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1. Introduction

Successful points in NC theories
Appearance of new physical objects
Description of real physics
Various successful applications
to D-brane dynamics etc.

NC Solitons play important roles
(Integrable!)

Final goal: NC extension of all soliton theories



Integrable equations in diverse dimensions

4 Anti-Self-Dual Yang-Mills eq.
(instantons)

2
(+1)

Kadomtsev-Petviashvili (KP) eq.
Davey-Stewartson (DS) eq. …

3 Bogomol’nyi eq.
(monopoles)

1
(+1)

KdV eq.  Boussinesq eq.
NLS eq.  Burgers eq.
sine-Gordon eq. (affine) Toda field eq. …

µνµν FF ~−=

Dim. of space

NC extension 
(Successful)

NC extension
(Successful)

NC extension
(This talk)

NC extension 
(This talk)



Ward’s conjecture: Many (perhaps all?) 
integrable equations are reductions of 

the ASDYM eqs.
R.Ward, Phil.Trans.Roy.Soc.Lond.A315(’85)451

ASDYM eq.

(KP eq.)  (DS eq.) Ward’s chiral model
KdV eq. Boussinesq eq.
NLS eq. Toda field eq. 

sine-Gordon eq.  Liouville eq.        
Painleve eqs.       Tops  …

Reductions

Almost confirmed by explicit examples !!!



NC Ward’s conjecture: Many (perhaps all?) 
NC integrable equations are reductions of 

the NC ASDYM eqs. cf. [Brain-
Hannabuss]MH&K.Toda, PLA316(‘03)77 [hep-th/0211148]

NC ASDYM eq.

Many (perhaps all?)
NC integrable eqs.

NC Reductions

Successful

Successful?

Reductions

・Existence of physical pictures 
・New physical objects
・Application to D-branes
・Classfication of NC integ. eqs.

NC Sato’s theory plays important 
roles in revealing integrable
aspects of them 



Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture
– NC twistor theory geometrical origin
– D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory
– Existence of  ``hierarchies’’ various soliton eqs.
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
– Construction of multi-soliton solutions
– Theory of tau-functions structure of the solution 

spaces and the symmetry

(i),(ii) complete understanding of the NC soliton theories



Plan of this talk
1. Introduction
2. NC ASDYM equations (a master equation)
3. NC Ward’s conjecture

--- Reduction of NC ASDYM to 
KdV, mKdV, Tziteica, …

4. Towards NC Sato’s theory (KP, …)
hierarchy, infinite conserved quantities,
exact multi-soliton solutions,…

5. Conclusion and Discussion



2. NC ASDYM equations
Here we discuss G=GL(N) (NC) ASDYM eq. from the 

viewpoint of linear systems with a spectral parameter     .
Linear systems (commutative case):

Compatibility condition of the linear system:
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Yang’s form and Yang’s equation
ASDYM eq. can be rewritten as follows

⎪
⎩

⎪
⎨

⎧

=−=−
==∃⇒==
==∃⇒==

0],[],[
0~,0~,~,0],[

0,0,,0],[

~~~~

~~~~~~

wwzzwwzz

wzwzwz

wzwzzw

DDDDFF
hDhDhDDF
hDhDhDDF

If we define Yang’s matrix:
then we obtain from the third eq.:
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The solution     reproduce the gauge fields asJ



(Q) How we get NC version of the theories?
(A) We have only to replace all products of fields in 

ordinary commutative gauge theories 
with star-products:
The star product:
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A deformed product
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Presence of 
background 
magnetic fields

In this way, we get NC-deformed theories
with infinite derivatives in NC directions. (integrable???)



Here we discuss G=GL(N) NC ASDYM eq. from the 
viewpoint of linear systems with a spectral parameter     .ζ

(All products are star-products.)

Linear systems (NC case):

Compatibility condition of the linear system:
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e.g.
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Don’t omit even for G=U(1) ))()1(( ∞≅UUQ



Yang’s form and NC Yang’s equation
NC ASDYM eq. can be rewritten as follows
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If we define Yang’s matrix:
then we obtain from the third eq.:
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The solution     reproduces the gauge fields asJ

(All products are star-products.)



