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Note: In my poster, the word = "'noncommutative (=NC)’’ means nonecémmutative
spaces but most of results can be extended to more general situation. v
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1. Introduction (my motivation)

Successful points in NC theories
» Appearance of new physical objects

» Description of real physics (in gauge theory)
@ \/arious successful applications
to D-brane dynamics etc.

(partially due to their integrablit

Final goal: NC extension of all soliton thé
(Soliton egs. can be embedded in gauge theg
via Ward’s conjecture !)



NC Ward’s conjecture: Many (perhaps all?) NC
Integrable eqs are reductions of the NC ASDYM egs.

Proposed in MH &K.Toda,
Phys.Lett.A 316 (03) 77

Solution Generating NC Twistor Theory.
Techniques _____________ NC ASDYM I Summaride in MH
............. ;4= Infinite gpdge groupy Nucl.Phys.B 741 (06) 368
NCDS NCKPY '\IC Ward’s chirai
MH[hep-th/0507242] ...
NC Zakharov ‘ NC CBS ‘ ‘NC (affine) Toda‘
‘ Ne Kd_v ‘ ‘NC mKd_V‘ ‘NC sine-Gordon
HE | gauge equiv. | gauge equiv.
NC NLS ‘ ‘ NC pKdV‘ \ ‘ NC Liouville

‘ NC Boussinesq \

‘NC N—Wave‘ ‘ NC Tzitzeica



Program of NC extension of soliton theories

@ (1) Confirmation of NC Ward'’s conjecture
— NC twistor theory - geometrical origin
— D-brane interpretations = applications to physics

@ (11) Completion of NC Sato’s theory
— Existence of "hierarchies’ -> various soliton egs.
— Existence of infinite conserved quantities
- Infinite-dim. hidden symmetry
— Construction of multi-soliton solutions

— Theory of tau-functions -> structure of the,sSOIEEION
spaces and the symmetry

(),(if) > complete understanding of the NC soliten theories



2. Backlund transforms for NC ASDYM egs.

@ In this section, we derive (NC) ASDYM eq. from the
viewpoint of linear systems, which is suitable for
discussion on integrable aspects.

e We define NC Yang’s equations which is equivalent to
NC ASDYM eg. and give a Backlund transformation for
It.

@ The generated solutions would contain not only finite-
action solutions (NC instantons) but also infinite-agtion
solutions (non-linear plane waves and so on.)

e [ his Backlund transformation would be applicable for
lower-dimensional integrable egs. via \Ward’s canjectiire,



Here we discuss G=GL(N) (NC) ASDYM eg. from the
viewpoint of linear systems with a spectral parameter ¢ .

e Linear systems

~

W Z

Ly =(D,, —¢D;)y =0, . ('z” Wj_l(xoﬂxl x2—ix3j
My = (D, - ¢ Dy )y =0. 2

e Compatibility condition of the linear system:
[L,M]=[D,,D,]+<([D,, D;]-[D,, D;]) +¢"[D;, D;]=0

[ |:ZW — -DZ’ Dw: — O’

= . =[D;,D;]1=0, :ASDY M equation

\Fz'z~ - F W :[Dz’ D’z' _[DW’ DVT/] =0

x2+ix® x%—ixt

(F. =0,A -0,A, +[A,A])



Yang'’s form and Yang’s equation

e ASDYM eg. can be rewritten as follows

' F,=[D,,D,]=0, = 3h,D,h=0, D,h=0 (A =—hh™ etc)
F..=[D,,D,]=0, = 3h,D,h=0 D;h=0 (A =-hh=etc)
| Fz —Fuw =1D,,D;1-[D,, D3] =0

N

If we define Yang’s matrix: J:=h"h
then we obtain from the third eq.:

0,(J70,1)-0,(170;))=0 :Yang'seq.
J The solution J reproduce the gauge fields as

A =-hh? A =hh7 A =-hh™, A, =hgh



(Q) How we get NC version of the theories?

(A) We have only to replace all products of fields In
ordinary commutative gauge theories

with C o T()9(X) = T(x)*g(x)

&
f()*9(x) = F(x) expe 0’”5#@)9@) = 1009+

d,f(x)0,9(x)+0(6%)

A deformed product

Note: coordinates and fields
themselves are usual c-number
functions. But commutator of
coordinates becomes...

