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1. Introduction

Successful points in NC theories
e Appearance of new physical objects

@ Description of real physics (in gauge theory)
e \/arious successful applications
to D-brane dynamics etc.

(partially due to their integrablity)

Final goal: NC extension of all soliton ti§
(Soliton egs. can be embedded in gauge thet



Ward’s conjecture: Many (perhaps all?) integrable
equations are reductions of the ASDYM egs.

- R.Ward, Phil. Trans.Roy.
ASDYM eq. Is a master eq. ! Soc.Lond A315(" 85451

Twistor Theory

Ward’s chiral




NC Ward’s conjecture: Many (perhaps all?) NC
Integrable eqs are reductions of the NC ASDYM egs.

[Lechtenfeld-Popov]... NC ASDYM eq. is a master eq. ? Mt & Toda PLASLE

Solution Generating

03)77 [hep-th/0211148]

NC ASDYM NC Twistor Theory

Techniques
NC DS e Al
NC Zakharov NC CBS NC (affine) Toda
NC Kav NC mKay NC sine-Gordon
NC NLS NC pKdV NC Liouville
NC Boussinesq ‘ ‘ NC N-Wave‘ NC Tzitzeica




Plan of this talk

1. Introduction

2. Backlund transforms for NC ASDYM eqs.
(Exact solutions for Atiyah-Ward ansatz)

3. Backlund transforms for NC KdV egs.
(Exact N-soliton solutions) . In terms of

4. Conclusion and Discussion ~ Quasideterminants



2. Backlund transforms for NC ASDYM egs.

@ In this section, we derive (NC) ASDYM eq. from the
viewpoint of linear systems, which is suitable for
discussion on integrable aspects.

e We define NC Yang’s equations which is equivalent to
NC ASDYM eg. and give a Backlund transformation for
It.

@ The generated solutions would contain not only finite-
action solutions (NC instantons) but also infinite-agtion
solutions (non-linear plane waves and so on.)

e [ his Backlund transformation would be applicable for
lower-dimensional integrable egs. via \Ward’s canjectiire,



Here we discuss G=GL(N) (NC) ASDYM eg. from the
viewpoint of linear systems with a spectral parameter ¢ .

e Linear systems

~

W Z

Ly =(D,, —¢D;)y =0, . ('z” Wj_l(xoﬂxl x2—ix3j
My = (D, - ¢ Dy )y =0. 2

e Compatibility condition of the linear system:
[L,M]=[D,,D,]+<([D,, D;]-[D,, D;]) +¢"[D;, D;]=0

[ |:ZW — -DZ’ Dw: — O’

= . =[D;,D;]1=0, :ASDY M equation

\Fz'z~ - F W :[Dz’ D’z' _[DW’ DVT/] =0

x2+ix® x%—ixt

(F. =0,A -0,A, +[A,A])



Yang'’s form and Yang’s equation

o ASDYI\/I eq. can be rewritten as follows

' F, =[D,,D,]=0, = 3h,D,h=0, Dh=0 (A = h‘letc)
<sz=[ ,D-]1=0, = Ih, Dh 0, Dh 0 (A= * etc)

F W :[Dz’ DZ] [DW’ DVT/]_O

If we define Yang’s matrix: J:=h"h

then we obtain from the third eq.:
0,(J70,1)-0,(170;))=0 :Yang'seq.

J The solution J reproduce the gauge fields as

A =-hh? A =hh7 A =-hh™, A, =hgh

J is gauge invariant. The decomposition into hand h corresponds toa gauge fixing



(Q) How we get NC version of the theories?

(A) We have only to replace all products of fields In
ordinary commutative gauge theories

with C o T()9(X) = T(x)*g(x)

&
f()*9(x) = F(x) expe 0’”5#@)9@) = 1009+

d,f(x)0,9(x)+0(6%)

A deformed product

Note: coordinates and fields
themselves are usual c-number
functions. But commutator of
coordinates becomes...

[X“, X"], = x" %= x" —x" *x* =160""

NC |



Here we discuss G=GL(N) ASDYM eq. from the
viewpoint of linear systems with a spectral parameter £ .
(All products are star-products.)

e Linear systems

L*W:(Dw_ng)*W:O’ eg ‘Z“ W 1 XO_I_ixl X2_ix3
My =(D,-¢{D;)*w =0~ ( j (x2+ix3 xo—ile

~

W Z

A
e Compatibility condition of the linear system:
[L1 M]* :[Dw1 Dz]>x< +§([Dz1 D'Z]* _[DW1 DvT/]*)_I_é/Z[D'z”’ DvT/]* :O

|:ZW — :DZ’ DW]* — O’
= F..=[D,,D.]. =0, N C ASDY M equation
F; —Fw =1D,, D;1. -[D,,, Dzl. =0 I 1
. ZZ ww yA yA w W 0 9 =
(Fﬂv = aﬂA/ _avAﬂ +[A/u 'A\/]*) 0" = B 0 - p2
O
RO




