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1. Introduction

Successful points in NC theories
Appearance of new physical objects
Description of real physics (in gauge theory)
Various successful applications
to D-brane dynamics etc.

Construction of exact solitons are important.
(partially due to their integrablity)

Final goal: NC extension of all soliton theories
(Soliton eqs. can be embedded in gauge theories !)



Ward’s conjecture: Many (perhaps all?)  integrable
equations are reductions of the  ASDYM eqs.
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ASDYM eq. is a master eq. !
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Techniques

Twistor Theory



NC Ward’s conjecture: Many (perhaps all?)  NC
integrable eqs are reductions of the  NC ASDYM eqs.

NC ASDYM

NC Ward’s chiral
NC KP

NC DS

NC ASDYM eq. is a master eq. ?
Solution Generating 
Techniques

NC Twistor Theory

New physical objects Application to D-branes

Reductions

NC CBS NC (affine) TodaNC Zakharov

NC KdV NC mKdV NC sine-Gordon

NC NLS NC pKdV NC Liouville

NC Boussinesq NC N-wave NC Tzitzeica



Program of NC extension of soliton theories

(i) Confirmation of NC Ward’s conjecture 
– NC twistor theory geometrical origin
– D-brane interpretations applications to physics

(ii) Completion of NC Sato’s theory
– Existence of  ``hierarchies’’ various soliton eqs.
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry
– Construction of multi-soliton solutions
– Theory of tau-functions structure of the solution 

spaces and the symmetry

(i),(ii) complete understanding of the NC soliton theories



Plan of this talk

1. Introduction
2. NC ASDYM eqs.
3. NC Ward’s conjecture 

--- reduction to (1+1)-dim. 
4. Exact Soliton Solutions of  NC KdV eq.

(In terms of quasideterminants )
5. Conclusion and Discussion



2. (NC) ASDYM equations 
Here we discuss G=GL(N) (NC) ASDYM eq. from the 

viewpoint of linear systems with a spectral parameter .
Linear systems (commutative case):

Compatibility condition of the linear system:
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Yang’s form and Yang’s equation
ASDYM eq. can be rewritten as follows

If we define Yang’s matrix:
then we obtain from the third eq.:
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The solution     reproduce the gauge fields asJ

is gauge invariant. The decomposition into and corresponds to a gauge fixingJ h h~



(Q) How we get NC version of the theories?
(A) We have only to replace all products of fields in 

ordinary commutative gauge theories 
with star-products:
The star product: (NC and associative)
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Here we discuss G=GL(N) NC ASDYM eq. from the 
viewpoint of linear systems with a spectral parameter .ζ

(All products are star-products.)

Linear systems (NC case):

Compatibility condition of the linear system:
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Yang’s form and NC Yang’s equation
NC ASDYM eq. can be rewritten as follows
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Backlund transformation for NC Yang’s eq.
Yang’s J matrix can be decomposed as follows

Then NC Yang’s eq. becomes

The following trf. leaves NC Yang’s eq. as it is: 
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We could generate various (non-trivial) solutions
of NC Yang’s eq. from a (trivial) seed solution by 
using the previous Backlund trf. together with
a simple trf. 

This combined trf. would generate a group of 
hidden symmetry of NC Yang’s eq., which would 
be also applied to lower-dimension. 
For G=GL(2), we can present the transforms 
more explicitly  and give an explicit form of a 
class of solutions (Atiyah-Ward ansatz).
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Backlund trf. for NC Yang’s eq. G=GL(2)
Let’s consider the following Backlund trf.

If we take a seed sol.
the generated solutions would be 
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Quasi-determinants
Quasi-determinants are not just a NC generalization of 
commutative determinants, but rather related to inverse 
matrices. 
For an n by n matrix                 and  the inverse           
of X, quasi-determinant of X is directly defined by

Recall that
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row and j-th column



Quasi-determinants
Defined inductively as follows
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Explicit Atiyah-Ward ansatz solutions of
NC Yang’s eq. G=GL(2)
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We could generate various (complicated) solutions of NC
ASDYM eq. from a (simple) seed solution by using 
the previous Backlund trf.                          

NC CFYG trf. would relate to  a Darboux transform for 
NC ASDYM [Gilson&Nimmo&Ohta et. al] and `weakly 
non-associative’ algebras,  (cf. Quasideterminants sols. 
for NC (m)KP are naturally derived from a Darboux trf. 
[Gilson-Nimmo] and the `weakly non-associative’
algebras. [Dimakis&Mueller-Hoissen])

NC twistor can give an origin of NC CFYG transform.
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3. NC Ward’s conjecture --- reduction to (1+1)-dim.