[X“, X"], = x" %= x" —x" *x* =160""

NC |



Here we discuss G=GL(N) ASDYM eq. from the
viewpoint of linear systems with a spectral parameter £ .
(All products are star-products.)

e Linear systems

L*W:(Dw_ng)*W:O’ eg ‘Z“ W 1 XO_I_ixl X2_ix3
My =(D,-¢{D;)*w =0~ ( j (x2+ix3 xo—ile

~

W Z

A
e Compatibility condition of the linear system:
[L1 M]* :[Dw1 Dz]>x< +§([Dz1 D'Z]* _[DW1 DvT/]*)_I_é/Z[D'z”’ DvT/]* :O

|:ZW — :DZ’ DW]* — O’
= F..=[D,,D.]. =0, N C ASDY M equation
F; —Fs =1D,, D;1. -[D,,, Dzl. =0 I 1
. ZZ ww yA yA w W 0 9 =
(Fﬂv = aﬂA/ _avAﬂ +[A/u 'A\/]*) 0" = B 0 - p2
O
RO




Yang'’s form and Yang'’s equation

o ASDYM eq. can be rewritten as follows

'F, =[D,,D,.=0, = 3h,D,*h=0, D,*h=0

F.s =[D;,Dz].=0, = 3h,D,*h=0, D,*h=0
F.-F,.=[D,,D.],-[D,,Ds], =0

.

\

If we define Yang's matrix: J:=h"x*h
then we obtain from the third eq.:

-1 -1 3
0,(J7*0,d)-0,(J " *0-J)=0 :1NC Yang’s eq.
l The solution J reproduces the gauge fields a3

-1 -1 | T |
A =-hxh™ A ,=h,*h™ A =-h+h™ A =h*h
Note: In the present formalism, star products can be replaced with general NE€
associative products.



Backlund transformation for Yang'’s eq.
e Yang’s J matrix can be decomposed as follows
; :[Al—ﬁ*A*B —§*J&j

& MH, NPB [hep-th/0601209]
A*B A

and collaboration with
Gilson-san and Nimmo-san

e« Then NC Yang’s eq. becomes
0, (A I_5>Z *A)—&W(A* §W + A) =0, 8—2(,&* B, *A)—aw(,&* B, *A) =0,
0,(A *A)*At—5 (A1*A)*A1+B *A*B, —B, *A*B_ =0,
Al%0, (A *AN—AT+0, (A *A1)+B, *A*B, —B. *A*B_ =0.

e The following trf. leaves Yang’s eq. asit Is:

KGZB”GW = A*B_ * A, 0,B™" = A%B, * A,

B:40-B™ =A*B, *A 0,B™ =A*B, *A
AneW: ;&—1, ;&new: A—l

\



We could generate various (non-trivial) solutions

of NC Yang'’s eqg. from a (trivial) seed solution by
using the previous Backlund trf. to€ether with

- 0 1
asimpletrf. 5,:3™ =C™JC, C= )

.LAlnew gnew ] [;&1 B Jl

< 7/0 . ~ new | ~ _

Bnew A—l B A 1

This combined trf. would generate a group of

nidden symmetry of NC Yang’s eq., which would
oe also applied to lower-dimension.

—or G=GL(2), we can present the transforms
more explicitly and give an explicit form of a
class of solutions (Atiyah-Ward ansatz).




Backlund trf. for Yang's eq. G=GL(2)

e Let’s consider the following Backlund trf.

a=ygop o o
Ji > Iy — g —

Collaboration with
-1 iy g -~ c :
Iy = [A[n] By *An*Bry — B[E‘l * A[n]j g}lson;_slar;)and Nimmo-san
" ery Ho
A * B Arn) y

All ingredients in AW ansatz can be determined from A, only

|

e If we take aseed sol. A, =Ay =By =By =A

the generated solutions would be

A[n] = ‘D[n] = ‘D[n] = ‘D[n]

[n] — ‘D[n] . [n]

aAr_aAr+1 aAr_aAHl \ qz
oz ow | ow oz "L

NC Atiyah-Ward ansatz Quasideterminants !

