
Open Superstring Field Theory

Applied to Tachyon Condensation

Kazuki Ohmori

Department of Physics, Faculty of Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

E-mail: ohmori@hep-th.phys.s.u-tokyo.ac.jp



Abstract

This thesis deals with the construction of open string field theories and their applications

to the problem of tachyon condensation. We first give an overview of some recent topics

in bosonic string (field) theory, which include vacuum string field theory and rolling

tachyon. We then turn to the superstring case and study in detail the level-expansion

structure of modified cubic and Berkovits’ non-polynomial superstring field theories and

the construction of classical solutions thereof. We also suggest a possible relationship

between these two theories. Finally we make an attempt to extend the ideas of vacuum

string field theory to the superstring case.
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Chapter 1

Introduction

In spite of remarkable recent progress in our understanding of string theory, we still do

not know precisely ‘what string theory is’. We can calculate the on-shell scattering am-

plitudes of strings perturbatively around some fixed spacetime backgrounds, but that’s

all we can do with the conventional string theory. Without a non-perturbative definition

of the theory, it would be impossible to answer questions of a cosmological or phenomeno-

logical nature. For example, it is hopeless to explain how our universe, which seems to be

four-dimensional and to have a small but non-zero cosmological constant, arises as the

correct vacuum of superstring theory, by analyzing the perturbative string theory. More-

over, we do not even know on what principle the ‘string theory’ is constructed. String

field theory is an approach to formulating (or defining) string theory based on the gauge

symmetry principle in the target spacetime. Defined in a field theoretical way, string

field theory not only reproduces the results obtained in the first-quantized perturbative

string theory, but also offers an off-shell and non-perturbative computational scheme.1

Until the end of the last century, however, it was suspected that string field theory may

not be a correct framework to go beyond the perturbation theory. In fact, the progress

in our understanding of non-perturbative aspects of superstring theory was made in the

middle of 1990’s by the discovery of ‘duality symmetries’ [7], where string field theory

played no rôle.

‘Duality’ means an equivalence relation between seemingly different theories. In gen-

eral, it relates a strong coupling region of one theory to a weak coupling region of another

(or the same) theory. There are five consistent spacetime-supersymmetric string theories

in ten dimensions, and they used to be considered as distinct theories. However, it has

recently been conjectured that under certain situations some of them are in fact dual to

1Though not manifest, string field theory may also provide a background-independent formulation
of string theory, as emphasized in [16].
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one another. Furthermore, it is expected that all of them are unified into a still unknown

underlying theoretical structure, called ‘M-theory’. Even if each string theory is defined

only perturbatively, the string duality allows us to obtain non-perturbative information

about a strongly coupled string theory from perturbative calculations in a weakly cou-

pled dual theory. For this duality conjecture to be true, it turns out that there must exist

solitonic extended objects which are charged under the Ramond-Ramond (R-R) gauge

fields in type I and type II superstring theories. Although such R-R charged objects

had already been known as extremal black brane solutions in low-energy supergravity

theories, their microscopic (or stringy) description was finally given by D-branes. It was

found by Polchinski [8] that the D-branes, which were originally introduced into string

theory as fixed hypersurfaces on which open strings can end, are actually dynamical ob-

jects carrying R-R charges. The fact that these D-branes, despite their non-perturbative

nature as solitons in closed string theory, admit a perturbative description in terms of

open strings has led to extensive studies of the dynamics of D-branes.

An important property of the R-R charged D-branes is that a single D-brane, as

well as a number of parallel D-branes, saturates the BPS bound and hence is stable.

Nevertheless, we can make unstable systems of D-branes out of these stable objects:

For a given Dp-brane in type II theory, there exists an anti-Dp-brane with the opposite

R-R charge. Just like the pair-annihilation process of ordinary particles and antiparti-

cles, a coincident Dp-brane–anti-Dp-brane pair is expected to decay into the vacuum [9].

Besides the R-R charged D-branes, there also exist neutral Dp-branes in type IIA/IIB

superstring theories, which are obtained from coincident Dp-brane–anti-Dp-brane pairs

in type IIB/IIA theories through an orbifold projection by (−1)FL [10, 11]. They are

known as ‘non-BPS D-branes’, and inherit the unstable nature from the brane-antibrane

system. Furthermore, it turns out that every D-brane in bosonic string theory is unsta-

ble, irrespective of its dimensionality. In the open string language, the decays of such

unstable D-brane systems proceed by the condensation of the tachyon present in the

open string spectrum. For the complete analysis of this process, however, perturbative

open string theory, which can only describe the infinitesimal deformations of D-branes, is

clearly insufficient, and a non-perturbative formulation of open string theory is needed.

In such a situation, Witten’s bosonic open string field theory has been used to investi-

gate the phenomenon of tachyon condensation, and it has been shown that the tachyon

condensation in open string theory really corresponds to the decay of the D-brane, in

accordance with the expectation. This in turn means that open string field theory is a

non-perturbatively valid framework in discussing the decay of D-branes.

So far, most of the studies have been limited to the case of bosonic string field theory.
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Presumably this is because superstring field theory is much more difficult to control than

the bosonic one. In fact, there are still some unsolved problems even in the formulation

of superstring field theory itself. However, if we wish the string theory to make contact

with our real world, it should be important to incorporate the supersymmetry in the

theory. In addition, the problem of formulating open superstring field theory is in itself

an interesting theoretical challenge. For these reasons, the author has been engaged in the

studies of open superstring field theory and its applications. He investigated in refs.[1, 4]

the problem of tachyon condensation in superstring field theory, and added some pieces

of evidence that the level truncation calculations in superstring field theory also led to

the expected results, as in the bosonic case. In particular, he constructed a classical

kink solution in Berkovits’ superstring field theory and showed that it could really be

identified with the BPS D-brane of one lower-dimension [1]. He also tried to extend

the ideas of vacuum string field theory (VSFT) to the superstring case, and proposed a

candidate kinetic operator of the pure-ghost form [2, 3]. Such an approach may play a

key rôle in revealing the non-perturbative aspects of superstring theory, considering that

the bosonic VSFT has provided us with a way to describe D-branes as solitons in open

string theory without relying on the low-energy approximation or the level truncation

approximation.

The organization of this thesis is as follows. Although our main focus is on superstring

field theory, we include in chapter 2 discussions about some recent topics in bosonic

string field theory, to make this thesis self-contained. After reviewing Witten’s cubic

string field theory and Sen’s conjectures about the decay of unstable D-brane systems in

sections 2.1 and 2.2, we summarize the status of vacuum string field theory in section 2.3.

In section 2.4 we attack the problem of rolling tachyon from the viewpoint of open-closed

string theory.

In chapter 3 we investigate some proposals for the formulation of open superstring

field theory. Section 3.1 is devoted to some preliminaries, and in section 3.2 we introduce

Witten’s cubic superstring field theory and discuss the problems in it. In section 3.3 we

study modified cubic superstring field theory in detail. This theory has a non-trivial

structure already at the quadratic level due to the presence of the picture-changing

operator. Our analysis involves the level-expansion in terms of the component fields

and application to the problem of tachyon condensation, such as the construction of

tachyon potential and kink solutions. In section 3.4 we deal with Berkovits’ formulation

of superstring field theory. We explore in section 3.5 a possibility that modified cubic

theory and Berkovits’ theory are somehow related.

In chapter 4, we turn to the discussion of vacuum superstring field theory. We first

5



argue the general structure of the kinetic operator around the tachyon vacuum, and

then determine the specific form of the pure-ghost kinetic operator Q̂. In section 4.2 we

attempt to construct brane solutions in this theory, though plausible solutions are not

obtained. Chapter 5 contains our conclusions and discussion. Our conventions are sum-

marized in Appendix A.1, and some of the technical details are shown in appendix A.2.

The following parts of this thesis are based on the author’s original works: subsec-

tion 2.4.1 [5], part of section 3.3 [4] (indicated in the text), subsection 3.4.3 [1], section 3.5,

and chapter 4 [2, 3, 4].
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Chapter 2

Topics on Bosonic String Field
Theory

2.1 Brief Review of Bosonic Open String Field The-

ory

In this section we briefly review Witten’s bosonic open string field theory [12]. For

further details see review articles [6, 13, 14, 15, 16, 17, 18] and references therein.

The (classical) open string field is defined to be a functional Φ[Xµ(σ); c(σ), b(σ)] of

the world-sheet matter Xµ(σ) and ghost c(σ), b(σ) fields, but for practical use it is more

convenient to think of it as a state |Φ〉 in the open string Hilbert space H, which consists

of states of ghost number 1 obtained by acting on the Fock vacuum c1|0〉 with the creation

operators αµ−n, b−n, c−m with n > 0, m ≥ 0. At low levels, the string field is expanded as

|Φ〉 = Φ(0)|0〉 =

∫
d26k

(2π)26

(
φ(k) + Aµ(k)α

µ
−1 + iα(k)b−1c0 + · · ·

)
c1e

ikX(0)|0〉, (2.1.1)

where |0〉 denotes the SL(2,R)-invariant vacuum and k is the center-of-mass momentum

of the string. The coefficient functions φ(k), Aµ(k), α(k) correspond to the spacetime

fields. Witten’s cubic action is written in an abstract language as [12]

S = −
∫ (

1

2
Φ ∗QBΦ +

go
3

Φ ∗ Φ ∗ Φ

)
, (2.1.2)

where go is the open string coupling, ∗ is the associative and non-commutative product

among the open string fields, and
∫

is a certain operation which takes a string field

configuration to a number. QB is the usual open string BRST operator

QB =

∮
dz

2πi
jB(z) =

∮
dz

2πi
(cTm + bc∂c) . (2.1.3)
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In order to give a precise meaning, the action (2.1.2) was reformulated using the opera-

tor [19] and the conformal field theory (CFT) [20, 21, 22] languages. In this thesis, we

will make use of the CFT formulation in which the midpoint insertions, such as the ghost

kinetic operator of vacuum string field theory (section 2.3) and the picture-changing op-

erators of superstring field theory (sections 3.2 and 3.3), are most easily handled. In

terms of the CFT language, the action (2.1.2) can be rewritten as (after the rescaling

Φ → Φ/go)

S(Φ) = − 1

g2
o

[
1

2
〈Φ, QBΦ〉 +

1

3
〈Φ,Φ ∗ Φ〉

]
. (2.1.4)

Here the bracket 〈· · · , · · · 〉 denotes the BPZ inner product

〈A,B〉 ≡ lim
z→0

〈I ◦ A(z) B(z)〉UHP, (2.1.5)

where I ◦A(z) is the conformal transform of the vertex operator A(z) by the conformal

map I(z) = −1/z, and 〈· · · 〉UHP is the correlation function on the upper half plane, with

the normalization 〈
1

2
∂2c∂cc(z)eikX(w)

〉
UHP

= (2π)26δ26(k). (2.1.6)

If the string field |A〉 = lim
z→0

A(z)|0〉 satisfies the following reality condition [23, 4]

I ◦ A(z) = A(z)† (2.1.7)

with † being the Hermitian conjugation, then the BPZ inner product 〈A,B〉 simply

coincides with the usual Hermitian inner product 〈A|B〉. The 3-string interaction vertex

appearing in (2.1.4) is defined as

〈A1, A2 ∗ A3〉 =
〈
f

(3)
1 ◦A1(0) f

(3)
2 ◦ A2(0) f

(3)
3 ◦ A3(0)

〉
UHP

, (2.1.8)

f
(3)
k (z) = h−1

(
e

2πi
3

(k−2)h(z)
2
3

)
(k = 1, 2, 3), (2.1.9)

h(z) =
1 + iz

1 − iz
, h−1(z) = −iz − 1

z + 1
. (2.1.10)

The maps f
(3)
k (z) are illustrated in Figure 2.1. Given this vertex, the ∗-product is

calculated as [22]

|A ∗B〉 =
∑
i

|Φi〉〈Φc
i , A ∗B〉, (2.1.11)
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f

f

f
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(3)

1

2

3

Figure 2.1: The conformal transformations f
(3)
k (z) representing the 3-string interaction

vertex.

where the index i runs over a complete set of basis of the Hilbert space H, and 〈Φc
i |

is the conjugate state to |Φi〉 satisfying 〈Φc
i ,Φj〉 = δij . The ∗-product constructed this

way satisfies the requirement of associativity (up to some anomaly: see [24] for recent

discussion and further references).

