Noncommutative Solitons and Integrable Systems

Masashi HAMANAKA

Nagoya University, Dept. of Math. (visiting Glasgow until Feb.18)

Based on

- **MH**, `Conservation laws for NC Lax hierarchy," JMP46(2005)052701[hep-th/0311206] ✓
- MH, ``NC Ward's conjecture and integrable systems,"
 NPB741 (2006) 368, [hep-th/0601209]
- MH, `Notes on exact multi-soliton solutions of NC integrable hierarchies ," [hep-th/0610006]

1. Introduction

Successful points in NC theories

- Appearance of new physical objects
- Description of real physics
- Various successful applications to D-brane dynamics etc.

NC Solitons play important roles (Integrable!)

Final goal: NC extension of all soliton theories

Integrable equations in diverse dimensions

4	Anti-Self-Dual Yang-Mills eq.	NC extension
	(instantons) $F_{\mu\nu} = -\tilde{F}_{\mu\nu}$	(Successful)
3	Bogomol'nyi eq.	NC extension
	(monopoles)	(Successful)
2	Kadomtsev-Petviashvili (KP) eq.	NC extension
(+1)	Davey-Stewartson (DS) eq	(This talk)
1	KdV eq. Boussinesq eq.	NC extension
(+1)	NLS eq. Burgers eq.	(This talk)
<u> </u>	sine-Gordon eq. (affine) Toda field eq	

Dim. of space

Ward's conjecture: Many (perhaps all?) integrable equations are reductions of the ASDYM eqs.

R.Ward, Phil.Trans.Roy.Soc.Lond.A315(85)451

ASDYM eq.

Reductions

(KP eq.) (DS eq.) Ward's chiral model

KdV eq. Boussinesq eq.

NLS eq. Toda field eq.

sine-Gordon eq. Liouville eq.

Painleve eqs. Tops ...

Almost confirmed by explicit examples !!!

NC Ward's conjecture: Many (perhaps all?) NC integrable equations are reductions of the NC ASDYM eqs.

MH&K.Toda, PLA316(03)77 [hep-th/0211148]

NC ASDYM eq.

↓ NC Reductions

Successful

Reductions

Many (perhaps all?)

Successful?

NC integrable eqs.

NC Sato's theory plays important roles in revealing integrable

aspects of them

- •Existence of physical pictures
- New physical objects
- Application to D-branes
- 'Classfication of NC integ. eqs.

Program of NC extension of soliton theories

- (i) Confirmation of NC Ward's conjecture
 - NC twistor theory → geometrical origin
 - D-brane interpretations → applications to physics
- (ii) Completion of NC Sato's theory
 - Existence of `hierarchies' → various soliton eqs.
 - Existence of infinite conserved quantities
 - → infinite-dim. hidden symmetry
 - Construction of multi-soliton solutions
 - Theory of tau-functions → structure of the solution spaces and the symmetry
 - (i),(ii) → complete understanding of the NC soliton theories

Plan of this talk

- 1. Introduction
- 2. NC ASDYM equations (a master equation)
- 3. NC Ward's conjecture
 - --- Reduction of NC ASDYM to KdV, mKdV, Tzitzeica, ...
- 4. Towards NC Sato's theory (KP, ...)
 hierarchy, infinite conserved quantities,
 exact multi-soliton solutions,...
- 5. Conclusion and Discussion

2. NC ASDYM equations

Here we discuss G=GL(N) (NC) ASDYM eq. from the viewpoint of linear systems with a spectral parameter ζ .

Linear systems (commutative case):

$$L\psi = (D_w - \zeta D_{\widetilde{z}})\psi = 0,$$

$$M\psi = (D_z - \zeta D_{\widetilde{w}})\psi = 0.$$
e.g.
$$\begin{pmatrix} \widetilde{z} & w \\ \widetilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^0 + ix^1 & x^2 - ix^3 \\ x^2 + ix^3 & x^0 - ix^1 \end{pmatrix}$$

Compatibility condition of the linear system:

$$[L,M] = [D_{w},D_{z}] + \zeta([D_{z},D_{\tilde{z}}] - [D_{w},D_{\tilde{w}}]) + \zeta^{2}[D_{\tilde{z}},D_{\tilde{w}}] = 0$$

$$\Leftrightarrow \begin{cases} F_{zw} = [D_z, D_w] = 0, \\ F_{\widetilde{z}\widetilde{w}} = [D_{\widetilde{z}}, D_{\widetilde{w}}] = 0, \\ F_{z\widetilde{z}} - F_{w\widetilde{w}} = [D_z, D_{\widetilde{z}}] - [D_w, D_{\widetilde{w}}] = 0 \end{cases}$$
 :ASDYM equation

