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Goal

Extension of all soliton theories and
Integrable systems to non-commutative
(NC) spaces, including the KdV eq. etc.
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1. Introduction

Successful points in NC theories
Appearance of new physical objects
Description of real physics (in gauge theory)
Various successful applications

to D-brane dynamics etc.

Construction of exact solitons are important.
(partially due to their integrablity)

Final goal: NC extension of all soliton theories
(Soliton eqgs. can be embedded in gauge theories
via Ward”s conjecture ! [R. Ward, 1985] )



Ward’s conjecture: Many (perhapsall?) integrable
equations are reductions of the ' ASDYM eqs.

ASDYM eq. Is a master eq. !
Twistor Theory

Ward’s chiral
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NC integrable eqs are reductions of the /' NC ASDYM egs.

In gauge theory,
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2. Review of Soliton Theories
KdV equation . describe shallow water waves

Expeniment by  tU 1/k
Scott-Russel, 2

1834 ZKZI /xﬁ“k.
water - I

water tank

> X

, , , o solitary wave = soliton
This configuration satisfies

l u = 2k? cosh ~* (kx — 4k°t)

U+u”+6u'u=0 :Kdv e(q. [Korteweg-de Vries,
1895]

This is a typical integrable equation.



Let’s solve it now !
Hirota’'s method [PRL27(1971)1192]

U+u”+6u'u=0 :naively hard to solve

u=2062log r

r_m nn

' -1t + 3"t -4t + " =0
Hirota’s bilinear relation : more complicated ?

A solution: =142k H_ gk3

— U =2k?cosh ?(kx — 4k>t) : The solitary wave !
(1-soliton solution)



2<soliton'solution

r =1+ Ae** + Ae®” + BA A% = A determinant
2 of Wronski matrix
k1 o kz j

(general property
Ky + K, of soliton sols.)

- “tau-functions”

0. =k x—4k’t, B :(

Scattering process

The shape and velocity
IS preserved ! (stable)
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The positions are shifted ! (Phase shift)




3. Darboux transforms for NC KdV eq.

In this section, we give an exact soliton
solutions of NC KdV eq. by a Darboux

transformation. [Gilson-Nimmo, JPA40(07) 3839,
nlin.si/0701027]

We see that ingredients of quasi-

determinants are naturally generated by
iteratation of the Darboux transformation.
(an origin of quasi-determinants)

We also make a comment on asymptotic
behavior of soliton scattering process.



[For a review, see

Review of Quasi-determinants ceindeta,

math.QA/0208146]
Quasi-determinants are not just a NC

generalization of commutative determinants, but
rather related to inverse matrices.

[Defl] For an n by n matrix X =(%;) and the
inverse Y =(y;) of X, quasi-determinant of X is
directly defined by
-1 X : the matrix obtained
‘X‘ij =Yj from X deleting i-th
row and j-th column

[Def2] (Iterative definition)
‘X‘ij = X _ini’((x ij)_1)i'j'Xj’j = X _ini’(‘x ij‘j,i,)_lxj’j
i ] i ]

NnN+1 >< n+1
n > n



A comment on Def 2

Formula for inverse matrix:

A B
X — :>
[C dj
Y=X*= (Al +A7B(d-CA™B)"CA™ -A"B(d —CAlB)1]

—(d-CA™'B)"CA™ (d-CA™B)™

A convenient notation:

‘X‘ij = A




Examples of quasi-determinants

n=1: |X| =X

X1 X15 -1 X11 X12 1
n=2: ‘X‘ﬂ: = Xy = Xpp - Xyp - Xy X‘lZ_ = Xpp = Xy1 - Ky - Xy,
Xo1 Xy Xo1 Xy
X1 X12 -1 X1 X15 1
‘X‘ﬂ: = Xo1 = Xpo  Xpp * Xqg X‘zz - = Xop = Xy - Xyg * Kpp s
Xo1| X2 Xo1 KXo
X11 X12 X13 -1
_3- X _ _ X9 X3 X1
n=o. ‘ ‘11 =X Xp Xoz| = Xy — (X12 1 X13)
X3o X33 X31
X31 X3 X33
= 1 - X, - (X Xon * Xom + X, ) F e X
—X11_X12'(X22_X23'X33'X32) "Xop T 13'( 32 7 33 "3 22) A1
1 -1 1 -1
— Xpo '(X23 — Xgp = X3, 'X33) " X3 — Xg3 '(X33 — X3 " Xy, 'X23) X3
Note:
A B) oy A+ A'B(D-CA'B)'CA? —-A'B(D-CA’'B)™
—(D-CA'B)'CA? (D-CA™'B)™

((A-BD™C)* (C-DB*A)*
(B-AC'D)* (D-CA'B)?