0, 0%A, =0
Ao A—l A—(n—l)\
AN A-(n-z)
AH Amz Ao y



Quasi-determinants

e Quasi-determinants are not just a NC generalization of

commutative determinants, but rather related to inverse
matrices.

e Forann by nmatrix X =(x;)and theinverse Y =(¥;)
of X, quasi-determinant of X IS directly defined by

3 00 (= 1)'+J )
‘X ‘ij =i ( " det X dEt X] X ¥ the matrix ofjtained
from X deletifg i-th
e Recall that some factor row and j-th g

A B
= =
C D :
vy _[A1+AlB(D—CAlB)1CA1 —A'B(D-CA'B

—(D-CA'B)'CA™ (D-CA™
-> We can also define quasi-determinants rec




Quasi-determinants

e Defined inductively as follows [For a review, see
i Gelfand et al.
— _ Jy-1 ’
X]; =% iZJ;Xiif((X ) iy X5 math.QA/0208146]
— le _ini’(‘xu‘“ ) 1X”
)
n=1: |X| =x

n=2: X11:X11_X12 Xzz 217

-1
X‘ ERATRRTRR VY

1

X =Xy = Xy X12 117 X‘ = Xpp = Xp1* Xpg * Xpp,

21
: -1 -1 |
n=3: X11:X11_X12'(X22_ 23 ° 33' 32) 'X21_X13'(X32_X33'X23'Xzz) X1

1 1 1 1
— X '(X23 — Xy - Xy 'X33) " K31 — Xg3 '(X33 — X3 " Xy 'X23) " X3




Explicit Atiyah-Ward ansatz solutions of
Yang’'s eq. G=GL(2)

N 1 5 -1 2
Aup = Apy = By = Bpj = Ay, 074, =0

VTSt S PR A, ALl = A, AL
21 7 A A 21 7 (A A S S
1 0 1 0 1 0 1 0
azAO:_awAl,azA_lz_aon,aWAo:_azAl,aWA_lz_aon

Amr:“%ﬂﬂ NﬂzﬁDMJ [M_‘DN] —‘Dm Ay Ag o Ay

OA,  OA,,, OA,  OA O,= T AR Ao

0z OW 0w 07 adt

Aml Amz Ao

-1 -~ -~ -~
%]ZLAM Biny * Apny * By ‘ﬁg*ﬁmj
Ay * B A




In this way, we could generate various (complicated)
solutions of NC Yang’s eg. from a (simple) seed solution
by using the previous Backlund trf. a =y, (NC

CFYG trf.)

A seed solution:

N l 11 -
Ay =1+ ———= = NC instantons
2 —\WW

A, = exp(linear of z,Z,w,w) -> NC Non-Linear plane-waves

NC CFYG trf. would relate to a Darboux transform for
NC ASDYM [Gilson&Nimmo&Ohta et. al] and weakly
non-associative’ algebras, (cf. Quasideterminants gols.
for NC KP are naturally derived from a Darbc
[Gilson-Nimmo] and the weakly non-associative:
algebras. [Dimakis&Muller-Hoissen])

NC twistor can give an origin of NC CFYG trans



3. Backlund transforms for NC KdV eq.

@ |n this section, we give an exact soliton solutions
of NC KdV eq. by a Darboux transformation.

[Gilson-Nimmo, JPA40(07)3839, nlin.si/0701027]

e \We see that ingredients of quasi-determinants
are naturally generated by the Darboux
transformation. (an origin of quasi-determinants)

@ \We also make a comment on asymptotic behavior
of soliton scattering process [MH, JHERGOZ
(2007) 094 [hep-th/0610006].