$$(F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}])$$

Yang's form and Yang's equation

ASDYM eq. can be rewritten as follows

$$\begin{cases} F_{zw} = [D_z, D_w] = 0, & \Rightarrow \exists h, D_z h = 0, D_w h = 0 \\ F_{\widetilde{z}\widetilde{w}} = [D_{\widetilde{z}}, D_{\widetilde{w}}] = 0, & \Rightarrow \exists \widetilde{h}, D_{\widetilde{z}}\widetilde{h} = 0, D_{\widetilde{w}}\widetilde{h} = 0 \\ F_{z\widetilde{z}} - F_{w\widetilde{w}} = [D_z, D_{\widetilde{z}}] - [D_w, D_{\widetilde{w}}] = 0 \end{cases}$$

If we define Yang's matrix: $J := h^{-1}h$ then we obtain from the third eq.:

$$\partial_z (J^{-1}\partial_{\widetilde{z}}J) - \partial_w (J^{-1}\partial_{\widetilde{w}}J) = 0$$
 :Yang's eq.

The solution J reproduce the gauge fields as

$$A_{z} = -h_{z}h^{-1}, \ A_{w} = h_{w}h^{-1}, \ A_{\tilde{z}} = -\tilde{h}_{\tilde{z}}\tilde{h}^{-1}, \ A_{\tilde{w}} = \tilde{h}_{\tilde{w}}\tilde{h}^{-1}$$

(Q) How we get NC version of the theories?

(A) We have only to replace all products of fields in ordinary commutative gauge theories

with star-products: $f(x)g(x) \rightarrow f(x) * g(x)$

The star product:

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2}\theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j\right) g(x) = f(x)g(x) + i\frac{\theta^{ij}}{2} \partial_i f(x) \partial_j g(x) + O(\theta^2)$$

f*(g*h) = (f*g)*h Associative

 $[x^{i}, x^{j}]_{*} := x^{i} * x^{j} - x^{j} * x^{i} = i\theta^{ij}$ NC!

A deformed product

Presence of background magnetic fields

In this way, we get NC-deformed theories with infinite derivatives in NC directions. (integrable???)

Here we discuss G=GL(N) NC ASDYM eq. from the viewpoint of linear systems with a spectral parameter ζ .

(All products are star-products.)

Linear systems (NC case):

$$L*\psi = (D_{w} - \zeta D_{\tilde{z}})*\psi = 0, M*\psi = (D_{z} - \zeta D_{\tilde{w}})*\psi = 0.$$
 e.g.
$$\begin{pmatrix} \tilde{z} & w \\ \tilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^{0} + ix^{1} & x^{2} - ix^{3} \\ x^{2} + ix^{3} & x^{0} - ix^{1} \end{pmatrix}$$

Compatibility condition of the linear system:

$$\begin{split} [L,M]_* = & [D_w,D_z]_* + \zeta([D_z,D_{\widetilde{z}}]_* - [D_w,D_{\widetilde{w}}]_*) + \zeta^2[D_{\widetilde{z}},D_{\widetilde{w}}]_* = 0 \\ \Leftrightarrow \begin{cases} F_{zw} = [D_z,D_w]_* = 0, \\ F_{\widetilde{z}\widetilde{w}} = [D_{\widetilde{z}},D_{\widetilde{w}}]_* = 0, \\ F_{z\widetilde{z}} - F_{w\widetilde{w}} = [D_z,D_{\widetilde{z}}]_* - [D_w,D_{\widetilde{w}}]_* = 0 \end{cases} \\ \end{split}$$

$$\mathcal{L}_{z\widetilde{z}} = \mathcal{L}_{w\widetilde{w}} = [\mathcal{D}_z, \mathcal{D}_{\widetilde{z}}]_* = [\mathcal{D}_w, \mathcal{D}_{\widetilde{w}}]_* = 0$$

$$(F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]_{*})$$

Don tomit even for G=U(1) $(::U(1) \cong U(\infty))$

Yang's form and NC Yang's equation

NC ASDYM eq. can be rewritten as follows

$$\begin{cases} F_{zw} = [D_z, D_w]_* = 0, & \Rightarrow \exists h, D_z * h = 0, D_w * h = 0 \\ F_{\widetilde{z}\widetilde{w}} = [D_{\widetilde{z}}, D_{\widetilde{w}}]_* = 0, & \Rightarrow \exists \widetilde{h}, D_{\widetilde{z}} * \widetilde{h} = 0, D_{\widetilde{w}} * \widetilde{h} = 0 \\ F_{z\widetilde{z}} - F_{w\widetilde{w}} = [D_z, D_{\widetilde{z}}]_* - [D_w, D_{\widetilde{w}}]_* = 0 \end{cases}$$

If we define Yang's matrix: $J := h^{-1} * h$ then we obtain from the third eq.:

$$\partial_z (J^{-1} * \partial_{\bar{z}} J) - \partial_w (J^{-1} * \partial_{\bar{w}} J) = 0$$
: NC Yang's eq.

