Noncommutative Solitons and Quasideterminants

Masashi HAMANAKA

Nagoya University, Dept. of たげん

HEP Seminar at Hsinchu on Nov. 11th

Goal

 Extension of all soliton theories and integrable systems to non-commutative (NC) spaces, including the KdV eq. etc.

$$[x^{\mu}, x^{\nu}] = i\underline{\theta}^{\mu\nu}$$

NC parameter (real const.)

1. Introduction Successful points in NC theories

- Appearance of new physical objects
- Description of real physics (in gauge theory)
- Various successful applications to D-brane dynamics etc.
- Construction of exact solitons are important. (partially due to their integrablity)
- Final goal: NC extension of all soliton theories (Soliton eqs. can be embedded in gauge theories via Ward s conjecture! [R. Ward, 1985])

2. Review of Soliton Theories

• KdV equation : describe shallow water waves

This configuration satisfies

solitary wave = soliton

$$u = 2k^2 \cosh^{-2}(kx - 4k^3t)$$

$$\dot{u} + u''' + 6u'u = 0$$
 : KdV eq. [Korteweg-de Vries, 1895]

This is a typical integrable equation.

Let's solve it now!

Hirota's method [PRL27(1971)1192]

$$\dot{u} + u''' + 6u'u = 0$$
 : naively hard to solve

$$u = 2\partial_x^2 \log \tau$$

$$\tau \dot{\tau}' - \tau' \dot{\tau} + 3\tau'' \tau'' - 4\tau' \tau''' + \tau \tau'''' = 0$$

Hirota s bilinear relation: more complicated?

A solution:
$$\tau = 1 + e^{2(kx - \omega t)}$$
, $\omega = 4k^3$

$$\rightarrow u = 2k^2 \cosh^{-2}(kx - 4k^3t)$$
: The solitary wave! (1-soliton solution)

2-soliton solution

$$\tau = 1 + A_1 e^{2\theta_1} + A_2 e^{2\theta_2} + BA_1 A_2 e^{2(\theta_1 + \theta_2)}$$

$$\theta_i = k_i x - 4k_i^3 t$$
, $B = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$ (general property of soliton sols.)

Scattering process

A determinant
 of Wronski matrix
 (general property
 of soliton sols.)
 `tau-functions"

The shape and velocity is preserved! (stable)

The positions are shifted! (Phase shift)

3. Darboux transforms for NC KdV eq.

- In this section, we give an exact soliton solutions of NC KdV eq. by a Darboux transformation. [Gilson-Nimmo, JPA40(07) 3839, nlin.si/0701027]
- We see that ingredients of quasideterminants are naturally generated by iteratation of the Darboux transformation. (an origin of quasi-determinants)
- We also make a comment on asymptotic behavior of soliton scattering process.

Review of Quasi-determinants

[For a review, see Gelfand et al., math.QA/0208146]

- Quasi-determinants are not just a NC generalization of commutative determinants, but rather related to inverse matrices.
- [Def1] For an n by n matrix $X = (x_{ij})$ and the inverse $Y = (y_{ij})$ of X, quasi-determinant of X is directly defined by

$$\left|X\right|_{ij} = y_{ji}^{-1}$$

 X^{ij} : the matrix obtained from X deleting i-th row and j-th column

[Def2] (Iterative definition)

$$|X|_{ij} = x_{ij} - \sum_{i',j'} x_{ii'} ((X^{ij})^{-1})_{i'j'} x_{j'j} = x_{ij} - \sum_{i',j'} x_{ii'} (|X^{ij}|_{j'i'})^{-1} x_{j'j}$$
-1 × n+1

