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Abstract

We review the recent studies of tachyon condensation in string field theory.
After introducing the open string field theory both for bosonic string and for su-
perstring, we use them to examine the conjecture that the unstable configurations
of the D-branes will decay into the ‘closed string vacuum’ through the tachyon con-
densation. And we describe the attemps to construct a lower-dimensional bosonic
D-brane as an unstable lump solution of the string field equation. This paper
is based on my master’s thesis submitted to Department of Physics, Faculty of
Science, University of Tokyo on January 2001.
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1 Introduction

The spectrum of bosonic open strings living on a bosonic D-brane contains a tachyonic
mode!, which indicates that the bosonic D-brane is unstable. It has been conjectured
that the potential for the tachyon field has a non-trivial minimum where the sum of the
D-brane tension and the negative energy density from the tachyon potential vanishes
so that the minimum represents the usual vacuum of closed string theory without any
D-brane or open string [3]. Moreover, it has also been conjectured that, instead of

spatially homogeneous tachyon condensation, solitonic lump configurations where the

!For earlier works on tachyon condensation, see [2].
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tachyon field asymptotically approaches the vacuum value represent lower dimensional
D-branes [3, 4].

Though there are no tachyonic modes on a BPS D-brane of Type Il superstring theory,
by considering the unstable systems, such as a non-BPS D-brane or a coincident D-brane
anti-D-brane pair, tachyonic modes appear. In these systems, similar conjectures have
been made: At the minimum of the tachyon potential the energy density of the system
vanishes and the D-brane disappears. And the tachyonic kink solution which interpolates

between two inequivalent (but degenerate) minima represents a lower-dimensional D-

brane [5, 6, 7, §8].

In the framework of the conventional string theory which is first-quantized and is
formulated only on-shell, various arguments supporting the above conjectures have al-
ready been given. But they can only provide indirect evidence because the concept itself
of the potential for the zero-momentum (i.e. spacetime independent) tachyon is highly
off-shell. So we need an off-shell formulation of string theory to obtain direct evidence
for the conjectures. As such, open string field theory has recently been studied in this
context. In this paper, we review the various results which have been obtained about the
tachyon physics as well as the formulations of open string field theories. Unfortunately,
however, we have found it impossible to make this paper fully self-contained only within
100 pages. For more details, in particular for the examples of calculations, consult the

original paper [1] and other references.

This paper is organized as follows. In chapter 2, we introduce the Witten’s formu-
lation of open string field theory. After writing down the form of the cubic action, we
define the 3-string interaction vertex in terms of the two dimensional conformal field
theory (CFT) correlators. Using the level truncation method, we will find the ‘nonper-
turbative vacuum’ which minimizes the potential for the tachyonic string field and obtain
the numerical evidence for the D-brane annihilation conjecture. Further, we explore the
nature of the new vacuum, including the open string spectrum of the fluctuations around
it. In chapter 3, we calculate the tachyon potential in the level truncation scheme in
superstring theory. For that purpose, we introduce two candidates for superstring field
theory: Witten’s cubic (Chern-Simons-like) open superstring field theory and Berkovits’
Wess-Zumino-Witten—like superstring field theory. In chapter 4, we construct a tachy-
onic lump solution on a D-brane and compare its tension with the tension of the expected
lower-dimensional D-brane in bosonic string field theory (except for section 4.4). The
modified level expansion scheme gives us very accurate results that are regarded as ev-
idence for the conjecture that the lump solution is identified with a D-brane of lower
dimension.

We follow the convention that = = ¢ = 1, but explicitly keep the Regge slope pa-

rameter o' almost everywhere (except for part of chapter 3). Our metric convention
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is
N = diag(— + ... +).
We follow mostly the conventions of the text by Polchinski [9].

2 String Field Theory

In bosonic open string theory, it is known that the physical spectrum contains a tachyonic
mode. In terms of a D-brane, the existence of the tachyonic mode signals that the bosonic
D-branes are unstable, and it was conjectured that at the minimum of the tachyon
potential the D-brane decays into the ‘closed string vacuum’ without any D-brane. In
this chapter we introduce bosonic open string field theory as an off-shell formulation of
string theory, and then calculate the tachyon potential to examine the brane annihilation

conjecture.

2.1 String Field

To begin with, let us recall the Hilbert space H of the first-quantized string theory (for
more detail see [9]). In the Fock space representation, any state in H is constructed by
acting with the negatively moded oscillators o ,,,b_,,, c_, on the oscillator vacuum |{)

which is defined by the properties

ak2)y =0 n >0
b,|Q2) =0 n >0 (1)
c|Q) =0 n >0

P19) o af]2) = 0.

The relation between |2) and the ‘S L(2, R) invariant vacuum’ |0) is given by |Q) = ¢0).

Under the state-operator isomorphism, these vacua are mapped as
|0) ~ 1 (unit operator) , [Q) ~ ¢(0).

A basis for H is provided by the collection of states of the form

[l R

all ol b b ey ey, ),

where n > 0,m > 0,/ > 0, and 1, 5,k are arbitrary positive integers. Then any state
|®) € H can be expanded as

|®) = (qb(x) + Ay (z)ot, 4+ B (x)at 0 + - ) ci|0) = (= = 0)[0), (2)

where the coefficients in front of basis states have the dependence on the center-of-mass

coordinate x of the string. As we think of the coefficient functions as (infinitely many)
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spacetime particle fields, we call |®) a ‘string field’. The vertex operator ®(z) defined
above is also called a string field. Of course, if we equip the open string with the Chan-

Paton degrees of freedom, ® and coefficient functions become matrix-valued.

Next we construct the physical Hilbert space Hpnys by imposing the physical condi-
tions on the full space H. In the old covariant quantization (OCQ) approach, we ignore
the ghost sector and impose on the states [¢)) € H the following conditions

(Lg' = D]¥) =0,
LMYy =0 for n >0, (3)

where L{', L are the matter Virasoro generators. —1 in the first line can be considered
as the ghost (¢;) contribution. A state satisfying conditions (3) is called physical. Let H
denote the Hilbert space restricted to the ‘physical’ states in the above sense. If a state

|x) has the form
) =D L2 ), (4)
n=1

its inner product with any physical state |¢)) vanishes because

(1) = S, ) = S ) =0, o)

A state of the form (4) is called spurious, and if a spurious state is also physical, we refer

to it as a null state. Eq.(5) means that we should identify

[9) = 1) + [x)

for a physical state |¢)) and any null state |x). So the real physical Hilbert space is the
set of equivalence classes,

thys — ﬁ/Hnull-

Now we introduce the BRST quantization approach, which is equivalent to the OCQ
method. The BRST charge Qg is nilpotent in the critical dimension d (d = 26 in
bosonic string theory): This property gives rise to important consequences. The physical

condition in this approach is expressed as

Qsl¢) = 0. (6)

In a cohomology theory, such a state is called closed. A null state in OCQ corresponds

to an exact state of the form
QB|X>- (7)

And we require the physical states to satisfy one more condition that they should have

ghost number +1: In OCQ), ghost part of the physical state is always ¢(z) in the vertex
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operator representation, which has ghost number +1. Thus, in order for the BRST
physical Hilbert space to agree with that in the OCQ approach, we need to properly
restrict the ghost sector in the above mentioned way. Hereafter we denote by H! the
restriction of H... to the ghost number +1 states. Then the real physical Hilbert space
is given by

Hophys = Hilosed/ Héxact?

namely, the cohomology of )5 with ghost number 1.

Let us rewrite the physical conditions in the string field language. For that purpose,

we consider the following spacetime action Sy in the full space H!:
So = (®|Q5|P). (8)
Since the string field |®) obeys the reality condition? essentially written as [10]
B[N H(r — o) = B[N (o),

the equation of motion (derived by requiring that Sy be stationary with respect to the

variation of @) is
QB|(I)> = 07

which is the same as the physical condition (6). Furthermore, the action (8) is invariant

under the gauge transformation
5|®) = QBlx) (9)

due to the nilpotence of Q5. It is nothing but the exact state of (7). Note that ghost
number matching of both sides of (9) demands that the gauge parameter |x) should have
the ghost number 0. We then conclude that an on-shell state, that is, a solution to the
equation of motion derived from the action (8), corresponds to a physical state in the
first-quantized string theory. So by extending the spacetime action to include higher
order terms in @, we can hope to obtain the interacting string field theory. We describe

in the next section the Witten’s work which contains the cubic interaction term.

2.2 Cubic String Field Theory Action

Witten has proposed one way of formulating the field theory of open string [10]. Its
starting point is quite axiomatic: An associative noncommutative algebra B with a Z,
grading, and some operations on B. The elements of B will be regarded as the string

fields later. The multiplication law * satisfies the property that the Z, degree of the

2We will mention the reality condition at the end of section 2.4.



product a * b of two elements a,b € B is (—1)* - (—1)", where (—1)* is the Z, degree of

a. And there exists an odd ‘derivation’ () acting in B as
Qaxb) = Q(a) * b+ (=1)"ax Q(b).

@ is also required to be nilpotent: ? = 0. These properties remind us of the BRST
operator ()p.

The final ingredient is the ‘integration’, which maps @ € B to a complex number [ a €
C. This operation is linear, /(a—l—b) = /a—l—/b, and satisfies /(a*b) = (—1)"* /(b*a)
where (—1)% is defined to be —1 only if both a and b are odd elements of B. Also,
J Q(a) =0 for any a.

Looking at the above axioms, one may notice that each element or operation has
its counterpart in the theory of differential forms on a manifold. The correspondence is

shown in Table 1. The formal correspondence ceases to be valid in that ¥ Aw = fw A

‘ ‘ algebra B ‘ space of differential forms ‘
element string field differential k-form
degree (—1)* (—1)*
multiplication | *-product A (wedge product)
derivation Q exterior derivative d
integration f J on a D-dimensional manifold

Table 1: Comparison between the abstract algebra B and the space of differential forms.

holds in the case of differential forms even without integration, whereas a * b and b * a
have no simple relation in B.

Let’s take a close look at the multiplication *. As discussed in detail in [10], in order
for the multiplication to be associative, i.e. (a * b) * ¢ = a * (b* ¢), we must interpret
k-operation as gluing two half-strings together. In more detail, take two strings 5,7,
whose excitations are described by the string fields a and b, respectively. Each string is
labeled by a coordinate o (0 < ¢ < ) with the midpoint o = 7/2. Then the gluing
procedure is as follows: The right hand piece (7/2 < o < ) of the string S and the left
hand piece (0 < o < 7/2) of the string T" are glued together, and what is left behind is
the string-like object, consisting of the left half of S and the right half of T'. This is the
product S * T in the gluing prescription, and the resulting string state on S * T is the
string field a * b, as is illustrated in Figure 1(a). From Figure 1(b), the %-operation is

manifestly associative, at least naively.

Next we give the integration operation a precise definition. The axioms involve the
statement about integration that [(a *b) = 4 [(b* a) (&£ is correctly (—1)*; we do not

care that point below). Since a * b and b * a are in general thought of as representing
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/2

(b) (©) (d)

Figure 1: (a) Gluing of two strings S,7T. (b) Gluing of three strings S,7,U makes
the associativity clear. (c) Integration operation. (d) Multiplication followed by an
integration, [(a *b).

completely different elements, their agreement under the integration suggests that the
integration procedure still glues the remaining sides of S and T'. If we restate it for a
single string S, the left hand piece is sewn to the right hand piece under the integration,
as in Figure 1(c).

Using the above definition of * and [, we can write the n-string interaction vertex
as /CI)l %% O, where ®; denotes a string field on the i-th string Hilbert space. Such
an interaction, where each string is divided at the midpoint into the left- and right-piece

and then glued together, is often termed ‘Witten vertex’.

At last, we have reached a stage to give the string field theory action. Using the

above definitions of * and [, the quadratic action Sy is also written as

So = (B]|Q5|) :/(I)*QBCI). (10)

Of course, BRST charge () is qualified as a derivation operator () in the axioms. And

we consider the above mentioned n-string vertex

Sn:/CD*---*CI). (11)

Now let us equip the algebra B with a Z grading by the ghost number. If we define #,,

as an operator that counts the ghost number of its argument, then
#an(®) =1, #an(@p) = 1, #an(x) = 0. (12)
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These assignments are different from those in [10]. The reason is traced to the fact
that in [10] the ghost number refers to a state (—3 for a physical state), whereas we
are counting the ghost number of vertex operators here. The discrepancy comes from
the fact that the ghost number current j = —bc is not a tensor field on the world-sheet,
but the difference does not matter. We note that the integrands of Sy and 5, have
the ghost number 3 and n respectively. In the CFT prescription mentioned later, the
classical actions Sy and 5, are calculated as 2- or n-point correlation functions on the
disk. According to the Riemann-Roch theorem, the correlation functions vanish unless

the equation
(the number of ¢ ghosts inserted in the correlator) — (that of b ghosts) = 3x

holds for a Riemann surface with Euler characteristics x. Since the left hand side is
simply the total ghost number, only Sy and S3 can be nonzero in the case of the disk
(x = 1). Thus we have determined the possible candidates for the spacetime action,
but we can still fix the relative normalization between Sy and S35 by requiring the gauge

invariance.

We will impose on the action the gauge invariance under the following infinitesimal

gauge transformation

00 =QpA+ g, (PxA—Axd), (13)
where A is a gauge parameter with #,,(A) = 0, and g, is the open string coupling

constant. The form of gauge transformation is chosen to generalize that of the non-
abelian gauge theory: If the string fields contained n x n Chan-Paton matrices and the
s-product were the ordinary product of matrices, variation (13) would reduce to the
non-abelian gauge transformation for the component A, in (2). Note that the gauge
parameters form a subalgebra of B as the ghost number of the product of two gauge
parameters under the *-multiplication remains zero : #gh(A * A') = #n(A) + #an(*) +
#on(A') = 0. It is desirable because in the ordinary gauge theory we think of the gauge
parameters as simple ‘functions’ (i.e. 0-forms) which are closed under the A-product, so
this serves as a nontrivial check of the assignments (12). Using the axioms introduced
above (especially the associativity of the %-product), one can easily show that the integral

of the Chern-Simons ‘three-form’
2
S:/<CI>>|<QB<I)—|—§gO<I>*<I>*<I>) (14)

is invariant under the infinitesimal gauge transformation (13). Though the form (14) of
the action is sufficient, for future use we rewrite it slightly. First we rescale the string
field as & — (a'/g,)® and change the overall normalization (the latter can be absorbed
into the definition of g,) such that

1 1 1
S:_£<ﬁ/q)*QBq)+§/CI>*CI)*CI)). (15)
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Note that g, is a dimensionful parameter in general.

