Non-Abelian Walls and Their Moduli Space

12/06/04 at Tagen, Nagoya University

Muneto Nitta (Tokyo Inst. of Tech.)

in collaboration with

Minoru Eto, Youichi Isozumi, Keisuke Ohashi, Kazutoshi Ohta, Norisuke Sakai (+Yuji Tachikawa)

E = Eto, I = Isozumi, N = Nitta, O = Ohashi, O' = Ohta, S = Sakai, (+ T= Tachikawa)

- INOS, Phys.Rev.Lett. 93 (2004) 161601 [hep-th/0404198].
 Wall Solutions and Their Moduli Spaces
- 2. INOS, Phys. Rev. D (in press)
 [hep-th/0405194].
 Properties of Walls
- 3. INOS, hep-th/0405129 Walls + Vortices + Monopoles
- 4. INOS, hep-th/0409151: Review (Proceedings)
- 5. EINOO'S, hep-th/0412024 (← last week) D-Brane Configuration for Walls
- 6. EINOS, hep-th/0412048 (← Today's hep-th) Instantons + Vortices
- 7. EINOO'ST, work in progress Connection with the Morse Theory

$\S1$. Introduction

Motivation

<u>BPS Solitons in Gauge-Higgs System</u>
 Gauge theories admit topological solitons.
 Supersymmetry (SUSY)

- $\Rightarrow \text{They preserve the } 1/2 \text{ SUSY} \leftrightarrow \boxed{\text{BPS States}}$ (satisfying 1st order BPS Eqs. as well as 2nd order EOMs)
- \Rightarrow no force between them

 \Rightarrow Moduli Space

	codim.	π	Moduli Space	quotient
Instanton	4	π_3	ADHM ('78)	HK
Monopole	3	π_2	Nahm ('80)	ΗK
Vortex	2	π_1	Hanany-Tong ('03)	Kähler
Wall	1	π_0	Our work (NOW)	Kähler

cf. They naturaly have (hyper-)Kähler structures. \leftrightarrow unbroken SUSY 2) <u>Brane World Scenario.</u>

Realize our world on solitons.

3) <u>D-branes as BPS solitons.</u>

BPS Solitons can realized as D-branes.

 \Rightarrow ADHM / Nahm conditions can be obtained from the vacuum (D-, F-flatness) conditions.

		-
Instanton	Dp-D(p+4)	Douglas/Witten
Monopole	D(p+1)-D(p+3)	Green-Gutpele
Vortex	NS5-D3-D1	Hanany-Tong
Wall	kinky Dp-D $(p+4)$	Our work

(It's only available method to obtain the vortex moduli.)

Plan of My Talk.

- §1. Introduction.
- §2. Review: SUSY, Walls, and BPS Walls.
- §3. The Model / The BPS equations
- §4. Construction of Walls / The Moduli Space
- §5. Properties of Walls / The Wall Algebra
- §6. D-Brane Construction for Non-Abelian Walls
- §7. 1/4 BPS States (W+V+M, I+V)
- §8. Conclusion / Discussion

§2. Review: SUSY, Walls, and BPS Walls.

Supersymmetry

 $\begin{array}{rcl} \hline \textbf{Boson} & \Leftrightarrow & \hline \textbf{Fermion} \\ \text{Spin: } 0,1,2 & \text{Spin: } 1/2, 3/2 & (\text{up to } 2) \end{array}$

- Supercharges (fermionic generators) are "square root" of the translation p_{μ} of the space-time. $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} \sim \sigma^{\mu} p_{\mu}.$
- # of supercharges may be one, two ,three,, 32
 There exists the minumum # for each dim. d. (e.g.; d = 4 → 4 supercharges)
- Three kinds of Supermultiplets
 - Scalar multipltes \ni Scalar fields ϕ Spin: $0,\,1/2$
 - -Vector multiplets \ni Gauge fields A_{μ} Spin: (0), 1/2, 1
 - -Gravity multiplets \ni Gravity $g_{\mu\nu}$ Spin: (0,1/2), 3/2, 2