A comment on Def 2

Formula for inverse matrix:

$$X = \begin{pmatrix} A & B \\ C & d \end{pmatrix} \Rightarrow$$

$$n+1 \times n+1$$

$$Y = X^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(d - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(d - CA^{-1}B)^{-1} \\ -(d - CA^{-1}B)^{-1}CA^{-1} & (d - CA^{-1}B)^{-1} \end{pmatrix}$$

$$n \times n$$

A convenient notation:

$$\left|X
ight|_{ij}=egin{array}{cccc} dots & d$$

Examples of quasi-determinants

$$n=1: |X|_{ij}=x_{ij}$$

$$n = 2: |X|_{11} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{11} - x_{12} \cdot x_{21}^{-1} \cdot x_{21}, |X|_{12} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{12} - x_{11} \cdot x_{21}^{-1} \cdot x_{22},$$

$$|X|_{21} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{21} - x_{22} \cdot x_{12}^{-1} \cdot x_{11}, |X|_{22} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{22} - x_{21} \cdot x_{11}^{-1} \cdot x_{12},$$

$$n = 3: |X|_{11} = \begin{vmatrix} x_{21} & x_{22} \\ x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{32} & x_{33} \end{vmatrix} = x_{11} - (x_{12}, x_{13}) \begin{pmatrix} x_{22} & x_{23} \\ x_{32} & x_{33} \end{pmatrix}^{-1} \begin{pmatrix} x_{21} \\ x_{31} \end{pmatrix}$$

$$= x_{11} - x_{12} \cdot (x_{22} - x_{23} \cdot x_{33}^{-1} \cdot x_{32})^{-1} \cdot x_{21} - x_{13} \cdot (x_{32} - x_{33} \cdot x_{23}^{-1} \cdot x_{22})^{-1} \cdot x_{21} - x_{12} \cdot (x_{23} - x_{22} \cdot x_{32}^{-1} \cdot x_{33})^{-1} \cdot x_{31} - x_{13} \cdot (x_{33} - x_{32} \cdot x_{22}^{-1} \cdot x_{23})^{-1} \cdot x_{31}$$

Note:

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \implies Y = X^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} (A - BD^{-1}C)^{-1} & (C - DB^{-1}A)^{-1} \\ (B - AC^{-1}D)^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

Some identities of quasideterminants

Homological relation

$$\begin{vmatrix} A & B & C \\ D & f & g \\ E & h \end{vmatrix} = \begin{vmatrix} A & B & C \\ A & g \\ E & h \end{vmatrix} = \begin{vmatrix} A & B & C \\ A & B & C \\ B & g \\ C & h & b \end{vmatrix}$$

NC Jacobi's identitiy

$$\begin{vmatrix} A & B & C \\ D & f & g \\ E & h & \boxed{i} \end{vmatrix} = \begin{vmatrix} A & C \\ E & \boxed{i} \end{vmatrix} - \begin{vmatrix} A & B \\ E & \boxed{h} \end{vmatrix} \begin{vmatrix} A & B \\ D & \boxed{f} \end{vmatrix} - \begin{vmatrix} A & C \\ D & \boxed{g} \end{vmatrix}$$

Lax formalism of commutative KdV eq.

Linear systems:

$$L\psi = (\partial_x^2 + u - \lambda^2)\psi = 0,$$

$$M\psi = (\partial_t - \partial_x^3 - (3/2)u\partial_x - (3/4)u_x)\psi = 0.$$

Compatibility condition of the linear system:

$$[L,M] = 0 \Leftrightarrow \dot{u} = \frac{1}{4}u_{xxx} + \frac{3}{2}uu_{x}$$
:KdV equation

Lax pair of KdV

- (Q) How we get NC version of the theories?
- (A) We have only to replace all products of fields in ordinary commutative gauge theories with star-products: $f(x)g(x) \rightarrow f(x) * g(x)$
- The star product : (NC and associative)

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2} \theta^{\mu\nu} \overleftarrow{\partial}_{\mu} \overrightarrow{\partial}_{\nu}\right) g(x) = f(x) g(x) + i \frac{\theta^{\mu\nu}}{2} \partial_{\mu} f(x) \partial_{\nu} g(x) + O(\theta^{2})$$

Note: coordinates and fields themselves are usual c-number functions. But commutator of coordinates becomes...

$$[x^{\mu}, x^{\nu}]_{*} := x^{\mu} * x^{\nu} - x^{\nu} * x^{\mu} = i\theta^{\mu\nu}$$

A deformed product

Presence of background magnetic fields

NC

Lax pair of NC KdV eq.