2.3 Evaluation of the Action

Since the action (15) is derived quite formally, it is not suitable for concrete calculations.
In particular, * and [ have been defined only geometrically as the gluing procedure.
Though the quadratic part is equivalently represented as a Fock space inner product
(®|Qp|P), we have no such simple translation as to the cubic term [® * ® x &. So in

this section we will argue the methods for calculation.

The first approach is the operator formulation opened up in [11, 12, 13, 14]. In this

method the 3-string interaction is represented using the 3-point vertex (V3| as
[oroso =) o le), o), (16)

where the subscript 1,2,3 label three strings which interact. (V3| is explicitly written in

terms of the oscillators as

Vsl = (0}, @ (0],c%e? @ <0|3c(_31)683)/dpldpgdpg(Qﬁ)d(sd(pl + py + ps)

X exp Z Z DN 0l 0 + Z PORCED AT (17)

r,s=1 n,m=0 r.,s=1 n>2
mZ—l

where r, s stand for strings, and n,m are mode numbers. The Neumann coefficients
N2 X7o represent the effect of conformal transformations %, of the upper half-disks of

nm?

three open strings. For example, N]* is given by

1 dz dw 1
NP = — ¢ —27"hl.(2) ¢ —w "hl(w) )
(he(2) = hs(w))?

nm.J 2m
Once all the Neumann coefficients are given, the 3-point interaction (16) involves purely

27

algebraic manipulations only, so this method is well automated. However, it seems
not suited for by-hand calculations: we must expand the exponential and pick out all
terms which do not commute with the oscillators in |®),, and exploit the commutation
relations. For this reason, we avoid using the operator method in this paper, and instead
mainly rely on another, CFT, method. For more details about the operator formulation,

see [11, 12, 13, 14, 15, 22].

The second approach involves conformal mappings and calculation of the correlation
functions on the disk [15, 16, 17]. Let us first consider the case of 3-string vertex. The
idea is to map the three upper half-disks, each of which represents the propagation of
one of three open strings, to one full-disk on a conformal plane realizing the Witten
vertex. We will describe it in more detail below. In Figure 2 three open string world-

sheets are indicated as upper half-disks. Following the time-evolution, at ¢t = —oo, which
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1st string Bl 2nd Ez 3rd k4
Q (o=12) Q Q

AV4 N AV4
7N 7N 75

A P B B
L P B P, C C p, A

Figure 2: Three strings which will interact.

corresponds to z; = 0 (F;), each string appeared (in the CFT language, corresponding
vertex operator was inserted) and then propagated radially, and now (¢ = 0) it has
reached the interaction point |z;| = 1. We want to map three half-disks parametrized by
their own local coordinates z;’s to the interior of a unit disk with global coordinate (.

To do so, we first carry out the transformation satisfying the following properties:

e [t maps the common interaction point @ (z; = 1,5 = 1,2,3) to the center ( =0 of
the unit disk.

e The open string boundaries, which are represented as line segments on the real

axes in Figure 2, are mapped to the boundary of the unit disk.

For definiteness, consider the second string. Then the transformation

1—|—ZZQ

1—i22

zg = w=h(zn)= (18)
turns out to satisfy these two properties. But since the angle /BQC is 180°, three half
disks cannot be put side by side to form a unit disk if they are left as they are. Hence

we perform the second transformation
w = (= q(w) = w0l (19)

which maps the right half-disk to a wedge with an angle of 120°. A series of the above
transformations is illustrated in Figure 3. Once the mapping of the second world-sheet
is constructed, that of the first and third is easily found. All we have to do is to rotate
the 120° wedge by an angle F120° respectively, being careful to sew the right hand piece
of the first string with the left hand piece of the second string, and the same is repeated

cyclically? in accordance with the gluing procedure described in section 2.2. These will

3‘Left” and ‘right’ are reversed between in [17] and in ours. In our paper, we follow the convention
that coordinate z and (o1, o) are related by z = — exp(—io; +02). So for fixed o3 (time), z goes around
clockwise as o increases.
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B

Figure 3: From an upper half disk to one third of a unit disk.

be achieved by

_em (1 Hzg 3
91(21) = € @ ;

1—i21
h(z) = _ ( , ) , >
1o h(z) = ga(22) i (20)
() = 2Tm'<1—|—i23)§
BE= T 1T

The above mappings are shown in Figure 4. Using these mappings, we can give the
Q Z3

o C

v; g Ps z
— A\s 2,

Q. |z — %

P B p C
B

\/
N\

B
A ) P

Figure 4: 3-string vertex.

3-string vertex [® x ® x ® the CFT representation as a 3-point correlation function.
That is

/cp £ @ % ® = (g 0B(0)gs 0 B(0)gs 0 B(0)), (21)

.) is the correlator on the global disk constructed above, evaluated in the

combined matter and ghost CFT. Its normalization will be determined later. g; o ®(0)

where (..
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means the conformal transform of ®(0) by ¢;. If ® is a primary field of conformal weight

h, then g; o ®(0) is given by

g: 0 ®(0) = (4/(0))"®(g:(0)). (22)

At this point, one may think that more general conformal transformations can be chosen
if we wish only to reproduce the Witten vertex. For instance, the angles of wedges
are not necessarily 120°. But when we demand the cyclicity of the 3-point vertex,

[ O Dy x Py = [Py« D3k P, three transformations gy, g2, g3 are constrained to satisfy

=9, ¢o=Tog, =10y,

where T' € SL(2,C) obeys T? = 1. This condition singles out the transformation (20)
almost uniquely. But notice that we have so far considered only the unit disk repre-
sentation of a Riemann surface with a boundary. The open string world-sheet is also
represented as an upper half-plane, which is mapped bijectively to the unit disk by
an SL(2,C) transformation. In fact, the SL(2,C) invariance of the CFT correlators
guarantees that these two representations give the same results.

Now let us construct the transformation that maps the unit disk to the upper half

plane. Such a role is well played by

(-1

z=h7'(() = _ZC—I-—l’

(23)

where h is an SL(2,C) transformation that has already appeared in (18), and A™! is its

inverse function. It is shown in Figure 5. Our final expression for the 3-point vertex is

S
oSS, ’
P,

/cp*cp*q) — ([, 0 B(0)f5 0 D(0) f3 0 B(0)), (24)
filzi) = h7'ogi(z),

and g¢;’s are given in (20).
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Now that we have obtained the 3-point vertex, we consider generalizing it to arbitrary

n-point vertices. This can be done quite straightforwardly. Define

. 2
— (k1) <1+sz)n 1
gk(Zk) € 1 — ZZk )

felzi) = h7'oge(ze).

<k<n (25)

Each gx maps an upper half disk to a (360/n)° wedge, and n such wedges gather to make

a unit disk. Then n-point vertex is evaluated as
J@s 0= (fi00(0) - 0 0(0))

Finally, we construct the CFT expression for quadratic term /CI) * (Qp®. For that
purpose, it suffices to consider the n = 2 case in (25). We explicitly write down the

functions fi, fo as

fi(z) = b (%):zlzid(a), (26)

These mappings are shown in Figure 6. The 2-point vertex is then written as

Figure 6: 2-string vertex.

/cp £ Qp® = (T 0 (0)Qpd(0)). (28)

By now, we have finished rewriting the string field theory action in terms of CFT

correlators as

1 1 1
§ =~ (5T 210)Q62(0) + 5 (h o PO 2O f00(0) . (29)
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The CFT correlators are normalized such that
. 1
(€M) e = (27)88%(k) | <—a%acc> —1,
2 ghost

when we are considering open strings on D(d — 1)-branes. Other choice of normalization
convention is also possible, but once we have fixed it we must not change it. Though
the definition of g, has some ambiguity in this stage, we will relate it to the mass of the
D-brane on which the open string endpoints live.

Now we have learned how to evaluate any interaction vertex using CF'T correlator.
Since we also know another method of dealing with the interaction vertex, namely opera-
tor formulation (also called Neumann function method), one would naturally ask whether
these two prescriptions are equivalent. Though we do not present the details here, it is

argued in [15] that the answer is certainly Yes.

2.4 Gauge Fixing, Level Truncation and Reality Condition

The string field theory action (15) possesses the gauge invariance (13). We will carry

out gauge-fixing by choosing so-called Feynman-Siegel gauge
bo|®) =0 (30)
in the Fock space representation. Here we discuss the validity of this gauge choice

according to [21].
We first show that

o the Feynman-Siegel gauge can always be chosen, at least at the linearized level.

Now the proof. Let us consider a state |¥) with Lt = Lmatter 1 [ oigenyalue h, not
obeying (30). Define |A) = by|¥) and perform the gauge transformation of |¥) with the

gauge parameter +|A) as
~ 1
) = [¥) = -Qs1A). (31

Since
~ 1
bo|q’> = bo|q’> - EonBbo|\I’>
1
= bo|V) — Ebo{QBabOH‘m

1
= bo|V) — 550L30t|‘1’>
= bo|¥) — bo|¥) =0,

the transformed state |¥) satisfies the gauge condition (30). The linearized gauge trans-
formation (31) is always possible if & # 0. So the proposition was shown to be true for
a state with & # 0. Then we also want to show that in the case of h # 0
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e there are no residual gauge degrees of freedom preserving the gauge (30).

Suppose that both bg|W) = 0 and bo(|¥) + @5|€)) = 0 can hold. That is, |n) = Qpl¢) is

a residual gauge degree of freedom. Then

hlny = Ly [n) = {QB,bo}QBlE) = QBbo(QBIE)) + bo(@B)*IE) = 0.

Since h # 0, |n) must vanish, which completes the proof. Thus, we have seen that
the Feynman-Siegel gauge is a good choice at the linearized level, in other words, near
® = (. But this does not ensure that the same conclusions hold even nonperturbatively.
Although it has been found in [20] that the Feynman-Siegel gauge-fixing condition has a
finite range of validity around ® = 0 in the configuration space, it was suggested in [18,
19] that fortunately the closed string vacuum configuration, which is most important
in our arguments about tachyon condensation, indeed lies inside the region where the

Feynman-Siegel gauge is valid.

We then explain the notion of level truncation. As in eq.(2), we expand the ghost

number 1 string field using the Fock space basis as

l 1
p B
—=B, 0", + —=B,,a” 0",

V2 V2
+ Bob_sco + Bib_yc_y + ikl by + - ) a1 |k). (32)

@) = /ddk(gb—kAMaﬁl—l—iab_lco—l—

Since L is given by

Lg()t = Oé/p2 + Z ainaﬂn + Z n gc—nbng - 17 (33)

n=1 n=—oo

where § -+ denotes the usual oscillator-normal ordering, each term in |®) is an L{

eigenstate. In general, level of a (L{** eigen-)state is defined to be the sum of the level
numbers n of the creation operators acting on ¢;|k), i.e. sum of the second and third
term of (33). This definition is adjusted so that the zero momentum tachyon ¢ |0) should
be at level 0. And the level of a component field (¢, A,,---) is defined to be the level
of the state associated with it. In some cases, this definition is modified to include the
contribution from the momentum-dependent term, as will be explained in chapter 4.

Now that we have defined the level number for the expansion of the string field, level of
each term in the action is also defined to be the sum of the levels of the fields involved.
For example, if states |®4),|P2), |®5) have level ny, ng, ng respectively, we assign level
ni1 + ny + ns to the interaction term (@, ¢y, O3).

Then truncation to level N means that we keep only those terms with level equal to
or less than N. When we say ‘level (M, N) truncation’, it means that the string field

includes the terms with level < M while the action includes ones with level < V.
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The level truncation is a means of approximation which is needed simply because
we cannot deal with an infinite number of terms. But it is not a priori clear whether
this is a good approximation scheme. Concerning this point, some arguments supporting
the validity of this approximation are given: In [25], it is said that the level n terms in
the action contain the factor of (4/3v/3)" ~ (0.77)", so that they decrease exponentially
as n increases. In [22], effective field theories of tachyon and of gauge field are studied
numerically. Up to level 20, successive approximations seem to be well convergent,
obeying neither exponential nor power-law fall off. From the point of view of the world-
sheet renormalization group, higher level states correspond to the irrelevant operators in
the infrared regime, so for the static problems such as tachyon condensation it is natural
that the higher level terms are quite suppressed. However, since there is no very small
parameter which validates the perturbation expansion (4/3v/3 seems not small enough
to account for the rapid convergence exhibited later), it is very interesting if we can fully

understand the convergence property in the purely theoretical, not numerical, way.

In terms of component fields, gauge transformation (13) involves transformations of
an infinite number of particle fields, and the action (15) is invariant under this full gauge
transformation. Hence the procedures of level truncation, where the fields of levels higher
than some chosen value are always set to zero, break the gauge invariance. As a result,
the potential does not have flat directions corresponding to gauge degrees of freedom,
even if we do not explicitly gauge-fix. But since the lifting of the potential is not under

control, we shall apply the level truncation method after fixing the gauge.

We will give some further comments. Firstly, in calculating the Hilbert space inner
product we need so-called ‘BPZ conjugation’ to obtain a bra state (®| = bpz(|®)). For
a primary field ¢(z) = 350 ¢, /2" of weight h, the BPZ conjugation is defined via

the inversion Z as

bpz(¢,[0)) = (0/bpz(¢n);

bpr(d) = (6] = § oot IT 0 g2)

m=—00

= (_1)_n+h¢—n- (34)
For example, for a primary field 9X* of weight 1, we have
bpz(a”,) = (=1)"t1a”.

Secondly, we consider the reality condition of the string field. When the string
field @ is regarded as a functional of the string embeddings X*(oy,0,) and ghosts
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b(o1,02), ¢(o1,09), its reality condition is written as [10]
O[X"(01),b(01),c(01)] = [ X (7 — 01),b(m — 01), (T — 01)]. (35)

It corresponds to the hermiticity of the ‘matrix” ® (¢f. [30, 29, 31]). In terms of the
state |®), the Hermitian conjugation operation (denoted by hc) alone takes the ket to
the bra, so hc is combined with BPZ conjugation to define the star conjugation [24]

% = bpz ™' o hc = he™ o bpz. (36)
Then the reality condition reads
|®*) = bpz~! 0 he(|®)) = |®). (37)

This condition guarantees the reality of the component fields ¢, A, B,,, ... in the expan-

sion (32). For instance, as regards the tachyon state,
bpa~t o he(g(k)e k) = bps~ (0] X & (k)e_1) = 6 (K)er| — k)

should be equal to ¢(¢)c1|¢) under momentum integration, which gives ¢*(k) = ¢(—k).
In the position space, it becomes the reality condition ¢*(z) = ¢(x), as expected. The
second example is the term %Bﬂafzcﬂm with the momentum dependence ignored.

Since

bpz~! o he (%BMQZCJ(D) = bpz~! (7;_<O|B;o/2‘c_1) = —%B;(—afz)qm}, (38)
the factor ¢ is needed for B, to be real.

