Integrable Aspects of Noncommutative Anti-Self-Dual Yang-Mills Equations

Masashi HAMANAKA

University of Nagoya, Dept of Math.

Based on

- C.Gilson (Glasgow), MH and J.Nimmo (Glasgow), "Backlund trfs and the Atiyah-Ward ansatz for NC anti-self-dual (ASD) Yang-Mills (YM) eqs." Proc.Roy.Soc.A465 (2009) 2613 [arXiv:0812.1222],
- MH, NPB 741 (2006) 368 [hep-th/0601206]
- MH, "Noncommutative Solitons and Quasideterminants (review)" [arXiv:1001.1001]...

1. Introduction NC extension of integrable systems

- Matrix generalization
- Quarternion-valued system
- Moyal deformation (=extension to NC spaces=presence of magnetic flux)
- 4-dim. Anti-Self-Dual Yang-Mills Eq.
- plays important roles in QFT
- a master eq. of (lower-dim) integrable eqs. (Ward's conjecture)

NC ASDYM eq. with G=GL(N)

NC ASDYM eq. (real rep.)

$$F_{01}^{*} = -F_{23}^{*}, \qquad (F_{\mu\nu}^{*} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]_{*})$$

$$F_{02}^{*} = -F_{31}^{*}, \qquad \theta^{\mu\nu} = \begin{bmatrix} 0 & \theta^{1} & 0 \\ -\theta^{1} & 0 & 0 \\ 0 & -\theta^{2} & 0 \end{bmatrix}$$

$$\theta^{\mu\nu} = \begin{bmatrix} 0 & \theta^{1} & 0 \\ -\theta^{1} & 0 & 0 \\ 0 & -\theta^{2} & 0 \end{bmatrix}$$

(Spell:All products are Moyal products.)

Under the spell, we get a theory on NC spaces:

$$f(x) * g(x) := f(x) \exp\left(\frac{i}{2} \theta^{\mu\nu} \overleftarrow{\partial}_{\mu} \overrightarrow{\partial}_{\nu}\right) g(x)$$

$$= f(x)g(x) + i \frac{\theta^{\mu\nu}}{2} \partial_{\mu} f(x) \partial_{\nu} g(x) + O(\theta^{2})$$

$$[x^{\mu}, x^{\nu}]_{*} := x^{\mu} * x^{\nu} - x^{\nu} * x^{\mu} = i\theta^{\mu\nu}$$

NC ASDYM eq. with G=GL(N)

NC ASDYM eq. (real rep.)

$$F_{01}^{*} = -F_{23}^{*}, \qquad (F_{\mu\nu}^{*} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]_{*})$$

$$F_{02}^{*} = -F_{31}^{*}, \qquad \theta^{\mu\nu} = \begin{bmatrix} 0 & \theta^{1} & 0 \\ -\theta^{1} & 0 & 0 \\ 0 & 0 & \theta^{2} \\ 0 & -\theta^{2} & 0 \end{bmatrix}$$

$$\begin{pmatrix} \tilde{z} & w \\ \tilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^{0} + ix^{1} & x^{2} - ix^{3} \\ x^{2} + ix^{3} & x^{0} - ix^{1} \end{pmatrix} \qquad [x^{\mu}, x^{\nu}]_{*} = i\theta^{\mu\nu}$$

$$[z, \tilde{z}]_{*} = 2\theta^{1}, [w, \tilde{w}]_{*} = 2\theta^{2}.$$

$$\left\{egin{aligned} F_{zw}^{} &= 0, \ F_{\widetilde{z}\widetilde{w}}^{} &= 0, \ F_{z\widetilde{z}}^{\widetilde{w}} &= F_{w\widetilde{w}}^{\widetilde{w}} &= 0. \end{aligned}
ight.$$
 (complex rep.)

(Spell:All products are Moyal products.)

NC ASDYM eq. with G=GL(N)

NC ASDYM eq. (real rep.)

$$F_{01}^{*} = -F_{23}^{*}, \qquad (F_{\mu\nu}^{*} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]_{*})$$

$$F_{02}^{*} = -F_{31}^{*}, \qquad \theta^{\mu\nu} = \begin{bmatrix} 0 & \theta^{1} & 0 \\ -\theta^{1} & 0 & 0 \\ 0 & 0 & \theta^{2} \\ -\theta^{2} & 0 \end{bmatrix}$$

$$\begin{pmatrix} \tilde{z} & w \\ \tilde{w} & z \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x^{0} + ix^{1} & x^{2} - ix^{3} \\ x^{2} + ix^{3} & x^{0} - ix^{1} \end{pmatrix} \qquad [x^{\mu}, x^{\nu}]_{*} = i\theta^{\mu\nu}$$

$$[z, \tilde{z}]_{*} = 2\theta^{1}, [w, \tilde{w}]_{*} = 2\theta^{2}.$$

$$\left\{egin{aligned} F_{zw}^{} &= 0,\ F_{\widetilde{z}\widetilde{w}}^{} &= 0,\ F_{z\widetilde{z}}^{} &- F_{w\widetilde{w}}^{} &= 0 \end{aligned}
ight.$$

From now on,
we would omit the symbol '*'
(Products can be (general)
NC and associative ones.)