Linear systems:

$$L*\psi = (\partial_x^2 + u - \lambda^2)*\psi = 0,$$

$$M*\psi = (\partial_t - \partial_x^3 - (3/2)u\partial_x - (3/4)u_x)*\psi = 0.$$

Compatibility condition of the linear system:

$$[L,M]_* = 0 \quad \Leftrightarrow \quad \dot{u} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u * u_x + u_x * u)$$

$$: NC \text{ KdV equation} \qquad [t,x] = i\theta$$

Darboux transform for NC KdV [Gilson-Nimmo]

Let us take an eigen function W of L and define $\Phi = W * \partial_x W^{-1}$ Then the following trf. leaves the linear systems as it is

$$\widetilde{L} = \Phi * L * \Phi^{-1}, \quad \widetilde{M} = \Phi * M * \Phi^{-1}, \quad \widetilde{\psi} = \Phi * \psi$$
and $\widetilde{u} = u + 2(W_x * W^{-1})_x$

The Darboux transformation can be iterated

• Let us take eigen fcns. (f_1, \dots, f_N) of L and define

$$\Phi_{i} = W_{i} * \partial_{x} W_{i}^{-1} = \partial_{x} - W_{i,x} * W_{i}^{-1} \qquad (W_{1} \equiv f_{1}, \Phi_{1} = f_{1} * \partial_{x} f_{1})$$

$$W_{i+1} = \Phi_{i} * f_{i+1} = f_{i+1,x} - W_{i,x} * W_{i}^{-1} * f_{i+1} \qquad (i = 1, 2, 3, \cdots)$$

$$\psi_{i+1} = \Phi_{i} * \psi_{i} = \psi_{i,x} - W_{i,x} * W_{i}^{-1} * \psi_{i}$$

Iterated Darboux transform for NC KdV

The following trf. leaves the linear systems as it is

$$L_{[i+1]} = \Phi_i * L_{[i]} * \Phi_i^{-1}, \quad M_{[i+1]} = \Phi_i * M_{[i]} * \Phi_i^{-1}, \quad \psi_{[i+1]} = \Phi_i * \psi_{[i]}$$

$$(L_{[1]}, M_{[1]}, \psi_{[1]}) \xrightarrow{\Phi_1} (L_{[2]}, M_{[2]}, \psi_{[2]}) \xrightarrow{\Phi_2} \cdots$$

$$|||$$

$$(L, M, \psi)$$
In fact, (W_i, ψ_i) are quasi-determinants of Wronski matrices!

 $u_{[N+1]} = u + 2\sum_{i=1}^{N} (W_{i,x} * W_i^{-1})_x \quad (\xrightarrow{\theta \to 0} u + 2\partial_x^2 \log W(f_1, \dots, f_N))$

The Darboux transformation can be iterated

• Let us take eigen fcns. (f_1, \dots, f_N) of L and define

$$\Phi_{i} = W_{i} * \partial_{x} W_{i}^{-1} = \partial_{x} - W_{i,x} * W_{i}^{-1} \qquad (W_{1} \equiv f_{1}, \Phi_{1} = f_{1} * \partial_{x} f_{1})$$

$$W_{i+1} = \Phi_{i} * f_{i+1} = f_{i+1,x} - W_{i,x} * W_{i}^{-1} * f_{i+1} \qquad (i = 1,2,3,\cdots)$$

$$\psi_{i+1} = \Phi_{i} * \psi_{i} = \psi_{i,x} - W_{i,x} * W_{i}^{-1} * \psi_{i}$$

Examples

 $W_1 \equiv f_1$

In fact, (W_i, ψ_i) are quasi-determinants of Wronski matrices!

$$W_2 = f_{2,x} - W_{1,x} * W_1^{-1} * f_2 = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix}_{2,2}$$
 Q-det!