The solution J reproduces the gauge fields as

$$A_{z} = -h_{z} * h^{-1}, \ A_{w} = h_{w} * h^{-1}, \ A_{\tilde{z}} = -\tilde{h}_{\tilde{z}} * \tilde{h}^{-1}, \ A_{\tilde{w}} = \tilde{h}_{\tilde{w}} * \tilde{h}^{-1}$$

(All products are star-products.)

Backlund transformation for NC Yang's eq.

Yang's J matrix can be decomposed as follows

$$J = \begin{pmatrix} A^{-1} - \widetilde{B} * A * B & -\widetilde{B} * \widetilde{A} \\ \widetilde{A} * B & \widetilde{A} \end{pmatrix}$$

MH [hep-th/0601209, 0ymmnnn] The book of Mason-Woodhouse

Then NC Yang's eq. becomes

$$\begin{split} &\partial_z(A*\widetilde{B}_{\widetilde{z}}*\widetilde{A}) - \partial_w(A*\widetilde{B}_{\widetilde{w}}*\widetilde{A}) = 0, \quad \partial_{\widetilde{z}}(\widetilde{A}*B_z*A) - \partial_{\widetilde{w}}(\widetilde{A}*B_w*A) = 0, \\ &\partial_z(\widetilde{A}^{-1}*\widetilde{A}_{\widetilde{z}})*\widetilde{A}^{-1} - \partial_w(\widetilde{A}^{-1}*\widetilde{A}_{\widetilde{w}})*\widetilde{A}^{-1} + B_z*A*\widetilde{B}_{\widetilde{z}} - B_w*A*\widetilde{B}_{\widetilde{w}} = 0, \\ &A^{-1}*\partial_z(A_{\widetilde{z}}*A^{-1}) - A^{-1}*\partial_w(A_{\widetilde{w}}*A^{-1}) + \widetilde{B}_{\widetilde{z}}*\widetilde{A}*B_z - \widetilde{B}_{\widetilde{w}}*\widetilde{A}*B_w = 0. \end{split}$$

The following trf. leaves NC Yang's eq. as it is:

$$\partial_z B^{new} = A * \widetilde{B}_{\widetilde{w}} * \widetilde{A}, \ \partial_w B^{new} = A * \widetilde{B}_{\widetilde{z}} * \widetilde{A},$$

$$\partial_{\widetilde{\tau}}\widetilde{B}^{new} = \widetilde{A} * B_{w} * A, \ \partial_{\widetilde{w}}\widetilde{B}^{new} = \widetilde{A} * B_{\tau} * A,$$

$$A^{new} = \widetilde{A}^{-1}, \ \widetilde{A}^{new} = A^{-1}$$

We can generate new solutions from known (trivial) solutions

- 3. NC Ward's conjecture --- reduction to (1+1)-dim.
- ♣ From now on, we discuss reductions of NC ASDYM on (2+2)-dimension, including NC KdV, mKdV, Tzitzeica...
- Reduction steps are as follows:
 - (1) take a simple dimensional reduction with a gauge fixing.
 - (2) put further reduction condition on gauge field.
- The reduced eqs. coincides with those obtained in the framework of NC KP and GD hierarchies, which possess infinite conserved quantities and exact multi-soliton solutions. (integrable-like)

Reduction to NC KdV eq.

[hep-th/0507112]

MH, PLB625, 324

(1) Take a dimensional reduction and gauge fixing:

$$(z, \widetilde{z}, w, \widetilde{w}) \to (t, x) = (z, w + \widetilde{w}), \qquad A_{\widetilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

The reduced NC ASDYM is:

- $(i) [A_{w}, A_{\tilde{7}}]_{*} = 0$
- (ii) $A'_{w} A'_{\widetilde{w}} + [A_{\tau}, A_{\tau}]_{*} [A_{w}, A_{\widetilde{w}}]_{*} = 0$
- (iii) $A'_{z} A_{w} + [A_{w}, A_{z}]_{*} = 0$
- **NOT traceless!** • (2) Take a further reduction condition:

$$A_{w} = \begin{pmatrix} q & -1 \\ q' + q * q & -q \end{pmatrix}, A_{\widetilde{w}} = O, A_{z} = \begin{pmatrix} \frac{1}{2}q'' + q' * q & -q' \\ f(q, q', q'', q''') & -\frac{1}{2}q'' - q * q' \end{pmatrix}$$

We can get NC KdV eq. in such a miracle way!