Reduction to NC KdV from NC ASDYM

$$\begin{cases} F_{zw} = 0, & \text{SNC ASDYM eq.} \\ F_{\widetilde{z}\widetilde{w}} = 0, & \text{G=GL(2)} \end{cases}$$

$$(z, \widetilde{z}, w, \widetilde{w}) \rightarrow (t, x) = (z, w + \widetilde{w})$$

$$A_{z} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{\widetilde{w}} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{Reduction conditions}$$

$$A_{w} = \begin{pmatrix} q & -1 \\ q' + q^{2} & -q \end{pmatrix}, A_{z} = \begin{pmatrix} \frac{1}{2}q'' + q'q & -q' \\ \frac{1}{4}q''' + \frac{1}{2}(q'^{2} + qq'' + q''q) + qq'q & -\frac{1}{2}q'' - qq' \end{pmatrix}$$

NOT traceless → U(1) part is crucial!

$$\dot{u} = \frac{1}{4}u''' + \frac{3}{4}(u'u + uu') \qquad u = 2q'$$

:NC KdV eq.!

Reduction to NC NLS from NC ASDYM

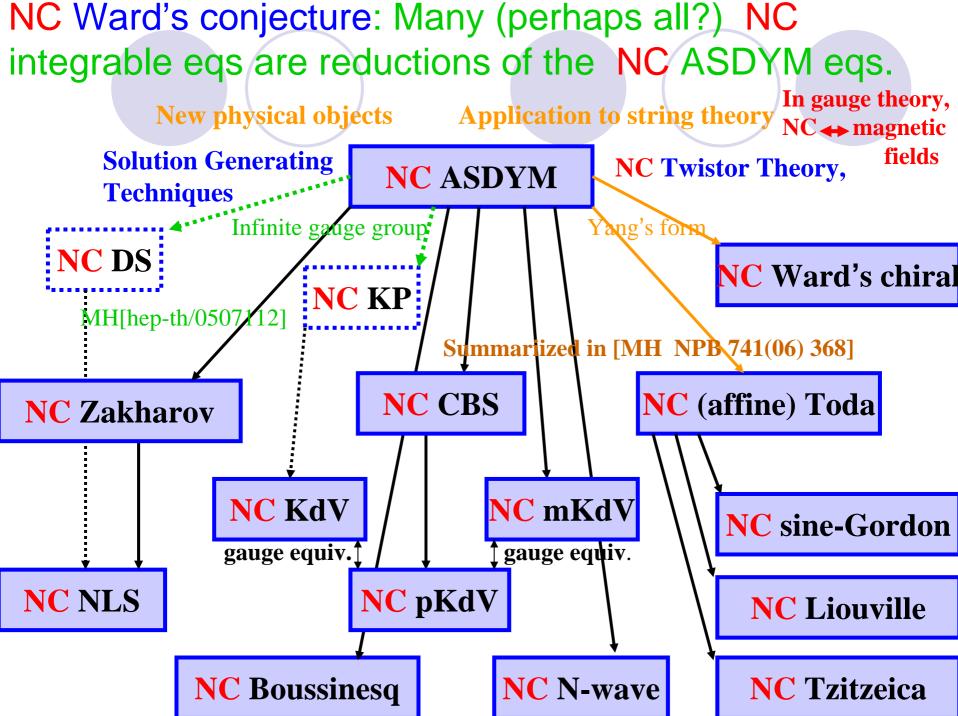
$$\begin{cases} F_{zw} = 0, \\ F_{\widetilde{z}\widetilde{w}} = 0, \\ F_{z\widetilde{z}} - F_{w\widetilde{w}} = 0 \end{cases}$$
 :NC ASDYM eq.
$$(z, \widetilde{z}, w, \widetilde{w}) \rightarrow (t, x) = (z, w + \widetilde{w})$$

$$(z, \widetilde{z}, w, \widetilde{w}) \rightarrow (t, x) = (z, w + \widetilde{w})$$

$$A_{z} = \sqrt{-1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_{\widetilde{w}} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 Reduction conditions
$$A_{w} = \begin{pmatrix} 0 & \psi \\ \overline{w} & 0 \end{pmatrix}, A_{z} = \sqrt{-1} \begin{pmatrix} -\psi \overline{\psi} & -\psi' \\ \overline{w}' & \overline{w} \overline{w} \end{pmatrix}$$

NOT traceless \rightarrow U(1) part is crucial!

$$\sqrt{-1}\dot{\psi} = \psi'' - 2\psi\overline{\psi}\psi$$
 :NC NLS eq.!