$$W_3 = f_{3,x} - W_{2,x} * W_2^{-1} * f_3 = \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1'' & f_2'' & f_3'' \\ f_1'' & f_2'' & f_3'' \end{vmatrix}_{3,3}$$
 Q-det!

$$u_{[N+1]} = u + 2\sum_{i=1}^{N} (W_{i,x} * W_i^{-1})_x \quad (\xrightarrow{\theta \to 0} u + 2\partial_x^2 \log W(f_1, \dots, f_N))$$

Exact N-soliton solutions of the NC KdV eq.

$$u = 2\partial_x \sum_{i=1}^N (\partial_x W_i) * W_i^{-1}$$

$$(\xrightarrow{\theta \to 0} \partial_x^2 \operatorname{logdet} W(f_1, \dots, f_N))$$

$$W_{i} := \left| W(f_{1}, ..., f_{i}) \right|_{i,i}$$

$$f_{i} = \exp \left(\xi(x, \lambda_{i}) \right) + a_{i} \exp \left(-\xi(x, \lambda_{i}) \right)$$

$$\xi(x, t, \lambda) = x_{1}\lambda + t\lambda_{i}^{3}$$

$$(L * f_{i} = (\partial_{x}^{2} - \lambda^{2}) f_{i} = 0, M * f_{i} = (\partial_{x} - \partial_{x}^{3}) f_{i} = 0)$$

Wronski matrix:
$$W(f_1, f_2, \dots, f_m) = \begin{bmatrix} f_1 & f_2 & \dots & f_m \\ \partial_x f_1 & \partial_x f_2 & \dots & \partial_x f_m \\ \vdots & \vdots & \ddots & \vdots \\ \partial_x^{m-1} f_1 & \partial_x^{m-1} f_2 & \dots & \partial_x^{m-1} f_m \end{bmatrix}$$
 Etingof-Gelfand-Retakh, [q-alg/9701008]

Scattering process of the N-soliton solutions

- We have found exact N-soliton solutions for the NC KdV eq.
- Physical interpretations are non-trivial because when f(x), g(x) are real, f(x)*g(x) is not in general.
- However, the solutions could be real in some cases.
 - (i) <u>1-soliton solutions</u> are all the same as commutative ones because of

$$f(x-vt)*g(x-vt) = f(x-vt)g(x-vt)$$

(ii) <u>In asymptotic region</u>, configurations of multisoliton solutions could be real in soliton scatterings and the same as commutative ones.

2-soliton solution of NC KdV[hep-th/0610006] cf Paniak, hep-th/0105185 each packet has the configuration:

$$u^{(i)} = 2k_i^2 \cosh^{-2}(k_i x - 4k_i^3 t), \quad v_i = 4k_i^2, \quad h_i = 2k_i^2$$

Scattering process (NC case)

The positions are shifted! (Phase shift)

4. Toward NC Sato's Theory

- Sato's Theory : one of the most beautiful theory of solitons
 - Based on the exsitence of hierarchies

A set of infinite soliton equations

(in terms of u)

 $u = 2\partial_x^2 \log \tau$

tau-functions

bilinear equations

A set of infinite

(in terms of τ)

Infinite evolution eqs. whose flows are all commuting

Infinite conserved quantities

Plucker embedding maps which define an infinite-dim. Grassmann manifold.

(=the solution space)

Infinite dimensional symmetry

Derivation of soliton equations

 Prepare a Lax operator which is a pseudodifferential operator

$$L := \partial_x + u_2 \partial_x^{-1} + u_3 \partial_x^{-2} + u_4 \partial_x^{-3} + \cdots$$

Introduce a differential operator

$$B_m := (L * \cdots * L)_{\geq 0}$$
 $m \text{ times}$

Define NC (KP) hierarchy:

$$u_k = u_k(x^1, x^2, x^3, \cdots)$$

Noncommutativity
is introduced here:
$$[x^i, x^j] = i \theta^{ij}$$

$$\frac{\partial L}{\partial x^m} = [B_m, L]_*$$

Here all products are star product:

$$\partial_{m} u_{2} \partial_{x}^{-1} + \qquad \qquad f_{m2}(u) \partial_{x}^{-1} +$$

$$\partial_{m} u_{3} \partial_{x}^{-2} + \qquad \qquad f_{m3}(u) \partial_{x}^{-2} +$$

$$\partial_{m} u_{4} \partial_{x}^{-3} + \cdots \qquad \qquad f_{m4}(u) \partial_{x}^{-3} + \cdots$$

Each coefficient yields a differential equation.