(iii)
$$\Rightarrow \dot{u} = \frac{1}{4}u''' + \frac{3}{4}(u'*u + u*u') \quad u = 2q' \quad [t, x] = i\theta$$

 $A, B, C \in gl(2) \xrightarrow{\theta \to 0} sl(2)$ U(1) part is necessary!

The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

Explicit!

$$\sigma_n = res_{-1}L^n + \frac{3}{4}\theta((res_{-1}L^n) \diamond u'' - 2(res_{-2}L^n) \diamond u')$$

 $res_{r}L^{n}$: coefficient of ∂_{x}^{r} in L^{n}

MH, JMP46 (2005) [hep-th/0311206]

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) := f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overline{\partial}_i \overline{\partial}_j \right)^{2s} \right) g(x)$$

$$[t,x] = i\theta$$

has exact N-soliton solutions:

$$u = 2\partial_x \sum_{i=1}^{N} (\partial_x W_i) * W_i^{-1}$$
 Explicit!

Etingof-Gelfand-Retakh, [q-alg/9701008] MH, [hep-th/0610006] cf. Paniak, [hep-th/0105185]

 $W_i := |W(f_1,...,f_i)|_{i,i}$:quasi-determinant of Wronski matrix

$$f_i = \exp \xi(x, \alpha_i) + a_i \exp(-\xi(x, \alpha_i))$$

$$\xi(x,\alpha) = x\alpha + t\alpha^3$$

Reduction to NC mKdV eq. MH, NPB741, 368 [hep-th/0601209]

(1) Take a dimensional reduction and gauge fixing:

$$(z, \widetilde{z}, w, \widetilde{w}) \rightarrow (t, x) = (z, w + \widetilde{w}),$$
 $A_{\widetilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
The reduced NC ASDYM is:

- $(i) [A_w, A_{\tilde{7}}]_* = 0$
- (ii) $A'_{w} A'_{\widetilde{w}} + [A_{z}, A_{\widetilde{z}}]_{*} [A_{w}, A_{\widetilde{w}}]_{*} = 0$
- (iii) $A'_{z} \dot{A}_{w} + [A_{w}, A_{z}]_{*} = 0$
- (2) Take a further reduction condition:

$$A_{w} = \begin{pmatrix} p & -1 \\ 0 & -p \end{pmatrix}, A_{\widetilde{w}} = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}, A_{z} = \begin{pmatrix} c & b \\ 0 & d \end{pmatrix}$$

We get
$$a = -\frac{1}{2}p' - \frac{1}{2}p^2, b = -\frac{1}{2}p' + \frac{1}{2}p^2,$$
 NOT traceless! $c = \frac{1}{4}p'' - \frac{1}{2}p^3 - \frac{1}{4}[p, p']_*, d = -\frac{1}{4}p'' + \frac{1}{2}p^3 - \frac{1}{4}[p, p']_*$

and (iii) $\Rightarrow \dot{p} = \frac{1}{4} p''' - \frac{3}{4} (p' * p * p + p * p * p')$ NC mKdV!

Relation between NC KdV and NC mKdV

• (1) Take a dimensional reduction and gauge fixing:

$$(z, \widetilde{z}, w, \widetilde{w}) \rightarrow (t, x) = (z, w + \widetilde{w}),$$

$$A_{\tilde{z}} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 Note: There is a residual gauge symmetry:
$$A_{\mu} \to g^{-1} * A_{\mu} * g + g^{-1} * \partial_{\mu} g, \quad g = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$$

(2) Compare the further reduction conditions:

NCKdV:
$$A_{w} = \begin{pmatrix} q & -1 \\ q' + q * q & -q \end{pmatrix}, A_{\widetilde{w}} = O, A_{z} = \begin{pmatrix} \frac{1}{2}q'' + q' * q & -q' \\ f(q, q', q'', q''') & -\frac{1}{2}q'' - q * q' \end{pmatrix}$$

Gauge

The gauge trf. $\rightarrow \beta = q - p, \quad 2q' = p' - p^{2}$

equivalent

NCmKdV: $A_w = \begin{pmatrix} p & -1 \\ 0 & -p \end{pmatrix}$, $A_{\widetilde{w}} = \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}$, $A_z = \begin{pmatrix} c & b \\ 0 & d \end{pmatrix}$ MH, NPB741, 368 [hep-th/0601209]

MH, NPB741, 368 [hep-th/0601209]

 $E_{+} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

 $E_{-} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Start with NC Yang's eq.