The equation of motion following from the action (2.1.4) is

QB|Φ〉 + |Φ ∗ Φ〉 = 0. (2.1.12)

The action (2.1.4) is invariant under the infinitesimal gauge transformation

δ|Φ〉 = QB|Λ〉 + |Φ ∗ Λ〉 − |Λ ∗ Φ〉, (2.1.13)

thanks to the following “axioms”:

• The BRST operator QB satisfies

Q2
B = 0 (in the critical dimension D = 26),

QB(A ∗B) = (QBA) ∗B + (−1)|A|A ∗ (QBB), (2.1.14)

〈A,QBB〉 = −(−1)|A|〈QBA,B〉,

where |A| denotes the Grassmannality of A.

• The bracket obeys the cyclicity1

〈A,B〉 = 〈B,A〉, (2.1.15)

〈A,B ∗ C〉 = 〈B,C ∗A〉 = 〈C,A ∗B〉.
1In general, the relations (2.1.15) must be accompanied by a sign factor: 〈A,B〉 = (−1)|A||B|〈B,A〉.

However, considering the fact that the CFT correlator (2.1.6) vanishes unless it has an insertion of total
ghost number 3, we find that (−1)|A||B| is always equal to +1 when 〈A,B〉 is non-vanishing.
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• The ∗-product is associative,

(A ∗B) ∗ C = A ∗ (B ∗ C). (2.1.16)

At the linearized level, the equation of motion QBΦ = 0 modulo the gauge invariance

δΦ = QBΛ reduces to the BRST cohomology problem, so that the gauge-invariant string

field theory action (2.1.4) reproduces the correct perturbative open string spectrum.

Furthermore, it has been shown that the scattering amplitudes calculated from the string

field theory action (2.1.4) in a field theoretical manner coincide with the known results

of the first-quantized string theory [25, 26, 27].

We conclude this section by referring to a twist symmetry possessed by the ac-

tion (2.1.4). On an arbitrary Ltot
0 -eigenstate |Φ〉 the twist operator Ω acts as [28]

Ω|Φ〉 = (−1)hΦ+1|Φ〉, (2.1.17)

where hΦ is the Ltot
0 -eigenvalue of |Φ〉. The twist-invariance of the action, S(ΩΦ) =

S(Φ), follows from the facts that the conformal maps g
(3)
k (z) ≡ h ◦ f (3)

k (z) satisfy the

relations [28, 29, 30]

g
(3)
2 ◦M(z) = Ĩ ◦ g(3)

2 (z), g
(3)
3 ◦M(z) = Ĩ ◦ g(3)

1 (z), g
(3)
1 ◦M(z) = Ĩ ◦ g(3)

3 (z), (2.1.18)

where M(z) = −z and Ĩ(z) = 1/z, and that the BRST operator QB commutes with the

twist operator Ω,

Ω(QB|Φ〉) = QB(Ω|Φ〉). (2.1.19)

Eq.(2.1.19) holds because QB is the zero-mode of the BRST current jB so that it does

not change the Ltot
0 -eigenvalue of the state. This twist symmetry allows us to restrict the

string field to being in the twist-even subspace of the full Hilbert space when looking for

the tachyon vacuum solution. Note that the tachyon state with h = −1 is twist-even.

Algebraic aspects of the twist operation are discussed in [23, 18].

2.2 Tachyon Condensation

In bosonic string theory, the physical open string spectrum contains a tachyonic mode. It

has been suggested by Sen [31, 32] that this should be a manifestation of the instability of

the D25-brane on which the bosonic open string lives, and that the condensation of this

tachyon to a stable minimum of its potential corresponds to the decay of the unstable

D25-brane. More precise statements are:

10



(1) The tachyon potential should have a local minimum, and the depth of the poten-

tial should agree with the tension of an unstable D25-brane (Figure 2.2). In the

language of string field theory, there should exist a ‘tachyon vacuum’ configuration

Φ0 as a solution to the equation of motion (2.1.12), and its energy density should

be equal to (the minus of) the D25-brane tension, −S[Φ0]/V26 = −τ25 (where V26

is the volume of the 26-dimensional spacetime).

(2) Since the D-brane is expected to disappear after the tachyon condensation, the

open strings, whose ends are constrained to move on the D-brane, should also

disappear together with the decaying D-brane. In other words, there should not

exist perturbative excitations of open strings around the tachyon vacuum. This

is realized in string field theory if the new ‘BRST operator’ arising around the

tachyon vacuum has vanishing cohomology, at least at ghost number 1.

(3) Lower-dimensional D-branes can be constructed as lump solutions on an unstable

D-brane.

V (  )

-T25

φ
φ

Figure 2.2: The tachyon potential in bosonic string theory.

Nowadays, they are known as ‘Sen’s conjectures’. Since the full analysis of this process

requires the off-shell and non-perturbative formulation of open string theory, much work

has been done using Witten’s cubic open string field theory. Now we can say that all

of the above three conjectures have been established within the level truncation scheme:

see refs. [33, 28, 34], [35, 36, 37, 38] and [39, 40] for the conjectures (1), (2) and (3),

respectively.2

2The conjectures (1) and (3) have been proven exactly using boundary string field theory [41]: see [42].
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2.3 Vacuum String Field Theory

Although Sen’s conjectures about the open string tachyon condensation have been ver-

ified numerically, no exact solution representing the tachyon vacuum has been found in

cubic string field theory yet. Instead of seeking for the tachyon vacuum solution starting

from the conventional open string vacuum, Rastelli, Sen and Zwiebach [43] proposed

an alternative approach in which we start by assuming a theory describing the tachyon

vacuum and try to construct various D-branes as solutions in that theory. It has been

shown that, by taking the kinetic operator to be pure-ghost, we can find analytic so-

lutions which are considered to represent D-branes. This postulated theory is called

‘vacuum string field theory’ (VSFT), and has been studied intensively.

string field theory around the tachyon vacuum

Given a classical solution Φ0 to the equation of motion (2.1.12), we can study the prop-

erties of it by expanding the string field Φ around the solution as Φ = Φ0 + Ψ. The

resulting action becomes

S(Φ0 + Ψ) = S(Φ0) −
1

g2
o

[
1

2
〈Ψ, QΨ〉 +

1

3
〈Ψ,Ψ ∗ Ψ〉

]
, (2.3.1)

where we have defined the new kinetic operator Q by

QΨ = QBΨ + Φ0 ∗ Ψ + Ψ ∗ Φ0. (2.3.2)

Now let us consider the special case in which the solution Φ0 corresponds to the

open string tachyon vacuum. Of course, we cannot determine the precise form of Q

without knowing the solution Φ0 explicitly, but we can somewhat restrict the possible

form of Q by general arguments. First, for the consistency of the theory described by

the action (2.3.1), Q must satisfy the axioms (2.1.14) (with QB replaced by Q). Second,

in order for Q to describe the tachyon vacuum, Q should have vanishing cohomology

(at least in the space of ghost number one) and should be universal in the sense that

Q does not depend on any detail of the boundary CFT describing the original D-brane.

In addition to these requirements, Rastelli, Sen and Zwiebach took one step further:

They proposed that after a suitable (singular) field redefinition, Q may be brought to

a pure-ghost form. The last assumption is in fact not essential for Q to be qualified

as the kinetic operator around the tachyon vacuum, but this greatly helps us to solve

the equation of motion analytically, as we will see below. If we denote this hypothetical

pure-ghost kinetic operator by Q, one finds that the equation of motion

QΨ + Ψ ∗ Ψ = 0, (2.3.3)
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admits solutions of the matter-ghost factorized form Ψ = Ψm ⊗ Ψg. Then we can solve

the equations

Ψm ∗m Ψm = Ψm, (2.3.4)

QΨg + Ψg ∗g Ψg = 0, (2.3.5)

separately. Incidentally, it has been shown in [44] that, if we apply the level truncation

method to VSFT, then the Siegel gauge solution automatically splits into the matter and

the ghost parts even though we do not impose it by hand. So the above factorization

ansatz is not that artificial.

Since in VSFT we start with the vacuum with no D-brane, we expect that we can

construct various D-branes as solutions to the above equations of motion. The fact that

the equation (2.3.4) for the matter sector takes the form of the projector equation is very

suggestive, because in the context of K-theory [45] and noncommutative field theory [46],

D-branes are identified with the projection operators.

matter sector

Let us first consider the matter sector. As mentioned above, the matter equation of

motion (2.3.4) is solved by projectors of the ∗m-algebra.3 There are two ways to construct

such a string field configuration: One of them, algebraic method, uses the operator

formulation [19] of string field theory. Kostelecký and Potting found that the projector

equation (2.3.4) is solved by [47]

|Ψm〉 = N 26 exp

(
−1

2
ηµν

∞∑
m,n=1

aµ†mSmna
ν†
n

)
|0〉, (2.3.6)

S = C(2X)−1
(
1 +X −

√
(1 + 3X)(1 −X)

)
,

where X = CV 11 is one of the Neumann matrices (see Appendix A.1 for more detail),

and N is the normalization constant which is not important for our purpose. Under the

assumption that S commutes with X, the above |Ψm〉 is the only well-behaved solution

to eq.(2.3.4) aside from the matter identity state |Im〉. The other, geometrical, method

relies on the CFT formulation [21]. It was shown by Rastelli and Zwiebach [48] that the

wedge states |n〉 defined as

〈n|φ〉 = 〈f (n) ◦ φ(0)〉UHP, (2.3.7)

3Here we ignore the conformal anomaly due to the non-vanishing central charge cm = 26. This
problem can be avoided by considering the full ∗-algebra consisting of both matter and ghost sectors.
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with f (n)(z) = h−1(h(z)2/n), satisfy the relation

|n〉 ∗ |m〉 = |n+m− 1〉. (2.3.8)

It then follows that the ‘sliver state’ |Ξ〉 ≡ lim
n→∞

|n〉 squares to itself, |Ξ〉 ∗ |Ξ〉 = |Ξ〉.
Hence, up to an overall normalization factor, the matter part |Ξm〉 of the sliver state

solves the projector equation (2.3.4). Furthermore, it was shown that these two states

|Ψm〉, |Ξm〉 actually coincide with each other [49, 50]. It is believed that this solution

represents a D25-brane in VSFT. Evidence for this expectation includes:

• Assuming that the ghost solution is common to all D-branes, we can construct

D-branes of any dimensionality by deforming the matter sliver [49, 51, 52], and the

ratios of tensions between them reproduce the correct values [49, 53, 54].

• Multiple D-brane configurations can also be constructed by superposing orthogonal

rank-one projectors [55, 51].

• The known physical open string spectrum arises around the matter sliver solu-

tion [51, 56, 57, 58, 59].

• It has been shown by Okawa [59] that in the CFT formulation the energy density

of the sliver solution agrees with the expected value of the D25-brane tension,

although wrong values have been reported in the operator formalism [56, 57].

Besides the sliver state, there are other projectors of the ∗-algebra [44, 60, 61, 62, 63].

It is believed that every such projector equally represents a D25-brane of bosonic string

theory [55], though there is no complete proof of it. Presumably, these projectors are

related to one another via some gauge transformation in vacuum string field theory.

ghost sector

It is much more difficult to find an appropriate solution in the ghost sector than in the

matter sector, because it requires the knowledge about the form of the ghost kinetic

operator. Hata and Kawano [56] first determined the form of the ghost kinetic operator

in the following way: In the Siegel gauge b0|Ψ〉 = 0, the ghost equation of motion (2.3.5)

reduces to

b0|Ψg ∗g Ψg〉 = −|Ψg〉, (2.3.9)

where we have assumed {Q, b0} = 1 (namely, Q contains c0). This equation can be solved

in the same way as in the matter sector. Let us denote this solution by Ψ0g. Then, if we
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require that the ghost solution Ψ0g should solve the full gauge-unfixed ghost equation of

motion (2.3.5), the form of Q is uniquely fixed as [64]

QHK = c0 +
∞∑

n,m=1

(cn + (−1)nc−n)
(

1

1 − M̃

)
nm

Ṽ 11
m0, (2.3.10)

where M̃ = CṼ 11.