Negative powers of differential operators

$$\partial_x^n \circ f := \sum_{j=0}^{\infty} \binom{n}{j} (\partial_x^j f) \partial_x^{n-j}$$

$$\frac{n(n-1)(n-2)\cdots(n-(j-1))}{j(j-1)(j-2)\cdots 1}$$
: binomial coefficient which can be exten

$$\partial_x^3 \circ f = f\partial_x^3 + 3f\partial_x^2 + 3f\partial_x^1 + f'''$$

$$\partial_x^2 \circ f = f \partial_x^2 + 2f \partial_x + f''$$

$$\partial_x^{-1} \circ f = f \partial_x^{-1} - f \partial_x^{-2} + f'' \partial_x^{-3} - \cdots$$

$$\partial_x^{-2} \circ f = f \partial_x^{-2} - 2f \partial_x^{-3} + 3f \partial_x^{-4} - \cdots$$

- binomial coefficient which can be extended to negative n
- negative power of differential operator (well-defined!)

Closer look at NC KP hierarchy

For m=2

$$\partial_x^{-1}) \quad \partial_2 u_2 = \underline{2u_3'} + u_2''$$

$$\partial_x^{-2}$$
) $\partial_2 u_3 = 2u_4' + u_3'' + 2u_2 * u_2' + 2[u_2, u_3]_*$

$$\partial_x^{-3}) \quad \partial_2 u_4 = \underline{2u_5'} + u_4'' + 4u_3 * u_2' - 2u_2 * u_2'' + 2[u_2, u_4]_*$$

:

Infinite kind of fields are represented in terms of one kind of field $u_2 \equiv u$ MH&K.Toda, [hep-th/0309265]

$$u_x := \frac{\partial u}{\partial x}$$

$$\partial_x^{-1} := \int_x^x dx'$$

For m=3

$$\partial_x^{-1}$$
) $\partial_x u_2 = u_2''' + 3u_3'' + 3u_4'' + 3u_2' * u_2 + 3u_2 * u_2'$

etc.

•

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x}) + \frac{3}{4}\partial_{x}^{-1}u_{yy} + \frac{3}{4}[u, \partial_{x}^{-1}u_{yy}]_{*}$$
 (2+1)-dim.
NC KP equation

and other NC equations $u = u(x^1, x^2, x^3, \cdots)$ (NC KP hierarchy equations)

reductions (KP hierarchy) → (various hierarchies.)

(Ex.) KdV hierarchy
 Reduction condition

$$L^2 = B_2 (=: \partial_x^2 + u)$$
 : 2-reduction

gives rise to NC KdV hierarchy

which includes (1+1)-dim. NC KdV eq.:

$$u_{t} = \frac{1}{4}u_{xxx} + \frac{3}{4}(u_{x} * u + u * u_{x})$$

Note $\frac{\partial u}{\partial x_{2N}} = 0$: dimensional reduction in x_{2N} directions

KP:
$$u(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}, ...)$$

 $x y t$: (2+1)-dim.
KdV: $u(x^{1}, x^{3}, x^{5}, ...)$
 $x t$: (1+1)-dim.