$$\partial_z (J^{-1}\partial_{\widetilde{z}}J) - \partial_w (J^{-1}\partial_{\widetilde{w}}J) = 0$$

• (1) Take a special reduction condition:

$$J = \exp(-E_{-}\widetilde{w}) * g(z,\widetilde{z}) * \exp(E_{+}w)$$

We get a reduced Yang's eq.

$$\partial_{z}(g^{-1}*\partial_{z}g)-[E_{-},g^{-1}*E_{+}g]_{*}=0$$

(2) Take a further reduction condition:

$$g = \exp(\rho) * diag (\exp(\omega), \exp(-\omega), 1)$$

We get (a set of) NC Tzitzeica eq.:

$$\partial_z (\exp(-\omega) * \partial_{\widetilde{z}} \exp(\omega)) + \partial_z (\exp(-\omega) * V * \exp(\omega)) = \exp(\omega) - \exp(-2\omega),$$

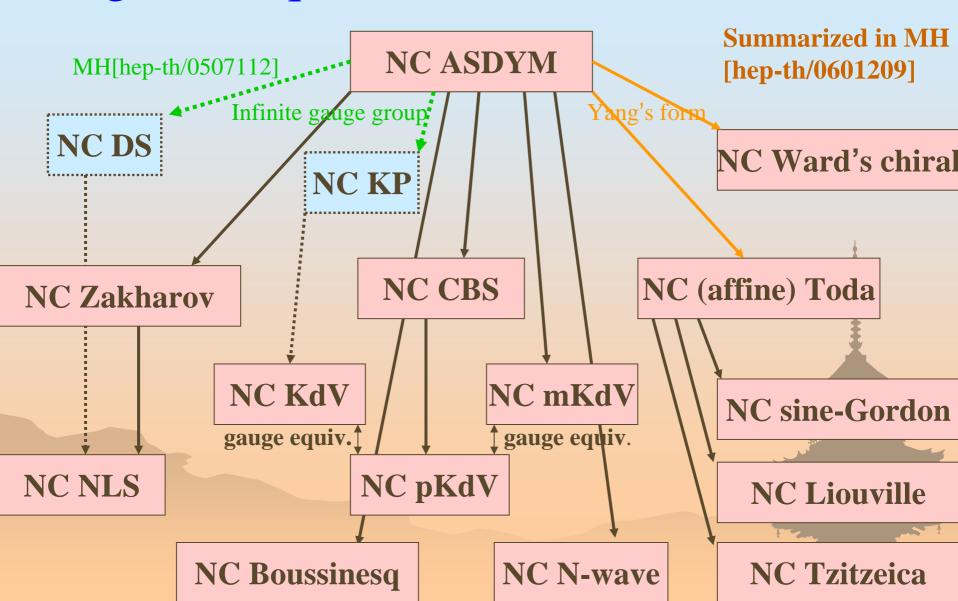
$$\partial_{z}(\exp(\omega) * \partial_{z} \exp(-\omega)) + \partial_{z}(\exp(\omega) * V * \exp(-\omega)) = \exp(-2\omega) - \exp(\omega),$$

$$O_z(\exp(\omega) * O_{\widetilde{z}} \exp(-\omega)) + O_z(\exp(\omega) * V * \exp(-\omega)) = \exp(-2\omega) - \exp(-2\omega)$$

$$\partial_z V = \partial_z (\exp(-\rho) * \partial_{\tilde{z}} \exp(\rho)) = 0$$

 $(\xrightarrow{\theta \to 0} \omega_{z\tilde{z}} = \exp(\omega) - \exp(-2\omega))$

In this way, we can obtain various NC integrable equations from NC ASDYM!!!



4. Towards NC Sato's Theory

- Sato's Theory: one of the most beautiful theory of solitons
 - Based on the exsitence of hierarchies and taufunctions
 - Various integrable equations in (1+1)-dim. can be derived elegantly from (2+1)-dim. KP equation.
- Sato's theory reveals essential aspects of solitons:
 - Construction of exact solutions
 - Structure of solution spaces
 - Infinite conserved quantities
 - Hidden infinite-dim. symmetry

Let's discuss NC extension of Sato's theory

Derivation of soliton equations

Prepare a Lax operator which is a pseudodifferential operator

$$L := \partial_x + 2u\partial_x^{-1} + f(u)\partial_x^{-2} + g(u)\partial_x^{-3} + \cdots$$

Introduce a differential operator

$$B_m := (L * \cdots * L)_{\geq 0}$$
 $m \ times$

Define NC KP hierarchy:

$$u = u(x^{1}, x^{2}, x^{3}, \cdots)$$
Noncommutativity

is introduced here: $[x^i \quad x^j] = i \Omega^{ij}$

$$[x^i, x^j] = i\theta^{ij}$$

$$\frac{\partial L}{\partial x^m} = [B_m, L]_*$$

yields NC KP equations and other NC hierarchy eqs.

