Recent Development of
Noncommutative Soliton Theory

Masashi HAMANAKA

Nihon university on July 18th

Based on

o MH, NC Ward's conjecture and integrable systems,”’
NPB741 (2006) 368, [hep-th/0601209]

e MH, “Notes on exact multi-soliton solutions of\
Integrable hierarchies ,"”” JHEP02(07)94 [hepth/Qg

e C.Gllson, MH and J.Nimmo et al, forthcoming o




1. Introduction

Successful points in NC theories
e Appearance of new physical objects

@ Description of real physics (in gauge theory)
e \/arious successful applications
to D-brane dynamics etc.

(partially due to their integrablity)

Final goal: NC extension of all soliton i
(Soliton egs. can be embedded in gauge thet



Ward’s conjecture: Many (perhaps all?) integrable

equations are reductions of the ASDYM egs.

ASDYM eq. Is a master eq. !
Twistor Theory

Ward’s chiral




NC Ward’s conjecture: Many (perhaps all?) NC

Integrable eqs are reductions of the NC ASDYM egs.
NC ASDYM eq. Is a master eq. ?

Solution Generating

NC ASDYM NC Twistor Theory

Techniques
NC DS e Al
NC Zakharov NC CBS NC (affine) Toda
NC Kav NC mKay NC sine-Gordon
NC NLS NC pKdV NC Liouville
NC Boussinesq ‘ ‘ NC N-Wave‘ NC Tzitzeica




Program of NC extension of soliton theories

@ (1) Confirmation of NC Ward'’s conjecture
— NC twistor theory - geometrical origin
— D-brane interpretations > applications to physics

@ (11) Completion of NC Sato’s theory
— Existence of "hierarchies’ -> various soliton egs.
— Existence of infinite conserved quantities
-2 Infinite-dim. hidden symmetry
— Construction of multi-soliton solutions

— Theory of tau-functions -> structure of the,sSOIEEION
spaces and the symmetry

(1),(i) = complete understanding of the NC soliten theories



Plan of this talk

1. Introduction

2. NC ASDYM eqs.

3. NC Ward’s conjecture
--- reduction to (1+1)-dim.

4. Exact Soliton Solutions of NC KdV eq.
(In terms of quasideterminants )

5. Conclusion and Discussion



2. (NC) ASDYM equations
Here we discuss G=GL(N) (NC) ASDYM eg. from the
viewpoint of linear systems with a spectral parameter ¢ .

e Linear systems

Wz x2+ix® x°—ixt

Ly =(D, —¢D;)y =0, . ('z” Wj_l(xoﬂxl x2—ix3j
My = (D, - ¢ Dy )y =0. 2
e Compatibility condition of the linear system:

[L.M]=[D,,D,]+¢([D,, D;]1-[D,, D;])+¢"[D;, D] =0

F.=[D,,D,]=0,
= F.. =[D,,D;]=0, :ASDY M equation
\Fz’z"_ WW:[DZ’DZ:_[DW’DVT/]:O

(F. =0,A -0,A, +[A,A])



Yang'’s form and Yang’s equation

o ASDYI\/I eq. can be rewritten as follows

' F, =[D,,D,]=0, = 3h,D,h=0, Dh=0 (A = h‘letc)
<sz=[ ,D-]1=0, = Ih, Dh 0, Dh 0 (A= * etc)

F W :[Dz’ DZ] [DW’ DVT/]_O

If we define Yang’s matrix: J:=h"h

then we obtain from the third eq.:
0,(J70,1)-0,(170;))=0 :Yang'seq.

J The solution J reproduce the gauge fields as

A =-hh? A =hh7 A =-hh™, A, =hgh

J is gauge invariant. The decomposition into hand h corresponds toa gauge fixing



(Q) How we get version of the theories?

(A) We have only to replace all products of fields In
ordinary commutative gauge theories

with C o T()9(X) = T(x)*g(x)

&
f()*9(x) = F(x) expe 0’”5#@)9@) = 1009+

d,f(x)0,9(x)+0(6%)

A deformed product

Note: coordinates and fields
themselves are usual c-number
functions. But commutator of
coordinates becomes...