Thirdly, the 3 kinetic term turns out to have the opposite sign to the other ‘physical’
fields. Since the phase of 3 in the expansion (32) has been determined (up to +) in
such a way that [ should be real, we cannot selfishly redefine 3; = i3,. Therefore the
wrong sign is not a superficial one. These ‘auxiliary’ fields have the effect of cancelling

the unphysical components of vector (tensor) fields.

2.5 Universality of the Tachyon Potential

Now that we have finished setting up bosonic string field theory, next we turn to the
subject of tachyon condensation. To begin with, we show that the tachyon potential
has the universal form [16] which is independent of the details of the theory describing
the D-brane. We also relate the open string coupling g, to the D-brane tension so that
the expression of the action has the form appropriate for examining the conjecture on
annihilation of the unstable D-brane. Then, we calculate the tachyon potential and its

minimum, and discuss the meaning of them.
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We consider oriented bosonic open string theory on a single Dp-brane extended in the
(1,...,p)-directions. Some of the directions tangential to the D-brane may be wrapped
on non-trivial cycles. If there are noncompact tangential directions, we compactify them
on a torus of large radii to make the total mass of the D-brane finite. Let V, denote the
spatial volume of the D-brane. In general, such a wrapped D-brane is described by a
non-trivial boundary conformal field theory. What we want to prove is that the tachyon

potential defined below is independent of this boundary CFT.

Since we will be looking for a Lorentz invariant vacuum as a solution to the equations
of motion derived from the string field theory action, only Lorentz scalar fields acquire
nonvanishing vacuum expectation values. Once the tachyon field ¢ develops a nonzero
vacuum expectation value, equations of motion require that (infinitely many) scalar
fields of higher levels also have nonvanishing vacuum expectation values due to the cubic
interaction terms. But since not all the scalar fields must be given nonzero values, we
want to drop as many fields that need not acquire nonvanishing expectation values as
possible from the beginning. The idea is as follows: If some component field  always
enters the action quadratically or in higher order (in other words, the action contains
no linear term in ), each term in the equation of motion obtained by differentiating
the action with respect to ¢ involves at least one factor of ¢». This equation of motion
is trivially satisfied by setting ¢» = 0. In finding a solution to the equations of motion,
we are allowed to set to zero all such fields as ¢ throughout the calculation: We will
often give arguments like this in the remainder of this paper. Now let us identify the
set of such fields. A string field is an element of the Hilbert space H' of ghost number
1. We decompose it into two parts as H' = H; @ Hj in the following manner: Let
Hi consist of states obtained by acting with the ghost oscillators b, ¢, and the matter
Virasoro generators L™ on the SL(2, R) invariant vacuum |0). Note that H] contains zero
momentum tachyon state ¢;|0). Hj includes all other states in H', that is, states with
nonzero momentum k along the Dp-brane and states obtained by the action of b,,, ¢,,, L™
on the non-trivial primary states of weight > 0. Let us prove that a component of the
string field ® along H} never appears in the action linearly. For the nonzero momentum
sector, it is obvious that the momentum conservation law requires the couplings (0|Qp|k)
and (V3]0) @ |0) ® |k) to vanish for k& # 0. Hence we focus on the zero momentum sector.
Taking the states [¢)) € Hi and |¢y), |¢2) € Hi, we consider Sy = {(¢1|Qg|¢Y) and
Sy = (Va|o1) @ |¢2) @ |¢). For these to have nonvanishing values, the ghost parts must
be of the form (c_jcoer). Assuming that this condition is satisfied, we consider only
the matter parts. Since Qg is constructed out of b,,¢,, L, the matter part of S can

generally be written as

S

ojLm - L™ |
(O]m) + > _(OILy,, -~ Ly |m),
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where |1) € H} is a primary state and m’s are taken to be all positive or all negative by
using the Virasoro algebra. In either way, such terms vanish when L™ = (L™ )T acts on
(0] or |m) because they are primary states. And the only remaining term (0|r), if any,
also vanishes because |7) has nonzero conformal weight. So we have found S; = 0. In a

similar notation, S5 can be written as

Sy = (Va[LZ, - L2 |0)s @ L2, - L7 0) @ LT, -+ LT, |m)y.

—n1

Using the Virasoro conservation laws explained in [17], we can move the Virasoro gener-
ators L™ L™ to the 1st string Hilbert space as

a

—N—

If ks are positive, L annihilates the primary state |7);. If @ = 0 or £’s are negative, the
state L} --- L} |); has a strictly positive weight so that the 3-point coupling vanishes.
From these results, we have also established S35 = 0. Therefore, we can consistently
truncate the string field ® to lie in H] by setting the component fields along H3 to
zero all together. We may further truncate the string field by appealing to the special
symmetries of the 3-string vertex, or equivalently of the gluing prescription. But we do

not try it here.

For clarity, we introduce new symbols: We denote by T' the string field ® truncated
to Hj, and by g(T) the cubic string field theory action S(®) truncated to H}. Since
the fields in H] have zero momenta and hence are independent of the coordinates on
the D-brane world-volume, the integration over x gives the (p + 1)-dimensional volume

factor V,11. So the action is written as
S(T) = Vo £(T) = =V U(T), (39)

where we defined the tachyon potential U(T) as the negative of the Lagrangian. By
definition of H7, the coefficient of each term in the truncated action S is entirely given by
the correlation functions involving only the ghost fields b, ¢ and matter energy momentum
tensor T™. In the oscillator representation, we only need the commutation relations
among b,,, ¢, and the matter Virasoro algebra. Though the latter depends on the central
charge ¢, it is now set to 26 in the critical string theory. Then the action, accordingly
the tachyon potential as well, is universal in the sense that it has no room for containing
information on the boundary CFT which describes the D-brane. More precisely, what
is universal is part of the action except for an overall factor of the open string coupling
g-2. The relation of g, to the Dp-brane tension 7, measured at the perturbative open
string vacuum where (T') = 0 was established in [16] as

1

2m2g2a’?

(40)

Tp
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2.6 Tachyon Potential in the Level Truncation Scheme

Using the relation (40), the action can be rewritten as

o 1 1 1
§ = o (Gl T o TOIQT(0) + 51 0 T(O)2 0 T(O)f; 0 T(0)))

= V2ral, (ST 0 T(O)Q8T O + S 0 T(0) 0 T(0) 30 TO)er ).
Generically, the correlation function includes the momentum conservation delta function
(2m)PTLEPHY (3 k), but since T € H; has no momentum dependence, this factor simply
gives the volume V4 of the Dp-brane. Accordingly, the correlation functions in the
second line are normalized such that (1)matter = 1. In the rest of this chapter, we will
use the symbol (---) without ‘norm.” to represent the correlation function normalized in
the above mentioned way. From the tachyon potential U(T) = —S/V,41, we define the

following ‘universal function’

== =2’ (5T 0 TOQST(O0) + 51 0 (O} 0 T(0)f5 0 T(0)) )
(41)
Total energy density coming from the tachyon potential and the D-brane tension is given
by
UT) + 7 =7(1+ f(T)).

According to the conjecture of [3], at the minimum 7" = Ty of the tachyon potential
the negative energy contribution from the tachyon potential exactly cancels the D-brane
tension, leading to the ‘closed string vacuum’ without any D-brane. In terms of f(7),
such a phenomenon occurs if

T =T = -1 (42)
is true. We will investigate it by calculating f(7') in the level truncation scheme, solving
equations of motion to find Ty, and evaluating the minimum f(7p). Since the univer-
sality (independence from the boundary CFT) of the function f(7') has already been
established, we conclude that eq.(42) persists for all D-branes compactified in arbitrary
ways if we verify the relation (42) for the simplest (toroidally compactified) case.

Now, we proceed to the actual calculations. Level (0,0) truncation, namely only the

zero momentum tachyon state being kept, gives
3
1 1 (3V3
=9 2 131 = 42 —{ZvY 3 4
6) m(ga,¢+3(4)¢), (43

where we set ¢ = exp (—o/ In %82) ¢ = ¢ because ¢ is a constant. Its minimum is

easily found. By solving df(¢)/d¢|s, = 0, we find

4\ 1
qboz(ﬁ) — and f(go) = —0.684. (44)
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Although we have considered only the tachyon state in the vast Hilbert space H}, the
minimum value (44) accounts for as much as 68% of the conjectured value (42)! We then
compute corrections to it by including the fields of higher level. Before that, we can still
restrict the fields by appealing to the ‘twist symmetry’. As explained in [21, 24, 32], the
twist invariance requires the odd level fields to enter the action in pairs. Then we can
set to zero all odd level fields without contradicting the equations of motion. Hence the

terms we should take into account next are the level 2 fields

|L2) = —Prc|0) + LZ¢10). (45)

v
V13
Though the state b_scoeq|0) is also at level 2, it is excluded by the Feynman-Siegel gauge
condition (30). The vertex operator representation of the string field up to level 2 is then

given by

T(z2) = de(z) — %gla%(z) + %Tm(z)c(z). (46)

Here we make a comment on the level truncation. In the level (M, N) truncation, in
order for the quadratic terms (kinetic term + mass term) for the level M fields to be
included in the action, N must be equal to or larger than 2M. On the other hand, as we
are using the cubic string field theory action, N cannot become larger than 3M. So the
possible truncation levels are (M,2M) ~ (M,3M). In the case of (46) which includes
fields up to level 2, we can obtain the potentials f*)(T), fO(T) as functions of the
fields ¢, 31, v by substituting (46) into (41), where the superscripts (4),(6) indicates the
truncation level. Though we do not repeat them here, the expressions for the potential
both at level (2,4) and at (2,6) are shown in [21]. The fact that 9%c is not a conformal
primary field complicates the actual calculation. By extremizing f(7') with respect to
these field variables, we find the value of the potential at T' = T;,. We show the results in
Table 2. In this table, the results obtained by truncating at other levels are also quoted.
The explicit form of level (4,8) potential is given in [21], and the minimum values of
the potential at various truncation levels up to (10,20) are found in [23]. These results
suggest that the value of the potential f(7') at the extremum T = T} converges rapidly to
the conjectured one f(7Ty) = —1 as we increase the truncation level. It may be somewhat
surprising that the level (2,4) approximation, in which only three fields are included,
gives about 95% of the expected value. At T' = 0, open string degrees of freedom are
living on the original Dp-brane; at the new vacuum T = Tj, we believe that the Dp-
brane completely disappears together with open strings. Since such a brane annihilation
process can be thought of as highly non-perturbative, we could have expected that the
higher level fields have great influence on determination of Ty. But the approximated
results tells us that this expectation is false. In fact, a few low lying modes dominate
the solution Typ. And it may be said that the string field theory appropriately describes

non-perturbative features of string dynamics.
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‘ level ‘ f(T) ‘

0,0) | —0.634
(24) | —0.949
(2,6) | —0.959
(4,8) | —0.986
(4,12) | —0.988
(6,12) | —0.99514
(6,18) | —0.99518
(3,16) | —0.99777
(8,20) | —0.99793

(10,20) | —0.99912

Table 2: The minimum values of the potential in Feynman-Siegel gauge at various trun-
cation levels.

In the above lines we used the word ‘extremum’ rather than ‘minimum’. This is
because the stationary point is actually not a minimum but a saddle point: String field
T(z) in (46) contains the component field ;. As remarked before, 3; kinetic term has
the wrong sign, which causes an unstable direction in the tachyon potential. Nevertheless
the physical stability of this vacuum is not violated, as 31 is one of auxiliary fields.

Comparing the results displayed in Table 2 reveals the fact that the precision of the
values of the tachyon potential at the stationary point is not greatly improved even if
we include higher level terms in the action while the level of the expansion of the string
field is kept fixed (i.e. (M, N) — (M, N +n)). Consequently, we consider that the most

efficient approximations are obtained in the level (M,2M) truncation schemes.

2.7 Physics of the New Vacuum

We begin by tidying up the terminology. The usual open string vacuum with one or
some Dp-branes, where all fields except for those describing the collective motion of
the D-branes have vanishing expectation values, is called ‘perturbative vacuum’ or ‘open
string vacuum’. In contrast, the new vacuum found in the previous sections, where
various scalar fields develop nonzero expectation values, is termed ‘tachyon vacuum’, or
‘nonperturbative vacuum’ for reasons discussed below, or ‘closed string vacuum’ because
we believe that in this new vacuum the negative energy contribution from the tachyon
potential associated with the rolling down of the tachyon field exactly cancels the positive
energy density (tension) of the D-brane, resulting in a true vacuum without any D-brane
or open string. In this section we describe the structure of the effective potential for the
tachyon in the level truncation scheme and some approaches to finding the open string

spectrum around the closed string vacuum solution.
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2.7.1 Effective tachyon potential

First, we examine the structure of the effective tachyon potential. At level (0,0), the

tachyon potential f(¢) has already been given in (43),

£(6) = 277" (—%& 4 2@3) , (47)

where Kk = —

3!

(7

) ~ 0.365*. Tt has a minimum at

bo = 14\’ 1 0.456
0= 3\/_ o o

If we rescale the string field ® back to ¢,®, in which case a factor of g, appears in the

coefficient of every cubic interaction term as in eq.(14), then the minimum occurs at
o ~ 0.456/a’g,. This expression suggests the nonperturbative nature of the ‘closed

string vacuum’. Next, at level (2,4), the multiscalar potential is explicitly given by

J(r) = 2t (SATIQsIT) + Vs ) (43)
) 13 1, 333 1 2 11 - 3\f )
= 27« (—Fqb + 26 Qb — —51 2— ————0"

~5-3v/39 19f 581\/_ 5. 11\/
26 3 26 ¢51 U +

Qbﬁlv)

Since the potential is quadratic both in 3; and in v, we can eliminate these two fields by
integrating them out exactly. The resulting effective tachyon potential is, in the o/ =1
unit, given by
67T2¢2
256 (288 + 581 \/§¢)2 (432 + 786 V3 ¢ + 97 ¢2)2
X (—660451885056 — 4510794645504 /3 ¢
— 32068942626816 ¢* — 25455338339328 v/3 ¢° + 27487773823968 ¢*
+ 54206857131636 V'3 &° + 24845285906980 ¢° + 764722504035 /3 ¢7).

feﬂ(¢) =

[ts minimum occurs at ¢o 2~ 0.541/a’, which has increased by about 20% compared to the
(0,0) case. The effective potential obtained at level (0,0) and (2,4) is indicated in Figure 7.
The depth of the potential is shown in Table 2 and it is approaching the conjectured
value fer(¢o) = —1. We can, in principle, obtain the effective tachyon potential at higher

truncation levels as well by integrating out the massive fields at the tree-level, namely

1A factor 2 is inserted in front of x in (47) to reconcile the definition of x here with that of [25] and
[23].
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phi

Figure 7: Effective tachyon potential at level (0,0) (dashed line) and at level (2,4) (solid
line).

putting the solutions to the equations of motion back into the action. But we must be
careful in solving equations of motion. Since they are quadratic equations, each equation
gives two solutions due to the branch of the square root. Among them, the most reliable
branch is the one which contains the perturbative vacuum in its profile, and it was found
that this branch indeed involves the nonperturbative vacuum as a local minimum of the

effective potential, just as in Figure 7.