 $\partial_{m} u_{2} \partial_{x}^{-1} + \qquad \qquad f_{m2}(u) \partial_{x}^{-1} +$ $\partial_{m} u_{3} \partial_{x}^{-2} + \qquad \qquad f_{m3}(u) \partial_{x}^{-2} +$ $\partial_{m} u_{4} \partial_{x}^{-3} + \cdots \qquad \qquad f_{m4}(u) \partial_{x}^{-3} + \cdots$

Find a suitable L which satisfies NC KP hierarchy!

→ solutions of NC KP eq.

Negative powers of differential operators

$$\partial_x^n \circ f := \sum_{j=0}^{\infty} \binom{n}{j} (\partial_x^j f) \partial_x^{n-j}$$

$$\frac{n(n-1)(n-2)\cdots(n-(j-1))}{j(j-1)(j-2)\cdots 1}$$

$$\partial_x^3 \circ f = f\partial_x^3 + 3f\partial_x^2 + 3f\partial_x^3 + f'''$$

$$\partial_x^2 \circ f = f \partial_x^2 + 2f \partial_x + f''$$

$$\partial_x^{-1} \circ f = f \partial_x^{-1} - f \partial_x^{-2} + f'' \partial_x^{-3} - \cdots$$

$$\partial_x^{-2} \circ f = f \partial_x^{-2} - 2f \partial_x^{-3} + 3f \partial_x^{-4} - \cdots$$

: binomial coefficient which can be extended to negative n

negative power of differential operator (well-defined!)

Star product:

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2}\theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j\right) g(x)$$

which makes theories ``noncommutative":

$$[x^{i}, x^{j}]_{*} := x^{i} * x^{j} - x^{j} * x^{i} = i\theta^{ij}$$

Closer look at NC KP hierarchy

For m=2

$$\partial_{x}^{-1}) \quad \partial_{2}u_{2} = \underline{2u'_{3}} + u''_{2}$$

$$\partial_{x}^{-2}) \quad \partial_{2}u_{3} = \underline{2u'_{4}} + u''_{3} + 2u_{2} * u'_{2} + 2[u_{2}, u_{3}]_{*}$$

$$\partial_{x}^{-3}) \quad \partial_{2}u_{4} = \underline{2u'_{5}} + u''_{4} + 4u_{3} * u'_{2} - 2u_{2} * u''_{2} + 2[u_{2}, u_{4}]_{*}$$
:

Infinite kind of fields are represented in terms of one kind of field $u_2 \equiv u$ MH&K.Toda, [hep-th/0309265]

For m=3

$$\partial_x^{-1}$$
) $\partial_3 u_2 = u_2''' + 3u_3'' + 3u_4'' + 3u_2' * u_2 + 3u_2 * u_2'$
 \vdots

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x}) + \frac{3}{4}\partial_{x}^{-1}u_{yy} + \frac{3}{4}[u, \partial_{x}^{-1}u_{yy}]_{*}$$
 (2+1)-dim.
NC KP equation

and other NC equations $u = u(x^1, x^2, x^3, \cdots)$ (NC KP hierarchy equations)

$$u_{x} := \frac{\partial u}{\partial x}$$
$$\partial_{x}^{-1} := \int_{x}^{x} dx'$$

etc.

reductions (KP hierarchy) → (various hierarchies.)

• (Ex.) KdV hierarchy

Reduction condition

$$L^2 = B_2 (=: \partial_x^2 + u)$$
 : 2-reduction

gives rise to NC KdV hierarchy

which includes (1+1)-dim. NC KdV eq.:

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x})$$

Note $\frac{\partial u}{\partial x_{2N}} = 0$: dimensional reduction in x_{2N} directions

KP:
$$u(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}, ...)$$

 $x y t$: (2+1)-dim.
KdV: $u(x^{1}, x^{3}, x^{5}, ...)$
 $x t$: (1+1)-dim.