[X“, X"], = x" %= x" —x" *x* =160""



Here we discuss G=GL(N) ASDYM eq. from the
viewpoint of linear systems with a spectral parameter £ .
(All products are star-products.)

e Linear systems

L*W:(Dw_ng)*W:O’ eg ‘Z“ W 1 XO_I_ixl X2_ix3
My =(D,-¢{D;)*w =0~ ( j (x2+ix3 xo—ile

~

W Z

A
e Compatibility condition of the linear system:
[L1 M]* :[Dw1 Dz]>x< +§([Dz1 D'Z]* _[DW1 DvT/]*)_I_é/Z[D'z”’ DvT/]* :O

|:ZW — :DZ’ DW]* — O’
= F..=[D,,D.]. =0, N C ASDY M equation
F; —Fw =1D,, D;1. -[D,,, Dzl. =0 I 1
. ZZ ww yA yA w W 0 9 =
(Fﬂv = aﬂA/ _avAﬂ +[A/u 'A\/]*) 0" = B 0 - p2
O
RO




Yang'’s form and Yang'’s equation

o ASDYM eq. can be rewritten as follows
F,=[D,,D,.=0, = 3h,D,*h=0, D,*h=0

F.. =[D;,D;].=0, = 3h, D~*h 0, D, +h =0

Fz —Fuw =[D,,D; 1. -[D,, Dz]. =0

.

z

\

If we define Yang’s matrix: J:=h"xh
then we obtain from the third eq.:

0,(J7%0,3)-0,(J " *0:,J)=0 :1C Yang’s eq.
l The solution J reproduces the gauge fields a3
A, =-hxh™ A =h,xh™ A =—h «h™, Az=hg*h=

J is gauge invariant. The decomposition into hand h corresponds toa gauge fixing



Backlund transformation for Yang'’s eq.
e Yang’s J matrix can be decomposed as follows

; _(Al—ﬁ*A*B —§*f&j

! MH, NPB [hep-th/0601209]
AxB A

Book of Mason and Woodhouse

e« Then NC Yang’s eq. becomes
0, (A I_5>Z *A)—&W(A* §W + A) =0, 8—2(,&* B, *A)—aw(,&* B, *A) =0,
0,(A *A)*At—5 (A1*A)*A1+B *A*B, —B, *A*B_ =0,
Al%0, (A *AN—AT+0, (A *A1)+B, *A*B, —B. *A*B_ =0.

e The following trf. leaves Yang’s eq. asit Is:

KGZB”GW = A*B_ * A, 0,B™" = A%B, * A,

B:40-B™ =A*B, *A 0,B™ =A*B, *A
AneW: ;&—1, ;&new: A—l

\



We could generate various (non-trivial) solutions

of NC Yang'’s eqg. from a (trivial) seed solution by
using the previous Backlund trf. to€ether with

- 0 1
asimpletrf. 5,:3™ =C™JC, C= )

.LAlnew gnew ] [;&1 B Jl

< 7/0 . ~ new | ~ _

Bnew A—l B A 1

This combined trf. would generate a group of

nidden symmetry of NC Yang’s eq., which would
oe also applied to lower-dimension.

—or G=GL(2), we can present the transforms
more explicitly and give an explicit form of a
class of solutions (Atiyah-Ward ansatz).