2.7.2 Open string excitations around the closed string vacuum

We begin by the following cubic string field theory action on a Dp-brane
171 1
S((I)):—Vp_HTp—%[ﬁ/q)*QB(I)—I—g/(I)*(I)*(I)], (49)

where we think of the string field configuration ® = 0 as representing the original Dp-
brane. The D-brane mass term —V,;;7, have been added so that the closed string
vacuum ¢ = @ has vanishing energy density if f(®g) = —1 (42) is true. As we have

seen before, this action has gauge invariance under
SO =QpA+ ' (P+xA—AxD)

because of the axioms

nilpotence Q% =0,
odd derivation Qp(Ax B) = (QpA)* B+ (—1)*Ax (QpB),
conservation of Qg [ Qp(...) =0,

JA*xB= (=148 [ Bx A,

(50)

and the associativity of the s-product. Shifting the string field by the closed string

vacuum solution ®, as ® = &y + CT), the action is rewritten as

~ 171 1
S((I)0+(I)) = —p_|_17'p—g[ﬁ/q)o*QBq)o—Fg/q)o*q)o*q)o
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~ 1
+/<1>* (—/QBCI>0+<I>0*<I>O) (51)
!
1/~ I~ =~ ~ L~ ~
—|——/<I>>|< <—Q3q>+q>*q>o+q>o*q>) +—/q>*q>*q>].
2 o 3
Since @q is a solution to the string field equation of motion from (49)
1
JQBCI) +0xd =0,

the second line vanishes. And the first line also vanishes due to the brane annihilation
conjecture S(®g) = 0. Hence by defining the new ‘BRST-like” operator @ to be

1~ 1 ~ ~ o~
the action is written as
~ ~ 171 ~ ~ 1 7~ ~ =
S(<I>0—|—<I>)ESO(<I>):—9—2[ﬁ/CI)*QCD—I—g/(I)*(I)*(D]. (53)

Moreover, if we perform a field redefinition

O =elv
with K satisfying the properties
#en(K) = 0 (Grassmann even),

K(A*B) = (KA)* B+ Ax(KB), ((Va(KM+K® 4 K®) =),

/KA*B _ —/A*KB,
then we have

Koon 111 1
Sole q;)zsl(q;):_g_g[ﬁ/q;*gqurg/xpww], (54)

where @ = e % QeF. Since the new operator Q satisfies the axioms (50) with Qp

replaced by Q, the action S1(WV) is invariant under the gauge transformation
SU=0A+a(UxA—Ax0).

Noting that the configuration ¥ = 0 corresponds to the closed string vacuum, the ‘BRST’
operator Q governs the open string dynamics there. To agree with the expectation that

there are no open string excitations around the closed string vacuum,
Q must have vanishing cohomology.

In addition, since the closed string vacuum created after tachyon condensation should
contain no information about the original D-brane before condensation, @ must be uni-

versal in the sense that Q is independent of the details of the boundary CFT describing
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the original D-brane. This condition is satisfied if Q is constructed purely from ghost
operators. As examples of @ which satisfy the above conditions, we consider the opera-
tors

Co=co+(—1)"cpy, n=0,1,2,---. (55)

In fact, each of these operators has zero cohomology: Take a state [¢b) which is annihilated
by Cp, i.e. Culth) = 0. Since B, = $(b_, + (—1)"b,) obeys {C,.,B,} = 1, ) is always
expressed as

|9) = {Cn, Bu}|t0) = Co(Bulih)),

which is C,-exact. More generally, we find

Q=3 a.C, (56)
n=0

with a,’s constant to satisfy the required properties

(1) the algebraic structure (50) (@ p replaced by Q)
which guarantees the gauge invariance,

(2) vanishing cohomology,

(3) universality (not including any matter sector).

(57)

If we had a closed form expression for ®q, we would be able to construct the operator Q
and see whether Q satisfies the properties (57). However, since we have not yet succeeded
in obtaining such an exact solution ®q, we are forced to investigate the cohomology of the
shifted BRST operator @ within the framework of level truncation approximation. This
project was carried out in [27] and the authors found that the BRST-invariant states
below the truncation level lie inside the BRST-exact subspace to a very high accuracy,
suggesting that Q has indeed the vanishing cohomology. As an alternative approach,
Rastelli, Sen and Zwiebach has proposed that the action of the open string field theory
expanded around the closed string vacuum takes the form (54) with Q satisfying the
properties (57), and that it should be justified by constructing D-branes as solutions
in this theory. This is called ‘vacuum string field theory’[28, 29] and is now under

discussion.

3 Superstring Field Theory

After the bosonic open string field theory was constructed, many attempts to apply these
techniques to open superstring theory have been made. In this chapter, we will discuss
cubic superstring field theory by Witten and Wess-Zumino-Witten—like superstring field

theory by Berkovits, and see their applications to the problem of tachyon condensation.
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3.1 Superconformal Ghosts and Picture

In the superstring case, there exist new world-sheet fields *, 3,y due to world-sheet
supersymmetry®, in addition to X*, b, ¢ which already exist on the bosonic string world-
sheet. Though we explicitly write only the holomorphic (left-moving) side of various
world-sheet fields almost everywhere, there is also the corresponding antiholomorphic side
which will be denoted with tilde like ¥/*, b (except for 9X*#(z)). The energy-momentum

tensor T'(z) is modified in the superstring case as
1 1
™(2) = ——=0dX"0X, — 5;/}“8;/)#,
!
3
T8(z) = (9b)e—20(be) + (9F)y — 59(67).

The supercurrent G/(z), the superpartner of the energy-momentum tensor, is defined by

Gwazzﬁgwwmm

G8(z) — —%(8[3)c—|—§8([3c)—267.

See [9] for their mode expansions and commutation relations among them. According

to [33], we ‘bosonize’ the superconformal ghosts 3,~ as

Bz) = e"Pog(z),
y(z) = n(z)e’®. (58)

The newly defined fields &, 7 are fermionic and € is also defined to be fermionic if n is
odd. So the products appearing in (58) are bosonic, just as 3, are. And their orderings
are determined such that the v OPE

1

Z—w

Blz)y(w) ~ =

is preserved by the bosonization. In fact, using the following OPE

E)(w) ~ ——,  $(=)d(w) ~ — log(z — w),

Z—w

one can verify

8(:)1(0) = O gl)e )~ 0,
1

Z—w

exp (+log(z — w)) : e=?() )
w

~  —

>We restrict our arguments to Type II superstring theory, so the two-dimensional field theory on the
closed string world-sheet has an A" = (1,1) superconformal symmetry.
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As is clear from the definition (58), the #v system can be bosonized without using

d
zero mode of £, which we denote by & = %2—22_15(2) We define a “small” Hilbert
)

space to be the one which does not contain the ¢ zero mode. In contrast, a Hilbert
space containing also &g is called a “large” Hilbert space. In [33], it was shown that it is
possible to do all calculations in a “small” Hilbert space in the first-quantized superstring
theory. In the string field theory context, the % operation (gluing) can consistently be
defined within the “small” Hilbert space [10]. Here, we collect the properties of the fields

considered above in Table 3.

‘ holomorphic field H ax* ‘ PH H b ‘ c H ¢ ‘ ~y H e'? ‘ £ ‘ n ‘
conformal weight h o2 2 | —1(3/2|-1/2]|-2¢—-(] 0 | 1
ghost number #,, 0 0 -1 +1f =1 +1 0 —1 | +1
picture number #pic 0 0 010 0 0 l +1 ] -1
world-sheet statistics B F F | F B B g((f;;icl?) F | F

Table 3: Some properties of the fields on an A" = 1 superstring world-sheet.

Since we have the following state-operator correspondences

tachyon Qs = ce™?,
massless NS ¢51/Q|Q>NS > yptce?, (59)
massless R |3 R & ce™?/?0;,

we define the ‘natural’ picture as

Neveu-Schwarz sector —1
Ramond sector —1/2.

% and H* are the bosonized

4
In (59), Oz is the spin field exp [z > SGHG], where s, = +
a=0
form of ¥*’s
1 1

V2 V2

We will focus on the Neveu-Schwarz sector for a while. If we think of —1-picture vertex

(£ 4+ pt) = A (2 £ 2y = FH (0 =1,2,3,4). (60)

operators as natural and fundamental representation, the vertex operators in the 0-
picture can be obtained by acting on the —1-picture vertex operators with the following

‘picture-changing operator’
¢ .
X(z) = {Qn,t()} = § 5 =in(OE(2)

= o€+ P G™ 4 ewban + 8(62¢b77), (61)

SWe use the unconventional symbol X for the picture-changing operator to distinguish it from the
embeddings X* of the world-sheet. Usually picture-changing operator is also denoted by X.
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where jp(z) is the BRST current

) 1
Je(z) = I™4+~G™ + §(ch + vG#)
= o(T"+ T 4+ T(b) + 776¢Gm + bede — nanewb, (62)
1
T = (96n, T?=—50006—0%.

The ‘inverse picture-changing operator’ can also be constructed as
Y =c df e, (63)
It is the inverse operator of X’ in the sense that

lim X(2)Y(w) = lim Y(2)X (w) = 1. (64)

Z—rw Z—rw

By making use of & and Y, we will arrive at vertex operators of arbitrary integer
picture number. So far, we have concentrated on the Neveu-Schwarz sector, but we can
similarly define the picture-changing operations for the Ramond sector vertex operators.
They differ from the Neveu-Schwarz vertex operators in that the picture numbers of the

Ramond sector vertex operators are half-integer valued.

3.2 Witten’s Cubic Superstring Field Theory
and its Problems

The cubic open superstring field theory action proposed by Witten in [10, 34] is a straight-
forward extension of the cubic bosonic open string field theory action introduced in the
last chapter. However, it is rather complicated due to the existence of the Ramond sector

states and the concept of picture.

We first consider the Neveu-Schwarz sector and take the string field A to have the
ghost number +1 and the picture number —1 (natural picture). If we assume the same

action as that of the bosonic cubic open string field theory
2
S?:/<A*QBA—|—§A*A*A) (65)

with exactly the same definitions of [ and #, the second term turns out to vanish because
it has the wrong value —3 of ¢-charge. It can easily be remedied by inserting the
picture-changing operator A only in the second term. For further extension, however,
we purposely modify both the % and | operations. Let us define the following new

operations,

AxB = X(AxB),
ij — /YA, (66)
0

3



where X' and Y are inserted at the string midpoint ¢ = 7/2. If we use these symbols,

the action for the Neveu-Schwarz sector can be written as

SNS:%<A*QBA—|—2§OA*A*A). (67)

Moreover, in order for the gauge parameter to form a closed subalgebra under the ‘star-

product’, we must use the x operation defined above. A gauge transformation of a string
field A takes the form
SA=QpA+ ...,

where A is a gauge parameter and . . . represents the nonlinear terms. Since the string field
A has (#gh = +1, #pic = —1) and Qp has (F#gn = +1, #,ic = 0), the gauge parameter
A must be of (#gn = 0, #pic = —1). If we want the product of two gauge parameters
A1, Ay to have the same ghost and picture number as that of each of the original gauge
parameters, we must assign (#gh = 0, #pic = +1) to the ‘star’-product. That is just the
property of x = & - . In accordance with this, the ‘integration’ operation should also

be modified to § = [ V.

In any case, a gauge invariant cubic superstring field theory action for the Neveu-
Schwarz sector was constructed, at least formally. Next we take the Ramond sector into
account. As the product of two Ramond sector gauge parameters is thought to be in the
Neveu-Schwarz sector, we must consider the combined Ramond-Neveu-Schwarz string
field. We denote by M = (A, ) a combined state, where A is a Neveu-Schwarz state
and 1 is a Ramond state. From the state-operator correspondence (59), we assign

(#gh = +1, #pic = —%)

to the Ramond sector state. We define the product of two string fields My, M, in the

combined system by

MykMy = (Ay, 0)5( Az, ) = (A x Ap + P+, Ayxy+1hix Ag),  (68)

where * is the usual *-product, x is the modified product defined in (66) and we have
denoted the new product by «7. We can easily see that the product M;*M,; has ghost
number +2 and picture number (=1, —1/2) for (Neveu-Schwarz, Ramond) state. And a

new integration operation for the combined system is defined simply by

J[a0)=fa (69)

that is, we take out only the Neveu-Schwarz state® and integrate it using § defined

in (66). Note that all of the axioms we saw in section 2.2 are obeyed by (%, §) and

“Under the #product, the set of gauge parameters for the combined system certainly forms a closed
subalgebra.
8The integral of a Ramond sector string field must be zero because of Lorentz invariance.
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(%, f[). By putting these objects and operations together, we can write down a gauge

invariant action for the combined Ramond-Neveu-Schwarz system as

. 200 2 rragn
Shys = / / (M*QBM + M*M*M) . (70)
This is invariant under the following gauge transformation
IM = QA+ g,(M*A — AxM),

though the proof is quite formal and actually has some problems, as shown later. We

can rewrite the action (70) in terms of *-product and [, the result being

SRNS—/<A>|<

If we set to zero the Ramond sector string field ¢, it correctly reproduces the action (67)

Avgrd). (1)

for the Neveu-Schwarz sector only. The quadratic part of the action (71) can be altered
into the standard structure if we impose the Feynman-Siegel gauge condition byA =
bptp = 0. For the Neveu-Schwarz part, we can set A = bgA’ in the Feynman-Siegel gauge,

50
Gauad _ /A + QpA = (A'|boQpbo|A") = (A'|{bo, Q}bo|A’) = (A'| L bo| A").
If we extract the ghost zero modes from A’ as |A’) = |A) @ ¢o| |), then
Sve = (1 leoboco| L)(AILE*[A), (72)

where tilded objects do not include ghost zero modes ¢y, by at all. Since the factor
(} |eoboco| 1) simply gives 1, this is the standard form of the gauge fixed action. For
the Ramond part, we must appropriately handle the zero modes of 3,v as well. At
the linearized level, it can be shown that we can carry out the gauge transformation

o = @) px such that the transformed v satisfies the gauge conditions

bo%/) = 501/) =

It was shown in [34] that under these gauge conditions the quadratic action for the

Ramond sector becomes
St = (|G|, (73)

where ¥, Gg"t do not include b, ¢, 3,~ zero modes. Since its derivation is rather compli-
cated, we leave it to ref. [34], but we point out an essential point. While the ‘Klein-
Gordon operator’ L{* appeared through L{* = {Qpg,bo} in the Neveu-Schwarz sector,
the ‘Dirac operator’ G arises as G = [@ B, 3] in the Ramond sector, which is suitable

for the spacetime fermions.
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So far, we have seen the Witten’s construction of superstring field theory. The action
(70) or (71) has the formal gauge invariance and is a natural extension of the bosonic
string field theory cubic action. It also reproduces the correct propagators for the Neveu-
Schwarz and Ramond sector fields. Important roles in constructing the theory are played
by the picture-changing operators X' and Y among other things. These are necessary
for the construction of the nonvanishing Chern-Simons-like cubic action in superstring
theory. However, it was pointed out in [35] that these picture-changing operators bring
about contact term divergence problems, which spoil the associativity of the *-product
as well as the gauge invariance. Even if we put these problems aside, this formalism
does not seem to be suitable for the study of tachyon condensation. In fact, the tachyon
potential was calculated in [36] using Witten’s cubic superstring field theory, and the

authors found that the potential does not have any minima at all.