Yang'’s form and Yang'’s equation

o ASDYM eq. can be rewritten as follows
F,=[D,,D,.=0, = 3h,D,*h=0, D,*h=0

F.. =[D;,D;].=0, = 3h, D~*h 0, D, +h =0

Fz —Fuw =[D,,D; 1. -[D,, Dz]. =0

.

z

\

If we define Yang’s matrix: J:=h"xh
then we obtain from the third eq.:

0,(J7%0,3)-0,(J " *0:,J)=0 :1C Yang’s eq.
l The solution J reproduces the gauge fields a3
A, =-hxh™ A =h,xh™ A =—h «h™, Az=hg*h=

J is gauge invariant. The decomposition into hand h corresponds toa gauge fixing



Backlund transformation for Yang'’s eq.
e Yang’s J matrix can be decomposed as follows
; :[Al—ﬁ*A*B —§*J&j

& MH, NPB [hep-th/0601209]
A*B A

and collaboration with Gilson-san
and Nimmo-san et. al.

e« Then NC Yang’s eq. becomes
0, (A I_5>Z *A)—&W(A* §W + A) =0, 8—2(,&* B, *A)—aw(,&* B, *A) =0,
0,(A *A)*At—5 (A1*A)*A1+B *A*B, —B, *A*B_ =0,
Al%0, (A *AN—AT+0, (A *A1)+B, *A*B, —B. *A*B_ =0.

e The following trf. leaves Yang’s eq. asit Is:

(aZB”eW = A*B_ * A, 0,B™" = A%B, * A,

B:40-B™ =A*B, *A 0,B™ =A*B, *A
AneW: ;&—1, ;&new: A—l

\



We could generate various (non-trivial) solutions

of NC Yang'’s eqg. from a (trivial) seed solution by
using the previous Backlund trf. together with

asimpletrf. ¥:J™ =C™JC, C:const.

This combined trf. would generate a group of
hidden symmetry of NC Yang’s eq., which would
be also applied to lower-dimension.

For G=GL(2), we can present the transforms
more explicitly and give an explicit form of a
class of solutions (Atiyah-Ward ansatz).



Backlund trf. for Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.

a=yp°p a x ..
Ji >Jpg— g ——
Collaboration with

-1 —~ = ~ - -
Iy = [A[n] By * Ay *Bry  — B[E‘l * A[n]j G;Is:;n(—\s/an ar|]-c|j I:;Immo-san
n et. al. (Very Ho
A[ * B[n] A[n] y

azﬁn]:'Atn]”‘awB[n]”"Atn] Ol = A * 07 By * Ay .(Am] %u]] (a[n] B[n]Jl

1Bt = Ao *0uBo * Auy Oabiy = A *0B* A " (By Aw) By
Ay = 'At 8 = A

o If we take a seed sol. A, = A, =B, =B, =A%, 824, =0

the generated solutions would be

1 ~ =il -1 iy -1
A[n] = (D[n] )i A[n] — (D[n] I B[n] = (D[n] )nis B[n] = (D[n] )1n(AO A, e A—(n—l)\
aAr _ aAHl aAr _ aAr+1 Al A0 A—(n—2)
0z oW ow 07 LRk =

NC Atiyah-Ward ansatz Ay D, o A

N

IR




Backlund trf. for Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.

a=yo°f o a ..
i >y g —
Collaboration with

-1 = ~ _ - -
Jiny = ['ATn] By *An*Bry — B[E‘l * A[n]j illsfn(jan aT_C: Izl)lmmo-san
’ et. al. (Very Ho
A[ * B[n] A[n] y

All ingredients in AW ansatz can be determined from A, only

l Various choice of A, <—-> Various solutions

o If we take aseed sol. A, = Ay =B, =By =4y, 3%4,=0

the generated solutions would be

1 -~ il -1 iy -1
Ay = (Do Jaas Arp = (Dpny ) on s Brap = (Dpoy ) a1 Bray = (D )1”on Ay, Ay
aAr _ aAHl aAr _ aAr+1 Al A0 BN )
0z OW = Ow 07 M= o S

NC Atiyah-Ward ansatz Ay A, - A

>




Backlund trf. for Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.
J

a=ygop o o
[1] > Iy — g —

J = A[n]_l - |§[n] * A * By - §[n] * E[n] Lechtenfeld-Popov
e A *B A JHEP[hep-th/0109209], ...
n] [n] n]