Plan of this talk

- 1. Introduction
- 2. Quasi-determinants
- 3. Backlund Transforms for the NC ASDYM eqs. (and NC Atiyah-Ward ansatz solutions in terms of quasideterminants)
- 4. Origin of the Backlund trfs from NC twistor theory
- 5. Conclusion and Discussion

[For a review, see Gelfand et al., math.QA/0208146]

- Quasi-determinants are not just a NC generalization of commutative determinants, but rather related to inverse matrices.
- [Def1] For an n by n matrix $X = (x_{ij})$ and the inverse $Y = (y_{ij})$ of X, quasi-determinant of X is directly defined by

$$|X|_{ij} = y_{ji}^{-1}$$
 $\left(\begin{array}{c} \ln \\ \text{commutative} \end{array}\right) \left(\begin{array}{c} \frac{(-1)^{i+j}}{\det X^{ij}} \det X \end{array}\right)$ X^{ij} : the matrix obtained from X deleting i-th row and j-th column

[Def2] (Iterative definition)

$$|X|_{ij} = x_{ij} - \sum_{i',j'} x_{ii'} ((X^{ij})^{-1})_{i'j'} x_{j'j} = x_{ij} - \sum_{i',j'} x_{ii'} (|X^{ij}|_{j'i'})^{-1} x_{j'j}$$
1 × n+1

A comment on Def 2

Formula for inverse matrix:

$$X = \begin{pmatrix} A & B \\ C & d \end{pmatrix} \Rightarrow X = \begin{pmatrix} A^{-1} + A^{-1}B(d - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(d - CA^{-1}B)^{-1} \\ -(d - CA^{-1}B)^{-1}CA^{-1} & (d - CA^{-1}B)^{-1} \end{pmatrix}$$

A convenient notation:

$$\left|X
ight|_{ij}=egin{array}{cccc} dots & d$$

Examples of quasi-determinants

$$n=1: |X|_{ij}=x_{ij}$$

$$n = 2: |X|_{11} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{11} - x_{12} \cdot x_{22}^{-1} \cdot x_{21}, |X|_{12} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{12} - x_{11} \cdot x_{21}^{-1} \cdot x_{22},$$

$$\begin{vmatrix} X |_{21} & = \begin{vmatrix} x_{11} & x_{12} \\ \hline x_{21} & x_{22} \end{vmatrix} = x_{21} - x_{22} \cdot x_{12}^{-1} \cdot x_{11}, \ |X|_{22} = \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & \hline x_{22} \end{vmatrix} = x_{22} - x_{21} \cdot x_{11}^{-1} \cdot x_{12},$$

$$n = 3: |X|_{11} = \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix} = x_{11} - (x_{12}, x_{13}) \begin{pmatrix} x_{22} & x_{23} \\ x_{32} & x_{33} \end{pmatrix}^{-1} \begin{pmatrix} x_{21} \\ x_{31} \end{pmatrix}$$

$$= x_{11} - x_{12} \cdot (x_{22} - x_{23} \cdot x_{33}^{-1} \cdot x_{32})^{-1} \cdot x_{21} - x_{13} \cdot (x_{32} - x_{33} \cdot x_{23}^{-1} \cdot x_{22})^{-1} \cdot x_{21}$$

$$- x_{12} \cdot (x_{23} - x_{22} \cdot x_{32}^{-1} \cdot x_{33})^{-1} \cdot x_{31} - x_{13} \cdot (x_{33} - x_{32} \cdot x_{22}^{-1} \cdot x_{23})^{-1} \cdot x_{31}$$

Note:

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \Rightarrow Y = X^{-1} = \begin{pmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} (A - BD^{-1}C)^{-1} & (C - DB^{-1}A)^{-1} \\ (B - AC^{-1}D)^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}$$
Next page

Some identities of quasideterminants

Homological relation

$$\begin{vmatrix} A & B & C \\ D & f & g \\ E & h \end{vmatrix} = \begin{vmatrix} A & B & C \\ D & f & g \\ E & h \end{vmatrix} = \begin{vmatrix} A & B & C \\ D & f & g \\ D & 0 \end{vmatrix} = \begin{vmatrix} A & B & C \\ D & f & g \\ D & 0 \end{vmatrix}$$

e.g.

$$C - DB^{-1}A = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} \begin{vmatrix} A & B \\ O & 1 \end{vmatrix} = (D - CA^{-1}B)(-B^{-1}A)$$

The identity in the previous page!