3.3 Berkovits’ Open Superstring Field Theory

To overcome the contact term divergence problems, we look for a new formulation of
superstring field theory in which we can avoid the picture changing operations. This can
be accomplished by taking the Neveu-Schwarz string field, denoted by ®, to be in the
O-picture.” In Berkovits’ theory [41, 42, 43], we construct such a string field ® from the

corresponding —1-picture Ramond-Neveu-Schwarz vertex operator A as
O(z) =:EA(2) :. (74)

The vertex operator ® constructed this way has ghost number 0 and picture number
0 due to the properties of . Since £ is fermionic, the string field ® (in the GSO(+)
sector) has become bosonic (Grassmann even). From the form of (74), it is clear that we
must extend the state space to so-called the “large” Hilbert space which includes also
the zero-mode of ¢ [33]. The physical state condition, which was given by QA = 0 in

the “small” Hilbert space, now takes the form
Qpno® = 0. (75)
Note that the two ‘odd-derivation’ operators ()5, no satisfy
{@B,m0} = (@B)* = (n0)* = 0. (76)
The equation of motion (75) is derived by varying the following quadratic action

Squad = /(I) * QBUOq)v (77)

°In this direction, a different formalism [37, 38, 39] had been proposed within the framework of cubic
superstring field theory, and it was recently used to compute the tachyon potential [40].
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where [ and * are the same gluing operations as in the cubic bosonic string field theory.

This action is invariant under the following gauge transformation
00 = @Ay + o, (78)

because of the properties (76). Hence we identify two physical states ®;, ®5 which are
related to each other by some gauge transformation, namely ®; = &5 + Ay + noAs.
In particular, for the ‘pure gauge’ state of the form ® = Q)pA; + oAy we have

A=no® =nQpA: + 773/\2 = Qp(—noA1),

which is nothing but a BRST-exact!'® state in the “small” Hilbert space.

To include interactions, it was proposed in [41] that we should take the following

Wess-Zumino-Witten-like action
S = %/ [(6_@G8'eq>) (e_@ég'eq))
— /01 i (e_tcbatet@) {(e—ﬂbGS-etCD) : (e—téég—eté) }] ‘ (79)

where the products and the integral among the string fields are defined by the Witten’s
gluing prescription of the strings. This action has many advantages for our purpose.
Firstly,

e the equation of motion derived from the action (79) is
Mo (e_qbQB@q)) =0, (80)
whose linearized version correctly reproduces noQ)p® = 0. Secondly,

e the action (79) has the nonlinear gauge invariance under

5e® = (QBAl)GCD + 6@(770/\2), (81)

where Ay, Ay are gauge parameters of ghost number —1. The proof of this gauge invari-
ance can be found in [46]. Of course, the linearized gauge transformation of (81) takes

the form 6® = QA1 + o, as required. Thirdly,

e this action correctly reproduces the on-shell amplitudes found in the first-quantized

superstring theory.

10Though A itself does not exist in the “small” Hilbert space, ngA; does.
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The on-shell 4-point tree-level amplitude was explicitly computed in [44]. There are
three types of diagrams which contribute to the 4-point tree amplitude. We call them s-
channel (Ay), t-channel (A;) and quartic (A,) amplitudes respectively. The sum A+ A,
of the two diagrams which include two cubic vertices is shown to contain a surface term
(contact term), but it is finite in this case because there are no dangerous operators
such as colliding picture-changing operators. And still, it was found that the quartic
contribution A, exactly cancels the finite contact term. When we take the four external
states to be on-shell, i.e. Qpne® = 0, the tree-level 4-point amplitude A, + A, + A,
computed from the second-quantized superstring field theory action (79) precisely agrees
with the first-quantized result, without any finite or divergent contact term. Generally

speaking,

e the superstring field theory action (79) does not suffer from the contact term di-

vergence problems.

3.4 Open Superstring Field Theory
on Various D-Branes

In the last section, the basic formulation of Berkovits’ open superstring field theory was
reviewed. We write here the superstring field theory action again, with a slightly different

notation:
Sp = %<<(€_®QB€<D) (6_@7706@)

- [ {(au ) (et ) ()

The meaning of ((...)) will be explained below. Though we did not specify what properties
the Grassmann even string field ® has, it does correspond to a state in the GSO(+)
Neveu-Schwarz sector. It is not yet known how to incorporate the Ramond sector states
in this formalism in a ten-dimensionally Lorentz invariant way. But in order to look
for a Lorentz invariant vacuum produced by the tachyon condensation, we can ignore
the Ramond sector states because they represent the spacetime spinors. In spite of this
fact, we strongly hope that we will succeed in including the Ramond sector into this
formalism because in that case we can examine whether the spacetime supersymmetry is
restored when we construct BPS D-branes via tachyon condensation as kinks on a non-
BPS D-brane or as vortices on a D-brane anti-D-brane pair. Aside from the problems
on the Ramond sector, we must also consider the GSO(—) Neveu-Schwarz sector for
the tachyon condensation, since the only tachyonic state lives there. On a non-BPS
D-brane, it is convenient to introduce internal Chan-Paton factors. With the help of

them, the algebraic structures obeyed by the GSO(+) string fields are preserved even
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after introducing the GSO(—) string fields. Moreover, the multiplicative conservation
of e™F is guaranteed by simply taking the trace. On a D-brane anti-D-brane pair, in
addition to the internal ones external Chan-Paton factors representing two branes must

also be tensored. These affairs will be discussed in this section.

3.4.1 On a BPS D-brane

We begin by explaining the meaning of ((...)) in (82) in the case of a BPS D-brane,
namely, ® is in the GSO(+) sector. By expanding the exponentials in a formal power
series, the action is decomposed into the sum of the various n-point (possibly infinite)
vertices (A1 ... A,)) with some vertex operators A;. But we must take great care not to
change the order of operators. Recall that in section 2.3 we have defined an arbitrary
n-point vertex [ @ % ---% ® as the n-point CFT correlator (f; o ®(0)... f, 0o ®(0)). Now
we adopt the same definition for ((...)), that is,

(Ar. . A = (1 0 Ay(0) ... [ o A,(0)) (83)

where

|
h1 - _ L
@) = i

(M .y _ 2 (1“2)5 84

40 = ooy (LEE)T (34
1 <k<n

(n)

Of course, we can use g, ' (unit disk representation) instead of f,gn) (upper half plane
representation) in (83). One thing we must keep in mind is that the correlator is evaluated

in the “large” Hilbert space. So the correlator is normalized such that
1
<§(Z)§cacazc(w)6_2¢(y)> = <0|§oclcoc_1e_2¢(0)|0> = 1. (85)

In the most left hand side the correlator is independent of z, w, y because they supply only
zero modes. When we consider the GSO(—) sector too, vertex operators can have half-
integer-valued conformal weights. In this case, some ambiguity arises in the definition of

the conformal transformation

foe(0)=(f(0)"2(f(0))

for a primary field. Here we unambiguously define the phase of it. For f,gn)(z), since one

finds
fén)/(o) _ 2 SeC2 7T(k B 1)7

n n
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we can simply define

0 0(0) =] (2) sect TEZ D oy 56)

n n

For g,gn)(z), g,gn)/(O) contains a factor of 7, which we define to be i = ¢™/2. Then

g (0) = e 2 entteh)
n n

i o0 = | (1)

n

Finally we set

A Do(l7(0) (87)

Now we enumerate the algebraic properties the correlator ((...)) satisfies. Let A;’s
denote arbitrary vertex operators, whereas @, ®; represent the string fields in GSO(+)

Neveu-Schwarz sector, i.e. Grassmann even vertex operators of ghost number 0.

e Cyclicity properties

(Ar.. A @) = (®A;... Au1), (88)
(A A (Qa®)) = —((Q®)A;... Aoy, (39)
(Ao A 0®)) = —((n0®)Ar ... Auy)). (90)

e Anticommutativity

{Qp.m} =0, Qp=mn5=0. (91)

o Leibniz rules

Qp(®1P;) = (QpP1)P, + ¢1(QpD:),
Mo(®1®2) = (10®1)Ps + @1 (70Ps). (92)

e Partial integrability (Conservation)

(Qs(-.)) = {mo(...)) =0. (93)
We have already seen (91) in the form of (76). Because the GSO(+) string field ®; is

Grassmann even, there are no minus signs in (92). (93) follow from the fact that both
()p and 1y are the integrals of the primary fields jp and 7, respectively, of conformal

weight 1, and that the integration contours can be deformed to shrink around infinity.

These are the basic structures of the theory defined by the action (82). In generalizing
it to the theory on a non-BPS D-brane, we must also include the GSO(—) sector without
spoiling these basic structures. We will discuss below how to do that in an appropriate

way.
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3.4.2 On a non-BPS D-brane

GSO(—) states are represented by the Grassmann odd vertex operators of ghost number
0 and have half-integer weights if the states have zero momenta. This fact can be seen

from the following examples,

state sector vertex operator Grassmannality weight
tachyon ~ NS— fce™? odd —1/2
gauge field NS+ Expree™? even 0

where the vertex operators in the “large” Hilbert space are obtained by combining (59)
with (74). Clearly the Leibniz rules (92) do not hold true for Grassmann odd operators.
To remedy this point, we introduce internal Chan-Paton matrices and trace over them.
Concretely, we multiply vertex operators in the GSO(4) sector by the 2 x 2 identity
matrix [ and those in the GSO(—) sector by the Pauli matrix oy, so that the complete
string field becomes

d=0, 0 +P_ Doy, (94)

where the subscripts + denote not the Grassmannality but the ¢™ eigenvalue. In this
case, however, these two happen to coincide. In order to recover (92), @5 and ng should
be tensored by a matrix which anticommutes with o;. For that purpose, it turns out

that o3 plays a desired role. So we define
Qs=Qp@ 0oy, =100 0s. (95)

In the rest of this chapter, we always regard the hat on an operator as meaning that
the operator contains a 2 x 2 internal Chan-Paton matrix. When the vertex operators
have internal Chan-Paton factors in them, we modify the definition of the the correlator

{(...) as
(A ALY =Te(f™ o Ay(0)... fi™ o 4,(0)), (96)

where the trace is taken over the internal Chan-Paton matrices. With these definitions,
basic properties satisfied by the GSO(+) string field hold even for the combined system
including both GSO(+) and GSO(—) sectors. That is,

e cyclicity properties
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o Leibniz rules

QB((T)I&)Q) = (@B 1) 2+&)1(@B&)2)7
770(&)1&)2) = (770&)1)&)24‘&)1(770&)2), (101)

e partial integrability (Conservation)
(@a(- ) = (ol ) = 0. (102)

The action (82) almost needs not to be modified, as long as we use (96) as the
definition of ((...)). But since the trace over the internal Chan-Paton matrices supplies
an extra factor of 2, we must divide the action by an overall factor 2 to compensate for

it. Thus the open superstring field theory action on a non-BPS D-brane is given by

Sp = 3l (70 (i)
1 ~ ~ ~ ~ ~ ~
—/ dt (e_t@atetq)) {(e‘tq)QBetq)) , (e_t@ﬁoetq))}>>. (103)
0

We want the action to have gauge invariance under
(S€q> = (@B/A\l) €q> + €q> (770?\2) (104)
as in (81). What Chan-Paton structure should we assign to /A\Z'? Since A; were Grassmann
odd (ghost number —1) in the GSO(+) sector, A; should anticommute with @B and 7.
Moreover, (@B/A\l) and (ﬁof\g) must have the same Chan-Paton structure as that (94) of
the string field. One can see that
Ai=Niy @os+Ai_ @ioy (105)

has the desired properties. As to the second requirement,

QN1 = QA4 @ o305+ QA - @1i030;
= (@M1 +) @ T+ (QpA1-) ® oy,
and similarly for ﬁOKQ. Also we find the first requirement to be satisfied by (105) because
iBNiy = =N, 1y and o0y03 = —0350,.
Note that the GSO(+) gauge parameter A, ; is Grassmann odd, while the GSO(—) A, _
miF

is Grassmann even. In this case, Grassmannality fails to coincide with €™ eigenvalue.

For explicit calculations, it is useful to expand the action (103) in a formal power

series in . It can be arranged in the form

=5 3 S (M) (@) e ) ) o)

M,N=0

thanks to the cyclicity.
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3.4.3 On a D-brane—anti-D-brane pair

In order to deal with the D-brane anti-D-brane system, we further introduce the external
Chan-Paton factors which resembles the conventional ones. Though each of the two
branes is the BPS object, the GSO(—) sector appears from the strings stretched between
the brane and the antibrane. Hence we still continue to use the internal Chan-Paton
factors introduced in the non-BPS D-brane case to preserve the algebraic structures.

Consider the strings on the brane-antibrane pair as in Figure 8. Though we depict two

B

N

B>
—

Figure 8: Strings on a brane-antibrane pair.

branes in Figure 8 as if they are separated from each other, one should think of these two
branes as being coincident. Four kinds of strings labeled by A,B,C.D are represented by

the following external Chan-Paton matrices

cha)oe (e e i) o)

States appearing on strings represented by the diagonal Chan-Paton factors A and B, or
alternatively by I and o3, live in the GSO(+) sector. In contrast, states from off-diagonal
strings C and D, or oy and oy, live in the GSO(—) sector. Therefore we can write the

complete string field as
= (0L l+020a) @+ (92 o+ 0L Qo) @ o (107)
Notice that here we adopt the notation

(vertex operator) @ (external Chan-Paton matrix) @ (internal Chan-Paton matrix),
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which is different from the one (v.0.) @ (int.) ® (ext.) used in [46]. And similarly define

Qs = Qp@I100s, =m0 0s, (108)
A = (ML @I+A,Q0)@0;
+(Ai— & o1 ‘|‘Ai_ @ 09) @ 109, (109)
(A A = Tre @ Trimd /™ o A1(0)... £ o A4,(0)). (110)

These definitions guarantee that the basic properties (97)~(102) hold true also in this
case. Cyclicity is clear because external Chan-Paton factors satisfy this property under
Trext and the other parts are the same as in the non-BPS D-brane case. (100), (102)
are as true as ever. Leibniz rules hold because the external Chan-Paton factors attached
to (), no are the identity element I, which causes no sign factor. The action takes the
same form as in (103). To determine the normalization factor, we require the action
to reproduce the action (82) on a BPS D-brane when the string field takes the form

- 10
P =000 g

double trace gives a factor

) @ I, t.e. string is constrained on one D-brane. In this case, the

1 0\" .
Trext ( 0 0 ) X Trint[ =2

for any n,m > 1. So we find that the following action on a brane-antibrane pair

= () o)
95
1 . PN SO
—/ dt (e_t@atetq)) {(e‘tq)QBetq)) , (e_t@ﬁoetq))}>>, (111)
0

where ((...)) includes the double trace (110), contains the action (82) on a BPS D-brane

as a special case with the correct normalization.