Lax pair of NC KdV eq.
e Linear systems:
L*y =(02+u—A°)*w =0,
M *y = (0, —0: —(3/2)ud, — (3/4)u,)*y =0.

e« Compatibility condition of the linear system:

[LM],=0 < U :%uxxx+g(u*ux+ux*u)

KdV equation

¢ Darboux transform for NC KdV

Let us take an eigen function W of L and define @ SXASEENN"
Then the following trf. leaves the linear systems asilss

~ ~
~

L=D*L*®"', M=0xM=*D", =0y
and  U=u+2W *W™) (—22>u+20° logw)




The Darboux transformation can be iterated

e Letus take eigen fcns. (f,--- f,) of L and define
@, =W, *0W, " =0, -W, *W="  W,=f,d, ="f=*0,f)
Wi, =@ * f,, = fi+1,x _Wi,x *Wi_l * T (1=123,-)

Vig =P *y; =y, — Wi, W, ™y,

e lterated Darboux transform for NC KdV

The following trf. leaves the linear systems as it Is

-1 -1
L[i+1] =, * I—[i] * D, M[i+1] =@, * M[i] D, Wi = O *Wii

(L[l]’M[l]’W[l]) - >(L[2],M[2],W[2]) 22 ...
i

(L,M ) In fact, (W,,w;) are quasi-determinants
q - of Wronski matrices !
N

an
Urn 413 =U+ZZ(\NLX *Vvi_l)x ( = )U+28)2( IOgW(f11"" fN))

=1




Exact N-soliton solutions of the NC KdV eq.

N
u=20,> OW,)*W* —=2> & logdetW(f,,--, f)
=1

Etingof-Gelfand-Retakh,
W, =W (f,..., ;)| [q-2lg/9701008]

f, =exp (S(X,4;)) +a; exp (-5 (X, 4;))
E(X,t,A) = X, A +1tA.° (M = f. =(6,-0%) 1 =0)

Wronski matrix: [ f, f, o f

W(fl’ fz,...’fm): X: x: ' x:m

oy ol - O T,



Quasi-det solutions can be extended to NC integrable hierarchy

Exact N-soliton solutions of the NC KP hierarchy
L=o+5,0" Ssolves the NC KP hierarchy !

o+ Y0 e
2

@ f=|W(F,.., fy, )

quasi-determinant
nanss  OF Wronski matrix

Etingof-Gelfand-Retakh,

E(X,a) = X + X,a’ + Xa° + -

N
u=20,> (OW)*W™" —=2> 20; logdetW(f,,-, fy)
=1

Wronski matrix: | fi o o Ty
W, =W (f,,..., fi)‘Li o,f, 9.5, T o f
W(fl’ fz’...’fm): : . . :
More generalization is possible. CARCAS™

[MH, hep-th/0610006]



Interpretation of the exact N-soliton solutions

¢ \We have found exact N-soliton solutions for the
wide class of NC hierarchies.

& Physical interpretations are non-trivial because
when f(x), g(x) are real, f(x)*g(x) Is not in general.

e However, the solutions could be real In some cases.

— (1) 1-soliton solutions are all the same as commutative
ones because of  Dimakis-Muller-Hoissen, [hep-th/0007015]

f(x—=vt)*g(x—vt)=f(x—vt)g(x—Vt)
—()ln asymptotic region, configurations of mcitis

soliton solutions could be real in soliton scatte¢ings
and the same as commutative ones.

MH, JHEP[hep-th/0610006]




@ 2-soliton solution of KdV
each packet has the configuration:

u® = 2k;" cosh 2 (k,x — 4k;’t), v, =4k?, h =2k’

velocity height
Scattering process (commutative case)

The shape
and velocity
IS prese

T oS N
\ K "‘._ N
\ T N
\ RN N
% N
g 3 N
\ 5 N
\ R N
Y - N
\ ) N
\ K N
L N
\ Y %, N
\ 5 N
¥ B ~
U 3 N
\ 3 N
\ g >
\ N
\ 3 N
0y N
8 Y N
8 3 N
\ g N
2 N
\ ) N

> >

The positions are shifted ! (Phase shifg




MH, JHEP02 (2007) 094

e 2-soliton solution of NC Kd\V  [hep-th/0610006]
cf Paniak, hep-th/0105185

each packet has the configuration:
u® =2k.* cosh ?(k-x—4k.’t), v, =4k?, h =2k?

velocity height
Scattering process (NC case)
/\ A In general, complex.
y; Unknown in the middle gegion.

Asymptotically real

and the same as The shape
commutative B and velocity
TRt is preserveds

The positions are shifted ! (Phase shifg
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