Some identities of quasideterminants

$$\begin{vmatrix} A & B & C \\ D & f & g \\ E & h & |i| \end{vmatrix} = \begin{vmatrix} A & C \\ E & |i| - \begin{vmatrix} A & B \\ E & |h| \end{vmatrix} \begin{vmatrix} A & B \\ D & |f| \end{vmatrix} \begin{vmatrix} A & C \\ D & |g| \end{vmatrix}$$

$$D - CA^{-1}B''$$

:(commutative)
Jacobi's id.

3. Backlund transform for NC ASDYM eqs.

- In this section, we give Backlund transformations for the NC ASDYM equation.
- The proof is made very simply by using identities of quasideterminants.
- The generated solutions are represented in terms of quasideterminants, which contain not only finite-action solutions (NC instantons) but also infinite-action solutions (non-linear plane waves and so on.)

NC Yang's form and Yang's equation

NC ASDYM eq. can be rewritten as follows

$$\begin{cases} F_{zw} = [D_z, D_w] = 0, & \Rightarrow \exists h, D_z h = 0, D_w h = 0 & (A_z = -h_z h^{-1}, etc.) \\ F_{\tilde{z}\tilde{w}} = [D_{\tilde{z}}, D_{\tilde{w}}] = 0, & \Rightarrow \exists \tilde{h}, D_{\tilde{z}}\tilde{h} = 0, D_{\tilde{w}}\tilde{h} = 0 & (A_{\tilde{z}} = -\tilde{h}_{\tilde{z}}\tilde{h}^{-1}, etc.) \\ F_{z\tilde{z}} - F_{w\tilde{w}} = [D_z, D_{\tilde{z}}] - [D_w, D_{\tilde{w}}] = 0 \end{cases}$$

If we define Yang's matrix: $J := h^{-1}h$ then we obtain from the third eq.:

$$\partial_z (J^{-1}\partial_{\tilde{z}}J) - \partial_w (J^{-1}\partial_{\tilde{w}}J) = 0$$
 :NC Yang's eq.

The solution J reproduce the gauge fields as

$$A_{z} = -h_{z}h^{-1}, \ A_{w} = h_{w}h^{-1}, \ A_{\widetilde{z}} = -\widetilde{h}_{\widetilde{z}}\widetilde{h}^{-1}, \ A_{\widetilde{w}} = \widetilde{h}_{\widetilde{w}}\widetilde{h}^{-1}$$

Backlund trf. for NC ASDYM eq. G=GL(2)

The J matrix can be reparametrized as follows

(f. ch⁻¹c ch⁻¹)

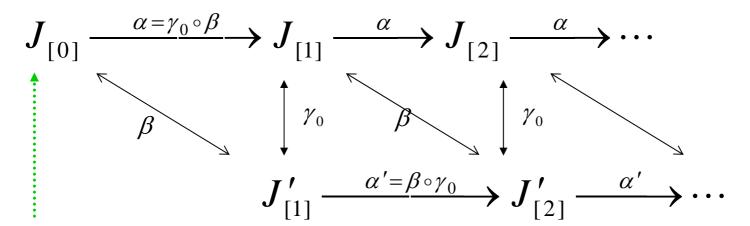
$$J = \begin{pmatrix} f - gb^{-1}e & -gb^{-1} \\ b^{-1}e & b^{-1} \end{pmatrix}$$

■ Then the following two kind of trfs. leave NC ASDYM eq. $\partial_{\tau}(J^{-1}\partial_{\tau}J) - \partial_{w}(J^{-1}\partial_{w}J) = 0$ as it is:

$$\beta : \begin{cases} \partial_{z}e^{new} = -f^{-1}g_{\widetilde{w}}b^{-1}, \ \partial_{w}e^{new} = -f^{-1}g_{\widetilde{z}}b^{-1}, \\ \partial_{\widetilde{z}}g^{new} = -b^{-1}e_{w}f^{-1}, \ \partial_{\widetilde{w}}g^{new} = -b^{-1}e_{z}f^{-1}, \\ f^{new} = b^{-1}, \ b^{new} = f^{-1} \end{cases}$$

$$\gamma_0: \begin{pmatrix} f^{new} & g^{new} \\ e^{new} & b^{new} \end{pmatrix} = \begin{pmatrix} (b - ef^{-1}g)^{-1} & (g - fe^{-1}b)^{-1} \\ (e - bg^{-1}f)^{-1} & (f - gb^{-1}e)^{-1} \end{pmatrix}$$