Backlund trf. for

Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.

a=ygop o o ..
Jig >y g —
Collaboration
-1 —~ —~ -~
I :[Atn] Biny * Ay * By _B[r_g*A[n]J Verv ot
AT * Bl Aln) (Very Hot)

All ingredients in AW ansatz can be determined from A, only

|

e If we take aseed sol. Ay, =Ay, =By =B, =A
the generated solutions would be

Ay = ‘D[n] e Ay = ‘D[n] . h ‘D[n] By = ‘D[n]
aAr _ aAr+1 aAr _ aA r+1 \ q —
07 oW | ow o7 "]

NC Atiyah-Ward ansatz

Quasideterminants !

with

Gilson-san and Nimmo-san

0, 0%A, =0
Ao A—l A—(n—l)\
AN A-(n-z)
AH Amz Ao y



Quasi-determinants

e Quasi-determinants are not just a NC generalization of

commutative determinants, but rather related to inverse
matrices.

e Forann by nmatrix X =(x;)and theinverse Y =(¥;)
of X, quasi-determinant of X IS directly defined by

3 00 (= 1)'+J )
‘X ‘ij =i ( " det X dEt X] X ¥ the matrix ofjtained
from X deletifg i-th
e Recall that some factor row and j-th g

A B
= =
C D :
vy _[A1+AlB(D—CAlB)1CA1 —A'B(D-CA'B

—(D-CA'B)'CA™ (D-CA™
- We can also define quasi-determinants rec




Quasi-determinants

e Defined inductively as follows [For a review, see
i Gelfand et al.
— _ Jy-1 ’
X[y =%, iZJ;Xiif((X ) iy X math.QA/0208146]
— le _ini’(‘xu‘“ ) 1X”
)
n=1: |X| =x

n=2: X11:X11_X12 Xzz 217

-1
X‘ ERATRRTRR VY

1

X =Xy = Xy X12 117 X‘ = Xpp = Xp1* Xpg * Xpp,

21
: -1 -1 |
n=3: X11:X11_X12'(X22_ 23 ° 33' 32) 'X21_X13'(X32_X33'X23'Xzz) X1

1 1 1 1
— X '(X23 — Xy - Xy 'X33) " K31 — Xg3 '(X33 — X3 " Xy 'X23) " X3




Explicit Atiyah-Ward ansatz solutions of
Yang’'s eq. G=GL(2)

N 1 5 -1 2
Aup = Apy = By = Bpj = Ay, 074, =0

VTSt S PR A, ALl = A, AL
21 7 A A 21 7 (A A S S
1 0 1 0 1 0 1 0
azAO:_awAl,azA_lz_aon,aWAo:_azAl,aWA_lz_aon

Amr:“%ﬂﬂ NﬂzﬁDMJ [M_‘DN] —‘Dm Ay Ag o Ay

OA,  OA,,, OA,  OA O,= T AR Ao

0z OW 0w 07 adt

Aml Amz Ao

-1 -~ -~ -~
%]ZLAM Biny * Apny * By ‘ﬁg*ﬁmj
Ay * B A




We could generate various (complicated) solutions of
ASDYM eg. from a (simple) seed solution A, by using
the previous Backlund trf. a=y,°f

A seed solution:

D 1 1 -
Ay =1+ ———= - instantons
.7 —\WW

A, = exp(linear of z,Z,w,w) -2 Non-Linear plane-waves

CEFYG trf. would relate to a Darboux transform for
ASDYM [Gilson&Nimmo&Ohta et. al] and wegakly

non-associative’ algebras, (cf. Quasideterminants sols.
for (m)KP are naturally derived from a Darbotix trf.
[Gilson-Nimmo] and the ‘weakly non-associatiyg
algebras. [Dimakis&Mueller-Hoissen]) w

twistor can give an origin of CFYG transfo
,B:FnEW:E_lFE, yO:Fnew =C_1FC, =




3. NC Ward’s conjecture --- reduction to (1+1)-dim.

¢ From now on, we discuss reductions of NC
ASDYM on (2+2)-dimension to NC KdV, mKdV

& Reduction steps are as follows:
(1) take a simple dimensional reduction
with a gauge fixing.
(2) put further reduction condition on gauge field.