Some identities of quasideterminants

Homological relation

A B C |[A B C||A B C
D f g=D f g(D f ¢
e (7] i e n [0 [0 1
NC Jacobi’s identitly
S?C_ACABABlAC
Y E [ 7E [M]lo [F] o [g]
E h I — —




Lax formalism of commutative KdV eq.

Linear systems:
Ly = (02 +u—A)w =0,
My = (6, — 0. —(3/2)ud, —(3/4)u )y =0.

Compatibility condition of the linear system:

[L,M] :O<:>U:Eu +§qu

4 XXX
\ / :KdV equation

Lax pair of KdV



(Q) How we get NC version of the theories?

(A) We have only to replace all products of
flelds In ordinary commutative gauge
theories with  F(X)g(x) > f(X)*g(X)

v

F)*g(x) = f(x) expe Q”Véﬁvjw) = T0g(x)+1 92

d,f(x)0,9(x)+0(6%)

A deformed product

Note: coordinates and fields
themselves are usual c-number
functions. But commutator of
coordinates becomes...

[X“, X"], = x* X" = x" *x* =160""

NC |



Lax pair of NC KdV eq.
Linear systems:
L*y = (02 +u—A")*w =0,
M *y = (0, —0: —(3/2)ud, — (3/4)u,)*y =0.

Compatibility condition of the linear system:

[LM],=0 < U :%uxxx+g(u*ux+ux*u)

KdV equation [t,x]=16

Darboux transform for NC KdV [Gilson-Nimmo]

Let us take an eigen function Wof L and define ®=W=#*o W™
Then the following trf. leaves the linear systems as it is

~ ~
~

L=D*L*®d"', M=0xM=*D", y=0=xy
and U =u+2(W, *W™),



The Darboux transformation can be iterated

Let us take eigen fcns. (f,--,f,) of L and define
@, =W, *0W," =0, ~Wi, *W, ™ W, =1, ®, =1*0,1)
W, =D, * fi+1 = f _Wi,x *Wi_l * fi+1 (1=123,--)

i1+1,x

Via =D *y; =y, —W,, W, ™y,

lterated Darboux transform for NC KdV
The following trf. leaves the linear systems as it is

-1 -1
L[i+1] =, * I—[i] * D, M[i+1] =, * M[i] D, Wi = OF *Wi

(L[l]’M[l]’W[l]) - >(L[2],M[2],W[2]) 2 ...

|
(L,M ) In fact, (W,,w;) are quasi-determinants

of Wronski matrices !

d N
1] =U+22(\/\/i,x >X<\Ni_l)x ( " )U+28)2( |OgW(f1,°--, fN))
i=1

+

an



The Darboux transformation can be iterated

Let us take eigen fcns. (f,--,f,) of L and define
O, :Wi*axwi_lzax _Wi,x *Wi_l =1, @, =1,%0,1)
W, =0, * fi+1 = f _Wi,x *Wi_l * fi+1 (1=123,--)

i1+1,x

Via =D *y; =y, —W,, W, ™y,

Examples In fact, (W;, ;) are quasi-determinants
B of Wronski matrices !
W, = f,
1 f, f,
W, =1, W, *W "=, =" Q-det !
f, f, 25
f1 f2 f3

W, = f3,x _Wz,x >X<Wz_l * fs = f1’ f2’ f3’ Q-det !