3.5 Some Preliminaries to the Tachyon Potential

Here we state the conjecture about the tachyon condensation. On a non-BPS D-brane,
there is a tachyonic mode in the GSO(—) sector. Since the tachyon field is real-valued,
the situation is much similar to the bosonic D-brane case. That is, the tachyon potential
has (at least) a minimum, where the tension of the non-BPS D-brane is exactly canceled
by the negative energy density from the tachyon potential. And the minimum represents

the ‘closed string vacuum’ without any D-brane.

To investigate the above conjectures, we must express the open string coupling g, in
terms of the tension of the brane under consideration. It was found that the non-BPS

Dp-brane tension is given by[46]
1

- 2%292'

(112)

Tp
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Let us prepare the level expansion of the (tachyonic) string field ® on a non-BPS D-
brane. The truncated Hilbert space, denoted by H;, we should consider for the analysis of
tachyon potential is the ‘universal’ subspace of the “large” Hilbert space Hy. H; consists
of states which can be obtained by acting on the oscillator vacuum |[Q) = £ce=?(0)]0) with
matter super-Virasoro generators G, L™ and ghost oscillators b, ¢,,, 3,, -, and have the
same ghost and picture numbers as that of |Q). In terms of the corresponding A" = 2
vertex operators in the “large” Hilbert space, all of them must have #,,(®) = #,i.(®) =
0. Just as in the bosonic string case, H; does not contain states with nonzero momentum
nor non-trivial primary states. It can be shown in the same way as in section 2.5 that
restricting the string field to this subspace H; gives a consistent truncation of the theory
in searching the tachyon potential for solutions to equations of motion. Since the L{°*
eigenvalue (weight) of the zero momentum tachyon state |Q) is —1/2, we define the level
of a component field of the string field to be (h + ), where h is conformal weight of the
vertex operator associated with the component field. Then the tachyon state |Q) is at

level 0.

Here we consider the gauge fixing. Linearized gauge transformation takes the follow-
ing form
(S(I) — QBAI —|— 770/\2. (113)

&

Using the first term, we can reach the gauge by® = %2 -zb(z)®(0) = 0 for states of
i

nonzero L&' eigenvalue. One can prove it in the same way as in section 2.4. By the

second term in (113), we can further impose on ® the following gauge condition

~ dz 1 ~ ~
P0)=¢p —-— O0) =:£D(0) : = 0. 114
§0(0) = § = Le)(0) =1 €h(0): =0 (114)
We can easily prove it. If EOCT) =0 # 0, we perform the linearized gauge transformation
= — ﬁoﬁ. Here, for Q to be qualified as a gauge parameter, 50 must be defined to

be & = £ @ o5. Then it follows
£’ = & — Goiio(&o®) = & — {&o, 7o HE®P) = 0.

Note that we can reach the gauge (114) without any limitation. We simply assume that
the ‘modified Feynman-Siegel gauge’ bo® = 0@ = 0 is good even nonperturbatively.

Now we list the low-lying states in Table 4. The tachyonic ground state is |Q) =
Eocie=?©0), and the positive level states are obtained by acting on |Q) with negatively
moded oscillators, making sure that the states should have the correct ghost number.
At first sight, the level 1/2 state cof8_1/2|Q?) seems to contradict the Feynman-Siegel
gauge condition, but note that this state has L{® = 0 so that it cannot be gauged

away. These states are mapped to the vertex operators in a definite way, and the vertex
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Lt [ level | e™(GSO) | twist state vertex operator
—1/21 0 — + Q) = &ere?0)0) T=¢ce™ Qo
0 1/2 + — cof—1/2|0) ccEdEe™ P @ 1
1/2 1 — — B_1ja7-1/22) Ecdpe™® @ oy
c-18-12|92) A= cd*cfote™ @ 1
1| 3/2 + + b_17_1/2|Q) E=¢tnal
GT3/2|Q> F = EGMee™® @ [
b_ic_1|82) £0%ce™® @ oy
B_1/27-3/2|9) £dEnce™ @ oy
3/2 2 — + Bz/27-1/2|2) fc(aqb)ze_(b @ o4
(B-172)*(7-1/2)*19) £cd’¢e™? @ oy
L™, |92) ET™ce™? @ oy

Table 4: Zero momentum low-lying Lorentz scalar states in the “large” Hilbert space.

operator representations are also shown in Table 4. As an example, let us see the state

c—13-1/2/?). In terms of the vertex operators, it corresponds to

dz 1 dzy _
(0—15—1/2)(5001€_¢(0)|0>) = _30(21)%%6(22) - Ece ¢(0)

2mi 2}

_ fia L (Lam0) o) § L2t
2mi 27 \2! 2m

- 1 2 dZQ —Inz | —¢(Z2) —¢(0) .

_ _56 c&e(0) %85(22)6 e e :

1
= —50820 £0Ee™2(0).
In section 3.3 we constructed N = 2 vertex operators in “large” Hilbert space from V" = 1
vertex operators in the natural —1-picture as & =: £A :. In fact, this construction
guarantees the second gauge condition (114). Since ¢ is a primary field of conformal
weight 0, this {-multiplication operation, or equivalently acting on a state with &y, does

not affect the weight or level.

We can still consistently truncate the string field by appealing to a Z, twist symmetry
under which the action is invariant while the component fields have the following twist

charge

(=)™ if heZ,

) 1
@UHEifheZ+§, (115)

where h is the conformal weight of the vertex operator with which the component field
is associated. In other words, h = (level) — % Though we can prove the twist invariance

in a similar (but more complicated) way to the proof of cyclicity (97), we leave it to the
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reference [46]. Since the twist-odd fields must always enter the action in pairs, these fields
can be truncated out without contradicting equations of motion. Explicitly speaking, we
keep only the fields of level 0, %, 2, %, 4, %, ... which are twist-even.

3.6 Computation of the Tachyon Potential

Now we turn to the action in the level (M, N) truncation scheme. Though the ac-
tion (103), or equivalently (106), is non-polynomial, i.e. it contains arbitrarily high
order terms in CT), only a finite number of them can contribute nonvanishing values to the
action at a given finite level. Since any component fields other than the tachyon have
strictly positive level, it is sufficient to show that each term in the action contains only
a finite number of tachyon fields. For a CFT correlator in the “large” Hilbert space to

have a non-vanishing value, the insertion must have
be-ghost number : 43, ¢n-ghost number : —1,  ¢-charge : —2

as in (85). Because the tachyon vertex operator T' = £ce™® has —1 unit of ¢-charge, if
an infinite number of T"s are inserted, then infinitely many vertex operators of a positive
¢-charge must also be inserted inside the correlator for ¢-charge to add up to —2, but

such a term does not exist at any finite level.

Now we shall see the form of the action at each truncation level. At level (0,0),
® =T always supplies —1 unit of ¢-charge. While 79 has no ¢-charge, @B is divided

according to ¢-charge into three parts as

@ = Qo+ Q1+ Qq, (116)

where subscripts denote their ¢-charge, as is clear from (62). But when acting on d = tf,

it becomes

PPN dz
QpP(0) = j{ %]B(Z) . tfce_(b(()) @ o301 = —il (%fcace_(b + 77€¢) (0) @ o9, (117)

which includes only terms of ¢-charge —1 or +1. Incidentally,

~ d
o (0) = Q—Z,n(z)tgce—¢(0) ® o301 = itee*(0) @ 0. (118)
)
To sum up, the term of the form (@B&)) (%(f)) oV has ¢-charge —N — 1 £ 1. For this
to become equal to —2, N must be 0 or 2, which means the level (0,0) truncated action
takes the form S0y = at® + bt*, as we will see explicitly. Then we move to level (%, 3)

or (2,4) truncation.'* Since the positive level fields enter the action always linearly or

HBecause of the twist symmetry, the first non-trivial correction to the (0,0) potential comes from

level % fields.
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quadratically at this level of approximation, we see how many tachyon vertex operators
must be inserted inside the correlator for ¢-charge to be —2. We find from Table 4 that
A has ¢-charge —2, E has 0, and all the others have —1. Hence the term of the form
{(QanoE*TNY) can contain the largest number of ® because T has a negative ¢-charge.
Since the ¢-charge of the above term is 2 — N, N must be 4. Then we conclude that it
suffices to consider the terms in the action (106) up to sixth order in the string field )
at level (2,3) or (2,4). Using the cyclicity and the twist symmetry [46]

~

(@1 (Qs®) ... (H0®1) ... P, )
= (=1 (1:[ Q) (@ (70®1) ... (Qu®i) ... 1)) (119)

for the twist even fields (£2; = +1), the action up to ®° is written as
O — L0100 + OB+ L(O) ($(b) - (5D
p = 293<2<QB@><770<1>>+3<QB<I>><I>(no<I>>+ 5(Qp®) (9*(70®) — 2(70®))
1 P2 -
+ 25(Qs®) (2°(0®) — 30°(70P)9)
| P TP PP o aa
+ 2 (Qub) (8(706) — 10° ()b + 362 (708)8) ) (120)
_ & Vo1 4 &
= Vo fol®) =~ (),

where we have used (112).

At last, we shall show the detailed calculations of the tachyon potential. First, let us
compute the pure tachyon contribution (i.e. level (0,0)) to the tachyon potential [45]. In
the quadratic term, however, we also include the momentum dependence for future use.

For the following string field
B(z) = / AP 4(k)ece e (2) @ on, (121)
it follows that
Qsd(=) = i [ @ hik) [(o/k2 - %) Ecdee™® —net| X (2) @ o,
Hod(z) = i / AP (k) ee b e (2) @ o, (122)

The quadratic part of the action (120) becomes
1

uad A Fyv/~ &
S = Q)
1 1
_ p+17. jp+1 .2
_ 4930//(1 kd g 1(k)(q) (ak 2)

X Trine(Z 0 (fcace_(beikX)(0)(06_(‘56”}()(0) @ 1)
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27T pFl 1 1N 1 1
- p+1 7.2~ I 2 - —2¢(€)
2g2a/ /d ki(k)U(—k) (ak 2) <§< 6) 266686< 6)6 >

1
= — [d"" (——a to't + —t ) 123

g2 / + 4o/ (123)
where we tentatively restored o' so that we can clearly see the tachyon mass —1/2¢/,
but at any other place we set o’ = 1. And we find that the standard normalization of
the kinetic term can be obtained with the normalization convention (85).

The quartic term of the action for zero momentum tachyon is

S = 24192 (((Qs2)2d(70®)) — ((Q5D)D(7s®)®))
= {10 @) e )7 0 #)11Y 0 ()
{7 0 (@@ (1Y 0 @)(f5" 0 (ne®))(£1” 0 ) }
B (124)
29;

Calculations of the correlators above are straightforward, though they are tedious. Com-

bining (123) and (124), the tachyon potential at level (0,0) approximation is found to

be
( )( ) SD / (2/ 292) ( 2 ) 7 ( )

) .. 1 .. )
which has two minima at { = £y = :|:§ and the minimum value is

2

FOO (440) = _71T_6 ~ —0.617. (126)

For the conjecture on the non-BPS D-brane annihilation to be true, the ‘universal func-
tion” f(®) must satisfy f(®9) = —1 as in the bosonic case, where @y represents the
exact configuration of the string field at the minimum. Although we have taken only
the tachyon field into account, the minimum value (126) reproduces as much as 62%
of the conjectured value. In particular, as opposed to the result from Witten’s cubic
superstring field theory, the tachyon potential found here takes the double-well form and

has two minima even at level (0,0) approximation.

Though we do not show details here, the computations of the tachyon potential have
been extended to higher levels. We will quote the results at level (3,3) [46] and at
level (2,4) [47, 48]. Since at this level of approximation, as remarked earlier, the strictly
positive level fields are included only quadratically, these fields can exactly be integrated
out to give the effective tachyon potential. At level (%, 3), the effective potential is given
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by [46]
14+ 4.63t2 + 3.21¢* — 9.48¢5 — 11.67¢8
(1 + L162)(1 + 2.4802)2 ’

whose minimum appears at ¢t = +¢5 ~ +0.589 and

F27) = —1.0322

(127)

F2 P (+t0) ~ —0.854.

At level (2,4), though the two results slightly differ from each other, the minimum value

£ () 2{ ~0.891 in [47] }N 00,

is reported to be

—0.905 in [48]

We do not write down the expression of the effective potential given in [48] because it is

quite lengthy. The form of the effective potential is illustrated in Figure 9.

f

o
o

Figure 9: The effective tachyon potential at level (0,0) (dashed line) and (2,3) (solid
line).

The results from successive level truncation approximation show that the minimum
value of the tachyon potential is approaching the conjectured value —1 as we include
fields of higher levels, though it converges less rapidly than in the case of bosonic string
theory. Not only the minimum value but also the shape of the effective tachyon potential
possesses the desired properties. For example, it has no singularities, as is seen from the
expression (127). And at least up to level (2,4), the potential is bounded below, which is
expected in the superstring theory. It would be interesting to examine the fluctuations
of the open string degrees of freedom around the ‘closed string vacuum’ and to show that

there are no physical excitations there.
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It is important to see whether the Wess-Zumino-Witten—like superstring field theory
formulated by Berkovits can successfully be applied to other systems as well which are not

directly described by the first-quantized superstring theory (such as the above example).

4 D-brane as a Tachyonic Lump
in String Field Theory

In bosonic string theory, which contains Dp-branes of all dimensions up to p = 25, it was
conjectured in [3] that a D(p — 1)-brane can be obtained as a tachyonic lump solution on
a Dp-brane. In this chapter we will examine it by using level truncation method of open
string field theory. We expect that we can learn much more about the structure of the
open string field theory by investigating such dynamical phenomena than by calculating
the static tachyon potential because the characteristic factor of ¢?* can have non-trivial
effects.