» The reduced egs. coincides with those obtained,in
the framework of NC KP and GD hierarchies,

which possess infinite conserved quantitiesand
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq. M PLB62s, 524

. _ _ [hep-th/0507112]
e (1) Take a dimensional reduction and gauge fixing:

(2,Z,W,W) = (t,X) =(z,Ww+W), A _[° 0)
The reduced NC ASDYM is: 10
) [A,AL =0
() A -A+[A AL -TA AL =0
(i) A-A,+[A, AL =0

e (2) Take a further reduction condition:

%q”+q’*q -’

NOT traceless !

et neons
q'+q*q —q) -

We can get NC KdV eq. in such a miracle was :

‘ 1 m
i = U=—-U
(1) 1

PN A 1 " f
f(9,9'.9",9") _Eq —0*q
J

+%(u’*u+u *U") u=2q "t x]=16

Note: A B,C e gl(2)—=2>5sl(2) U(1) part ismecessary




The NC KdV eaq. has integrable-like properties:

@ possesses Infinite conserved densities:

o. =res_ L +%9((res_1L”) ou"—2(res_,L")0u")

MH, JMP46 (2005)
- . P n
res L": coefficient of &, in L [hep-th/0311206]

() : Strachan’s product (commutative and non-associative)

_ © (<D° (1 422 ) .
f(X)0g(x) = f(x)[g (Zsﬂ)!(ge aia,-] ]g(x) It,x]= i@
¢ has exact N-soliton solutions:

N Etingof-Gelfand-Retaidhs
1 MRL [g-alg/Z23F02008)
U= 25XZ(@XVVi )*W7 MH, JHEP [hep-th/J6800Gs |
R _ cf. Paniak, [hep-#H/QI05E851
W, =W (f,,..., ;) |..:quasi-determinant of Wronski matrix

f; =exps(x, ;) +a; exp(—=5(X, &;)) E(X,a)=Xa +ta’



Reduction to NC mKdV eg./H NPB741, 568

. _ _ [hep-th/0601209]
e (1) Take a dimensional reduction and gauge fixing:

(z,Z,W,W) > (t,X) =(z,w+W), 5 _[° oj

The reduced NC ASDYM is: 10
) [A,AL =0
(i) A -A+[A AL-[A,A;].=0
(i) A -A,+[A, AL =0
e (2) Take a further reduction condition:

o O T L YN

1 1 1 1
We get a=->p-—p’b=—= p’+§ p*,  NOT traceléss !

1 14 1 3 1 [} 1 " 1 3 1 '
c=—p'-=p*-= — “p3i-=

"

——(p * Pk p+ p*p*p) NC mKdV/ !

and (i) = p=§p icr
t,x]=16



Relation between NC KdV and NC mKdV

e (1) Take a dimensional reduction and gauge fixing:
(z,Z,w,W) = (t,X) =(z, W+ W),

A = (O Oj Note: There Is a residual gauge symmetry:

‘ 1 O . y 1 0
A, —>9 *A *g+Q9g *0,0, g= 51

e (2) Take a further reduction condition:

1
qg -1 50" +0'%g -q’
NCKdV AW:( , . j’A‘N:O’AZ: 1
I LR f(9.0,9%09") -7a z@%ay
GaL_lgeI - Thegaugetrf. > B =0-Pp, 20 =P = pP£p
eqlflva - NC Miura map !

NCmKdV: A, z[p _1} A :(O Oj, A, :[C bj MH, NPB7415:363
0 -p a 0 0 d [hep-th/0601209]



. : - MH, NPB741, 368
Reduction to NC Tzitzeica eq. e

e Start with NC Yang'’s eq.
0, (J ‘152\1 )—02,,(J ‘18WJ) =0
e (1) Take a special reduction condition: 0 1o
J =exp(-E_w) *g(z,Z) *exp(E,w) E, (o 0 1]
We get a reduced Yang’s eq. LUt
0,(g7*0,9)-[E.,g"*E,gl.=0  _ [2 3 ;}
e (2) Take a further reduction condition: 0 1.0
g = exp( p) = diag (exp( @), exp(-w), 1)
We get (a set of) NC Tzitzeica eq.:

0, (eXp(-w) * 0; exp(w)) + 0, (exp(—w) *V *exp(w)) = exp(w) —exp(—2a),
0, (exp(w) * 0; eXp(-w)) + 0, (exp(w) *V *exp(-w)) = exp(—2w) —exp(w),
0,V =0,(exp(-p) *0; exp(p)) =0
(—=25 0, = exp(w) — exp(—2@) )




4. Exact Soliton Solutions of NC KdV eq.

@ |n this section, we give an exact soliton solutions
of NC KdV eq. by a Darboux transformation.