" " '
fl f2 f3 3,3

N
Urn 413 :LH'ZZ(\NLX >X<\Ni_l)x ( = )U+28)2( |OgW(f1,---, fN))
i=1




Exact N-soliton solutions of the NC KdV eq.
N
U= 28XZ(axwl) >x<\Ni_1
=1

(—=2> 0% logdetW(f,,---, f))

W, =W (f,,..., f)) ],

f, =exp (&(x,4)) +a;exp (=5(x, 4;))
E(X,t,A) = X, A +tA.°

(L= f, :(ai_/lz)fi =0, M = :(6t_6i)fi =0)

Wronski matrix: [ ¢ ¢, ... f
W(f, f,,-, )= aX,fl ax.fz - 5x.fm Etingof-Gelfand-Retakh,
: : K : [q-alg/9701008]
_8?‘1f1 o, - @T—lfm_




Scattering process of the N-soliton solutions

We have found exact N-soliton solutions for
the NC KdV eq.

Physical interpretations are non-trivial
because when f(x),g(x) arereal, T(x)*g(x)
IS not In general.

However, the solutions could be real In
some cases.
() 1-soliton solutions are all the same as
commutative ones because of
f(x—vt)*g(x—vt)=f(x—vt)g(x—vt)
(i) In asymptotic region, configurations of multi-
soliton solutions could be real in soliton
scatterings and the same as commutative ones.

MH JHEP [hep-th/0610006]




MH, JHEP02 (2007) 094

2-soliton solution of NC Kd\/Ihep-th/0610006]
cf Paniak, hep-th/0105185

each packet has the configuration:
u® =2k.* cosh 2(k.x —4k’t), v, =4k?, h =2k’

velocity height
Scattering process (NC case)
/\ A In general, complex.

/ Unknown in the middle region.
Asymptotically real
and the same as The shape
commutative BN and velocity
configurations e is preserved ! (stable)

\ A\ /\ Asymptotically

<> <>

The positions are shifted ! (Phase shift)



4. Toward NC Sato’s Theory

Sato’s Theory : one of the most beautiful theory
of solitons
Based on the exsitence of

hierarchies and tau-functions
A set of infinite A set of infinite
soliton equations ~ | Dbilinear equations
u=20:logr
(in terms of U ) (in terms of 7 )

Plucker embedding maps
which define an infinite-dim.
Grassmann manifold.

| (=the solution space)

Infinite evolution eqgs.
whose flows are all
commuting

Infinite conserved quantities Infinite dimensional symmetry



Derivation of soliton equations

Prepare a Lax operator which Is a pseudo-
differential operator

L:=0, +Uu,0," +U,0,° +U,0,° +--- u, =u, (x*,x%,x%,-)
. . i
Introduce a differential operator  y,ncommutativity
B, =(L*---xL),, is introduced here:
| m times | [x', x!]=i@"
Define NC (KP) hierarchy:
oL
—=[B,,, L], Here all products are
OX \ star product:
/ \
0, U0, + f U)o+
) f -2
amu"’af T m3(u)8f3+ _, Each coefficient yields
0, U, 0,0+ Fra (U)O +--

a differential equation.



Negative powers of differential operators

00 n _ _
oo f :=Z[ _j(a;f)agl

i—o\ J
1B
n(n-1)(n—-2)---(n—()-1))
1(0-D()-2)---1
0o f =10 +3f0°+3f0. + "
Oiof =fol+2f0, +f"

. binomial coefficient
which can be extended
to negative n
-> negative power of

differential operator

Oy o f =10, - 10,7+ 10, —- (well-defined 1)

020f=107°-2f0"+3f0"—--.



Closer look at NC KP hierarchy
For m=2
0.) O, = 2U; + U,
0) 0,u,=2ul+ul+2u,*u,+2[u,,u,l,

0.°) 8,u, =2ul +uj +4u,*uy —2u, *ul +2[u,,u,l.

Infinite kind of fields are represented AU
in terms of one kind of field U.=U b= oy
MH&K.Toda, [hep-th/0309265] 21— [y
For m=3 S ox
0y)  o,u, = ul+3ul+3ul+3u) *u, +3u, *u etc.
1 3 3 (2+1)-dim.