On the other hand, Gaiotto, Rastelli, Sen and Zwiebach [44] argued that the ghost

kinetic operator of VSFT should be given by the insertion of the c-ghost at the open

string midpoint: First assume that a regular representative Q of an equivalence class of

kinetic operators around the tachyon vacuum takes the following form

Q =

∫ π

−π
dσ ac(σ)c(σ) +

∑
r

∫ π

−π
dσ ar(σ)Or(σ), (2.3.11)

where ac,r are functions of σ and Or’s are local operators of ghost number 1 with confor-

mal weights higher than that of c. Then consider performing a reparametrization of the

open string coordinate: σ → f(σ), which keeps the open string midpoint ±π/2 fixed and

is symmetric about it. While this operation does not change the ∗-product, it induces a

transformation on the operator (2.3.11) as

Q→ Q =

∫ π

−π
dσ ac(σ)(f ′(σ))−1c(f(σ)) +

∑
r

∫ π

−π
dσ ar(σ)(f ′(σ))hrOr(f(σ)). (2.3.12)

If we choose f(σ) such that f ′(σ) 	 (σ ∓ π
2
)2 + ε2

r near σ = ±π/2 with small εr, the

integrand of the first term becomes large around σ = ±π/2 and, in the limit εr → 0,

all other contributions can be neglected. In this way we have obtained simple but

singular constituents of pure-ghost kinetic operator: ε−1
r c(i) and ε−1

r c(−i).4 The relative

coefficient between these two terms will be fixed by requiring that the kinetic operator Q
preserve the twist invariance of the action. Since the original action (2.1.4) has the twist

symmetry and the tachyon vacuum solution is believed to be represented by a twist-even

configuration [28, 34], it is natural to assume that the VSFT action also has the twist

symmetry. For the VSFT action

S(Ψ) = −κ0

[
1

2
〈Ψ,QΨ〉 +

1

3
〈Ψ,Ψ ∗ Ψ〉

]
, (2.3.13)

to be twist-invariant, Q must commute with Ω:

Ω(Q|Ψ〉) = Q(Ω|Ψ〉). (2.3.14)

4The open string midpoint ±π/2 corresponds to ±i in the upper half plane coordinate.
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Since we have

Ω(cn|Ψ〉) = (−1)(hΨ−n)+1(cn|Ψ〉) = (−1)−ncn(Ω|Ψ〉),

Q satisfies the twist-invariance condition (2.3.14) if Q consists of even modes c2n only.

This requirement uniquely fixes the relative normalization as [44]

Q = QGRSZ ≡ 1

2i
(c(i) − c(−i)) (2.3.15)

= c0 − (c2 + c−2) + (c4 + c−4) − . . . ,

where an overall normalization constant has been absorbed into the definition of the

string field. It was anticipated from the numerical study [44], and later proven analyti-

cally [65], that this QGRSZ actually coincides with QHK (2.3.10).

Among many possible choices for the pure-ghost kinetic operator, the midpoint inser-

tion QGRSZ is special in that the full equation of motion (2.3.3) with Q = QGRSZ can be

solved by twisted projectors [44]. In an auxiliary CFT where the energy-momentum ten-

sor is twisted as T ′ = T −∂(cb), the equation of motion looks like the projector equation,

not only in the matter sector but also in the ghost sector. Since the projectors in the

twisted ∗′-algebra have ghost number 1 from the viewpoint of the original CFT, they can

be regarded as respectable solutions, though the expressions are plagued by divergent

normalization constants. Such a ‘formal’ argument was partly justified by showing that

the twisted sliver solution coincides with the Siegel gauge solution found in [56] in a less

singular algebraic approach [44, 50]. Moreover, a simple regularization method was pro-

posed in [44], where it was also shown that, if we perform the level truncation analysis

after fixing in the Siegel gauge, the solution really converges to the twisted butterfly

state up to an overall normalization constant, which is one of the twisted projectors.

2.4 Rolling tachyon

As we have seen in the previous sections, now we already know much about the fate of

the unstable D-brane systems in the open string language. However, it is still interesting

to consider their decaying process because it gives us a workable example of elusive

time-dependent phenomena in string theory.
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Following Sen [66], let us consider the world-sheet theory described by the action5

S =
1

2π

∫
Σ

d2z ηµν∂X
µ∂̄Xν + λ̃

∫
∂Σ

dt coshX0(t), (2.4.1)

where t parametrizes the boundary ∂Σ of the world-sheet. Since the second term repre-

sents an exactly marginal deformation, the action (2.4.1) defines a boundary conformal

field theory (BCFT) and is considered as a classical solution to the equations of motion

of bosonic open string theory. From the viewpoint of the target spacetime, this is inter-

preted as a classical time-dependent solution describing the creation and the subsequent

decay of an unstable D-brane. Sen has also constructed the boundary state associated

with the BCFT (2.4.1) by Wick-rotating the boundary state of a solvable BCFT with the

sine-Gordon interaction [69, 31]. Given a boundary state, we can read off the energy-

momemtum tensor Tµν of the D-brane system, and Sen has found that the pressure

p ≡ −T ii (where the repeated indices are not summed) vanishes exponentially at late

times, while the energy density E ≡ T 0
0 remains constant in time [70]. This mysterious

decay product was called “tachyon matter”6 and at first considered to represent a novel

object in string theory. Recently, however, it has been suggested that the tachyon matter

in fact represents a collection of highly massive closed strings emitted from the decaying

D-brane (see e.g. [74]).

Since a D-brane couples to closed strings, it is expected that the rolling tachyon

solution acts as a time-dependent source for closed string modes. In fact, in order

for an unstable tensile D-brane to disappear, the energy originally stored in the D-

brane world-volume must be dissipated away to the bulk spacetime by radiating closed

strings. However, such effects are not incorporated in the above BCFT construction.

Nevertheless, by regarding the rolling tachyon solution (2.4.1) as a fixed background, we

can compute its coupling to closed string modes [75, 76] and the closed string emission

from it [77, 78, 79]. In particular, the authors of [78, 79] found that the total energy

radiated from the decaying Dp-brane computed this way diverges for p ≤ 2. This result

would suggest that the D-brane completely decays into the closed string radiation during

the decay process. However, since it is physically unacceptable that a D-brane radiates

an infinite amount of energy, it is often argued that, once we turn on a non-zero string

coupling gs, the original rolling tachyon solution (2.4.1) should be modified due to the

backreaction from the emitted closed strings, and as a result the radiated energy becomes

5It is also possible to consider the boundary perturbation Sboundary = λ̃
∫

∂Σ dt eX0(t) instead
of (2.4.1). This time-like boundary Liouville theory [67] has a spacetime interpretation as the decay of
an unstable D-brane [68].

6The tachyon matter solution was also constructed in tachyon effective theory [71][70, 72] and in
boundary string field theory [73].
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finite. However, it would be extremely difficult to take into account the full backreaction

effects in the above BCFT approach.

On the other hand, there have been several attempts [66, 80, 81, 82, 83] to construct

classical time-dependent solutions in Witten’s open string field theory, which presumably

correspond to the rolling tachyon solution (2.4.1). However, these attempts are not so

fruitful up to now: Sen [66, 80] has described a recursive method for constructing a

solution to the equation of motion, but it is difficult to extract its properties from the

resulting formal expression. Other approaches based on the level truncation method [81,

83] seem to have failed to reproduce the results obtained in the BCFT approach.

This failure may be related to the fact that classical open string field theory cannot

include the effects of closed string emission. (A related issue will be discussed in chap-

ter 5.) In fact, as mentioned above, it is expected that, when the string coupling gs is

non-zero, the coupling to the closed string modes becomes important, no matter how

small gs is.7 Sen [84] has argued that complete description can be obtained by consider-

ing the full quantum open string field theory,8 but it should clearly be difficult to carry

it out explicitly in critical string theory.9

Now, we propose that we use open-closed string (field) theory in which we treat both

open and closed strings as independent fundamental degrees of freedom. Since the closed

string degrees of freedom are contained already from the beginning, we expect that the

effects of closed string emission can be incorporated in a natural way. Another advantage

of considering open-closed string field theory is that, if we can solve the equations of

motion δS/δΦ = δS/δΨ = 0 simultaneously, then the backreaction between open and

closed strings are already included in the solution. Here Φ and Ψ denote the open and

closed string fields respectively, and S = S[Φ,Ψ] is the open-closed string field theory

action.

Let us consider how the D-brane decay should be described in open-closed string

field theory. From here on, we denote by t the time variable in the target spacetime.

We assume that there is a time-dependent string field configuration (Φ(t),Ψ(t)) repre-

senting the decay of an unstable D-brane, and that it converges to well-defined limiting

configurations (Φi,Ψi) and (Φf ,Ψf) as t → −∞ and t → +∞, respectively. Of course,

it must be that (Φi,Ψi) and (Φf ,Ψf) can be identified with the original D-brane con-

7Note that the open string coupling go and the closed string coupling gc are not independent of
each other, but roughly related as g2

o ∼ gc. Hence it is impossible to set gc = 0, while keeping go

non-vanishing.
8One-loop correction in critical string theory was studied in [85].
9This problem has been intensively investigated in the simplified setting of non-critical string the-

ory [86, 84].
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figuration and some decay product, respectively, and that, from the energy conservation

law, (Φi,Ψi) and (Φf ,Ψf) are energetically degenerate. However, since it is clearly dif-

ficult to show that this actually happens in the full open-closed string field theory (see

e.g. [87, 88]), we will introduce and analyze a toy model in the next subsection.

2.4.1 Toy model approach to the D-brane decay in open-closed
string field theory

Let us consider a field theory model described by the following action [5],

S =

∫
dDx L =

∫
dDx

(
1

2
φ(� + 1)φ+

1

2
ψ(� + 4)ψ

−1

3
φ̃3 + c2φ̃ψ̃ − φ̃2ψ̃ − 445

2592

)
, (2.4.2)

where φ and ψ are the open and the closed string tachyon fields, respectively.10 We

would like to regard it as something like an effective action obtained after integrating

out all the other massless and massive fields. We have defined the tilded fields as

Ã(x) ≡ e(logK)�A(x) = K�A(x), (2.4.3)

with K = 2, which resembles the non-local interaction characteristic of string field the-

ory. � = −∂2
t +∇2 denotes d’Alembertian, and we do not need to specify the spacetime

dimensionality D. A coefficient c2 will be fixed below. The constant term in the ac-

tion (2.4.2) represents the D-brane tension in this model.

The vacuum structure of this model can be studied by looking at the potential

V = −L|φ,ψ=const. = −1

2
φ2 − 2ψ2 +

1

3
φ3 − c2φψ + φ2ψ +

445

2592
. (2.4.4)

By eliminating the closed string tachyon field by its equation of motion ψ = 1
4
(φ2 − c2φ),

we can get the effective potential for φ,

Veff =
1

8
φ2

{(
φ+

4

3
− c2

)2

+
8

3
c2 −

52

9

}
+

445

2592
. (2.4.5)

From this expression, we find that, if we choose c2 = 13
6
, the effective potential takes the

form Veff = φ2

8

(
φ− 5

6

)2
+ 445

2592
, so that Veff has two degenerate vacua at φ = 0 and 5

6
.

10Instead of the closed string tachyon, the coupling of the open string tachyon to the closed string
massless modes has been studied in [77, 89, 90].
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With this value of c2, the potential (2.4.4) has three stationary points,

solution (I) : (φI, ψI) = (0, 0), V = 445/2592,
solution (II) : (φII, ψII) =

(
5
6
,− 5

18

)
, V = 445/2592,

solution (III) : (φIII, ψIII) =
(

5
12
,− 35

192

)
, V = 29105/165888,

(2.4.6)

where the value of V for each solution shows the height of the potential there. We think

of the solution (III) as an artifact of our toy model, because we do not know how to give

a stringy interpretation to it. We will simply ignore it.