All ingredients in AW ansatz Cary@@rmined from A, only
1

l 0. A, =1+"— —'"" A, =exp(linear fcn.of z,7Z;w,w)
27 — WW

o If we take aseed sol. A, = Ay =B, =By =4y, 3%4,=0

the generated solutions would be
A[n] = (D[n]_l)n’ '&[n] — (D[n]_l)nn ’ B[n] = (D[n]_l)nl’ I-5"[n] — (D[n]_l)ln

(Ao A—l A—(n—l)\

aAr — aAHl aAr _ aAr+1 A1 Ao A_(n_g)
0z OW = ow 07 il o

NC Atiyah-Ward ansatz Ay A, - A



Backlund trf. for Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.
J

a=ygop o o
[1] > Iy — g —

-1 iy g -~
Iy = [Atn] Bin * Ay * Bnp — By * A[n]}
Ay * B A

All ingredients in AW ansatz can be determined from A, only

l €9 A, =1+"— 1 —'"" A, =exp(linear fcn.of z,7Z;w,w)
27 — WW

o If we take aseed sol. A, = Ay =By =By =4y, 3%4,=0

the generated solutions would be
Aty = ‘D[n]

Ay = ‘D[n] - ‘D[n] Bray = ‘D[n] ANA A
aAr_aAHl aAr_aAHl \ q:A1 Ao "’A-(n-z)
oz ow ' ow o7 gt 7t

NC Atiyah-Ward ansatz Quasideterminants ! A 45 4



Quasi-determinants

e Quasi-determinants are not just a NC generalization of

commutative determinants, but rather related to inverse
matrices.

e Forann by nmatrix X =(x;)and theinverse Y =(¥;)
of X, quasi-determinant of X IS directly defined by

i+
‘X‘ij:yj‘il ( 00 ((je’? detX]

e Recall that some factor
A B
= =
C D :
vy [Al +A'B(D-CA'B)'CA* -~ A'B(D-CA'E

—(D-CA'B)'CA™ (D-CA™B)
-> We can also define quasi-determinants rec




Quasi-determinants

e Defined inductively as follows [For a review, see
i Gelfand et al.
— _ Jy-1 ’
‘X i = i ;j'xii'((x ) )i X math.QA/0208146]

il -1
= Xjj _ini'(‘x U‘j,i,) Xji

X U : the matrix obtained from X
deleting I-th row and j-th columg

n=1: |X[ =x
N=2: |X|, =X =X, Xop + X1, |X|12 = Xip = X4 " X1 * X,
X o1 Xo1 — Xy 'X1_21’X11’ |X|22 = Xy _X21'X1_11'X12’
N=3: |X|, =Xy =X, (Xop — Xpg - Xz * Xgp) ™+ Xy — Xg3* (Xg — X

-1 1 B
— X '(X23 — Xy Xgp X33) " X3 — Xi3 '(X33 — X3 " Xy < K



In this way, we could generate various (complicated)
solutions of NC Yang’s ed. from a (simple) seed solution
by using the previous Backlund trf. a =y, (NC

CFYG trf.)

A seed solution:
Ay =1+ 1 ' - NC instantons

~

27 — WW
A, = exp(linear of z,Z,w,w) - NC Non-Linear plane-waves

NC CFYG trf. would relate to a Darboux transfor
NC ASDYM [Gilson&Nimmo&Ohta et. al] and
non-associative’ algebras, (cf. Quasideterminaj
for NC KP are naturally derived from a Darbous
and the "weakly non-associative’ algebras. [GNG
Dimakis&Mueller-Hoissen])



3. Backlund transforms for NC KdV eq.

@ |n this section, we give an exact soliton solutions
of NC KdV eq. by a Darboux transformation.

[Gilson-Nimmo, JPA(to appear), nlin.si/0701027]

e \We see that ingredients of quasi-determinants
are naturally generated by the Darboux
transformation. (an origin of quasi-determinants)

@ \We also make a comment on asymptotic behavior
of soliton scattering process [MH, JHERGOZ
(2007) 094 [hep-th/0610006].