- Both trfs. are involutive ($\beta \circ \beta = id$, $\gamma_0 \circ \gamma_0 = id$), but the combined trf. $\gamma_0 \circ \beta$ is non-trivial.)
- Then we could generate various (nontrivial) solutions of NC ASDYM eq. from a (trivial) seed solution (so called, NC Atiyah-Ward ansatz solutions)



A seed solution:

$$b_{[0]} = f_{[0]} = e_{[0]} = g_{[0]} = \Delta_0^{-1},$$

$$\partial^2 \Delta_0 = (\partial_z \partial_{\tilde{z}} - \partial_w \partial_{\tilde{w}}) \Delta_0 = 0$$

$$J_{[n]} = \begin{pmatrix} f_{[n]} - g_{[n]} b_{[n]}^{-1} e_{[n]} & -g_{[n]} b_{[n]}^{-1} \\ b_{[n]}^{-1} e_{[n]} & b_{[n]}^{-1} \end{pmatrix}$$

Explicit Atiyah-Ward ansatz solutions of NC ASDYM eq. G=GL(2) [Gilson-MH-Nimmo, arXiv:0709.2069]

$$b_{[0]} = f_{[0]} = e_{[0]} = g_{[0]} = \Delta_0^{-1}, \ \partial^2 \Delta_0 = 0$$

$$b_{[1]} = \begin{bmatrix} \Delta_0 \\ \Delta_1 \end{bmatrix} \Delta_{-1} \begin{bmatrix} -1 \\ \Delta_0 \end{bmatrix} A_{-1} \begin{bmatrix} -1 \\ \Delta_1 \end{bmatrix} A_{0} \begin{bmatrix} \Delta_{-1} \\ \Delta_1 \end{bmatrix} A_{0} \begin{bmatrix} -1 \\ \Delta_1 \end{bmatrix} A_{0} \begin{bmatrix} \Delta_{-1} \\ \Delta_1 \end{bmatrix} A_{0} A_$$

$$f_{[n]} = \begin{bmatrix} \Delta_0 & \cdots & \Delta_{-n} \\ \vdots & \ddots & \vdots \\ \Delta_n & \cdots & \Delta_0 \end{bmatrix}^{-1}, b_{[n]} = \begin{bmatrix} \Delta_0 & \cdots & \Delta_{-n} \\ \vdots & \ddots & \vdots \\ \Delta_n & \cdots & \Delta_0 \end{bmatrix}^{-1},$$

$$e_{[n]} = \begin{vmatrix} \Delta_0 & \cdots & \Delta_{-n} \\ \vdots & \ddots & \vdots \\ \Delta_n & \cdots & \Delta_0 \end{vmatrix}^{-1}, g_{[n]} = \begin{vmatrix} \Delta_0 & \cdots & \Delta_{-n} \\ \vdots & \ddots & \vdots \\ \Delta_n & \cdots & \Delta_0 \end{vmatrix}^{-1}$$

$$\frac{\partial \Delta_{i}}{\partial z} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{w}}, \quad \frac{\partial \Delta_{i}}{\partial w} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{z}}$$

Explicit Atiyah-Ward ansatz solutions of NC ASDYM eq. G=GL(2) [Gilson-MH-Ni

$$f'_{[n]} = \begin{vmatrix} \Delta_0 & \cdots & \Delta_{1-n} \\ \vdots & \ddots & \vdots \\ \Delta_{n-1} & \cdots & \boxed{\Delta_0} \end{vmatrix}, b'_{[n]} = \begin{vmatrix} \Delta_0 & \cdots & \Delta_{1-n} \\ \vdots & \ddots & \vdots \\ \Delta_{n-1} & \cdots & \Delta_0 \end{vmatrix},$$

$$e'_{[n]} = \begin{vmatrix} \Delta_{-1} & \cdots & \boxed{\Delta_{-n}} \\ \vdots & \ddots & \vdots \\ \Delta_{n-2} & \cdots & \Delta_{-1} \end{vmatrix}, g'_{[n]} = \begin{vmatrix} \Delta_1 & \cdots & \Delta_{2-n} \\ \vdots & \ddots & \vdots \\ \boxed{\Delta_n} & \cdots & \Delta_1 \end{vmatrix}$$

$$\frac{\partial \Delta_{i}}{\partial z} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{w}}, \quad \frac{\partial \Delta_{i}}{\partial w} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{z}}$$

