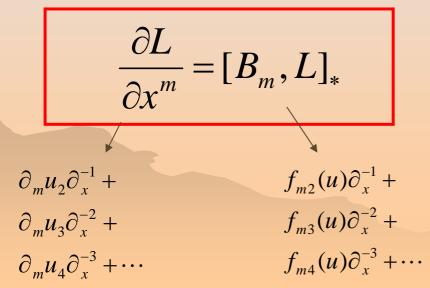
$$L \coloneqq \partial_x + 2u\partial_x^{-1} + f(u)\partial_x^{-2} + g(u)\partial_x^{-3} + \cdots$$

Introduce a differential operator

$$B_m \coloneqq (L \ast \cdots \ast L)_{\geq 0}$$

m times

Define NC KP hierarchy:



$$u = u(x^1, x^2, x^3, \cdots)$$

Noncommutativity is introduced here: $[x^{i}, x^{j}] = i \theta^{ij}$

yields NC KP equations and other NC hierarchy eqs.

Find a suitable L which satisfies NC KP hierarchy → solutions of NC KP eq.

Exact N-soliton solutions of the NC KP hierarchy $L = \Phi * \partial_x \Phi^{-1}$ solves the NC KP hierarchy ! $=\partial_x + \frac{u}{2}\partial_x^{-1} + \cdots$ quasi-determinant $\Phi f \coloneqq |W(f_1, \dots, f_N, f)|_{N+1, N+1}$ of Wronski matrix Etingof-Gelfand-Retakh, $f_i = \exp \xi(x, \alpha_i) + a_i \exp \xi(x, \beta_i)$ [q-alg/9701008] $\xi(x,\alpha) = x_1\alpha + x_2\alpha^2 + x_3\alpha^3 + \cdots$ $u = 2\partial_x \sum_{i=1}^{N} (\partial_x W_i) * W_i^{-1} \xrightarrow{\theta \to 0} 2\partial_x^2 \log \det W(f_1, \dots, f_N)$ $W_{i} \coloneqq |W(f_{1},...,f_{i})|_{i,i} \qquad \begin{array}{c} \mathbf{Wronski \ matrix:} \\ W(f_{1},f_{2},\cdots,f_{m}) = \end{array} \begin{vmatrix} f_{1} & f_{2} & \cdots \\ \partial_{x}f_{1} & \partial_{x}f_{2} & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix}$ $\partial_{\mathbf{x}}^{m-1} f_1 \quad \partial_{\mathbf{x}}^{m-1} f_2$ ∂_{m}^{m-1}

Quasi-determinants

- Quasi-determinants are not just a generalization of commutative determinants, but rather related to inverse matrices.
- For an n by n matrix $X = (x_{ij})$ and the inverse $Y = (y_{ij})$ of X, quasi-determinant of X is directly defined by

$$|X|_{ij} = y_{ji}^{-1} \qquad \left(\xrightarrow{\theta \to 0} \xrightarrow{(-1)^{i+j}}{\det X^{ij}} \det X \right)$$

 Recall that some factor

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow$$

$$Y = X^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

 We can also define quasi-determinants recursively

Quasi-determinants

Defined inductively as follows

$$X\Big|_{ij} = x_{ij} - \sum_{i',j'} x_{ii'} ((X^{ij})^{-1})_{i'j'} x_{j'j}$$
$$= x_{ij} - \sum_{i',j'} x_{ii'} (|X^{ij}|_{j'i'})^{-1} x_{j'j}$$

. . .

[For a review, see Gelfand et al., math.QA/0208146]

X^{ij}: the matrix obtained from X deleting i-th row and j-th column

$$n = 1: |X|_{ij} = x_{ij}$$

$$n = 2: |X|_{11} = x_{11} - x_{12} \cdot x_{22}^{-1} \cdot x_{21}, |X|_{12} = x_{12} - x_{11} \cdot x_{21}^{-1} \cdot x_{22},$$

$$|X|_{21} = x_{21} - x_{22} \cdot x_{12}^{-1} \cdot x_{11}, |X|_{22} = x_{22} - x_{21} \cdot x_{11}^{-1} \cdot x_{12},$$

$$n = 3: |X|_{11} = x_{11} - x_{12} \cdot (x_{22} - x_{23} \cdot x_{33}^{-1} \cdot x_{32})^{-1} \cdot x_{21} - x_{13} \cdot (x_{32} - x_{33} \cdot x_{23}^{-1} \cdot x_{21})^{-1} \cdot x_{21}$$