Nonlinear Sigma Models ($NL\sigma Ms$)

 $\phi: M^{1,1}(M^{3,1} \text{ and so on}) \to \mathcal{M}$ (\mathcal{M} : the target manifold)

Bosons $\phi^i(x) = \text{coordinates of the target manifolds}$ Fermions $\psi^i(x) = \text{components of tangent vectors}$

• Supercharges \Leftrightarrow [hyper-Kähler] ϕ^i : quartet \in Hypermultiplets $d = 2, \mathcal{N} = (4, 4) \leftarrow d = 3, \mathcal{N} = 4, \leftarrow$ $d = 4, \mathcal{N} = 2 \leftarrow d = 5, \mathcal{N} = 1 \leftarrow d = 6, \mathcal{N} = 1.$ (cf. Deligne and Freed, hep-th/9901094) <u>Kähler NL σ Ms</u> $d = 4, \mathcal{N} = 1; d = 2, \mathcal{N} = (2, 2)$ etc The bosonic Lagrangian is (Zumino, Wess-Bagger's text) $\mathcal{L}_{\text{boson}} = -g_{ij^*} \partial_\mu \phi^i \partial^\mu \phi^{*j} - g^{ij^*} \frac{\partial W}{\partial \phi^i} \frac{\partial W^*}{\partial \phi^{*j}}$. (1) $g_{ij^*}(\phi, \phi^*) = \frac{\partial^2 K(\phi, \phi^*)}{\partial \phi^i \partial \phi^{*j}}$: the target Kähler metric. $K(\phi, \phi^*)$: the Kähler potential $W(\phi)$: the superpotential

(Massive) Hyper-Kähler $NL\sigma Ms$

 $d = 4, \mathcal{N} = 2; d = 2, \mathcal{N} = (4, 4)$ etc (for mass to exist $D \le 5$)

The bosonic Lagrangian is (Alvarez-Gaume and Freedman)

$$\mathcal{L}_{\text{boson}} = -g_{ij} * \partial_{\mu} \phi^i \partial^{\mu} \phi^{*j} - |\mu|^2 g_{ij} * k^i k^{*j} . \quad (2)$$

 $g_{ij^*}(\phi, \phi^*)$: the target HK metric (with isometry). $k^i(\phi, \phi^*)$: a tri-holomorphic Killing vector.

The form of a potential is severely restrected !!

Domain Walls (D = 2 Kinks)

Remember Yang-Mills Instantons

$$S = \frac{1}{2} \int d^4 x \operatorname{tr} F \wedge *F$$

= $\int d^4 x \operatorname{tr} (F - *F)^2 + \int d^4 x \operatorname{tr} F \wedge F$
$$\geq \int d^4 x \operatorname{tr} F \wedge F$$
 (3)

The action is bounded below by the topological charge $Q = \int d^4x \operatorname{tr} F \wedge F$.

The inequality is saturated \leftrightarrow The selfdual equation: F = *F.

Embedd this to $d = 4 + 1 \mathcal{N} = 4$ SUSY YM with 16 supercharges.

- The above bound is for energy density.
- The selfdual eq. = The BPS eq.
- Instantons are 1/2 BPS states, preserving 8 supercharges.
- The moduli space is naturally hyper-Kähler.