Here we explain that the solution (I) represents the background with a D-brane,

whereas there is no D-brane around the solution (II). First, note that there is a φ-ψ

mixing term in the action (2.4.2) at the quadratic level. In order to determine the

perturbative spectrum around the solutions, we must diagonalize it. Let us start with

the solution (I). After Fourier-transforming to the momentum space, quadratic part of

the action (2.4.2) can be arranged as

SI
quad = −1

2

∫
dDk

(2π)D
(φ(−k), ψ(−k))MI(k2)

(
φ(k)
ψ(k)

)
,

MI(k2) =

(
k2 − 1 −13

6
K−2k2

−13
6
K−2k2

k2 − 4

)
. (2.4.7)

The mass spectrum is found by looking for the values of k2 = −m2 at which the eigen-

values of the matrix MI(k2) vanish. This can be equivalently accomplished by solving

detMI(k2) = 0. Since we cannot solve this equation analytically, we resort to the nu-

merical study. We see from Figure 2.3, where detMI is shown as a function of k2, that

there is a closed string tachyon state with m2
c 	 −4.000, and an open string tachyon

state with m2
o 	 −0.863. We therefore consider the solution (I) as representing the

1 2 3 4
k^2

-2

-1

1

2

det M^I

Figure 2.3: detMI is plotted as a function of k2 (solid line). If the φ-ψ mixing term
were absent, the determinant would behave like the dashed line.
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unstable D-brane background. We do not concern ourselves with an extra state around

m2 = −0.110 which is not important for our purpose.

We turn to the solution (II). When we expand the fields as

φ = φII + φ′, ψ = ψII + ψ′,

the part of the action quadratic in the fluctuation fields φ′, ψ′ becomes

SII
quad = −1

2

∫
dDk

(2π)D
(φ′(−k), ψ′(−k))MII(k2)

(
φ′(k)
ψ′(k)

)
,

MII(k2) =

(
k2 − 1 + (2φII + 2ψII)K−2k2

(2φII − 13
6
)K−2k2

(2φII − 13
6
)K−2k2

k2 − 4

)
. (2.4.8)

The determinant of the matrix MII(k2) is plotted in Figure 2.4. We see that detMII

1 2 3 4
k^2

-2

-1

1

2

det M^II

Figure 2.4: detMII as a function of k2 (solid line). Note that there is no solution to
detMII = 0 around k2 = 1.

vanishes only once near m2
c 	 −4.000. This means that the perturbative spectrum

around the solution (II) contains the closed string tachyon state, but not the open string

tachyon. Hence we interpret the solution (II) as a background with no D-brane.

Now let us look for a time-dependent solution interpolating between the vacua (I)

and (II). The equations of motion following from the action (2.4.2) are

(−∂2
t + 1)K2∂2

t φ̃(t) − φ̃(t)2 +
13

6
ψ̃(t) − 2φ̃(t)ψ̃(t) = 0, (2.4.9)

(−∂2
t + 4)K2∂2

t ψ̃(t) +
13

6
φ̃(t) − φ̃(t)2 = 0,

where we have let φ and ψ be functions only of the time variable t. The differential

operators appearing in (2.4.9) can be rewritten as the convolution form [81, 91]

(−∂2
t + µ)K2∂2

tA(t) = C(µ)[A](t) (2.4.10)

≡ 1√
8π logK

∫ ∞

−∞
ds

(
− (t− s)2

(4 logK)2
+

1

4 logK
+ µ

)
e−

(t−s)2

8 log KA(s).
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Then we have solved the equations (2.4.9) numerically [5]. The profiles for φ̃(t) and

ψ̃(t) are shown in Figure 2.5. This time-dependent solution is expected to describe the

-20 -10 10 20
t

0.2

0.4

0.6

0.8

phi

-20 -10 10 20
t

-0.25

-0.2

-0.15

-0.1

-0.05

psi

Figure 2.5: The solutions φ̃(t) and ψ̃(t). The dashed lines show their expectation values
(φII, ψII) at the solution (II).

homogeneous decay of a space-filling unstable D25-brane in bosonic string theory.

Finally we will investigate the energy of the solution. The energy density E(t) is

calculated by the following formula [81]

E(t) = −L(φ̃, ψ̃) +

∞∑
l=1

2l−1∑
m=0

(−1)m

{(
∂L
∂φ̃2l

)
m

φ̃2l−m +

(
∂L
∂ψ̃2l

)
m

ψ̃2l−m

}
, (2.4.11)

where we have regarded L as a function of φ̃ and ψ̃, instead of φ and ψ. Explicitly,

L(φ̃, ψ̃) =
1

2
φ̃(� + 1)e−2(logK)�φ̃+

1

2
ψ̃(� + 4)e−2(logK)�ψ̃

− 1

3
φ̃3 +

13

6
φ̃ψ̃ − φ̃2ψ̃ − 445

2592
. (2.4.12)

The subscripts in (2.4.11) denote the number of time-derivatives, i.e. An(t) ≡ ∂n

∂tn
A(t).

Generically, it is difficult to separate the total energy E(t) into the contribution from

the open string sector Eo(t) and that from the closed string sector Ec(t). In the case

of our model, however, we can do this with the help of the equations of motion (2.4.9).
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The result is

E(t) = Eo(t) + Ec(t); (2.4.13)

Eo(t) = −1

6
φ̃(t)3 − 13

24

(
C(1)[φ̃](t) − φ̃(t)2

)
+

∞∑
l=1

2l−1∑
m=0

(−1)m
(2 logK)l−1

2(l − 1)!

(
2 logK

l
− 1

)
φ̃2l−m(t)φ̃m(t) +

445

2592
,

Ec(t) = −1

2
ψ̃(t) C(4)[ψ̃](t) − 169

144
ψ̃(t)

+
∞∑
l=1

2l−1∑
m=0

(−1)m
(2 logK)l−1

2(l − 1)!

(
8 logK

l
− 1

)
ψ̃2l−m(t)ψ̃m(t).

Although the above expression contains infinite sums over the number of time-derivatives,

we can obtain a good approximation to it by ignoring higher derivative terms [5]. Here we

keep only up to the fourth derivatives. We have plotted in Figure 2.6 the energy (2.4.13)

for the solution obtained above.11 This figure nicely shows that the energy stored in the

-20 -10 10
t

0.025

0.05

0.075

0.1

0.125

0.15

0.175

energy

Figure 2.6: The open string energy Eo(t) and the closed string energy Ec(t) are indicated
by the solid line and the dashed line, respectively. The energy flows from the open string
sector to the closed string sector, with the total energy E(t) (shown by the dotted line)
conserved.

open string sector (originally as the D-brane tension) is transferred to the closed string

mode as the open string tachyon condenses, with the total energy conserved. This is

precisely what we expect to occur in the process of the D-brane decay in the full string

theory.

11A similar result for the energy, as well as the pressure evolution, was obtained in [92].
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In conclusion, we have considered a toy model for open and closed string tachyons,

and shown that there exists a time-dependent solution which can be interpreted as the

homogeneous decay of an unstable D25-brane, and that the energy flows from open to

closed strings as the open string tachyon condenses. Hence it seems that our model

successfully captures some features expected of the rolling tachyon in open-closed string

theory. However, many problems remain to be resolved. The most pressing one is to

relate the above field theory model to the actual string theory. In fact, our toy model

action (2.4.2) has not been derived from string theory in any sense. Other possible direc-

tions are: to consider spatially inhomogeneous decays or the decay of lower-dimensional

D-branes, and to include other (massless or massive) modes into the model.
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Chapter 3

Superstring Field Theory and its
Application to Tachyon
Condensation

3.1 Preliminaries: Superghosts in RNS Superstring

Since we want a Lorentz-covariant formulation of superstring field theory, we will use the

RNS formalism of the superstring. There exist superghost fields β, γ on the world-sheet,

which are superpartners of the reparametrization ghosts b, c under the N = 1 world-sheet

supersymmetry. Following [93], we will be using the bosonized form

β = e−φ∂ξ, γ = ηeφ. (3.1.1)

The newly defined fields ξ, η are fermionic and enφ is also defined to be fermionic if n

is odd. See Appendix A.1 for more details about this convention. As is clear from the

definition (3.1.1), the original βγ system can be recovered without using the zero mode

of ξ. A string Hilbert space which does not contain ξ zero mode is called a “small”

Hilbert space, whereas a Hilbert space containing ξ0 is called a “large” Hilbert space. It

is possible to do all calculations within the “small” Hilbert space in the first-quantized

superstring theory [93].

picture

From the fact that β and γ have conformal weight 3
2

and −1
2

respectively, it follows that

they act on the SL(2,R)-invariant vacuum |0〉 as1

βr|0〉 = 0
(
r > −3

2

)
, γs|0〉 = 0

(
s > 1

2

)
, (3.1.2)

1Mode expansions of β and γ are found in eq.(A.1.2).
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where r and s take values in Z+ 1
2

in the Neveu-Schwarz (NS) sector. One may think that

the energy spectrum is not bounded from below because a positively moded operator

γ1/2 is classified as a creation operator, but such a thing does not happen if we fix the

ghost number of states. Now let us introduce ‘�-vacuum’ |�〉 such that

βr|�〉 = 0
(
r > −3

2
− �
)
, γs|�〉 = 0

(
s > 1

2
+ �
)
. (3.1.3)

Of course, |� = 0〉 coincides with the SL(2,R)-vacuum (3.1.2). In the bosonized language,

the �-vacuum is explicitly expressed as

|�〉 = e�φ(0)|0〉. (3.1.4)

One can see that the above |�〉 indeed satisfies the conditions (3.1.3) by noting that

βr =
∮

dz
2πi
zr+

1
2 e−φ(z)∂ξ(z) and the OPE e−φ(z)e�φ(0) ∼ z�e(�−1)φ(0) (and similarly for γs).

When a state |ϕ〉 is constructed by acting on the �-vacuum with the oscillators βr, γr

which are regarded as creation operators with respect to |�〉, we say that the state

|ϕ〉 is in the �-picture, or that |ϕ〉 has picture number �. In short, we assign picture

number � to e�φ, whereas β and γ themselves have vanishing picture number. From the

bosonization formula (3.1.1), this can be achieved if ξ and η have picture number +1

and −1, respectively. We also adopt the convention that e�φ, ξ and η carry ghost number

0,−1 and +1, respectively. They are summarized in Table 3.1.

b c ξ η e�φ

ghost number −1 1 −1 1 0
picture number 0 0 1 −1 �

conformal weight 2 −1 0 1 −1
2
�(�+ 2)

Table 3.1: Ghost number, picture number and conformal weight of the ghost fields.