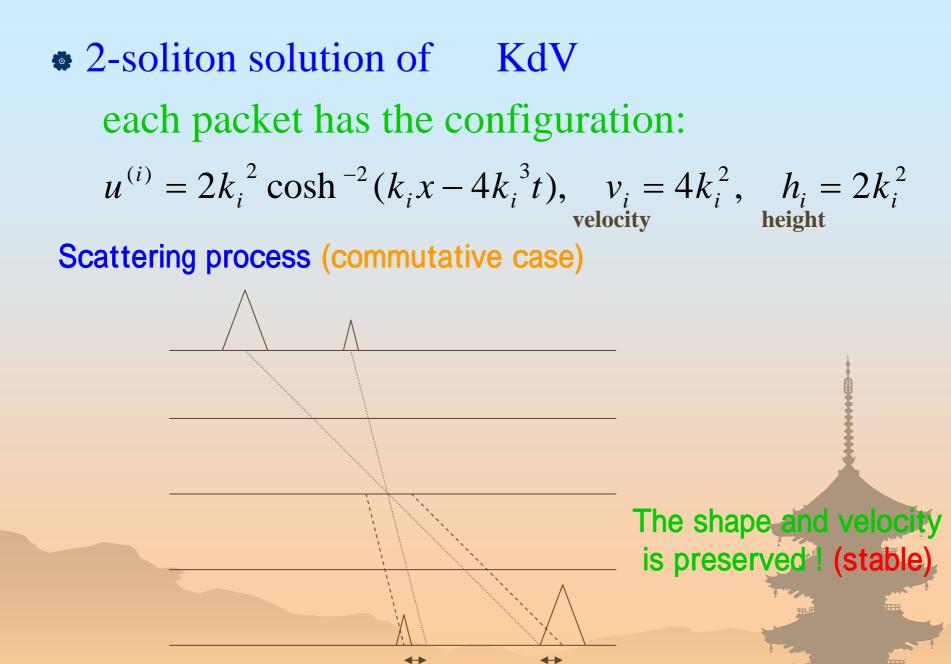
$$- x_{12} \cdot (x_{23} - x_{22} \cdot x_{32}^{-1} \cdot x_{33})^{-1} \cdot x_{31} - x_{13} \cdot (x_{33} - x_{32} \cdot x_{21}^{-1} \cdot x_{23})^{-1} \cdot x_{31}$$

Interpretation of the exact N-soliton solutions

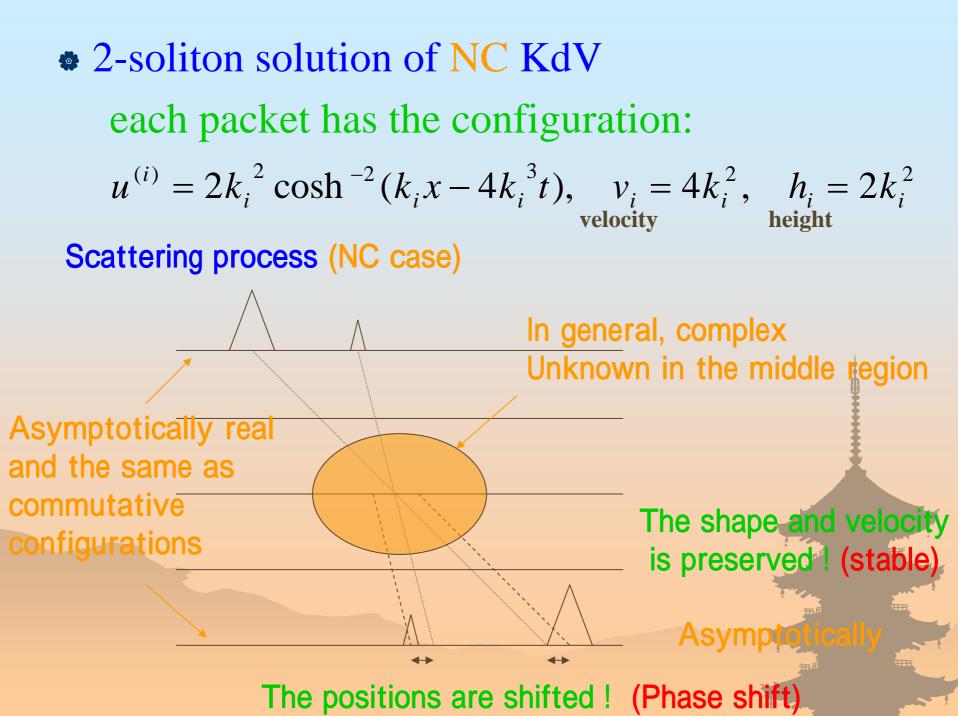
- We have found exact N-soliton solutions for the wide class of NC hierarchies.
- Physical interpretations are non-trivial because when f(x), g(x) are real, f(x)*g(x) is not in general.
- However, the solutions could be real in some cases.
 - (i) <u>1-soliton solutions</u> are all the same as commutative ones because of

$$f(x-vt) * g(x-vt) = f(x-vt)g(x-vt)$$

 (ii) <u>In asymptotic region</u>, configurations of multisoliton solutions could be real in soliton scatterings and the same as commutative ones.
 MH [hep-th/0610006]



The positions are shifted ! (Phase shift)



5. Conclusion and Discussion