4.1 Unstable Lumps in the Tachyonic Scalar Field Theory

Since we have no method of dealing with the full string field up to now, we resort to
the level expansion analyses as in the previous chapters. The bosonic string field theory

action on a D(p + 1)-brane truncated to level (0,0) is given by

1 1 ~
5(070) = 27T20é/37'p_|_1 / dp+2$ <—§8M¢8qu —|— ?qbz — 2li¢3) 5 (128)
o

3
1
whereMz(O,l,...,p%—l),/i:?(%) and

6(x) = exp (—o/ In 3%82) ).

Although we know the higher derivative terms in & play important roles in determining
the spectrum at the nonperturbative vacuum, as the first approximation we simply set
qg = ¢, thinking of the higher derivative terms as small corrections to it. This assumption

is valid if ¢(x) does not intensively fluctuate.

We begin with a codimension 1 lump on a D(p + 1)-brane. We will use the following
notation, 2% = ¢, 2Pt =z, ¢ = («*,...,2) and g = (0,1,...,p). Using these symbols,

we rewrite the action (128) with tildes removed as

S = 27T20/37'p_|_1/dp+1y dx (—%8@6*% — % (%) — V(qb)) ) (129)
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where V(¢) is the tachyon potential,

V(6) = —5d 4 26" + (130)

216k2a/3
The last constant term has been added by hand in order for the value of the potential
to vanish at the bottom ¢ = ¢y = 1/6ka’. In such a case, a configuration of ¢(z™)
which sufficiently rapidly asymptotes to ¢p can support a lower-dimensional brane of

finite energy density. The shape of V(¢) is illustrated in Figure 10. Here we look for

2,3
KO \/
1
216
L 1 ko
12 6

Figure 10: Cubic potential.

a solution ¢(z) which depends only on z = xP*!. In this case, the equation of motion

obtained by varying the action (129) with respect to ¢ is
dZE(x) 1T dqb d @b

If we read ¢ and x as the position of a particle and the time variable respectively, the

above equation can be regarded as the equation of motion for the particle in a potential
—V. The particle, which leaves ¢ = ¢y = 1/6xa’ toward left at a ‘time’ x = —oo with
no initial velocity, reaches ¢ = —1/12ka’ at x = 0 and comes back to ¢ = ¢ at © = oo
because there is no friction force and V(¢g) = V(—1/12ka’) = 0. In exactly the same

way, a lump solution which satisfies the boundary conditions

1
120/

lim 3(x) = do. Bz =0)=—

r—too

(132)

can be constructed by integrating (131) as

/ _d¢’ /6*““ V3a/dy
=
2V (') 1/2 V203 =302+ 17

49




which can be solved for 5,

o) = @ (1 - gsech2 (25&)) : (133)

Expanding ¢(2™) around the lump solution ¢(z) as ¢(z™) = ¢(z) + ¢(z, y*), the action

becomes

S = 2ndr, /dp+1y d:z;[{ (Zi) V(a)} = %@@8“@
- %99 (—% + V”@)@) - 2/%993]- (134)

The first two terms parenthesized in {...} represent the energy density of the lump.
Using (131) and (133), we can carry out the a-integration to find

JE\ 2
S0 = —27r2a'37p+1/dp+1y dx (d_qb) (135)
T

2137
= _ (5 : 38) 2%\/&7})“ /dp"'ly = —E/dp"'ly.

7, defined above is the tension of the lump. In string theory, the following relation holds

between the Dp-brane tension 7, and the D(p 4 1)-brane tension 7,41,
T, = 2#\/&7’2,4_1.
According to (135), the tension 7T, of the lump satisfies
Ty~ 0.784 - 2mv/a' 7,11 (136)

Since 0.784 is rather close to 1, this result seems to support the conjecture that the
tachyonic lump on a D(p + 1)-brane represents a Dp-brane. But remember that in

the level (0,0) truncated action (129) D(p + 1)-brane tension is not 7,11, but T]E_H) =
2 12,2

107;—/{;27},4_1 = — 75 Tp+1 =~ 0.6847,4;1. Indeed, we saw in chapter 2 that the depth of the

tachyon potential at level (0,0) is about 68% of the D-brane tension. If we compare 7,

with this value, the relation becomes

27r\/_rp+1 ~ 1.146 - 20V o', (137)

In any case, the tension of the lump solution (133) takes the nearly expected value, in

spite of ignoring higher derivative terms or higher level fields.
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4.2 Modified Level Truncation Scheme
4.2.1 String field and truncation

We begin by considering lumps of codimension one.'?> We denote by z the coordinate of
the direction in which we will construct lump-like configurations, and by X the corre-
sponding scalar field on the string world-sheet. The remaining 25-dimensional manifold
M is described by a conformal field theory of central charge 25. When we consider a Dp-
brane as the original (i.e. before tachyon condensation) configuration, its world-volume
is labeled by coordinates z and z° z',..., 2"~! along M. To keep the total mass of the
Dp-brane finite, we compactify all spatial directions tangential to the D-brane. While
(p—1) directions represented by (x!,...,2P~!) are wrapped on an arbitrary (p— 1)-cycle
of M, = is compactified on a circle of radius R, namely = ~ = 4+ 2r R. We assume that
there is at least one non-compact flat direction in M so that the tension of the Dp-brane

can be written in terms of the open string coupling constant as

1

Ty = —————=.
p 24213
2mégia

(138)

The dynamics of open strings on this Dp-brane is described by the following boundary
conformal field theory (matter part)

CFT(X) @ CFT(M).

Letting LX, LM, L& denote the Virasoro generators of CFT(X), CFT(M), and the ghost

system respectively, the total Virasoro generators of the system is
L = LY + LM+ 8. (139)

For the CFT(M) part, we can consistently truncate the Hilbert space of ghost number
1 to the ‘universal subspace’ 7—[{\/{’1 by the same argument as in the spacetime indepen-
dent tachyon condensation. Here 7—[{\/{’1 includes neither state with nonzero momentum
(p°, p*,...,p"~") nor non-trivial primary of CFT(M). For the CFT(X), however, we
encounter some complications. Since the lump we are seeking is not invariant under the
translation in the z-direction, we must include nonzero momentum modes in the string
field expansion. In a situation where the string fields contain states |k) = ¢*X(9]0) with
nonzero momentum along x, the ‘1-point’ function of the CFT(X) primary ¢ does not

necessarily vanish,

(V3| (p(0)|k1)1) @ [ka)a @ |ks)s ~ (ip(zy)eFrX () eihaX(z)gikaX(z2)y oL

12 After we explain the procedures in this case, we will generalize them to lumps of codimension more
than one.
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This is why we have to include primary states of CFT(X) too. Fortunately, we find that
for nonzero k apparently non-trivial primary states can actually be written as Virasoro
descendants of the trivial primary. To show this, we consider a basis of states with a-
momentum k = n/R, where n is some integer. It is obtained by acting on "X (0)/F|0)
with the oscillators o . We denote the whole space spanned by such a basis by W,.
And we build the Verma module V,, on the primary X (®/£|0), that is, the set obtained
by acting on the primary with the Virasoro generators LX, of CFT(X). If we can show
W, =V, any state in W, can be written as a Virasoro descendant of the unique primary,
so there are no non-trivial primary states. W, agrees with V, if there are no null states

in the spectrum. When the following equation

n_p—q
no_ 140
7= 3 (140)

holds for some integers p,q, null states can appear [51]. Therefore, for nonzero n, we
can avoid introducing non-trivial primary states by choosing the radius R of the circle
such that the equation (140) can never be satisfied for integers n,p,q. But for n = 0,
we cannot help including new non-trivial primary states such as a*,|0). We divide these

zero momentum primary states into two sets P,,P_ according to the behavior under
the reflection X — —X. That is,

Pr={le) = l0l0)x},  P-={le,) = €L(0)]0)x}, (141)

where ¢! (2) — ¢'(2), ¢'(2) = —¢'(z) under X — — X, and the subscript X of |0)x
is added to emphasize that this ‘vacuum’ state does not contain any contribution from
CFT(M) or ghost sector. For example, the state oz)_(1|0>X exists in P_ while oz)_(zoz)_(2|0>X
belongs to P;. And the trivial primary |0)x itself is contained in Py. Further, we
take linear combinations of e™*(©)/%|0) so that they are combined into eigenstates of the

reflection. It can easily be done by

cos (%X(O)) 0) = % (einX(O)/R n e_mX(o)/R) 0) = %(|n/3> +|—n/R)),
s (FXO)0) = 57 (e e o (142

1
= S0/ B) == n/R)).

To sum up, the Hilbert space we should consider is constructed by acting on the pri-
mary states (141) or (142) with the matter Virasoro generators L* LM and the ghost
oscillators b_,,, c_,,. It includes neither the states with nonzero M-momentum nor non-
trivial primaries of CFT(M). At present, as far as CFT(X) is concerned, all possible
states are included in this Hilbert space. For n = 0 (zero momentum) we keep all the
primary states (141). For n # 0, it was shown that the Verma module V, spans the

whole space W,, if we choose a suitable value of R.
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Here, we make an exact consistent truncation of this Hilbert space. In order to find
a one-lump solution along the circle labeled by x, we impose a symmetry under z — —x
on the solution. Then, since the component fields associated with the states which are
odd under the reflection must enter the action in pairs to respect the symmetry, such
fields can consistently be set to zero. As the Virasoro generators are invariant under the
reflection, we can eventually remove the odd primary states |¢') and sin(nX(0)/R)[0).
Moreover, we can restrict the component fields to the ones which are even under the
twist symmetry. Twist eigenvalue is given by (—1)V*1, where N is the eigenvalue of the
oscillator number operator N (its definition will explicitly be given below). For example,
c1 L%, cos(nX(0)/R)|0) can be removed.

After all, we need to consider the following Hilbert space, denoted by 7/-[\, in discussing

a codimension one lump. On the ‘primary’ states

P, = {c1¢.(0)|0)} (zero momentum) and

{cl cos (%X(O)) |o>}°o , (143)

n=1

act with the oscillators

CFT(X) LY, L%, L%, ...
CFT(M) LM LM, ..., (144)
ghost (co)yCo1yConyenny bog, gyt

where |0) is the SL(2,R) invariant vacuum of the matter-ghost CFT. The reason why
we did not include L™ is that it always annihilates the primary states with zero M-

momentum. If we employ the Feynman-Siegel gauge bo|®) = 0, we still remove the states

which include ¢ if L # 0.

Let us take a glance at the zero momentum primaries. Due to the twist symme-
try, we only need to consider the level 0,2.4,... states. At level 2, possible states are
aX,]0), ¥, a¥,|0). As the former belongs to P_, we can exclude it. The latter can be
written as L%,]0), which is a Virasoro descendant of the trivial primary |0). Therefore
there are no non-trivial even primaries at level 2. At level 4, there are five possible
states aX,]0), a®;a0%,[0), a¥,a%,]0), a¥,ar a®]0), (¥))*|0). Since the 1st and 4th
are odd primaries, there remain three even primary states. On the other hand, the avail-
able Virasoro descendants are L)_{4|0>, L)_(QL)_(2|O> because L)_(l annihilates |0) through
LX,|0) ~ aX,p|0) = 0. As we have only two Virasoro descendants, one state must be
added as a non-trivial primary to form a complete set at level 4. Although we have
seen that the first non-trivial even primary appears at level 4 in an ad hoc way, more

systematic approach can be found in [51].

33



Thus far, we have not used any approximation scheme. Here we introduce the mod-
ified version of level truncation. Before we incorporate the nonzero momentum modes,
just as in the previous chapters, the level of a state was defined to be the sum of the level
numbers of the creation operators acting on the oscillator vacuum [Q) = ¢;1]0). Namely,

if we define the number operator

N=Y " am+ 3 ndebs—1 (145)

n=1 n=-—00
and ]/V\|<I)Z> = N;|®;), the level of the state |®;) was N; — (—1). But note that L{*
can be written as L' = o/p* + N. From this expression, once we include the nonzero

momentum modes in the string field expansion it is natural to generalize the definition
of the level of the state |®;) as

(LYY eigenvalue of |®;)) — (—1) = o'p* + N; — (—1). (146)

Of course, —1 is the L{" eigenvalue of the zero momentum tachyon ¢;]0). The level of a
component field, denoted by m, is defined to be equal to the level of the state with which
the component field is associated, and the level of a term in the action, n, is defined to
be the sum of the levels of the fields included in the term, as before. Then we can define
the level (M, N) approximation for the action to be the one in which we keep only those
fields of level m < M and those terms of level n < N in the action. This approximation
scheme based on the new definition (146) of the level is called modified level truncation.

Now let us see low-lying states in the modified sense. The ‘tachyon’ state gives rise

to an infinite tachyon tower

1.2

I7,) = ¢ cos (%X(O)) 0) . level = - (147)
The two states ¢_1]0), L™,¢1|0) which used to be at level 2 are now
U,) = c_ycos (EX(O)) 10).
R
V) = Iercos (5X(0)) o), (148)

W) = LMe cos (%X(O)) 10),

all of which are at level= 2 + o/nz/Rz. Recalling that L)_(l does not annihilate the state
of n # 0, we find additional states

a'n?

R?

17,) = L5, 1Y, e, cos (%X(O)) 0), level = 2 + (149)
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Making use of these states, the string field is expanded as
@) = D talTa) + 3 unlUn) + 3 val Vi) (150)
n=0 n=0 n=0

n=0 n=1

When we fix the expansion level (M, N), the largest value of n (discrete momentum) we

should keep depends on the radius R of the circle.

4.2.2 Action and the lump tension

Next, we turn to the action on a Dp-brane. Since the string field does not have M-
momentum, the action always contains an overall volume factor V,, = [, dt d?~'z. Using

the relation (138), the action can be written as

S@) = —Varan, (S (T o BO0)Qs0(0) + 5(fi o B(0) 0 B(0)fs 0 0(0)
= —V,7, - 2nRf(®), (151)

where (...) is normalized such that
: 1
<62”X/R>matter =21Ré, 0, <—azcac c> = 1. (152)
7 2 ghost

Since the X-momentum is discretized, it is normalized using Kronecker delta. As in
section 4.1, we add a constant term to the action so that the energy density vanishes at
the bottom of the potential. This can be executed by adding (minus) the mass of the
Dp-brane, =27 RV, 7,. Then the action becomes

S(®) = =2 RV, 7, (f(®) +1). (153)

We denote by @, the string field configuration representing the spacetime independent
closed string vacuum we dealt with in chapter 2. Since the function f(®) is normalized
in (151) such that f(®) = —1 if the brane annihilation conjecture is true, S'(®q) ac-
tually vanishes. But considering the fact that we have to rely on the level truncation
approximation to draw results from string field theory up to date, we should replace the
expected exact Dp-brane mass +27 RV, 7, by =27 RV, 7, f(m,n)(®o), where the subscript
(M, N) represents the level of approximation used to compute the action. Then the

mass-shifted action in (M, N) truncation is given by

Sty (@) = 27 RV, 7, (fiar, vy (Po) — fiau, ) (@) (154)

If we find a lump solution ® = &, which extremizes the action, by substituting ®, into

the above action one can write the tension 7,_; of the codimension 1 lump as
Sty (@) = 20 RV, (farny(@o) — foumy(®e)) = =V, T (155)
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The conjecture about the tachyonic lump is that the tension 7,_; of the lump actually
coincides with the tension 7,_; = 27V a7, of the D(p — 1)-brane. So we need to work

out the ratio

@ _To1 _ R
2%\/&7}) Va!

for various values of R and see whether the ratio r(?) takes values near 1 irrespective of

(foar,n)(®e) — S, n)(Do)) (156)

the values of R. For comparison, we can consider another ratio

R
- =
= /—O/(f(M,N)((I)Z) +1), (157)
which is obtained by replacing fia,n)(®o) in (156) with the expected value f(®g) = —1

while fan)(®¢) remains the approximate value.