$$\beta : \begin{cases} \partial_{z}e^{new} = -f^{-1}g_{\widetilde{w}}b^{-1}, \ \partial_{w}e^{new} = -f^{-1}g_{\widetilde{z}}b^{-1}, \\ \partial_{\widetilde{z}}g^{new} = -b^{-1}e_{w}f^{-1}, \ \partial_{\widetilde{w}}g^{new} = -b^{-1}e_{z}f^{-1}, \\ f^{new} = b^{-1}, \ b^{new} = f^{-1} \end{cases}$$

$$\begin{aligned} \textbf{e.g.} \qquad & b_{[1]}' = f_{[1]}' = \Delta_0, \, e_{[1]}' = \Delta_{-1}, \, g_{[1]}' = \Delta_1 \\ \\ & \partial_z \Delta_0 = \partial_{\,\widetilde{w}} \Delta_1, \, \partial_z \Delta_{-1} = \partial_{\,\widetilde{w}} \Delta_0, \, \partial_{\,w} \Delta_0 = \partial_{\,\widetilde{z}} \Delta_1, \, \partial_{\,w} \Delta_{-1} = \partial_{\,\widetilde{z}} \Delta_0 \end{aligned}$$

The proof is in fact very simple!

- Proof is made simply by using only special identities of quasideterminants. (NC Jacobi's identities and homological relations, Gilson-Nimmo's derivative formula etc.)
- In other words, "NC Backlund trfs are identities of quasideterminants." This is an analogue of the fact in lowerdim. commutative theory: "Backlund trfs are identities of determinants."

An example

$$b_{[n]}^{-1} = f'_{[n]} - g'_{[n]}b'_{[n]}^{-1}e'_{[n]}$$

$$\Leftrightarrow$$

$$\begin{vmatrix} \Delta_0 & \cdots & \Delta_{-n} \\ \vdots & \ddots & \vdots \\ \Delta_n & \cdots & \boxed{\Delta_0} \end{vmatrix} =$$

$$\begin{vmatrix} \Delta_0 & \cdots & \Delta_{1-n} \\ \vdots & \ddots & \vdots \\ \Delta_{n-1} & \cdots & \boxed{\Delta_0} \end{vmatrix} - \begin{vmatrix} \Delta_1 & \cdots & \Delta_{2-n} \\ \vdots & \ddots & \vdots \\ \boxed{\Delta_n} & \cdots & \Delta_1 \end{vmatrix} \begin{vmatrix} \boxed{\Delta_0} & \cdots & \Delta_{1-n} \\ \vdots & \ddots & \vdots \\ \boxed{\Delta_{n-1}} & \cdots & \Delta_0 \end{vmatrix} \begin{vmatrix} \Delta_{-1} & \cdots & \boxed{\Delta_{-n}} \\ \boxed{\Delta_{n-2}} & \cdots & \Delta_{-1} \end{vmatrix}$$

This is just the NC Jacobi identity!

Some exact solutions

• We could generate various solutions of NC ASDYM eq. from a simple seed solution Δ_0 by using the previous Backlund trf.

A seed solution:

$$\Delta_0 = 1 + \frac{1}{z\tilde{z} - w\tilde{w}}$$
" \rightarrow NC instantons (special to NC spaces)

 $\Delta_0 = \exp(linear \ of \ z, \tilde{z}, w, \tilde{w})$ \rightarrow NC Non-Linear plane-waves (new solutions beyond ADHM)

A compact formula of J-matrix

$$J_{[n]} = \begin{pmatrix} f_{[n]} - g_{[n]} b_{[n]}^{-1} e_{[n]} & -g_{[n]} b_{[n]}^{-1} \\ b_{[n]}^{-1} e_{[n]} & b_{[n]}^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} \boxed{0} & -1 & 0 & \cdots & 0 & \boxed{0} \\ 1 & \Delta_0 & \Delta_{-1} & \cdots & \Delta_{1-n} & \Delta_{-n} \\ 0 & \Delta_1 & \Delta_0 & \cdots & \Delta_{2-n} & \Delta_{1-n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \boxed{0} & \Delta_{n-1} & \Delta_{n-2} & \cdots & \Delta_0 & \Delta_{-1} \\ \boxed{0} & \Delta_n & \Delta_{n-1} & \cdots & \Delta_1 & \boxed{\Delta_0} \end{pmatrix}$$

J:gauge-invariant → The Backlund trf. is not just a gauge trf. but a non-trivial one!