BPS Domain Walls in Massive HK $NL\sigma Ms$

Energy density for a wall (perpendicular to the *y*-axis): (Abraham and Townsend)

$$E = \int dy [\underline{g_{ij^*} \partial_y \phi^i \partial_y \phi^{*j}}_{\text{kinetic energy}} + \underbrace{\mu^2 g_{ij^*} k^i k^{*j}}_{\text{potential energy}}]$$

$$= \int dy g_{ij^*} (\partial_z \phi^i - \mu k^i) (\partial_z \phi^{*j} - \mu k^{*j})$$

$$+ \int dy [\underline{\mu g_{ij^*} k^i \partial_z \phi^{*j} + \text{conj.}}]_{\text{cross terms}}$$

$$\geq \int dy [\mu g_{ij^*} k^i \partial_z \phi^{*j} + \text{conj.}]$$

$$= \mu [D]_{y=-\infty}^{y=\infty} \qquad (4)$$
where $k^i = g^{ij^*} \partial_{j^*} D$ (D: Killing potential).
The Bogomol'nyi bound: $E \geq \mu [D]_{y=-\infty}^{y=\infty}$
.... The right hand side is "topological".
The BPS equation: $\partial_z \phi^i - \mu k^i = 0$.
.... This is a 1st-order equation.
Solutions preserve 1/2 SUSY $\rightarrow 1/2$ BPS

§3. The Model / The BPS eq.

We consider BPS domain walls in gauge theories.

 $U(N_{\rm C})$ Gauge Theory with $N_{\rm F}$ Hypermultiplets (8 SUSY: $D = 5, \mathcal{N} = 1$ or $D = 4, \mathcal{N} = 2, \cdots$)

(Bosonic) Field contents:

Hypermultiplets $H^{irA} = (H^{1rA}, H^{2rA})$ with masses $m_A \in \mathbb{R}$ $SU(2)_{\mathbb{R}}$ indices: i = 1, 2color indices: $r, s = 1, \cdots, N_{\mathbb{C}}$ flavor indices: $A, B = 1, \cdots, N_{\mathbb{F}}$ $\rightarrow N_{\mathbb{C}} \times N_{\mathbb{F}}$ matrices.

Vector multiplets (W_M, Σ) $W_M: N_C \times N_C$ gauge field, $\Sigma: N_C \times N_C$ real adjoint scalar field (Bosonic) Lagrangian

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{Tr} \left(F_{MN} F^{MN} \right) + \frac{1}{g^2} \operatorname{Tr} \left(\mathcal{D}_M \Sigma \mathcal{D}^M \Sigma \right) + \operatorname{Tr} \left[\mathcal{D}^M H^i (\mathcal{D}_M H^i)^{\dagger} \right] - V, \qquad (5)$$

$$V = \frac{g^2}{4} \operatorname{Tr} \left[\left(H^1 H^{1\dagger} - H^2 H^{2\dagger} - \mathbf{c} \mathbf{1}_{N_{\rm C}} \right)^2 + 4H^2 H^{1\dagger} H^1 H^{2\dagger} \right]$$

+ Tr $\left[(\Sigma H^i - H^i M) (\Sigma H^i - H^i M)^{\dagger} \right], (6)$

with

$$\mathcal{D}_M \Sigma = \partial_M \Sigma + i [W_M, \Sigma],$$

$$\mathcal{D}_M H^i = (\partial_M + i W_M) H^i,$$

$$F_{MN} = \frac{1}{i} [\mathcal{D}_M, \mathcal{D}_N]$$

$$= \partial_M W_N - \partial_N W_M + i [W_M, W_N].$$

 $\frac{\text{Parameters are}}{(M)^A{}_B} \equiv m_A \delta^A_B: \text{ diagonal mass matrix},$

- g: gauge coupling,
- $c^a = (0, 0, c)$: Fayet-Iliopoulos parameters.

Vacua in the massless case: $m_A = 0$

In the massless limit $m_A = 0$, the Higgs branch of vacua are obtained as a hyper-Kähler quotient, resulting in the cotangent bundle over the Grassmann manifold

$$\mathcal{M}_{\text{vac.}}^{M=0} = T^* G_{N_{\text{F}},N_{\text{C}}}$$
$$= T^* \left[\frac{SU(N_{\text{F}})}{SU(N_{\text{F}} - N_{\text{C}}) \times SU(N_{\text{C}}) \times U(1)} \right], \quad (7)$$

(cf. No Coulomb branch because of the FI para.)