Lax pair of NC KdV eq.
e Linear systems:
L*y =(02+u—A°)*w =0,
M *y = (0, —0: —(3/2)ud, — (3/4)u,)*y =0.

e« Compatibility condition of the linear system:

[LM],=0 < U :%uxxx+g(u*ux+ux*u)

KdV equation

¢ Darboux transform for NC KdV

Let us take an eigen function W of L and define @ SXASEENN"
Then the following trf. leaves the linear systems asilss

~ ~
~

L=D*L*®"', M=0xM=*D", =0y
and  U=u+2W *W™) (—22>u+20° logw)




The Darboux transformation can be iterated

e Letus take eigen fcns. (f,--- f,) of L and define
@, =W, *0W, " =0, -W, *W="  W,=f,d, ="f=*0,f)
Wi, =@ * f,, = fi+1,x _Wi,x *Wi_l * T (1=123,-)

Vig =P *y; =y, — Wi, W, ™y,

e lterated Darboux transform for NC KdV

The following trf. leaves the linear systems as it Is

-1 -1
L[i+1] =, * I—[i] * D, M[i+1] =@, * M[i] D, Wi = O *Wii

(L[l]’M[l]’W[l]) - >(L[2],M[2],W[2]) 22 ...
i

(L,M ) In fact, (W,,w;) are quasi-determinants
q - of Wronski matrices !
N

an
Urn 413 =U+ZZ(\NLX *Vvi_l)x ( = )U+28)2( IOgW(f11"" fN))

=1




Exact N-soliton solutions of the NC KdV eq.

N
u=20,> OW,)*W* —=2> & logdetW(f,,--, f)
=1

Etingof-Gelfand-Retakh,
W, =W (f,..., ;)| [q-2lg/9701008]

f, =exp (S(X,4;)) +a; exp (-5 (X, 4;))
E(X,t,A) = X, A +1tA.° (M = f. =(6,-0%) 1 =0)

Wronski matrix: [ f, f, o f

W(fl’ fz,...’fm): X: x: ' x:m

oy ol - O T,



Quasi-det solutions can be extended to NC integrable hierarchy

Exact N-soliton solutions of the NC KP hierarchy
L=o+5,0" Ssolves the NC KP hierarchy !

o+ Y0 e
2

@ f=|W(F,.., fy, )

quasi-determinant
nanss  OF Wronski matrix

Etingof-Gelfand-Retakh,

E(X,a) = X + X,a’ + Xa° + -

N
u=20,> (OW)*W™" —=2> 20; logdetW(f,,-, fy)
=1

Wronski matrix: | fi o o Ty
W, =W (f,,..., fi)‘Li o,f, 9.5, T o f
W(fl’ fz’...’fm): : . . :
More generalization is possible. CARCAS™

[MH, hep-th/0610006]



Interpretation of the exact N-soliton solutions

¢ \We have found exact N-soliton solutions for the
wide class of NC hierarchies.

& Physical interpretations are non-trivial because
when f(x), g(x) are real, f(x)*g(x) Is not in general.

e However, the solutions could be real In some cases.

— (1) 1-soliton solutions are all the same as commutative
ones because of  Dimakis-Mueller-Hoissen, [hep-th/0007018]

f(x—=vt)*g(x—vt)=f(x—vt)g(x—Vt)
—()ln asymptotic region, configurations of mcitis

soliton solutions could be real in soliton scatte¢ings
and the same as commutative ones.

MH, JHEP[hep-th/0610006]




@ 2-soliton solution of KdV
each packet has the configuration:

u® = 2k;" cosh 2 (k,x — 4k;’t), v, =4k?, h =2k’

velocity height
Scattering process (commutative case)

The shape
and velocity
IS prese

T oS N
\ K "‘._ N
\ T N
\ RN N
% N
g 3 N
\ 5 N
\ R N
Y - N
\ ) N
\ K N
L N
\ Y %, N
\ 5 N
¥ B ~
U 3 N
\ 3 N
\ g >
\ N
\ 3 N
0y N
8 Y N
8 3 N
\ g N
2 N
\ ) N

> >

The positions are shifted ! (Phase shifg




MH, JHEP02 (2007) 094

¢ 2-soliton solution of NC KdV  [hep-th/0610006]
cf Paniak, hep-th/0105185

each packet has the configuration:
u® =2k.* cosh ?(k-x—4k.’t), v, =4k?, h =2k?

velocity height
Scattering process (NC case)
/\ A In general, complex.
y; Unknown in the middle gegion.

Asymptotically real

and the same as The shape
commutative B and velocity
TRt is preserveds

The positions are shifted ! (Phase shifg



4. Conclusion and Discussion

OK' NC ASDYM eq. Is a master eq. ! OKI
Solution Generating | NC ASDYM I NC Twistor Theory,

TechniCIU‘?_S ............. _ Summarized in MH
............. ;4" Infinite gadge grour.g:' [hep-th/0601209]
NCDS NCKP' '\IC Ward’s chirai
MH[hep-th/0507442] i....7...... { OKI
NC zakharov | | | Nccss | INC (affine) Toda|
‘ NE ey ‘ ‘NC mKdV‘ ‘NC sine-Gordon

i gauge equiv. | gauge eqdiv.
NC NLS | I NC pKdV | \ | NC Liouville

‘ NC Boussinesq \ ‘NC N—Wave‘ ‘ NC Tzitzeica
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