/-reduction of NC KP hierarchy yields wide class of other NC hierarchies

No-reduction → NC KP

 $(x, y, t) = (x^1, x^2, x^3)$

2-reduction → NC KdV

 $(x,t) = (x^1, x^3)$

- $(x,t) = (x^1, x^2)$
- ◆ 4-reduction → NC Coupled KdV
- **⋄** 5-reduction → ...
- 3-reduction of BKP → NC Sawada-Kotera
- 2-reduction of mKP → NC mKdV
- Special 1-reduction of mKP → NC Burgers
- Noncommutativity should be introduced into space-time coords

Exact N-soliton solutions of the NC KP hierarchy

$$L = \Phi * \partial_x \Phi^{-1}$$
 solves the NC KP hierarchy!

$$=\partial_x + \frac{u}{2}\partial_x^{-1} + \cdots$$

$$\Phi f := |W(f_1,...,f_N,f)|_{N+1,N+1}$$

quasi-determinant of Wronski matrix

$$f_i = \exp \xi(x, \alpha_i) + a_i \exp \xi(x, \beta_i)$$

$$\xi(x,\alpha) = x_1\alpha + x_2\alpha^2 + x_3\alpha^3 + \cdots$$

$$\xi(x,\alpha) = x_1\alpha + x_2\alpha^2 + x_3\alpha^3 + \cdots$$

$$u = 2\partial_x \sum_{i=1}^{N} (\partial_x W_i) * W_i^{-1} \xrightarrow{\theta \to 0} 2\partial_x^2 \operatorname{logdet} W(f_1, \dots, f_N)$$

$$W_i := |W(f_1, ..., f_i)|_{i,i}$$

$$W(f_1, f_2, \cdots, f_m)$$
 :

$$(\alpha_i^l = \beta_i^l \longleftrightarrow \text{--reduction condition}) \quad \left[\partial_x^{m-1} f_1 \quad \partial_x^{m-1} f_2\right]$$

$$W_{i} := \left| W(f_{1},...,f_{i}) \right|_{i,i} \quad \begin{array}{c} \textbf{Wronski matrix:} \\ W(f_{1},f_{2},\cdots,f_{m}) = \\ \boldsymbol{\alpha}_{i}^{l} = \boldsymbol{\beta}_{i}^{l} \quad \boldsymbol{\leftarrow} \rightarrow \text{--reduction condition} \end{array}$$

$$W_{i} := \left| W(f_{1},f_{2},\cdots,f_{m}) \right|_{i,i} \quad \begin{array}{c} f_{1} & f_{2} & \cdots & f_{m} \\ \boldsymbol{\partial}_{x}f_{1} & \boldsymbol{\partial}_{x}f_{2} & \cdots & \boldsymbol{\partial}_{x}f_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\partial}_{x}^{m-1}f_{1} & \boldsymbol{\partial}_{x}^{m-1}f_{2} & \cdots & \boldsymbol{\partial}_{x}^{m-1}f_{m} \end{array}$$

Quasi-determinants

- Quasi-determinants are not just a generalization of commutative determinants, but rather related to inverse matrices.
- For an n by n matrix $X = (x_{ij})$ and the inverse $Y = (y_{ij})$ of X, quasi-determinant of X is directly defined by

$$|X|_{ij} = y_{ji}^{-1}$$

$$\left(\xrightarrow{\theta \to 0} \frac{(-1)^{i+j}}{\det X^{ij}} \det X \right)$$

Recall that

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \implies$$

$$Y = X^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

→ We can also define quasi-determinants recursively

some factor

Quasi-determinants

Defined inductively as follows

$$|X|_{ij} = x_{ij} - \sum_{i',j'} x_{ii'} ((X^{ij})^{-1})_{i'j'} x_{j'j}$$

$$= x_{ij} - \sum_{i',j'} x_{ii'} (|X^{ij}|_{j'i'})^{-1} x_{j'j}$$

[For a review, see Gelfand et al., math.QA/0208146]

 X^{ij} : the matrix obtained from X deleting i-th row and j-th column

$$n = 1: |X|_{ij} = x_{ij}$$

$$n = 2: |X|_{11} = x_{11} - x_{12} \cdot x_{21}^{-1} \cdot x_{21}, |X|_{12} = x_{12} - x_{11} \cdot x_{21}^{-1} \cdot x_{22},$$

$$|X|_{21} = x_{21} - x_{22} \cdot x_{12}^{-1} \cdot x_{11}, |X|_{22} = x_{22} - x_{21} \cdot x_{11}^{-1} \cdot x_{12},$$

$$n = 3: |X|_{11} = x_{11} - x_{12} \cdot (x_{22} - x_{23} \cdot x_{33}^{-1} \cdot x_{32})^{-1} \cdot x_{21} - x_{13} \cdot (x_{32} - x_{33} \cdot x_{23}^{-1} \cdot x_{21}^{-1} \cdot x$$