The moment maps:

$$\begin{split} \mu_{\mathrm{R}} &= H^{1}H^{1\dagger} - H^{2}H^{2\dagger} = \mathbf{c}\mathbf{1}_{N_{\mathrm{C}}},\\ \mu_{\mathrm{C}} &= H^{1}H^{2\dagger} = \mathbf{0}_{N_{\mathrm{C}}}.\\ \text{(In mathematics, } I = H^{1}, J = H^{2\dagger}.) \end{split}$$

Simpler U(1) cases $N_{\rm C} = 1$: $T^* \mathbb{C}P^{N_{\rm F}-1}$. $N_{\rm C} = 1$, $N_{\rm F} = 2$: $T^* \mathbb{C}P^1$: the Eguchi-Hanson. Vacua in the massive case: $m_A \neq 0$

(Arai-Nitta-Sakai)

Turning on masses $m_A \neq 0$, most points are lifted leaving some discrete points as vacua.

We consider non-degenerate masees with ordering $m_A \ge m_{A+1}$.

$$\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{N_{C}} \\
 & & & \begin{pmatrix} 0 \cdots 0 & 1 & 0 \cdots 0 & 0 & 0 & \cdots & 0 & 0 & 0 \cdots & 0 \\
 & & & & & & & & & \\
0 \cdots 0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
 & & & & & & & & \\
 & & & & & & & & \\
H^{2rA} = 0, \\
\Sigma = \operatorname{diag.}(m_{A_{1}}, m_{A_{2}}, \cdots, m_{A_{N_{C}}}). & (9)
\end{array}$$

We label this vacuum by

$$\langle A_1 A_2 \cdots A_{N_{\rm C}} \rangle.$$
 (10)

of vacua =
$$N_{\rm F}C_{N_{\rm C}} = \frac{N_{\rm F}!}{N_{\rm C}!(N_{\rm F} - N_{\rm C})!}$$
 (11)

The 1/2 BPS equations for walls

 $\delta_{\text{SUSY}}(\text{fermions}) = 0$ \Downarrow

$$\mathcal{D}_{y}\Sigma = \frac{g^{2}}{2} \left(c \mathbf{1}_{N_{\rm C}} - H^{1} H^{1\dagger} + H^{2} H^{2\dagger} \right), (12)$$

$$0 = -g^{2} H^{2} H^{1\dagger}, \qquad (13)$$

$$\mathcal{D}_y H^1 = -\Sigma H^1 + H^1 M,$$

$$\mathcal{D}_y H^2 = \Sigma H^2 - H^2 M.$$
 (14)

The BPS bound

Energy density:

$$\varepsilon \ge \sum |\text{BPS eqs.}|^2 + T_{\text{topological}}$$
 (15)

The (multi-)BPS wall tension:

$$T_{w} = \int_{-\infty}^{+\infty} dy T_{\text{topological}}$$
$$= c [\text{Tr}\Sigma]_{-\infty}^{+\infty} = c \left(\sum_{k=1}^{N_{\text{C}}} m_{A_{k}} - \sum_{k=1}^{N_{\text{C}}} m_{B_{k}} \right). (16)$$

y: the extra dimension perpendicular to walls

$$y = +\infty : \langle A_1 A_2 \cdots A_{N_{\rm C}} \rangle$$

$$y = -\infty : \langle B_1 B_2 \cdots B_{N_{\rm C}} \rangle$$

$$(A_r < B_r, \ m_{A_r} > m_{B_r})$$
(17)

§3. Construction of Walls / The Moduli Space

Taking strong gauge coupling limit, $g \to \infty$, the model reduces to the nonlinear σ model on the Higgs branch $T^*G_{N_{\rm F},N_{\rm C}}$.