[Gilson-Nimmo, JPA(to appear), nlin.si/0701027]

e \We see that ingredients of quasi-determinants
are naturally generated by the Darboux
transformation. (an origin of quasi-determinants)

@ \We also make a comment on asymptotic behavior
of soliton scattering process [MH, JHERGOZ
(2007) 094 [hep-th/0610006].



Lax pair of NC KdV eq.
e Linear systems:
L*y =(02+u—A°)*w =0,
M *y = (0, —0: —(3/2)ud, — (3/4)u,)*y =0.

e« Compatibility condition of the linear system:

[LM],=0 < U :%uxxx+g(u*ux+ux*u)

KdV equation

¢ Darboux transform for NC KdV

Let us take an eigen function W of L and define @ SXASEENN"
Then the following trf. leaves the linear systems asilss

~ ~
~

L=D*L*®"', M=0xM=*D", =0y
and  U=u+2W *W™) (—22>u+20° logw)




The Darboux transformation can be iterated

e Letus take eigen fcns. (f,--- f,) of L and define
@; :Wi*axwi_lzax ~Wi, *Wi_l =1, @, =1*0,1)
i+1,X _Wi,x >kWi_l * fi+1 = Nv(fv”" fi+1)

Via =0 *y;, =y, —W,, *Wi_l*l//i :Nv(fl’”" fiw)
e lterated Darboux transform for NC KdV
The following trf. leaves the linear systems as it Is
L[i+1] =, * I—[i] *(Di_l’ M[i+1] =@, * M[i] *(Di_l’ Wi = O *Wii
D, \ D, \
(L Mg v y) >(Lizp My ) a8
|

Wi+1 =@, * fi+1 = f

1+1,1+1

i+1,1+1

(L,M, ) In fact, (W,,w;) are quasi-determinants
o of Wronski matrices !
and N
Urnigg = U +22(\Ni,x *Vvi_l)x ( U +28>2< IOgW(f11"" fN))

=1



Exact N-soliton solutions of the NC KdV eq.

N
u=20,> OW,)*W* —=2> & logdetW(f,,--, f)
=1

Etingof-Gelfand-Retakh,
W, =W (f,..., ;)| [q-2lg/9701008]

f, =exp (S(X,4;)) +a; exp (-5 (X, 4;))
E(X,t,A) = X, A +1tA.° (M = f. =(6,-0%) 1 =0)

Wronski matrix: [ f, f, o f

W(fl’ fz,...’fm): X: x: ' x:m

oy ol - O T,



Quasi-det solutions can be extended to NC integrable hierarchy

Exact N-soliton solutions of the NC KP hierarchy
L=d+0 & Solves the NC KP hierarchy !
LU ~ I8, .L].
— x+_ax LA 8Xm
2 quasi-determinant
O f=W(f,.. fy, ) nans  Of Wronski matrix

Etingof-Gelfand-Retakh,

E(X,a) = X + X,a’ + Xa° + -

N
u=20,> (OW)*W™" —=2> 205 logdetW(f,,-, fy)
i=1

Wronski matrix: ¢, f, oo fo ]
W. :Z‘W(fp-"’ fi)‘i,i o f o f
W(fl’ fz,...’fm): X: 1 X:2 . x:m

CARE ARG S



Exact N-soliton solutions of NC toroidal IKdV
solves the NC toroidal hierarchy !