1 3 -1 -1
u=-—u,+—(U, *u+u*u )+—0,u, +—[u,o, u,l,
t 4 XXX 4( X x) 4 X yy 4[ ]

w7+ NC KP equation

and other NC equations  u =u(x’,x*,x%,-)

(NC KP hierarchy equations) )‘( ‘y f[



_ reductions _ _
(KP hierarchy) = (various hierarchies.)

(Ex.) KdV hierarchy
Reduction condition
> =B,(=:0%+u) :2-reduction
gives rise to NC KdV hierarchy
which includes (1+1)-dim. NC KdV eq.:

Uy :Zuxxx-l_Z(ux *U-I—U*UX)

Note iu =0 : dimensional reduction in X,y directions
2N
kP u(xh x5 x3 x5 %0,
| XY t - (2+1)-dim.
Kdv: u(xt, x3, x°,..) |

X
X 1 : (1+1)-dim.



l-reduction of NC KP hierarchy yields
wide class of other NC (GD) hierarchies

No-reduction 2 NC KP (X, y,t) = (X", x*, x°)
2-reduction = NC KdV (x,t) = (x',x°)
3-reduction = NC Boussinesg  (X,t) = (x', x%)
4-reduction - NC Coupled KdV
5-reduction - ...

3-reduction of BKP = NC Sawada-Kotera
2-reduction of mKP - NC mKdV

Special 1-reduction of mKP - NC Burgers

... Noncommutativity should be introduced into space-time coords



5. Conservation Laws

Conservation laws: 0d,0=0,]" o
time ~ " space
Then Q:=|dxo is a conserved guantity.

space

e @tQ = dX@tG = |spatial dSiJi =0

space inf inity
Conservation laws for the hierarchies
n Ij -
o,res,L =0,J+60°0,&,

time ” space
| have succeeded in the evaluation explicitly !

res_ L' : coefficient Noncommutativity should be introduced

ofoy" in L in space-time directions only. =

(o
I
>

0; should be space or time derivative
-



conserved densities for the NC soliton egs. —

- m-1 Kk
o, =res "+ ﬁ'mZZ(Tj (05 'res_,, L") 0 (o;res, L™)
k=0 1=0
t=x" res,L": coefficient of ) in L

0 : Strachan’s product (commutative and non-associative)

F0909(0:= T (x)[i D Seed, Jg(x)

MH, JMP46 (2005)

[hep-th/0311206] This suggests infinite-dimensional

symmetries would be hidden.




We can calculate the explicit forms of
conserved densities for the wide class of
NC soliton equations. (existence of
negative power of derivatives is crucial!)
Space-Space noncommutativity:
NC deformation is slight: o =res_L"
Involutive (integrable in Liouville’s sense)
Space-time noncommutativity

NC deformation is drastical:
Example: NC KP and KdV equations  ([t,x]=16)

o=res_ L' —360((resL")0u; +(res_,L")0u)
meaningful ?



6. Conclusion and Discussion

In every situation,
Quasideterminants
play important roles!

NC Twistor Theory, -~ Friday’s talk

Solution Generating I

Techmques ___________ NC ASDYM
.............. 4" Infinite gadge group-

NC NLS ‘

'\IC Ward’s chira*

izeq in [MH NPB\741(06) 368]

‘NC (affine) Toda

Toda stalk
‘ NC KdV \

INC mKdV‘

gauge equiv.

INC |;)Kdv‘

gauge equiv.

NC sine-Gordon

=

NC Liouville

‘ NC Boussinesq \

‘NCNwave ‘ NC Tzitzeica



NC Ward’s conjecture (NC KdV eq.)

Reduced ASDYM eq.: X¥ —>(t,X) o vosorion
() B'=0

() C'+A+[AC].=0 A, B, C: 2 times 2
(iii) A'—=B+[C,B], =0 matrices (gauge fields)

q -1 00
A= j B:( J
q'+9° —q¢ 1 0
Further .
Reduction:; c_ S0 +a'*q ~q NOT
- / " " l " ’ |
f(9,9',9",9") -5 40 Traceless |

®@ 0
(“):‘(® @j=0 = =—q’”+ 70/*a': NC pKdV eq. !
- u=q > NC KdV
Note: A B,C e gl(2)—22>5sl(2) U(1) part is necessary !