 $N_{\rm F} = 2, N_{\rm C} = 1$ (the massive Eguchi-Hanson $T^* {f C} P^1$). Single wall solution:

$$v = w^* = e^{|\mu|(y-y_0)} e^{i\varphi_0} .$$
 (18)

Two real zero modes y_0 (translation) and φ_0 (U(1) phase). The moduli space is $\mathbf{R} \times S^1$.

<u>General Solution</u> NEW

$$H^{1} = S^{-1} H_{0} e^{My}, \quad H^{2} = 0$$
(19)
$$SS^{\dagger} = c^{-1} H_{0} e^{2My} H_{0}^{\dagger}$$
(20)

$$S^{-1}\partial_y S \equiv \Sigma + iW_y \tag{21}$$

with H_0 an $N_{\rm C} \times N_{\rm F}$ constant complex matrix.

The Moduli Space

This is a special Lagrangian submanifold of massless Higgs branch.

NOTE

This moduli space is the Total Moduli Space including all topological sectors:

$$\mathcal{M}_{N_{\mathrm{F}},N_{\mathrm{C}}} = \sum_{\mathrm{BPS}} \mathcal{M}_{N_{\mathrm{F}},N_{\mathrm{C}}}^{\langle A_{1}A_{2}\cdots A_{N_{\mathrm{C}}}\rangle \leftarrow \langle B_{1}B_{2}\cdots B_{N_{\mathrm{C}}}\rangle}(24)$$

(cf. The total moduli space for instantons / monopoles / vortices is infinite dimensional.) Ex. 1) $N_{\rm F} = 2, N_{\rm C} = 1$ ($T^* {\bf C} P^1$, EH) The single-wall moduli + 2 vacua $\simeq S^2 \simeq {\bf C} P^1$

 \Rightarrow Natural compactification of the moduli space.

Ex. 2) $N_{\rm F} = 3, N_{\rm C} = 1 \ (T^* {\bf C} P^2)$

The double wall moduli + 2 single wall moduli + 3 vacua $\simeq \mathbf{C}P^2$ (toric diagram)

§4. Properties of Walls / The Wall Algebra

Walls have codimension one.

 \downarrow

Their positions become important.

There exist two types of property for each pair of walls, impenetrable or penetrable.

(cf. We can smoothly exchange positions of other solitions like instantons.)

- 1. Impenetrable wall pair
- 1. Positions of two walls do not commute.
- 2. Taking two walls closer and closer, they constitute a compressed wall in the limit.
- 3. All wall pairs in Abelian gauge theory are in this type.
- 4. We can define a level of compressing.

2. Penetrable wall pair

- 1. Positions of two walls do commute.
- 2. Another vacuum appears between them when we exchange their positions.
- 3. Characteristic in non-Abelian gauge theory.

Creation operator of walls

Moduli matrices for vacua are the same with H^1 :

 $N_{\rm F} \times N_{\rm F}$ matrices a, \cdots acting on the moduli matrices from the right.

$$(H_0)_{\text{vac.}} \rightarrow (H_0)_{\text{vac.}} e^a = (H_0)_{1-\text{wall}}$$

$$\rightarrow (H_0)_{1-\text{wall}} e^a = (H_0)_{2-\text{walls}}$$

$$\rightarrow (H_0)_{2-\text{walls}} e^a = (H_0)_{3-\text{walls}}$$

$$\rightarrow \cdots$$

Here *a* is a nilpotent element of $GL(N_{\rm F}, \mathbb{C})$ with the length $N_{\rm F} - 1$, $a^{N_{\rm F}-1} = 0$.

$$a_i = E_{i,i+1} \sim \begin{pmatrix} 0 * 0 & 0 \\ 0 & 0 * & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad (26)$$

Two walls generated by a_1 and a_2 are Penetrable $\Leftrightarrow [a_1, a_2] = 0$ Inpenetrable $\Leftrightarrow [a_1, a_2] \neq 0$ Moreover the compressed wall is generated by $[a_1, a_2]$, a nilpotent operator with the lower length by one !!

$$[a_i, a_j] \sim \begin{pmatrix} 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
(27)

More compressed wall is generated by $[\cdots, [a_3, [a_1, a_2] \cdots].$ Level of compressing \Leftrightarrow Length of nilpotent algebra. Very interesting and complex phenomena can be understood by the wall algebra. $\S 6.$ D-Brane Construction for Non-Abelian Walls

Consider d = 2, $\mathcal{N} = (4, 4)$ (8 supercharges) SUSY $U(N_{\rm C})$ gauge theory with $N_{\rm F}$ hypermultiplets (by dimensional reduction from d = 5).