4.2.3 Lump solutions

Here we explain the procedures of finding a lump solution as well as its tension for a

fixed value of radius R and fixed truncation level. We choose
R =+v3a" and level (3,6).

At this level, the expansion (150) of the string field becomes

3 1 1
@) = 2 talTo) + 2 walUn) + > valVi)
n=0 n=0 n=0

1

—I—an|Wn>—|—21|Z1>. (158)

n=0

Substituting the above expansion into the action (151) and calculating the CFT correla-
tors, we can write down the action in terms of the component fields appearing in (158).
Since the full expression is quite lengthy and is not illuminating, we will not write it
down. The explicit expression of the potential V(®) = f(®)/2r*a’® at level (3,6) can be
found in [51]. At any rate, assume that we now have the level (3,6) truncated action at
hand. By solving numerically the equations of motion obtained by varying the action
with respect to the 11 component fields appearing in (158), we want to find a lump
solution ®,. But, in general, the action or the potential f3¢)(®) has many extrema, so
the minimizing algorithm may converge to an unwanted solution. Besides, it may con-
verge to the global minimum, the closed string vacuum. Nevertheless, we can avoid these
undesirable solutions by starting the numerical algorithm with suitable initial values be-
cause we already have rough estimation for the shape of the lump we are looking for. In
this way, we obtain a set of the expectation values of the component fields representing

a lump. Putting these values into (155), we finally find the tension of the lump. If we
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repeat the above procedures for different values of R and different truncation levels, we

can use them to see whether the conjecture is true.

From here on, we will quote the results from [51] each time they are needed in order
to discuss the properties of the lump. First of all, let us see how fast the tension of
the lump converges to the conjectured value (D(p — 1)-brane tension) as the truncation

level increases. See Table 5. We find that the value of (), or equivalently Jorny (@),

level | (3,3) | (3.3) [ 24) [ (5. 5) | (3.6)

373 373 37 3

b 1132 [ 1.25 | 1.11 | 1.07 | 1.06
@ 10.774 1 0.707 | 1.024 | 0.984 | 0.994

Table 5: The ratio of the lump tension to the D(p — 1)-brane tension for R = v/3.

monotonically decreases as more fields are included. We saw the similar tendency in the
case of the minimum value f(s n)(®o) of the tachyon potential, and it is in fact natural
because we are increasing the number of the adjustable parameters when seeking a
minimum. Anyway, the value of () seems to converge to some value in the vicinity of
1, as expected. Whereas the value of r(!) differs from 1 by 6% at level (3,6), the value of

?) is converging to the expected value even more rapidly: about 0.6%! The value of r(?)

7
oscillates because not only fiar,n)(®¢) but also far,n)(P®o) varies with the truncation level
and r) (156) is determined by the difference between them, but r(?) certainly provides
a more accurate answer than (). From the above results, we have gotten the numerical
evidence that the modified level truncation scheme has a good convergence property.
Second, we consider several values of the radius and construct a lump solution for

each value. In [51], the following values are chosen,

-5 B

For these values, the relation (140) never holds so that non-trivial primary states need
not to be added in the nonzero momentum sectors. The tension of the lump for each

value of R is given in Table 6. The value of r(!) seems to be converging to 1 as the

radius R \/32E V12 \/123 V3 %
level (22 1128 "3 (32 6T T3 6y | (1R

357 35 127 6 152 15 11211
r(1) 1.239 1.191 1.146 | 1.064 | 1.022
r(2) 1.024 1.013 | 1.005 |0.994 | 0.979

o/Va! 1.545 1.541 1.560 | 1.523 | 1.418

Table 6: The lump tension and thickness at various radii.
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truncation level is increased (in this setting the truncation level is higher for a smaller
value of R). Though the value of (") is too large for large radii at this level, r?) provides
pretty good values over the whole range of radius. Typically, it differs from 1 only by
1 ~ 3%. The fact that the tension of the lump is independent of the radius of the
compactification circle supports the identification between the lump solution and the
D(p — 1)-brane because the compactification in the directions perpendicular to the D-
brane does not affect the tension of the D-brane and the lump should have the same
property if it is to be identified with the D-brane. Since we have got expectation values

of the ‘tachyon’ fields ¢, for each radius, we can plot the tachyonic lump profile

tx) = Z t, cos % (159)
n=0

as a function of x. The expectation values of ¢, are shown in Table 7, and the tachyon
profiles are plotted in Figure 11 only for R = v/3 and R = /12 = 21/3 because all five

profiles are so similar that we cannot distinguish one another. We can then measure

R| /352 V12 V/15/2 V3 V/11/10
fo | 0.424556 | 0.401189 | 0.363333 | 0.269224 | 0.0304185
I, | —0.218344 | —0.255373 | —0.308419 | —0.394969 | —0.317070
f; | —0.176679 | —0.190921 | —0.194630 | —0.125011 | —0.00983574
t5 | —0.132269 | —0.122721 | —0.0849552 | —0.0142169 -

f; | —0.0830114 | —0.0575418 | —0.0248729 — —

f5 | —0.0409281 | —0.0210929 - - —

fe | —0.0178687 — — — —

Table 7: The values of the tachyon fields representing a lump solution.

-10 -5

10

Figure 11: Tachyon profile t(x) for R = v/3 (dashed line) and R = /12 (solid line).
the size (thickness) of the lump by fitting the lump profile with a Gaussian curve of the
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form

22

Glr)=a+be 272
for each value of radius. The results for the value of o are shown in Table 6. Surprisingly,
the value of o seems to be independent of the chosen radius K. That is to say, if the lump
can be identified with the D(p—1)-brane, string field theory predicts that the D-brane has
a thickness of order of the string scale v/a/ irrespective of the radius of compactification,
at least at this level of approximation. It is not clear up to now whether this situation
persists even after we include higher level modes. It may be possible that a non-trivial
field redefinition relates a delta function profile (no thickness) to a Gaussian-like profile

of a finite size.

4.3 Higher Codimension Lumps

It was discovered in [52, 53] that lump solutions of codimension d > 2 can be constructed
using the modified level truncation scheme of bosonic open string field theory. Since the
procedures here are almost the same as in the case of codimension one lump, we only
point out the differences between them. First of all, a circle of radius R labeled by x = 2?
is replaced by a d-dimensional torus 7% whose coordinates are (zf=4F1 pP=d+2 ... 4Py,
We take the compactification length for each of d directions to be the same value 27 R,
namely z° ~ 2' + 27 R for p—d+1 < i < p. Then the spacetime is divided into 7% x M,
where M is a (26 — d)-dimensional Minkowskian manifold. The original Dp-brane is
fully wrapped on 79, and a lump solution localized on T is conjectured to represent
a D(p — d)-brane. Secondly, some of the oscillators and states have to be modified
on T¢. The Virasoro generator L2 of CFT(X) = CFT(T?) should be understood as
Ly =Y LX'. Basis states (147)—(149) must be altered into

122

- ¥
|T) = ¢ cos (nT@) |0) with level = QRZ

and so on, where 7 = (nP~%*! ... nP). When d > 2, there exist (d — 1) new zero

momentum primaries [52]
1S = (a0 —aljaly —afaly + ajat,)|0), p—d+1<i<p-—1 (160)
at level 2. Thirdly, the action is written as
S(®) = ~Vimanmp(2n R) (@)

with the normalization

<€iﬁ.X/R>matter — (27T R) déﬁjj-
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Then the tension of the codimension d lump is given by

S o
7;)—d — _%M = (QWR)dTp(f(MJ\f)((I)Z) - f(M7N)((I)O))
p—d+1

cf. (155). The ratio of the lump tension to the D(p—d)-brane tension, whose conjectured

value is 1, becomes

o Toa
(2%\/&)517}9

r(

(\/]}) (form)(®e) = farn(®o))- (161)

Now we quote the results for 2 < d < 6 from [52]. There, the radius R is set to v/3o/
and the solutions are restricted to the ones which have discretized rotational symmetry,
namely the permutations among X* and the reflections X' — —X*. The values of the

ratio (161) at various truncation levels are listed in Table 8. For d = 2, no new field

(53] G202 [GD][GED] 24
0.774 0.707 1.024
1.31 | 0.899 0.833 | 0.777 | 1.1303

232 | 142 | 1.07 | 1.03 | 0.931 | 1.3277
4.02 | 237 | 1.57 | 1.27 1.17 | 1.6384
6.96 | 4.01 | 247 | 1.78 1.50 | 2.0901
12.06 | 6.82 | 4.04 | 2.69 2.06 | 2.6641

Y| O W | W DN ] &

Table 8: The ratio r? for the lump of codimension d.

appears at level 1 because 71%/3 cannot become 1 for integer 7 = (ny,ny). So the entry
remains a blank. One may find that the value of #(3) suddenly increases at level (2,4).
This is because the non-tachyon fields ug, vg, wo appear at this level so that they bring
about qualitative changes in the action. To see how such non-tachyon fields affect the
value of r? in more detail, we need to extend the results to still higher levels. For
sufficiently small values of d, the modified level truncation scheme seems to have a good
convergence property. For large values of d, however, the truncation to low-lying fields
does not give accurate answers. In particular, the tension of the lump is overestimated

for larger values of d.

4.4 Tachyonic Lumps and Kinks in Superstring Theory

In this section, we will briefly consider spacetime dependent configurations of the tachyon
field on a non-BPS D-brane of Type II superstring theory. We should notice that in

the supersymmetric case the tachyonic lump of codimension more than one cannot be
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produced in the standard field theory setting because of the Derrick’s theorem: solitons
in scalar field theory are energetically unstable against shrinking to zero size if their
codimension is more than one. One of the assumptions in proving this theorem is that
the scalar potential should be bounded from below. We cannot apply this theorem to
the lump solutions in bosonic string field theory because the tachyon potential is not
bounded below. This is why we have actually found the lump solutions of codimension
more than one in previous sections in spite of the no-go theorem.'® But in superstring
theory we have the tachyon potential of a double-well form, which is bounded below.
Among the configurations of codimension 1, we can construct a kink solution because
the tachyon potential has doubly degenerate minima. In fact, it is conjectured that the
tachyonic kink on a non-BPS Dp-brane represents a BPS D(p—1)-brane [5, §]. And since
a lump solution can be considered as a kink-anti-kink pair, we will focus our attention

on the kink configuration and give a rough estimation of the tension of the kink.

Let us consider the effective field theory for the tachyon. As the first approximation,
we only take into account the potential term V(¢) and the standard kinetic term 9,t0"t.

The kinetic term has been computed in (123). In this case, the action is written as

S = 2723, / iy (—%aﬂta“t - V(t)) , (162)

V(D) = S (700 = Flto)).
where f(t) is given by (125) at level (0,0) or by (127) at level (2,3). And 7, denotes
the tension of a non-BPS Dp-brane. The tachyon field ¢ depends only on = z?. The

equation of motion derived from the action (162) is

d;tif) = V'(1(2)). (163)

We impose on the solution ¢ = #(x) the following boundary conditions

lim #(z)=+t,, ¢(0)=0.

r—too

The equation of motion (163) can be integrated to give

. /i(x) dt’ - /i(x) dt’
o2V e W) = flt)

Substituting the solution #(x) into the action (162), its value can be evaluated as
SO = 20V, [ de(=2v(D) = =25V, [ de(f(I(@)) - f(to))

= —2mnl [T = fte) = VT, (165)

131n the full string field theory context, the existence of (infinitely many) higher derivative terms

(164)

which are supplied by the 3-string interaction vertex avoids the theorem.
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where we have denoted the tension of the kink by 7,_;. Since 7, is the tension of a

non-BPS Dp-brane, the tension 7,_; of a BPS D(p — 1)-brane is given by

7’1
_ P
Tp—1 = 27 —=.

V2

Then we should consider the ratio

NS NN / fo a1 = [(to). (166)

Tp—l

whose expected value is 1. This ratio can be calculated at each truncation level. At level

(0,0),
1/2 D)
(0,0) = \/5/ dt%\/(l —412)2 = %_W ~ (.74,

—-1/2

while at level (2,3) numerical method gives

(

3 3) ~ 103

2

Although these values are surprisingly close to 1, there are many derivative corrections
we have ignored. And we do not know whether such corrections are sufficiently small.
Hence we should regard these agreements as accidental. Later, by applying the modified
level truncation scheme to this system after compactifying the z?-direction, a tachyonic

kink solution on a non-BPS Dp-brane was constructed in [54].

5 Concluding Remarks

In this paper, we have reviewed the various aspects of the study of tachyon condensation,
laying special emphasis on the open string field theories. From the point of view of the D-
brane phenomenology, we have succeeded in obtaining direct evidence for the conjectured
dynamics of the D-brane, such as the decay of the unstable D-brane, pair-annihilation
of the brane-antibrane system and the formation of the lower dimensional D-branes as
lumps or topological defects, although many pieces of indirect evidence had already been
obtained from the arguments in the framework of the first quantized string theory. But
it is true that almost everyone has believed these conjectures without any rigorous proof
because these phenomena are such simple and have plain analogies in familiar particle
physics. In this sense, ‘examinations of tachyon condensation using string field theory’
might be ‘confirmations of the correctness of open string field theories in the light of
tachyon condensation.” In fact, the original proposal of cubic superstring field theory

seems to be rejected from this standpoint, as we saw in section 3.2.

MHere we set o/ = 1.
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Although the general framework of string field theory was constructed a decade ago,
its development has been rather slow as compared with other progress represented by
string duality for example, since there have been no subjects to which the string field
theory could be applied. Recently, the study of the off-shell tachyon potential in the
context of the (non-BPS) D-brane physics at last required making use of open string
field theory. In the course of the research in this direction, the understanding of the
string field theory itself, e.g. the usefulness of the level truncation scheme and the
reliability of the superstring field theory as well, has made great advances. We hope
that further developments, especially including even the closed string field theory, will
be driven by deep insight into physics, hopefully in the near future.
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