4. Interpretation from NC twistor theory

- In this section, we give an origin of all ingredients of the Backlund trfs. from the viewpoint of NC twistor theory.
- NC twistor theory has been developed by several authors [Kapustin-Kuznetsov-Orlov, Takasaki, Hannabuss, Lechtenfeld-Popov, Brain-Majid...]
- What we need here is NC Penrose-Ward correspondence between ASD connections and "NC holomorphic vector bundle" on NC twistor space.
- We can see some origin of the quasideterminant solutions.

NC Penrose-Ward correspondence

1:1

[Takasaki]

Sol. of NC ASDYM

$$\begin{cases} L\psi = (D_w - \zeta D_{\widetilde{z}})\psi = 0, \\ M\psi = (D_z - \zeta D_{\widetilde{w}})\psi = 0. \end{cases}$$

$$\tilde{\zeta} = 1/\zeta$$

$$\begin{cases} \widetilde{L}\,\widetilde{\psi} = (\widetilde{\zeta}D_w - D_{\widetilde{z}})\widetilde{\psi} = 0, \\ \widetilde{M}\widetilde{\psi} = (\widetilde{\zeta}D_z - D_{\widetilde{w}})\widetilde{\psi} = 0. \end{cases}$$

$$|L,M| = 0 \text{ or } [\widetilde{L},\widetilde{M}] = 0$$

NC ASDYM eq. (Yang's form)

$$\partial_z (J^{-1}\partial_{\tilde{z}}J) - \partial_w (J^{-1}\partial_{\tilde{w}}J) = 0$$

"NC hol. vec. bdl."

1:1

Patching matrix

$$P(\zeta w + \widetilde{z}, \zeta z + \widetilde{w}, \zeta)$$

$$=\widetilde{\psi}^{-1}\psi$$

$$\psi(x;\zeta) = h(x) + O(\zeta)$$

$$\widetilde{\psi}(x;\widetilde{\zeta}) = \widetilde{h}(x) + O(\widetilde{\zeta})$$

$$h(x) = \psi(x, \zeta = 0),$$

$$\widetilde{h}(x) = \widetilde{\psi}(x, \zeta = \infty)$$

$$J := \widetilde{h}^{-1}h = \begin{pmatrix} f - gb^{-1}e & -gb^{-1} \\ b^{-1}e & b^{-1} \end{pmatrix}$$

Origin of NC Atiyah-Ward (AW) ansatz sols.

The n-th AW ansatz for the Patching matrix

$$P_{[n]} = \begin{pmatrix} 0 & \zeta^{-n} \\ \zeta^{n} & \Delta(x;\zeta) \end{pmatrix} \qquad \Delta(x;\zeta) = \Delta(\zeta w + \widetilde{z}, \zeta z + \widetilde{w}, \zeta) = \sum_{i} \Delta_{i}(x) \zeta^{i}$$

$$P_{[n]} = \begin{pmatrix} 0 & \zeta^{-n} \\ \zeta^{n} & \Delta(x;\zeta) \end{pmatrix} \qquad \Delta(x;\zeta) = \Delta(\zeta w + \widetilde{z}, \zeta z + \widetilde{w}, \zeta) = \sum_{i} \Delta_{i}(x)\zeta^{i}$$
The Birkoff factorization
$$P = \widetilde{\psi}^{-1}\psi \quad \text{leads to:}$$

$$h_{11} = h_{12} \left| D_{[n+1]} \right|_{1,n+1}^{-1} - \widetilde{h}_{11} \left| D_{[n+1]} \right|_{1,1}^{-1} \qquad \widetilde{h}(x) + O(\widetilde{\zeta}) \qquad h(x) + O(\zeta)$$

$$h_{21} = h_{22} \left| D_{[n+1]} \right|_{1,n+1}^{-1} - \widetilde{h}_{21} \left| D_{[n+1]} \right|_{1,1}^{-1}$$

$$\widetilde{h}_{12} = h_{12} \left| D_{[n+1]} \right|_{n+1,n+1}^{-1} - \widetilde{h}_{11} \left| D_{[n+1]} \right|_{n+1,1}^{-1}$$

$$\widetilde{h}_{22} = h_{22} \left| D_{[n+1]} \right|_{n+1,n+1}^{-1} - \widetilde{h}_{21} \left| D_{[n+1]} \right|_{n+1,1}^{-1}$$

$$h_{12} = \widetilde{h}_{21} = 0,$$

Under a gauge ($\frac{h_{12} = \widetilde{h}_{21} = 0}{h_{22} = \widetilde{h}_{11} = 1}$), this solution coincides with the quasideterminants sols!