Cf. Commutative ones [Bogoyavlenskii, Toda-Fukuyama-Yu,
Ikeda-Takasaki-(Kakei), Billig, lohara-Saito-Wakimoto,...]

quasi-determinant

L=®*0 ®"

:ax +Ea;l_|_...
2

® f=|W(f,,...fy, f)

fi=exp S (X, y,a;)+aexps. (XY, [5)

nans  Of Wronski matrix

ail = :Bil

N
u=20,> (OW)*W75 —22> 20; logdetW(f,,-, fy)
i=1 _

W, ::‘W(fl’___’ fi)‘ Wronski matrix:

(

fy f, i
o o, f o, f o,f
1,1 W(f11 fZI...lfm): x: 1 X "2 X °'m
etc.) oyt f, of T, s Q0|

MH, JHEP [hep-th/0610006]



Interpretation of the exact N-soliton solutions

¢ \We have found exact N-soliton solutions for the
wide class of NC hierarchies.

& Physical interpretations are non-trivial because
when f(x), g(x) are real, f(x)*g(x) Is not in general.

e However, the solutions could be real In some cases.

— (1) 1-soliton solutions are all the same as commutative
ones because of  Dimakis-Mueller-Hoissen, [hep-th/0007018]

f(x—=vt)*g(x—vt)=f(x—vt)g(x—Vt)
—()ln asymptotic region, configurations of mcitis

soliton solutions could be real in soliton scatte¢ings
and the same as commutative ones.

MH, JHEP[hep-th/0610006]




@ 2-soliton solution of KdV
each packet has the configuration:

u® = 2k;" cosh 2 (k,x — 4k;’t), v, =4k?, h =2k’

velocity height
Scattering process (commutative case)

The shape
and velocity
Is preservees

T FOy N
\ K "‘._ N
\ T N
\ RN N
% N
g 3 N
\ 5 N
\ R N
Y - N
\ ) N
\ K N
L N
\ Y %, N
\ 5 N
¥ B ~
U 3 N
\ 3 N
\ g >
\ N
\ 3 N
0y N
8 Y N
8 3 N
\ g N
\ ) N

> >

The positions are shifted ! (Phase shif¢




MH, JHEP02 (2007) 094

e 2-soliton solution of NC Kd\V  [hep-th/0610006]
cf Paniak, hep-th/0105185

each packet has the configuration:
u® =2k.* cosh ?(k-x—4k.’t), v, =4k?, h =2k?

velocity height
Scattering process (NC case)
/\ A In general, complex.
/ Unknown in the middle gegion.

Asymptotically real

and the same as Thg Shlapt_e
commutative and velocity
Bonfigukations IS presen

The positions are shifted ! (Phase shif¢



5. Conclusion and Discussion

[ I
OK' NC ASDYM eq. Is a master eq. ! OK'

(Gilson-  Solution Generating | I NC Twistor Theory
MR- . TEChﬂIC]UES ____________ NC ASDYM [Brain, Hannabuss, Majid,

N'm:n_] ____________ 54“""‘Inf|nlte gadige group. Takasaki, Kapustin et al]
NCDS NCKPY '\IC Ward'’s chirai
MH[hep th/0507242] i............ OKI
NC Zakharov ‘ NC CBS ‘ ‘NC (affine) Toda‘
‘ NC KaV ‘ ‘NC mKdV‘ ‘NC sine-Gordon

i 3 gauge equiv. gauge eqyiv.
NC NLS | INC pKdV‘ \ | NC Liouville

‘ NC Boussinesq \ ‘NC N—Wave‘ ‘ NC Tzitzeica



Current situation

e Confirmation of NC Ward's conjecture @

— NC twistor theory - geometrical origin
— D-brane interpretations - applications to physics

Work In progress

« Completion of NC Sato’s theory
— Existence of hierarchies” -
— Existence of infinite conserved quantities ( Successful
- Infinite-dim. hidden symmetry?
— Construction of multi-soliton solutions

— Theory of tau-functions -> description of

symmetry and the soliton solutionsQ-get plays key
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