In summary, ghost number and picture number are measured by Qgh =
∮

dz
2πi
jgh(z)

and Qpic =
∮

dz
2πi
jpic(z), with their currents being

jgh = − : bc : − : ξη :, jpic =: ξη : −∂φ, (3.1.5)

where we have also included the contribution from the bc-ghosts. In the NS sector, where

� takes an integral value, it turns out that the −1-vacuum | − 1〉 is annihilated by all

the positively moded operators βr, γr. Hence it is natural to choose −1-picture in the

NS sector. If we also include the bc-ghost sector, the NS ground state is taken to be

ce−φ(0)|0〉. On the other hand, in the R sector � takes value in Z+ 1
2
. Conventionally the

zero mode of β is grouped into annihilation operators, while γ0 is classified as a creation

operators. It amounts to choosing the −1
2
-picture in the R sector.
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picture changing operation

BRST-invariant states of different pictures are related to one another by the action of

the ‘picture-changing operator’

X(z) ≡ {QB, ξ(z)} = c∂ξ + eφGm + e2φb∂η + ∂(e2φbη), (3.1.6)

where QB is the BRST operator2

QB =

∮
dz

2πi

(
cTm + γGm +

1

2
(cT g + γGg)

)
=

∮
dz

2πi

(
c(Tm + T ηξ + T φ) + ηeφGm + bc∂c− η∂ηe2φb

)
. (3.1.7)

X raises picture number by one unit. The operator inverse to X is found to be

Y = c∂ξe−2φ. (3.1.8)

They satisfy the relation

lim
z→w

X(z)Y (w) = lim
z→w

Y (z)X(w) = 1. (3.1.9)

GSO projection

GSO parity of a state is defined to be its eigenvalue of eπiF , where F denotes the world-

sheet spinor number. In the NS sector, ψµ and e�φ are defined to have spinor number

1 and �, respectively. For example, the tachyonic ground state ce−φ(0)|0〉 is a GSO(−)

state, whereas the massless vector state ψµce−φ(0)|0〉 belongs to the GSO(+) sector. In

the R sector, we must deal with the ‘spin field’ which, roughly speaking, is the square-

root of the fermions, to describe spacetime spinors. For instance, let us consider the R

ground state vertex operator in the −1
2
-picture,

ce−
φ
2Sα, (3.1.10)

where Sα is the spin field

Sα = exp

(
i

4∑
a=0

saH
a

)
(sa = ±1

2
), (3.1.11)

2The explicit expressions for the energy-momentum tensors and the matter supercurrent are found
in (A.1.4).
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with Ha being the bosonized form of the world-sheet fermions ψµ,

e±iH
0 ∼=

1√
2
(±ψ0 + ψ1), e±iH

a ∼=
1√
2
(ψ2a ± iψ2a+1) for a = 1, 2, 3, 4, (3.1.12)

and satisfying the OPE Ha(z)Hb(0) ∼ −δab ln z. The index α represents the set of spins

(s0, . . . , s4). GSO parity of (3.1.10) is identified with the eigenvalue of the chirality

operator

Γ ≡ exp

[
iπ

(
4∑
a=0

sa −
1

2

)]
, (3.1.13)

where −1
2

is the contribution from e−
φ
2 . Now that we have determined the GSO parity

of the R ground state, GSO parity of any state has uniquely been fixed because the GSO

parity is multiplicatively conserved under the operator product.

The multiplicative conservation of GSO parity means that it is possible to make a

consistent projection onto the subspace consisting of the GSO(+) states, because the

GSO(+) vertex operators form a closed subalgebra under the operator product. This

is called ‘GSO projection’ [94]. For the description of BPS D-branes in type II theory,

we should perform the GSO projection on the open string spectrum. However, if we

consider the brane-antibrane system, oppositely GSO-projected sectors come from the

open strings stretched between the brane and the antibrane. Then, tachyonic modes

arise in the spectrum, which are responsible for the instability of the brane-antibrane

system. Furthermore, it turns out that the open string spectrum on non-BPS D-branes,

which are obtained by modding out the brane-antibrane system by (−1)FL, contains both

GSO(+) and GSO(−) sectors [10, 11].

3.2 Witten’s Cubic Superstring Field Theory

In the previous section, we have seen that it is most natural to take the NS string field

in the −1-picture. In the superstring case, even if we write the cubic action

S =

∫ (
A ∗QBA+

2go
3
A ∗ A ∗ A

)
, (3.2.1)

for the NS(+) string field A having ghost number +1 and picture number −1, the cubic

interaction term always vanishes, simply because the anomalous conservation law of the

picture number current jpic = −∂φ + ξη shows that any correlation function vanishes

unless the insertion has total picture −2 in the “small” Hilbert space. Witten [95] noticed
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that this problem may be cured by inserting the picture-changing operator X (3.1.6) at

the open string midpoint. The resulting action becomes

S =

∫ (
A ∗QBA + YΨ ∗QBΨ +

2go
3

XA ∗ A ∗ A+ 2goA ∗ Ψ ∗ Ψ

)
, (3.2.2)

where we have also included the R(+) string field Ψ which is defined to have ghost

number +1 and picture number −1
2
. The ∗-product and the integration operation

∫
are

taken to be the same as in the bosonic theory: For example, NS-NS-NS vertex is defined

in terms of the CFT correlation function as3∫
XA ∗ A ∗ A =

〈
X(i) f

(3)
1 ◦ A(0) f

(3)
2 ◦ A(0) f

(3)
3 ◦ A(0)

〉
UHP

. (3.2.3)

This action is formally invariant under the following gauge transformation

δgA = QBΛ + goX(i)(A ∗ Λ − Λ ∗ A) + go(Ψ ∗ χ− χ ∗ Ψ),

δgΨ = QBχ + goX(i)(Ψ ∗ Λ − Λ ∗ Ψ) + goX(i)(A ∗ χ− χ ∗A), (3.2.4)

and under the spacetime supersymmetry transformation

δsA = W−1/2Ψ,

δsΨ = X(i)W−1/2A. (3.2.5)

In the above expressions, Λ and χ denote NS and R gauge parameters, and W−1/2 is the

supercharge in the −1
2
-picture [93]

W−1/2 =
∑
α(+)

∮
dz

2πi
e−

φ
2Sα(z)ε

α. (3.2.6)

The symbol (+) means that the summation is taken over spins of positive chirality

Γ = +1.

However, it was pointed out by Wendt [99] that tree-level scattering amplitudes

computed from the action (3.2.2) diverge due to the colliding picture-changing operators.

For the same reason, the gauge invariance (3.2.4) is actually broken. Although Wendt also

showed that these problems could be resolved at least at order g2
o by adding appropriate

counter terms with diverging coefficients to the action (3.2.2), such counter terms then

break the supersymmetry (3.2.5) [100]. Hence, this theory is not regarded as a promising

candidate for the field theory of open superstring.4

3The operator representation of Witten’s superstring vertices has been given in [96, 97, 98].
4De Smet and Raeymaekers [101] computed the tachyon potential using this theory and showed that

the potential has no minima, in contradiction to the expectation.
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3.3 Modified Cubic Superstring Field Theory

It was proposed in [102, 100, 103] that the contact term divergence problems could be

resolved by taking the NS string field in the 0-picture, without changing the cubic nature

of the action. In this section we discuss this ‘modified’ cubic superstring field theory.

3.3.1 GSO-projected theory

The source of difficulties in Witten’s theory lay in the NS-NS-NS vertex. The NS equation

of motion following from the action (3.2.2) (with Ψ = 0) is

QBA+ goX(i)A ∗ A = 0. (3.3.1)

It was argued in [102, 103] that the NS equation of motion should not contain picture-

changing operators (except for an overall action). This is achieved by taking the NS string

field in the 0-picture, if the ∗-product carries no ghost and picture numbers. Then, we

need an insertion Y−2 of −2-picture to construct a non-vanishing action. We will impose

the following conditions on Y−2:

(1) Y−2 is Lorentz-invariant, and has conformal weight 0,

(2) Y−2 is BRST-invariant: [QB, Y−2] = 0,

(3) Y−2 · X ∼ Y (precise meaning will be specified below).

It was found in [102] that there are two possible candidates for Y−2 up to BRST-exact

terms, which satisfy the above conditions. They are

non-chiral one Y−2 = Y (i)Y (−i), (3.3.2)

chiral one Y−2 = Z(i) ≡ −e−2φ(i) − 1

5
c∂ξe−3φGm(i), (3.3.3)

where Y is the inverse picture-changing operator (3.1.8). Both of them satisfy the con-

dition (3) in the sense that

Y (i)Y (−i) · X(i) = Y (−i) in the non-chiral case, and (3.3.4)

Z(i) · X(i) = Y (i) in the chiral case.

It turns out that the above two choices of Y−2 are in fact equivalent on-shell, but they

should be distinct in constructing off-shell string field theory. As we will comment below,

the cubic superstring field theory action constructed with the chiral one Y−2 = Z(i) leads

to some difficulties, so we will concentrate on the non-chiral choice (3.3.2) for a while.
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Now let us write down the action. It is

S =
1

g2
o

[
1

2
〈〈Y−2|A, QBA〉〉 +

1

3
〈〈Y−2|A,A ∗ A〉〉

+
1

2
〈〈Y |Ψ, QBΨ〉〉 + 〈〈Y |A,Ψ ∗ Ψ〉〉

]
, (3.3.5)

where both the NS(+) string field A and the R(+) string field Ψ are defined to have

ghost number 1 and to be Grassmann-odd, and the picture number is 0 for A and −1
2

for Ψ. The brackets are defined in terms of the CFT correlators as

〈〈Y−2|A1, A2〉〉 = lim
z→0

〈Y (i)Y (−i) I ◦A1(z) A2(z)〉UHP , (3.3.6)

〈〈Y−2|A1, A2 ∗ A3〉〉 =
〈
Y (i)Y (−i) f (3)

1 ◦ A1(0)f
(3)
2 ◦ A2(0)f

(3)
3 ◦ A3(0)

〉
UHP

(3.3.7)

〈〈Y |Ψ1,Ψ2〉〉 = lim
z→0

〈Y (−i) I ◦ Ψ1(z) Ψ2(z)〉UHP , (3.3.8)

〈〈Y |A,Ψ1 ∗ Ψ2〉〉 =
〈
Y (−i) f (3)

1 ◦ A(0)f
(3)
2 ◦ Ψ1(0)f

(3)
3 ◦ Ψ2(0)

〉
UHP

, (3.3.9)

where the conformal transformations are given by

I(z) = −1

z
= h−1(−h(z)), f

(3)
k (z) = h−1

(
e2πi

k−2
3 h(z)

2
3

)
, (k = 1, 2, 3) (3.3.10)

with

h(z) =
1 + iz

1 − iz
, h−1(z) = −iz − 1

z + 1
.

The vertex operators Ai(0),Ψi(0) are related to Fock space states via |Ai〉 = Ai(0)|0〉,
|Ψi〉 = Ψi(0)|0〉 with |0〉 denoting the SL(2,R)-invariant vacuum. f ◦ A(z) denotes the

conformal transform of the vertex operator A(z) by the conformal map f . For example,

a primary field A of conformal weight h is transformed as f ◦ A(z) = (f ′(z))hA(f(z)).

The CFT correlation function 〈. . . 〉UHP in the “small” Hilbert space is normalized as〈
1

2
∂2c∂cc(x)e−2φ(y)eikX(w)

〉
UHP

= (2π)10δ10(k), (3.3.11)

and (2π)10δ10(0) ≡ V10 is the volume of the (9 + 1)-dimensional spacetime. The BRST

operator QB (3.1.7) satisfies

Q2
B = 0,

QB(A ∗B) = (QBA) ∗B + (−1)|A|A ∗ (QBB), (3.3.12)

〈〈Y−2|A,QBB〉〉 = −(−1)|A|〈〈Y−2|QBA,B〉〉,
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as in the bosonic case (cf. eq.(2.1.14)).

The 3-string vertex, as well as the n-string vertices induced from the repeated use of

the ∗-multiplication, satisfies the cyclicity relation

〈〈Y−2|A1, A2 ∗ A3〉〉 = 〈〈Y−2|A2, A3 ∗ A1〉〉 = 〈〈Y−2|A3, A1 ∗ A2〉〉.

The equations of motion derived from the action (3.3.5) are

Y−2 (QBA + A ∗ A + X(i)Ψ ∗ Ψ) = 0,

Y (−i) (QBΨ + A ∗ Ψ + Ψ ∗ A) = 0, (3.3.13)

and the action (3.3.5) is invariant under the following infinitesimal gauge transformation

δgA = QBΛ + A ∗ Λ − Λ ∗ A +X(i)(Ψ ∗ χ− χ ∗ Ψ),

δgΨ = QBχ + A ∗ χ− χ ∗ A + Ψ ∗ Λ − Λ ∗ Ψ, (3.3.14)

due to the associativity of the ∗-product and the properties (3.3.4) and (3.3.12). Here

the NS(+) gauge parameter Λ and the R(+) gauge parameter χ have ghost number 0

and are Grassmann-even, and their picture number is 0 and −1
2
, respectively.