D-brane Configuration for Massless hypermultiplets

$$N_{\rm C}$$
 D1: 01
 $N_{\rm F}$ D5: 012345
 ${\bf C}^2/{\bf Z}_2$ ALE: 2345 (28)

 $\boxed{\text{Vacua}} = \text{instantons} (\# = N_{\text{C}}) \text{ on } U(N_{\text{F}}) \text{ gauge}$ theory on the A_1 ALE (Eguchi-Hanson) space. The ADHM moduli (Hyper-Kähler quotient) $= T^*G_{N_{\text{F}},N_{\text{C}}}$. (Kronheimer-Nakajima)

The (T-dualized) S-rule: At most one Dp-brane can be absorbed into one D(p+4)-brane.

(Hori-Ouguri-Oz, Nakatsu-Ohta-Yokono-Yoshida)

of vacua =
$$N_{\rm F}C_{N_{\rm C}} = \frac{N_{\rm F}!}{N_{\rm C}!(N_{\rm F} - N_{\rm C})!}$$
 (29)

Kinky D-Branes as Non-Abelian Walls

Vacua can be easily read from the D-brane picture.

(looking like a braid group?)

Impenetrable Walls (Compressing Walls)

Reconnection (Recombination) occurs in the gauge theory. (K.Hashimoto)

BNC BNC-1 BNC-2

The dimension of wall moduli space is

 $\dim \mathcal{M}_{\text{wall}} = 2N_{\text{C}}(N_{\text{F}} - N_{\text{C}}) = \dim \boldsymbol{G}_{N_{\text{F}},N_{\text{C}}}$

The Index

The dimension of the topological sector. $\dim \mathcal{M}^{\langle A_1, A_2, \cdots, A_{N_C} \rangle \leftarrow \langle B_1, B_2, \cdots, B_{N_C} \rangle} =$

 $=\nu_{\langle A_1,A_2,\cdots,A_{N_{\mathcal{C}}}\rangle}-\nu_{\langle B_1,B_2,\cdots,B_{N_{\mathcal{C}}}\rangle}.$

 $\S7. 1/4$ BPS states

1/4 BPS equations admitting monopoles, vortices and domain walls.

The Bogomol'nyi bound

$$\begin{aligned} \mathcal{E} \geq T_{\text{total}} &= T_{\text{wall}} + T_{\text{vortex}} + T_{\text{monopole}} \\ T_{\text{wall}} &= \operatorname{Tr}[\partial_3(c\Sigma)] \\ T_{\text{vortex}} &= -c\operatorname{Tr}[B_3] \\ T_{\text{monopole}} &= \frac{1}{g^2}\operatorname{Tr}[\partial_a(\Sigma B_a)], \quad B_a \equiv \frac{1}{2}\epsilon_{abc}F_{bc}(W) \end{aligned}$$

A set of 1/4 BPS equations

$$0 = \left(\mathcal{D}_3 + \Sigma\right) H^1 + H^1 M \tag{30}$$

$$0 = \left(\mathcal{D}_1 + i\mathcal{D}_2\right) \boldsymbol{H}^1 \tag{31}$$

$$0 = F_{12}(W) - \mathcal{D}_3 \Sigma + \frac{g^2}{2} (c - H^1 H^{1\dagger}) \quad (32)$$

$$0 = F_{23}(W) - \mathcal{D}_1 \Sigma = F_{31}(W) - \mathcal{D}_2 \Sigma \quad (33)$$

Exact solutions

can be obtained by promoting the moduli parameters in H_0 for walls to fields depending on the wall world-volume coordinate zholomorphically.