Interpretation of the exact N-soliton solutions

- We have found exact N-soliton solutions for the wide class of NC hierarchies.
- Physical interpretations are non-trivial because when f(x), g(x) are real, f(x)*g(x) is not in general.
- However, the solutions could be real in some cases.
 - (i) <u>1-soliton solutions</u> are all the same as commutative ones because of

$$f(x-vt)*g(x-vt) = f(x-vt)g(x-vt)$$

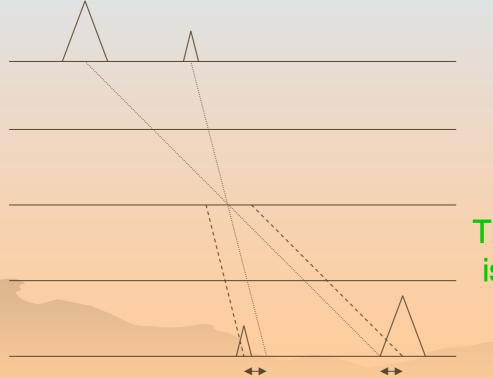
- (ii) <u>In asymptotic region</u>, configurations of multisoliton solutions could be real in soliton scatterings and the same as commutative ones.

MH [hep-th/0610006]

2-soliton solution of KdV each packet has the configuration:

$$u^{(i)} = 2k_i^2 \cosh^{-2}(k_i x - 4k_i^3 t), v_i = 4k_i^2, h_i = 2k_i^2$$

Scattering process (commutative case)



The shape and velocity is preserved! (stable)

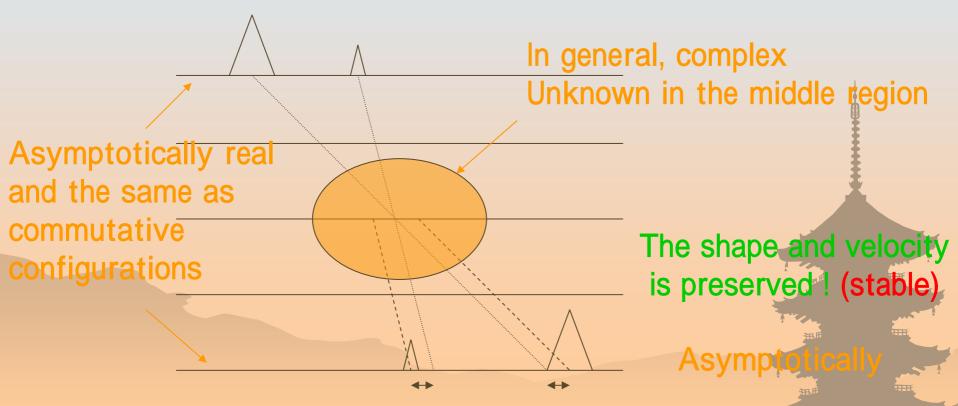
The positions are shifted! (Phase shift)

2-soliton solution of NC KdV

each packet has the configuration:

$$u^{(i)} = 2k_i^2 \cosh^{-2}(k_i x - 4k_i^3 t), v_i = 4k_i^2, h_i = 2k_i^2$$

Scattering process (NC case)



The positions are shifted! (Phase shift)

Infinite conserved densities for the NC KP hierarchy. (n=1,2,...,

$$\sigma_{n} = res_{-1}L^{n} + \theta^{im} \sum_{k=0}^{m-1} \sum_{l=0}^{k} {k \choose l} (\partial_{x}^{k-l} res_{-(l+1)} L^{n}) \Diamond (\partial_{i} res_{k} L^{m})$$

$$t \equiv x^m$$
 $res_r L^n$: coefficient of ∂_x^r in L^n

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) \coloneqq f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j \right)^{2s} \right) g(x)$$

MH, JMP46 (2005) [hep-th/0311206]

This suggests infinite-dimensional symmetries would be hidden.

We can calculate the explicit forms of conserved densities for the wide class of NC soliton equations.

Space-Space noncommutativity:

NC deformation is slight:
$$\sigma_n = res_{-1}L^n$$
 involutive (integrable in Liouville's sense)

Space-time noncommutativity

NC deformation is drastical:

$$([t,x]=i\theta)$$

- Example: NC KP and KdV equations

$$\sigma_{n} = res_{-1}L^{n} - 3\theta((res_{-1}L^{n}) \diamond u_{3}' + (res_{-2}L^{n}) \diamond u_{2}')$$

meaningful?

5. Conclusion and Discussion

- Confirmation of NC Ward's conjecture
- Solved!

- NC twistor theory → geometrical origin
- D-brane interpretations → applications to physics
- Work in progress → [NC book of Mason&Woodhouse ?]
- Completion of NC Sato's theory
 - Existence of `hierarchies' →

- Solved!
- Existence of infinite conserved quantities
 - → infinite-dim. hidden symmetry?
- Construction of multi-soliton solutions

Successful

Successful

Theory of tau-functions → description of the symmetry in terms of infinite-dim. algebras.

Near at hand?