This modified version of cubic superstring field theory is, as opposed to the Witten’s

original proposal, free from the contact-term divergence problem5: Roughly speaking,

one of the two colliding picture-changing operators inserted at the interaction vertices

is canceled by (Y−2)
−1 coming from the propagator, thus avoiding the dangerous colli-

sions. Furthermore, gauge invariance is not violated. Hence, we need not add tree-level

counterterms to the classical action (3.3.5) for the sake of regularization.

spacetime supersymmetry

As noted in section 3.1, GSO-projected open string theory describes a BPS D-brane.

Since a BPS D-brane preserves half of the bulk spacetime supersymmetry, we expect

that the open superstring field theory action should have the ten-dimensional N = 1

spacetime supersymmetry. Here we show that the modified cubic action (3.3.5) is indeed

invariant under the following spacetime supersymmetry transformation

δsA = W1/2Ψ,

δsΨ = Y (i)W1/2A, (3.3.15)

5In fact, it has been shown that this theory correctly reproduces the tree-level Koba-Nielsen ampli-
tudes after gauge-fixing [100, 102, 103, 15].
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where the supersymmetry generator (spacetime supercharge) W1/2 of picture number 1
2

is defined as6

W1/2 =
∑
α(+)

W1/2,αε
α =

∑
α(+)

∮
C

dz

2πi
Wα(z)ε

α; (3.3.16)

Wα(z) = [QB, ξe
−φ

2Sα(z)] (3.3.17)

= bηe
3
2
φSα(z) −

i

2

∑
β̇(−)

Γµ
β̇α
∂Xµe

φ
2Sβ̇(z),

where we have used the OPE

ψµ(z)Sα(0) ∼ 1√
2z

∑
β̇(−)

Sβ̇(0)Γµ
β̇α
, (3.3.18)

and the dotted spinor index β̇ runs over spins of negative chirality Γ = −1. Γµ is the

ten-dimensional gamma matrices obeying the Clifford algebra

{Γµ,Γν} = 2ηµν with ηµν = diag(−1,+1, . . . ,+1). (3.3.19)

The integration contour C is taken to be a circle around the origin. Note that the −1
2
-

picture supercharge (3.2.6) does not serve as a supersymmetry generator in the present

context because it does not commute with the inverse picture-changing operator Y [104]:

[W−1/2, Y (±i)] =
∑
α(+)

c∂ξe−
5
2
φSα(±i)εα �= 0. (3.3.20)

On the other hand, W1/2 (3.3.16) does commute with Y (±i) since the OPE of Wα(z)

with Y = c∂ξe−2φ is non-singular. The relevance of these facts will be clarified later.

One can verify7

Y (i){W1/2,α, (W1/2)β̇} = Γµ
β̇α
Pµ + (BRST-exact terms), (3.3.21)

with

Pµ =
i

2

∮
dz

2πi
∂Xµ(z),

6Here and in eq.(3.3.21) we are neglecting the cocycle factors attached to the spin fields, so eqs.(3.3.17)
and (3.3.21) are correct only up to factors of (−1)

1
2 .

7From our definition that the R(+) string field Ψ is Grassmann-odd, it turns out that the supercharge
components W1/2,α defined in (3.3.16) are Grassmann-odd quantities.
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so W1/2,α form a supersymmetry algebra which closes only on-shell [95, 104]. Here, we

have introduced the bar notation

(W1/2)β̇ ≡
∑
γ(+)

W1/2,γCγβ̇, (3.3.22)

where C denotes the charge conjugation matrix satisfying CΓµC−1 = −(Γµ)T , and used

the OPE

Sα(z)Sβ̇(0) ∼ z−
5
4Cαβ̇. (3.3.23)

Now we prove the invariance of the action (3.3.5) under the supersymmetry trans-

formation (3.3.15). Since the transformation is linear, quadratic terms and cubic terms

must be invariant separately. We begin with the cubic interaction terms, whose variation

is

g2
oδsScubic = 〈〈Y−2|δsA,A ∗ A〉〉 + 〈〈Y |δsA,Ψ ∗ Ψ〉〉

+ 〈〈Y |A, δsΨ ∗ Ψ〉〉 + 〈〈Y |A,Ψ ∗ δsΨ〉〉. (3.3.24)

The second term is evaluated as

〈〈Y |δsA,Ψ ∗ Ψ〉〉

=
1

3

(
〈〈Y |(W1/2Ψ),Ψ ∗ Ψ〉〉 + 〈〈Y |Ψ, (W1/2Ψ) ∗ Ψ〉〉 + 〈〈Y |Ψ,Ψ ∗ (W1/2Ψ)〉〉

)
=

1

3

〈
Y (−i)

∮
C′

dz

2πi
Wα(z)ε

α
(
f

(3)
1 ◦ Ψ(0)f

(3)
2 ◦ Ψ(0)f

(3)
3 ◦ Ψ(0)

)〉
UHP

, (3.3.25)

where we have used the cyclicity of the 3-string vertex the fact that Wαε
α (summation

over α(+) is implicit) is Grassmann-even, and then deformed the contour. The new

integration contour C′ encircles three punctures f
(3)
k (0) (k = 1, 2, 3), but not −i. We can

push the contour C′ to the point at infinity without picking up any contribution from

−i, because the 1
2
-picture supercharge W1/2 does commute with Y : this is why we had

to choose W1/2 instead of W−1/2. Thus we have seen that the second term of (3.3.24)

vanishes by itself. The remaining three terms can be arranged in the following way:

〈〈Y−2|W1/2Ψ,A ∗ A〉〉 + 〈〈Y |Ψ, (Y (i)W1/2A) ∗ A〉〉 + 〈〈Y |Ψ,A ∗ (Y (i)W1/2A)〉〉

=

〈
Y (i)Y (−i)

∮
C′

dz

2πi
Wα(z)ε

α
(
f

(3)
1 ◦ Ψ(0)f

(3)
2 ◦ A(0)f

(3)
3 ◦ A(0)

)〉
UHP

= 0, (3.3.26)

where use was made of the fact that Y (i) is a Grassmann-even, primary field of conformal

weight 0 so that it is not affected by the conformal transformations f
(3)
k at all. The
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vanishing of (3.3.26) is again due to the contour deformation argument. Hence we have

shown δsScubic = 0. For quadratic terms we have

g2
oδsSquad = 〈〈Y−2|δsA, QBA〉〉 + 〈〈Y |Ψ, QB(δsΨ)〉〉 (3.3.27)

=

〈
Y (i)Y (−i) I ◦

(∮
dz1

2πi
Wα(z1)ε

α · Ψ(0)

) (∮
dz2

2πi
jB(z2) · A(0)

)〉
UHP

+

〈
Y (i)Y (−i) I ◦ Ψ(0)

∮
dz2

2πi
jB(z2) ·

(∮
dz1

2πi
Wα(z1)ε

α · A(0)

)〉
UHP

,

where we have used the fact that the BRST charge QB commutes with Y (±i):

[QB, Y (±i)] =

∮
dz

2πi
jB(z)c∂ξe−2φ(±i) = 0. (3.3.28)

Incidentally, it is due to this property (3.3.28) that QB satisfies the hermiticity condition

〈〈Y(−2)|QBΦ1,Φ2〉〉 = −(−1)|Φ1|〈〈Y(−2)|Φ1, QBΦ2〉〉 (3.3.29)

in the presence of the inverse picture-changing operators. After deforming the contour,

eq.(3.3.27) is rewritten as

g2
oδsSquad =

〈
Y (i)Y (−i) I ◦ Ψ(0) [QB,W1/2]A(0)

〉
UHP

. (3.3.30)

One can show that

[QB,W1/2] =
∑
α(+)

∮
dz

2πi
{QB,Wα(z)}εα =

∑
α(+)

∮
dz

2πi
∂(cWα)ε

α. (3.3.31)

Since in the GSO-projected theory the OPEs of cWα with any operators give rise to

no branch cut singularities, the above integral, and hence δsSquad (3.3.30), vanishes.

This completes the proof that the action (3.3.5) has ten-dimensional N = 1 spacetime

supersymmetry.

gauge field component

Next we study how the massless gauge field, which belongs to the NS(+) sector, is

described in modified cubic superstring field theory.8 At the massless level, the NS(+)

string field is expanded as

|A(0)〉 = A(0)(0)|0〉,

A(0)(z) =

∫
d10k

(2π)10

[
i√
2
A1
µ(k)c∂X

µ + A2
µ(k)ηe

φψµ (3.3.32)

+
1√
2i
Fµν(k)cψ

µψν + iv(k)∂c + iw(k)c∂φ

]
eikX(z).

8The rest of this subsection (3.3.1) is based on the author’s paper [4].

35



The reality condition on the string field [4]

A(z)† = I ◦ A(−z∗), (3.3.33)

implies the following reality conditions for the component fields

A1
µ(k)

∗ = A1
µ(−k), A2

µ(k)
∗ = A2

µ(−k), Fµν(k)
∗ = Fµν(−k), (3.3.34)

v(k)∗ = v(−k), w(k)∗ = w(−k),

where ∗ denotes the complex conjugation.

physical spectrum

The physical state conditions for the component fields are determined from QB|A(0)〉 = 0.

Independent ones are

w(k) = 0, A1
µ(k) = A2

µ(k), (3.3.35)

v(k) = − i√
2
kµA2

µ(k), (3.3.36)

Fµν(k) = ikµA
2
ν(k) − ikνA

2
µ(k), (3.3.37)

kµFµν(k) = 0. (3.3.38)

Eqs.(3.3.35)–(3.3.37) are non-dynamical ones, so that the auxiliary fields w, v, Fµν, A
1
µ can

be eliminated by them. The last equation (3.3.38) then becomes the Maxwell equation

for the field strength tensor determined by (3.3.37).

Let us consider the gauge degree of freedom. The gauge parameter Λ, which has

ghost number 0 and picture number 0, has only one component λ at the massless level,

Λ =

∫
d10k

(2π)10

i√
2
λ(k)eikX . (3.3.39)

At the linearized level, the gauge transformation law (3.3.14) reduces to

δgA(0) = QBΛ =

∫
d10k

(2π)10

(
i√
2
ikµλ(k)c∂Xµ (3.3.40)

+ ikµλ(k)ηeφψµ +
i√
2
k2λ(k)∂c

)
eikX .

Comparing it with the expansion (3.3.32), we can read off the gauge transformation law

for the component fields:

δgA
1
µ(k) = δgA

2
µ(k) = ikµλ(k), (3.3.41)

δgv(k) =
1√
2
k2λ(k), δgFµν(k) = δgw(k) = 0,
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which are of course consistent with the equations of motion.

In conclusion, we have found that the physical open string spectrum contains a mass-

less9 vector field with the correct gauge transformation law (3.3.41). Incidentally, one

can find that by a suitable choice of the gauge parameter λ, v can be set to zero. This

is nothing but the condition following from the Feynman-Siegel gauge b0|A〉 = 0.

off-shell action

The fully off-shell action for the massless component fields is obtained by plugging the

expansion (3.3.32) into the action (3.3.5).10 The result is

S(0) =
1

2g2
o

∫
d10k

(2π)10

[
−ηµνA1

µ(−k)A2
ν(k) +

1

2
ηµνA1

µ(−k)A1
ν(k) (3.3.42)

+
1

2
ηµνA2

µ(−k)A2
ν(k) − 2ηµνikρA2

µ(−k)Fνρ(k) −
√

2ikµA2
µ(−k)w(k)

+
1

2
F µν(−k)Fµν(k) +

5

2
w(−k)w(k) + 2v(−k)w(k)

]
.