/-reduction of NC KP hierarchy yields wide class of other NC (GD) hierarchies

No-reduction → NC KP

 $(x, y, t) = (x^1, x^2, x^3)$

2-reduction → NC KdV

- $(x,t) = (x^1, x^3)$
- 3-reduction → NC Boussinesq $(x,t) = (x^1, x^2)$
- 4-reduction → NC Coupled KdV

- 5-reduction → ...
- 3-reduction of BKP → NC Sawada-Kotera
- 2-reduction of mKP → NC mKdV
- Special 1-reduction of mKP -> NC Burgers
- Noncommutativity should be introduced into space-time coords.

5. Conservation Laws

• Conservation laws: $\partial_t \sigma = \partial_i J^i \quad \sigma$: Conserved density time space

Then $Q := \int_{space} dx \sigma$ is a conserved quantity.

$$\therefore \partial_t Q = \int_{space} dx \partial_t \sigma = \int_{spatial \atop inf \ inity} dS_i J^i = 0$$

Conservation laws for the hierarchies

$$\lim_{n \to \infty} \frac{\partial_{m} res_{-1} L^{n} = \partial_{x} J + \theta^{ij} \partial_{j} \Xi_{i}}{\operatorname{space}}$$

I have succeeded in the evaluation explicitly!

 $res_{-r}L^n$: coefficient of ∂_x^{-r} in L^n

Noncommutativity should be introduced in space-time directions only. →

 $t \equiv x^m$

 ∂_j should be space or time derivative \rightarrow ordinary conservation laws!

Infinite conserved densities for the NC soliton eqs.

$$\sigma_{n} = res_{-1}L^{n} + \theta^{im} \sum_{k=0}^{m-1} \sum_{l=0}^{k} {k \choose l} (\partial_{x}^{k-l} res_{-(l+1)} L^{n}) \Diamond (\partial_{i} res_{k} L^{m})$$

$$t \equiv x^m$$
 $res_r L^n$: coefficient of ∂_x^r in L^n

Strachan's product (commutative and non-associative)

$$f(x) \diamond g(x) \coloneqq f(x) \left(\sum_{s=0}^{\infty} \frac{(-1)^s}{(2s+1)!} \left(\frac{1}{2} \theta^{ij} \overleftarrow{\partial}_i \overrightarrow{\partial}_j \right)^{2s} \right) g(x)$$

MH, JMP46 (2005) [hep-th/0311206]

This suggests infinite-dimensional symmetries would be hidden.

We can calculate the explicit forms of conserved densities for the wide class of NC soliton equations. (existence of negative power of derivatives is crucial!)

- Space-Space noncommutativity: NC deformation is slight: $\sigma_n = res_{-1}L^n$ involutive (integrable in Liouville's sense)
- Space-time noncommutativity
 NC deformation is drastical:
 - **Example:** NC KP and KdV equations $([t,x]=i\theta)$

$$\sigma_{n} = res_{-1}L^{n} - 3\theta((res_{-1}L^{n}) \diamond u_{3}' + (res_{-2}L^{n}) \diamond u_{2}')$$

meaningful?

NC Ward's conjecture (NC KdV eq.)

Reduced ASDYM eq.: $x^{\mu} \rightarrow (t, x)$ MH, PLB625, 324 [hep-th/0507112]

$$(i) \quad B' = 0$$

(ii)
$$C' + \dot{A} + [A, C]_* = 0$$

(iii)
$$A' - \dot{B} + [C, B]_* = 0$$

A, B, C: 2 times 2 matrices (gauge fields)

$$A = \begin{pmatrix} q & -1 \\ q' + q^2 & -q \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} \frac{1}{2}q'' + q' * q & -q' \\ f(q, q', q'', q''') & -\frac{1}{2}q'' - q * q' \end{pmatrix} \text{ NOT}$$
Traceless!

(ii) $\Rightarrow \begin{pmatrix} \oplus & 0 \\ \otimes & - \oplus \end{pmatrix} = 0 \Rightarrow \dot{q} = \frac{1}{4}q''' + \frac{3}{4}q'*q'$: NC pKdV eq. !!! $u = q' \rightarrow NC \text{ KdV}$

Note: $A, B, C \in gl(2) \xrightarrow{\theta \to 0} sl(2)$ U(1) part is necessary!