From now on, we discuss reductions of NC 
ASDYM on (2+2)-dimension to NC KdV, mKdV
Reduction steps are as follows:
(1) take a simple dimensional reduction 

with a gauge fixing.
(2) put further reduction condition on gauge field.
The reduced eqs. coincides with those obtained in 
the framework of NC KP and GD hierarchies,
which possess infinite conserved quantities and
exact multi-soliton solutions. (integrable-like)



Reduction to NC KdV eq. 
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:

),~,(),()~,,~,( wwzxtwwzz +=→

MH, PLB625, 324
[hep-th/0507112]

0],[)(

0],[],[)(
0],[)(

~~~

~

=+−′

=−+′−′
=

∗

∗∗

∗

zwwz

wwzzww

zw

AAAAiii

AAAAAAii
AAi

&

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
00

~zA
The reduced NC ASDYM is:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

′∗−′′−′′′′′′

′−∗′+′′
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∗+′
−

=
qqqqqqqf

qqqq
AOA

qqqq
q

A zww

2
1),,,(

2
1

,,
1

~

We can get NC KdV eq. in such a miracle way ! ,

)(
4
3

4
1)( uuuuuuiii ′∗+∗′+′′′=⇒ & qu ′= 2 θixt =],[

NOT traceless !

)2()2(,, 0 slglCBA ⎯⎯→⎯∈ →θNote: U(1) part is necessary !



The NC KdV eq. has integrable-like properties:

possesses infinite conserved densities:

has exact N-soliton solutions: 
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Reduction to NC mKdV eq. 
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:
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Relation between NC KdV and NC mKdV
(1) Take a dimensional reduction and gauge fixing:

(2) Take a further reduction condition:
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Reduction to NC Tzitzeica eq. 
Start with NC Yang’s eq.

(1) Take a special reduction condition:

(2) Take a further reduction condition:

MH, NPB741, 368
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4. Exact Soliton Solutions of  NC KdV eq.

In this section, we give an exact soliton solutions 
of  NC KdV eq. by a Darboux transformation.
[Gilson-Nimmo, JPA(to appear), nlin.si/0701027]
We see that ingredients of quasi-determinants 
are naturally generated by the Darboux
transformation. (an origin of quasi-determinants)
We also make a comment on asymptotic behavior 
of soliton scattering process  [MH, JHEP 02 
(2007) 094 [hep-th/0610006].



Lax pair of NC KdV eq.
Linear systems: 

Compatibility condition of the linear system:

Darboux transform for NC KdV
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Let us take an eigen function     of L and define
Then the following trf. leaves the linear systems as it is:

and



The Darboux transformation can be iterated

Let us  take eigen fcns.                    of     and define 

Iterated Darboux transform for NC KdV
The following trf. leaves the linear systems as it is

and
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Exact N-soliton solutions of the NC KdV eq. 
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Exact N-soliton solutions of  the NC KP hierarchy
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solves the NC KP hierarchy !

quasi-determinant
of Wronski matrix

Quasi-det solutions can be extended to NC integrable hierarchy 
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Exact N-soliton solutions of NC toroidal lKdV
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solves the NC toroidal hierarchy !

quasi-determinant
of Wronski matrix

Cf. Commutative ones：[Bogoyavlenskii, Toda-Fukuyama-Yu,
Ikeda-Takasaki-(Kakei), Billig, Iohara-Saito-Wakimoto,…]
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他の拡張(戸田階層etc.)も可能



Interpretation of the exact N-soliton solutions

We have found exact N-soliton solutions for the 
wide class of NC hierarchies.
Physical interpretations are non-trivial because
when                  are real,                  is not in general.
However, the solutions could be real in some cases.
– (i) 1-soliton solutions are all the same as commutative   

ones because of

– (ii) In asymptotic region, configurations of multi-
soliton solutions could be real in soliton scatterings 
and the same as commutative ones. 

)(),( xgxf )(*)( xgxf

)()()(*)( vtxgvtxfvtxgvtxf −−=−−

MH, JHEP[hep-th/0610006]

Dimakis-Mueller-Hoissen, [hep-th/0007015]



2-soliton solution of      KdV
each packet has the configuration:

22322)( 2,4),4(cosh2 iiiiiii
i khkvtkxkku ==−= −

velocity height

Scattering process (commutative case)

The shape 
and velocity
is preserved ! (stable) 

The positions are shifted ! (Phase shift)



2-soliton solution of NC KdV
each packet has the configuration:

Scattering process (NC case)

The positions are shifted ! (Phase shift)

22322)( 2,4),4(cosh2 iiiiiii
i khkvtkxkku ==−= −

velocity height

In general, complex.
Unknown in the middle region.

Asymptotically real
and the same as 
commutative 
configurations

Asymptotically

MH, JHEP02 (2007) 094
[hep-th/0610006]
cf Paniak, hep-th/0105185

The shape 
and velocity
is preserved ! (stable) 



5. Conclusion and Discussion

NC ASDYM

NC Ward’s chiral

NC (affine) Toda

NC NLS

NC KdV NC sine-Gordon

NC Liouville

NC Tzitzeica

NC KP
NC DS

NC Boussinesq NC N-wave

NC CBSNC Zakharov

NC mKdV

NC pKdV

Yang’s form

gauge equiv.gauge equiv.

Infinite gauge group

NC ASDYM eq. is a master eq. !
Solution Generating 
Techniques

NC Twistor Theory,

OK!

OK! OK!
[Brain, Hannabuss, Majid,     
Takasaki, Kapustin et al]

MH[hep-th/0507112]

[Gilson-
MH-
Nimmo,…]



Current situation

Confirmation of NC Ward’s conjecture 
– NC twistor theory geometrical origin   
– D-brane interpretations applications to physics

Completion of NC Sato’s theory
– Existence  of ``hierarchies’’
– Existence of infinite conserved quantities 

infinite-dim. hidden symmetry?
– Construction of multi-soliton solutions
– Theory of  tau-functions description of the 

symmetry and the soliton solutions

Solved!

Solved!

Successful

Successful

Q-det plays key roles ?

Work in progress
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