The equations of motion derived by varying the above action with respect to the field

variables indeed coincide with the previous ones (3.3.35)–(3.3.38) which have been ob-

tained from QBA(0) = 0, as it should be. However, we cannot see the structure of the

usual kinetic term for the physical gauge field A2
µ. Nevertheless, it can be recovered after

integrating out the auxiliary fields by their equations of motion:

S(0) =
1

g2
o

∫
d10k

(2π)10

(
−1

4
Fµν(−k)Fµν(k)

)
=

1

g2
o

∫
d10x

(
−1

4
Fµν(x)Fµν(x)

)
, (3.3.43)

where we have Fourier-transformed to the position space as Fµν(k) =
∫
d10xFµν(x)e

−ikx,
and Fµν is the field strength tensor for the gauge potential, Fµν(x) = ∂µA

2
ν(x)−∂νA2

µ(x).

Needless to say, the action (3.3.43) is exactly the Maxwell action. The above result

means that the correct component action can be obtained only after eliminating some

of the auxiliary fields by their equations of motion: this issue will be further discussed

in section 3.5.

relation with vertex operators in −1-picture

The massless vertex operators V in −1-picture can be obtained by acting on A(0) with

9k2 = 0 also follows from the equations of motion (3.3.36)–(3.3.38).
10Thanks to the twist symmetry mentioned below, all the cubic interaction terms among the massless

component fields (3.3.32) vanish in the Abelian case.
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the inverse picture-changing operator Y (3.1.8),

V (z) = lim
z′→z

Y (z′)A(0)(z)

=

∫
d10k

(2π)10

(
−A2

µ(k)ce
−φψµ − iv(k)c∂c∂ξe−2φ

)
eikX(z). (3.3.44)

Note that three component fields which had appeared in (3.3.32) were annihilated by

the action of Y . In fact, we only have a vector A2
µ and a scalar field v as off-shell degrees

of freedom in −1-picture.

The physical state conditions for the component fields are

kµ(kµA
2
ν(k) − kνA

2
µ(k)) = 0, (3.3.45)

v(k) = − i√
2
kµA2

µ(k).

When we act with the picture-raising operator X (3.1.6) on the vertex operator V (3.3.44)

of −1-picture to take it back to 0-picture, the resulting expression contains a divergent

piece:

X(z)V (w) =

∫
d10k

(2π)10

[
1

z − w

(√
2kµA2

µ(k) − 2iv(k)
)
c(w) +

i√
2
A2
µ(k)c∂X

µ(w)

+ A2
µ(k)ηe

φψµ(w) +
√

2k[µA
2
ν](k)cψ

µψν(w) + iv(k)∂c(w) (3.3.46)

+
(√

2kµA2
µ(k) − 2iv(k)

)
c∂φ(w) + O(z − w)

]
eikX(w).

However, this divergent contribution vanishes if the component fields satisfy the physical

conditions (3.3.45). Then, the resulting expression becomes∫
d10k

(2π)10

(
i√
2
A2
µ(k)c∂X

µ + A2
µ(k)ηe

φψµ +
√

2k[µA
2
ν](k)cψ

µψν +
1√
2
kµA2

µ(k)∂c

)
eikX(z),

which coincides with the 0-picture vertex (3.3.32) with the physical conditions (3.3.35)–

(3.3.38) imposed. Hence, we have explicitly seen that the massless vertex operators of −1-

picture and 0-picture can be mapped to each other by the picture-changing operations,

but that they are well-defined only on-shell.

about the chiral double-step inverse picture-changing operator Z

As mentioned before, the chiral operator Z(i) (3.3.3) poses some problematic features

when used as the picture-changing insertions. First note that the insertion of Z(i) breaks

the twist symmetry of the action. As in the bosonic case, the modified cubic superstring
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field theory action (3.3.5) restricted to the NS sector is invariant under the Z2 twist

transformation

|A〉 −→ Ω|A〉 = (−1)hA+1|A〉, (3.3.47)

if Y−2 is invariant under the action of Ĩ(z) = 1/z. Y−2 = Y (i)Y (−i) satisfies this

criterion, but Z(i) does not: Each term in (3.3.3) is a primary field of conformal weight

0, but the insertion point i is not invariant under Ĩ.11 Second, as opposed to the case

of Y (i)Y (−i), the Maxwell action (3.3.43) for the gauge field component is not obtained

from the action with Y−2 = Z(i) [104]. The third problem will be discussed in some

detail below.

non-perturbative vacuum?

We find that the state c1|0〉 has ghost number 1 and picture number 0, and lives in the

NS(+) sector. Hence this state should be included in the expansion of the NS(+) string

field A,

A =

∫
d10k

(2π)10

√
2u(k)ceikX + . . . , (3.3.48)

where a factor of
√

2 is merely a convention. Since the physical state condition QB|A〉 =

0 implies u(k) = 0, this state does not appear in the physical spectrum. Thus u is

an auxiliary field and does not correspond to any physical degree of freedom in the

perturbation theory. Nevertheless, as was claimed by Aref’eva, Medvedev and Zubarev

in [105], there may exist a non-perturbative vacuum in the potential for u. They applied

the level truncation method of ref.[33] to modified cubic superstring field theory with

the chiral picture-changing operator Y−2 = Z(i). Here we define the level number of a

component field to be h + 1, with h being the conformal weight of the vertex operator

associated to it. With this definition, the state c1|0〉 of lowest weight is at level 0. Then,

level (N,M) truncation means that the expansion of the string field contains only terms

with level up to N , and that the action contains interaction terms with total level up to

M . At level (0,0), the cubic self-interaction term u3 among the auxiliary field u does not

vanish,

〈Z(i) f
(3)
1 ◦ c(0) f

(3)
2 ◦ c(0) f

(3)
3 ◦ c(0)〉UHP =

81
√

3

64
, (3.3.49)

11In the same way, Witten’s cubic superstring field theory action (3.2.2) is also not twist-invariant
because of the presence of X(i) [101].
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so that the potential V for u takes the cubic form

V (u) ≡ − S

V10

= − 1

g2
o

(
u2 +

27
√

6

32
u3

)
, (3.3.50)

just like the tachyon potential in bosonic string field theory. Hence the potential has

a local minimum at u = −32
√

6
243

at the lowest level. It has been shown [105] that this

non-trivial vacuum survives after level 2 fields are included. They also argued that

the spacetime supersymmetry (3.3.15) was spontaneously broken in this vacuum, thus

providing a new mechanism for supersymmetry breaking. However, since we do not

expect ‘tachyon condensation’ to occur in the GSO-projected theory, i.e. on a BPS D-

brane, no physical interpretation can be given to this solution to our present knowledge.

What happens if we carry out the same analysis in modified cubic superstring field

theory with Y−2 = Y (i)Y (−i)? Now, at level (0,0) u3 interaction term vanishes, so the

potential becomes

V (u) = − 1

2g2
o

u2. (3.3.51)

This potential clearly has no non-trivial stationary point. Even if we proceed to level

(2,6), we detect no locally stable vacuum [4].12 From these results, we conclude that

there exists no non-perturbative vacuum to which the auxiliary field u condenses in the

cubic theory with Y−2 = Y (i)Y (−i). This is in agreement with the expectation that the

BPS D-brane is stable.

To summarize, the modified cubic theory with Z(i) and that with Y (i)Y (−i) predict

different answers to the problem of the condensation of u, and more plausible answer is

provided by the latter. Together with the problems mentioned before, we claim that the

modified cubic theory with the insertion Z(i) does not give a correct description of open

superstrings.

subtle problems with picture-changing insertions

By taking the NS string field in the 0-picture, serious divergence problems have been

avoided. However, the inverse picture-changing operators inserted at the quadratic vertex

now causes other subtle problems. Since Y (z) has a non-trivial kernel spanned by c(z)

12The GSO-projected action at level (2,6) can be obtained by setting all the GSO(−) components to
zero in the non–GSO-projected action (A.2.3).
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and γ2(z), the linearized equations of motion

Y (i)Y (−i)QB|A〉 = 0, Y (−i)QB |Ψ〉 = 0, (3.3.52)

do not coincide with the usual BRST-invariance conditions QB|A〉 = 0 and QB|Ψ〉 = 0,

though it gives rise to no difference at any finite level. It is possible to exclude the

kernel of Y from the allowed string field configuration space, but such an operation is

not consistent with the Witten’s midpoint gluing interaction. In particular, it breaks

the associativity of the ∗-product. The non-trivial kernel of Y also causes the problem

that the kinetic operator is not invertible even after fixing in the Feynman-Siegel gauge

b0|A〉 = b0|Ψ〉 = 0. To find a clue to the resolution of these problems, note that the

action is invariant under the transformations

δA = BNS, δΨ = BR (BNS, BR ∈ ker Y (−i)). (3.3.53)

If we regard them as extra ‘gauge symmetries’, the unnecessary physical states arising

from (3.3.52) can be gauged away. Moreover, it was argued in [106] that such gauge

degrees of freedom were necessary to gauge-fix the Ramond kinetic operator into the

‘Dirac operator’ G0 (zero mode of the supercurrent G(z)): This is achieved by imposing

the following two gauge-fixing conditions

b0|Ψ〉 = β0|Ψ〉 = 0 (3.3.54)

on the Ramond string field Ψ, but it turns out that we can accomplish only one of them if

we use the usual (linearized) gauge transformation δgΨ = QBχ alone. To guarantee the

gauge choice (3.3.54), we also need a new gauge symmetry δΨ = BR (3.3.53). However,

this prescription does not give an ultimate answer to the above problems because the NS-

R-R vertex in (3.3.5) is not invariant under δA = BNS with BNS ∈ ker Y (i). Therefore,

modified cubic superstring field theory is still subject to some skepticism as to whether

it gives a satisfactory field theoretical formulation of open superstring theory even at

the perturbative level. Nevertheless, in the next subsection we extend this theory to

include the GSO(−) sector and study whether it correctly describes the dynamics of

open superstrings on an unstable D-brane.

3.3.2 non–GSO-projected theory

To deal with a non-BPS D-brane, we must generalize the action (3.3.5) to include the

GSO(−) sector. If we restrict ourselves to the subspace of ghost number 1, the NS(−)

string field A− is Grassmann-even and contains states of half-integer–valued conformal
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weights, while the NS(+) string field A+ is Grassmann-odd and has integral weights.

Since A− has different Grassmannality from the NS(+) string field A+, it seems that

they fail to obey common algebraic relations. This problem can be resolved by attaching

the 2 × 2 internal Chan-Paton matrices to the string fields and the operator insertions

as [107, 29, 108]

Q̂B = QB ⊗ σ3, Ŷ−2 = Y−2 ⊗ σ3,

Â = A+ ⊗ σ3 + A− ⊗ iσ2. (3.3.55)

(We will discuss the R(−) sector afterward.) Henceforth the symbol ̂ will be used

to indicate that the operator contains a 2 × 2 internal Chan-Paton matrix in it, if not

mentioned otherwise. Due to the fact that A− has half-integer weights h−, A− changes

its sign under the conformal transformation R2π(z) = h−1(e2πih(z)) representing the 2π

rotation of the unit disk, namely

R2π ◦ A−(z) = (R′
2π(z))

h−A−(R2π(z)) = e2πih−A−(z) = −A−(z). (3.3.56)

This in particular means that an additional minus sign arises in the cyclicity relation,

〈〈Y−2|A−, B−〉〉 = −〈〈Y−2|B−, A−〉〉, (3.3.57)

〈〈Y−2|A−, B1 ∗B2〉〉 = −〈〈Y−2|B1, B2 ∗ A−〉〉. (3.3.58)

Then, the cubic superstring field theory action including both NS(±) string fields can

be written as [30, 108]

S =
1

2g2
o

Tr

[
1

2
〈〈Ŷ−2|Â, Q̂BÂ〉〉 +

1

3
〈〈Ŷ−2|Â, Â ∗ Â〉〉

]
(3.3.59)

=
1

g2
o

[
1

2
〈〈Y−2|A+, QBA+〉〉 +

1

3
〈〈Y−2|A+,A+ ∗ A+〉〉 (3.3.60)

+
1

2
〈〈Y−2|A−, QBA−〉〉 + 〈〈Y−2|A−,A+ ∗ A−〉〉

]
,

where the trace in (3.3.59) is taken over the space of the internal Chan-Paton matrices.