Backlund transformation for NC Yang’s eq.
Yang’s J matrix can be decomposed as follows

Then NC Yang’s eq. becomes

The following trf. leaves NC Yang’s eq. as it is: 
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We can generate new solutions 
from known (trivial) solutions

MH [hep-th/0601209, 0ymmnnn]
The book of Mason-Woodhouse



3. NC Ward’s conjecture --- reduction to (1+1)-dim.

From now on, we discuss reductions of NC 
ASDYM on (2+2)-dimension, including NC KdV, 
mKdV, Tzitzeica...
Reduction steps are as follows:
(1) take a simple dimensional reduction 

with a gauge fixing.
(2) put further reduction condition on gauge field.
The reduced eqs. coincides with those obtained in 
the framework of NC KP and GD hierarchies,
which possess infinite conserved quantities and
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq. 
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, PLB625, 324
[hep-th/0507112]
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The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

has exact N-soliton solutions: 
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Reduction to NC mKdV eq. 
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, NPB741, 368
[hep-th/0601209]
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Relation between NC KdV and NC mKdV
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→
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Reduction to NC Tzitzeica eq. 
Start with NC Yang’s eq.

(1) Take a special reduction condition:

(2) Take a further reduction condition:

MH, NPB741, 368
[hep-th/0601209]
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In this way, we can obtain various NC 
integrable equations from NC ASDYM !!! 

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC KP
NC DS

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Summarized in MH
[hep-th/0601209]

Infinite gauge group

Almost all ?

MH[hep-th/0507112]

NC TzitzeicaNC Boussinesq NC N-wave



4. Towards NC Sato’s Theory
Sato’s Theory : one of the most beautiful theory 
of solitons
– Based on the exsitence of hierarchies and tau-

functions
– Various integrable equations in (1+1)-dim. can be 

derived elegantly from (2+1)-dim. KP equation. 
Sato’s theory reveals essential aspects of solitons:
– Construction of exact solutions
– Structure of solution spaces
– Infinite conserved quantities
– Hidden infinite-dim. symmetry
Let’s discuss NC extension of Sato’s theory



Derivation of soliton equations
Prepare a Lax operator which is a pseudo-
differential operator

Introduce a differential operator

Define NC KP hierarchy:
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yields NC KP equations and
other NC hierarchy eqs. 

Find a suitable L which 
satisfies NC KP hierarchy !
solutions of NC KP eq.



Exact N-soliton solutions of  the NC KP hierarchy
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Quasi-determinants
Quasi-determinants are not just a generalization of 
commutative determinants, but rather related to inverse 
matrices. 
For an n by n matrix                 and  the inverse           
of X, quasi-determinant of X is directly defined by

Recall that
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Quasi-determinants
Defined inductively as follows [For a review, see

Gelfand et al.,
math.QA/0208146]
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Interpretation of the exact N-soliton solutions

We have found exact N-soliton solutions for the 
wide class of NC hierarchies.
Physical interpretations are non-trivial because
when                  are real,                  is not in general.
However, the solutions could be real in some cases.
– (i) 1-soliton solutions are all the same as commutative   

ones because of

– (ii) In asymptotic region, configurations of multi-
soliton solutions could be real in soliton scatterings 
and the same as commutative ones. 

)(),( xgxf )(*)( xgxf
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MH [hep-th/0610006]



2-soliton solution of      KdV
each packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiii
i khkvtkxkku ==−= −

velocity height

Scattering process (commutative case)

The shape and velocity
is preserved ! (stable) 

The positions are shifted ! (Phase shift)



2-soliton solution of NC KdV
each packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiii
i khkvtkxkku ==−= −

velocity height

Scattering process (NC case)

The shape and velocity
is preserved ! (stable) 

In general, complex
Unknown in the middle region

Asymptotically real
and the same as 
commutative 
configurations

Asymptotically

The positions are shifted ! (Phase shift)



5. Conclusion and Discussion

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC Tzitzeica

NC KP
NC DS

NC Boussinesq NC N-wave

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Infinite gauge group

NC twistors and N=2 strings
[Brain-Hannabuss]
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