"BION" as an exact solution

Amidakuji

A monopole in the Higgs phase

Wall-vortex junction with constant B

38

A cat's-cradle (= Ayatori)

Another set of new 1/4 BPS equations admitting vortices and instantons has been discovered.

Massless gauge theories with M = 0.

The Bogomol'nyi bound

$$\mathcal{E} \geq \operatorname{tr}\left[\underbrace{-c(F_{13}+F_{24})}_{\text{vortices}} + \underbrace{\frac{1}{2g^2}F_{mn}\tilde{F}_{mn}}_{\text{instantons}}\right], (34)$$

A set of 1/4 BPS equations

$$F_{12} = F_{34}, \quad F_{23} = F_{14},$$

$$F_{13} + F_{24} = -\frac{g^2}{2} \left[c \mathbf{1}_{N_{\rm C}} - H H^{\dagger} \right]$$

$$\bar{\mathcal{D}}H = 0, \quad \bar{\mathcal{D}}' H = 0. \quad (35)$$

- Setting c = 0, H = 0 \Rightarrow The self-dual eq. for instantons
- Ignoring x^2, x^4 dependence and W_2 and W_4 \Rightarrow The BPS eq. for vortices in the (x^1, x^3) -plane
- Ignoring x^1, x^3 dependence and W_1 and W_3 \Rightarrow The BPS eq. for vortices in the (x^2, x^4) -plane

§7. Conclusion / Discussion

- 1. We have given an elegant construction method for exact solutions of BPS non-Abelian domain walls in 8 SUSY gauge theories (in the strong coupling limit $g \to \infty$), which is comparable with the ADHM / Nahm constructions.
- 2. The moduli space for non-Abelian walls is the (deformed) Grassmann manifold $G_{N_{\rm F},N_{\rm C}}$ which is a special Lagrangian submanifold of massless Higgs branch vacua $T^*G_{N_{\rm F},N_{\rm C}}$.
- 3. The properties of walls can be understood by a beautiful algebraic structure on the moduli space, composed of creation / anihilation operators of walls.
- 4. A brane construction is given by the kinky D-branes, explaining properties of walls easily.
- 5. We have generalized our method to
 1) 1/4 BPS of walls, vortices and monopoles,
 2) 1/4 BPS of vortices and instantons,
 and determined their moduli spaces.

Discussion

1. Relation with other soliton's moduli space.

	codim.	π	Moduli Space	quotient
Instanton	4	π_3	ADHM	HK
Monopole	3	π_2	Nahm	ΗK
Vortex	2	π_1	Hanany-Tong	Kähler
Wall	1	π_0	Our work	Kähler

Vortex moduli $= \frac{1}{2}$ (Instanton moduli) (\uparrow Hanany-Tong)

Wall moduli $=\frac{1}{2}$ (Monopole moduli) (?)

- 2. Relation with integrable systems like KDV?.
- 3. 2nd Quntization of Walls \Leftarrow Wall Algebra
- 4. Application to the Hori-Vafa's mirror symmetry between the sigma models and the sine-Gordon models (Affine Toda).
- 5. Other gauge groups / matter contents. We conjecture that the moduli of walls is always a special Lagrangian submanifold of massless Higgs branch.

- 6. There exist two other sets of 1/4 BPS equations.
 - 1. $Vortex^3$
 - 2. Wall²-Vortex
- 7. Classification of BPS equations.There exist two kinds of 1/8 BPS equations in five-dimensions, now in progress.
 - 1. Wall³-Vortex³-Monopole
 - 2. $Vortex^6$ -Instanton
- 8. Maybe there exist lots of application / extention / variation / ... like other BPS solitons.

Figure 2: Energy density of the calorons in terms of the vortex theory.