$$\begin{split} \widetilde{h}_{22} &= b_{[n]} = \left| D_{[n+1]} \right|_{n+1,n+1}^{-1}, \, h_{11} = f_{[n]} = - \left| D_{[n+1]} \right|_{11}^{-1}, \\ h_{21} &= e_{[n]} = \left| D_{[n+1]} \right|_{1,n+1}^{-1}, \, \widetilde{h}_{12} = g_{[n]} = - \left| D_{[n+1]} \right|_{n+1,1}^{-1} \\ \end{split} \qquad \begin{aligned} & J_{[n]} = \widetilde{h}^{-1} h = \begin{pmatrix} 1 & g_{[n]} & 0 \\ 0 & b_{[n]} \end{pmatrix}^{-1} \begin{pmatrix} f_{[n]} & 0 \\ e_{[n]} & 1 \end{pmatrix} \\ & = \begin{pmatrix} f_{[n]} - g_{[n]} b_{[n]}^{-1} e_{[n]} & - g_{[n]} b_{[n]}^{-1} \\ b_{[n]}^{-1} e_{[n]} & b_{[n]}^{-1} \end{pmatrix} \end{split}$$

Origin of NC Atiyah-Ward (AW) ansatz sols.

The n-th AW ansatz for the Patching matrix

$$P_{[n]} = \begin{pmatrix} 0 & \zeta^{-n} \\ \zeta^{n} & \Delta(x;\zeta) \end{pmatrix} \qquad \Delta(x;\zeta) = \underline{\Delta(\zeta w + \widetilde{z}, \zeta z + \widetilde{w}, \zeta)} = \sum_{i} \Delta_{i}(x)\zeta^{i}$$
• The recursion relation is derived from:

$$l\Delta(x;\zeta) = (\partial_{w} - \zeta \partial_{\tilde{z}})\Delta = 0,$$

$$m\Delta(x;\zeta) = (\partial_{z} - \zeta \partial_{\tilde{w}})\Delta = 0,$$

$$\frac{\partial \Delta_{i}}{\partial z} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{w}}, \quad \frac{\partial \Delta_{i}}{\partial w} = \frac{\partial \Delta_{i+1}}{\partial \widetilde{z}}$$

Origin of the Backlund trfs

The Backlund trfs can be understood as the adjoint actions for the Patching matrix:

$$\beta: P^{new} = B^{-1}PB, \quad \gamma_0: P^{new} = C_0^{-1}PC_0, \quad B = \begin{pmatrix} 0 & 1 \\ \zeta^{-1} & 0 \end{pmatrix}, \quad C_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

actually:

$$\alpha = \gamma_0 \circ \beta: \quad P_{[n]} = \begin{pmatrix} 0 & \zeta^{-n} \\ \zeta^n & \Delta \end{pmatrix} \mapsto C_0^{-1} B^{-1} \begin{pmatrix} 0 & \zeta^{-n} \\ \zeta^n & \Delta \end{pmatrix} B C_0 = \begin{pmatrix} 0 & \zeta^{-(n+1)} \\ \zeta^{n+1} & \Delta \end{pmatrix} = P_{[n+1]}$$

- The γ_0 -trf. leads to $J^{new} = C_0^{-1}JC_0 \Rightarrow$ The previous γ_0 -trf!
- The β -trf. is derived with a singular gauge trf. $\beta : w \mapsto w^{new} = swB$ $s = \begin{pmatrix} 0 & \zeta b^{-1} \end{pmatrix}$

trf.
$$\beta: \psi \mapsto \psi^{new} = s \psi B, \qquad s = \begin{pmatrix} 0 & \zeta b^{-1} \\ -f^{-1} & 0 \end{pmatrix} \qquad \text{1-2 component of } L\psi = (D_w - \zeta D_{\widetilde{z}})\psi = 0$$

$$h^{new} = \begin{pmatrix} f^{new} & 0 \\ e^{new} & 1 \end{pmatrix} = \begin{pmatrix} b^{-1} & 0 \\ -f^{-1}k_{12} & 1 \end{pmatrix} \Rightarrow \qquad f^{new} = b^{-1}$$

$$\psi = h + k\zeta + O(\zeta^2) \qquad \text{The previous } \beta\text{-trf!}$$

- 5. Conclusion and Discussion
 - NC integrable eqs (ASDYM) in higher-dim.
 - **ADHM (OK)**
 - **OTwistor (OK)**

- Quasi-determinants are important!
- **Backlund trf (DK), Symmetry (Next)**

Profound relation ?? (via Ward conjecture)

NC integrable eqs (KdV) in lower-dims.

- **OHierarchy (OK)**
- **Infinite conserved quantities (OK)**
- **Exact N-soliton solutions (OK)**
- OSymmetry(``tau-fcn'', Sato's theory) (Next)
- **OBehavior of solitons... (Next)**

Quasi-determinants are important!