Note that the last two terms in (3.3.60) have sign ambiguities because of the square-

roots in the conformal factors

(I ′(z))h− , (f
(3)′
1 (0))h−, (f

(3)′
3 (0))h−.

The authors of [29] proposed a natural prescription to this problem in the case of the

disk representation of the string vertices, and showed how to translate it into the UHP
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representation:

If the conformal maps f
(n)
k defining the n-string vertex have the property that

all f
(n)
k (0) are real and satisfy f

(n)
1 (0) < f

(n)
2 (0) < . . . < f

(n)
n (0), (3.3.61)

then we should choose the positive sign for all (f
(n)′
k (0))1/2.

We follow this prescription and write down explicit expressions for the 2- and 3-string

vertices [4].

• For the 3-string vertex, the prescription (3.3.61) can immediately be applied be-

cause our definition (3.3.10) of f
(3)
k satisfies the condition

f
(3)
1 (0) = −

√
3 < f

(3)
2 (0) = 0 < f

(3)
3 (0) =

√
3.

Hence we take

(f
(3)′
1 (0))h− = (f

(3)′
3 (0))h− ≡

∣∣∣∣ (8

3

)h− ∣∣∣∣. (3.3.62)

• For the 2-string vertex, it turns out [4] that we should define

〈〈Y−2|A1, A2〉〉 = lim
z→0

〈Y (i)Y (−i) I ◦ A1(z) A2(z)〉UHP

= lim
z→0

〈
Y (i)Y (−i) A1(z) I

−1 ◦ A2(z)
〉

UHP
, (3.3.63)

with

(I ′(z))h = z−2h, ((I−1)′(z))h = e2πihz−2h. (3.3.64)

Notice that I2 ◦ Φ = R2π ◦ Φ = (−1)2hΦ.

R(−) sector, broken supersymmetry

Here we consider the R(−) sector. For the R sector string field of ghost number 1 we

assign the following Chan-Paton structure

Ψ̂ = Ψ+ ⊗ σ3 + Ψ− ⊗ iσ2, (3.3.65)

where the R(−) string field Ψ− is defined to be Grassmann-even. The cubic action is

now given by

S =
1

2g2
o

Tr

[
1

2
〈〈Ŷ−2|Â, Q̂BÂ〉〉 +

1

3
〈〈Ŷ−2|Â, Â ∗ Â〉〉

+
1

2
〈〈Ŷ |Ψ̂, Q̂BΨ̂〉〉 + 〈〈Ŷ |Â, Ψ̂ ∗ Ψ̂〉〉

]
, (3.3.66)
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with Ŷ = Y ⊗ σ3.

Let us look at the kinetic terms 〈〈Φ, QBΦ〉〉, with Φ denoting any one of A±,Ψ±. We

have suppressed the picture-changing operators in the above expression because they

play no rôle in the following argument. We find

〈〈Φ, QBΦ〉〉 = e2πihΦ〈〈QBΦ,Φ〉〉 = −(−1)|Φ|e2πihΦ〈〈Φ, QBΦ〉〉,

where the cyclicity relation and the third equation of (3.3.12) have been used. The above

equation implies that the kinetic term for Φ vanishes unless −(−1)|Φ|e2πihΦ = +1 is

satisfied. The GSO(+) fields A+,Ψ+ satisfy this condition because they are Grassmann-

odd (−1)|Φ| = −1 and have integer weights: In the Ramond sector the ground state

vertex operator ce−
φ
2Sα has an integer weight h = 0 and raising operators all have

integer modings. The NS(−) field A− also satisfies it because it is Grassmann-even

(−1)|A−| = +1 while it has half-integer weights: e2πihA− = −1. The R(−) field, on

the other hand, does not seem to meet the above requirement since Ψ− is Grassmann-

even whereas it has integer weights for the same reason as for the R(+) sector. This

poses a problem because if this is indeed the case we are led to the conclusion that

we cannot construct the kinetic term for the R(−) string field Ψ−. We show below a

piece of evidence that something should be wrong with the relation R2π ◦Ψ− = +Ψ− in

spite of the fact that Ψ− has integer weights. The operator product between an R(+)

vertex operator Ψ+(z) and an R(−) one Ψ−(w) is expanded as the sum of NS(−) vertex

operators Ai
−,

Ψ+(z)Ψ−(w) =
∑
i

(z − w)riA−(w) with ri ∈ Z +
1

2
. (3.3.67)

When we act on both sides of (3.3.67) with the 2π-rotation R2π(z) of the disk, the right

hand side changes its sign as R2π ◦Ai
− = −Ai

−, while Ψ+ remains unchanged. Then, for

the OPE (3.3.67) to be consistent, we must have

R2π ◦ Ψ− = −Ψ−, (3.3.68)

even though Ψ− has an integer weight. This has the effect of making the kientic term

for Ψ− non-vanishing. We will assume the transformation law (3.3.68), but we do not

understand the origin of the minus sign in it.

Since the non-BPS D-branes completely break the spacetime supersymmetry, we

expect that the action (3.3.66) is not supersymmetric. In fact, as pointed out by

Yoneya [109], the proof of the super-invariance of the action presented in the last sub-

section is not valid in the theory without GSO projection: Since the OPEs of cWα in
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eq.(3.3.31) with GSO(−) vertex operators contain square-root branch cuts, we cannot

claim [QB,W1/2] = 0 even if it is expressed as an integral of a total derivative. Rather, the

action of the supercharge (3.3.16) on GSO(−) string fields is not well-defined in the first

place. Therefore, we can at least say that the spacetime supersymmetry transformations,

even if they exist, are not generated by

δÂ = Ŵ1/2Ψ̂, δΨ̂ = Ŷ (i)Ŵ1/2Â, (3.3.69)

where Ŵ1/2 = W+
1/2 ⊗ I +W−

1/2 ⊗σ1, and W±
1/2 are constructed from the R-sector ground

state vertex operators of chirality ± in the same way as in (3.3.16).

component analysis

In the space of ghost number 1 and picture number 0, there are three negative-dimensional

operators c, γ, cψµ. Hence at low levels the NS string field is expanded as

|Â〉 = A(−1)
+ (0)|0〉 ⊗ σ3 + A(−1/2)

− (0)|0〉 ⊗ iσ2, (3.3.70)

A(−1)
+ (z) =

∫
d10k

(2π)10

√
2u(k)ceikX(z), (3.3.71)

A(−1/2)
− (z) =

∫
d10k

(2π)10

(
t(k)ηeφ + isµ(k)cψ

µ
)
eikX(z). (3.3.72)

Plugging (3.3.71)–(3.3.72) into the action (3.3.60), we get the component action for

u, t, sµ as

S =
1

g2
o

∫
d10k

(2π)10

1

2

(
u(−k)u(k) +

1

2
t(−k)t(k) +

1

2
sµ(−k)sµ(k) +

√
2ikµs

µ(−k)t(k)
)

+
1

g2
o

∫
d10k1d

10k2d
10k3

(2π)20
δ10(k1 + k2 + k3)

9
√

2

16
K−(k2

1+k2
2+k2

3)t(k1)u(k2)t(k3), (3.3.73)

where K = 3
√

3/4. The standard kinetic term for the physical tachyon field t is obtained

only after eliminating the auxiliary field sµ by its equation of motion

sµ(k) +
√

2ikµt(k) = 0. (3.3.74)

Substituting (3.3.74) back into (3.3.73) and Fourier-transforming it, we obtain

S =
1

g2
o

∫
d10x

[
1

2
u(x)2 − 1

2
(∂µt(x))

2 +
1

4
t(x)2 +

9
√

2

16
ũ(x)t̃(x)2

]
, (3.3.75)

where we have defined

ũ(x) = exp

(
ln

3
√

3

4
∂2

)
u(x), t̃(x) = exp

(
ln

3
√

3

4
∂2

)
t(x).
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Looking at the quadratic terms, we find that the physical tachyon field t has correct

kinetic and mass terms. On the other hand, the field u lacks its kinetic term, so that it

is an auxiliary field, as discussed before. Nevertheless u can have significant effects on

non-perturbative physics through the cubic interactions with other fields.

Note that if we substitute (3.3.74) into (3.3.72), the resulting vertex operator (ηeφ +√
2ckµψ

µ)eikX coincides with the one obtained by acting on the −1-picture vertex −ce−φeikX
with the picture-raising operator X (3.1.6).

tachyon condensation

Here we consider the problem of static and spatially homogeneous tachyon condensation

on a non-BPS D9-brane [30, 14, 4]. In the superstring case as well, similar conjectures

to the ones reviewed in section 2.2 have been made:

• When the tachyon condenses to the minimum of its potential, the D-brane(s) dis-

appears and the depth of the potential precisely cancels the tension of the original

D-brane system.

• There are no physical open string excitations around the tachyon vacuum.

• A BPS D(p − 1)-brane can be constructed as a tachyonic kink solution on a non-

BPS Dp-brane, whereas a tachyon vortex on a brane-antibrane pair is identified

with a BPS D-brane of codimension 2. This is known as ‘descent relations’.

In what follows we will examine the above conjectures in modified cubic superstring field

theory using the level truncation method. To this end, we expand the string field in a

basis of the Hilbert space. The Hilbert space we should consider here is the universal

subspace of ghost number 1 and picture number 0. States in this space are constructed by

acting Lm
n , G

m
r , bn, cn, βr, γr on the oscillator vacuum |Ω〉 = c1|0〉. This gives a consistent

truncation of the theory [32].

We assign level number hi + 1 to each component field φi, as before. Since the

physical tachyon field t under investigation is at level 1/2, we should start with the level

(1/2, 1) approximation instead of (0, 0). Let us first recall the mechanism of how the

expected tachyon potential of the double-well form can be reproduced from the cubic

action (3.3.60). The tachyon potential V ( 1
2
,1) at level (1

2
, 1) can be obtained by setting

u(x) and t(x) to constants in (3.3.75),

V ( 1
2
,1) ≡ −S

( 1
2
,1)

V10
=

1

g2
o

(
−1

2
u2 − 1

4
t2 − 9

√
2

16
ut2

)
. (3.3.76)
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We can get the effective potential for t by integrating out the auxiliary field u by its

equation of motion

u = −9
√

2

16
t2. (3.3.77)

The resulting effective tachyon potential becomes [30]

V
( 1
2
,1)

eff =
1

g2
o

(
−1

4
t2 +

81

256
t4
)
, (3.3.78)

whose profile is shown in Figure 3.1. In short, despite the absence of the quartic interac-
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Figure 3.1: The effective tachyon potential at level (1
2
, 1).

tion term in the action (3.3.60), the tachyon potential becomes of the double-well form

by integrating out an auxiliary field which sits at the level lower than the tachyon. To

compare the depth of the above potential with the tension τ̃9 of a non-BPS D9-brane,

we need a formula relating the open string coupling go to τ̃9. In our convention, it is

given by

τ̃9 =
1

2π2g2
o

. (3.3.79)

Then, the minimum value of the effective potential (3.3.78) can be evaluated as

V
( 1
2
,1)

eff

∣∣
min

= − 8

81
π2τ̃9 	 −0.975 τ̃9 at t = ±4

√
2

9
	 ±0.629. (3.3.80)

According to the Sen’s conjecture, the value of the tachyon potential at the minimum

should cancel the tension of the unstable D-brane, so V
(exact)
eff

∣∣
min

= −τ̃9. Hence we have
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found that about 97.5% of the expected value has already been reproduced at the lowest

level of approximation.

We now include fields of higher levels. As shown in [30], the modified cubic ac-

tion (3.3.60) is invariant under the Z2 twist transformation A± → ΩA±, where Ω acts

on each Ltot
0 -eigenstate as

Ω(A) =

{
(−1)hA+1A for NS(+) states (hA ∈ Z)

(−1)hA+ 1
2A for NS(−) states

(
hA ∈ Z + 1

2

) . (3.3.81)

Due to this twist symmetry, all the twist-odd fields (e.g. fields at levels 1 and 3
2
) can

be set to zero without contradicting the equations of motion.13 Therefore we should

consider the level-2 fields at the next step.

At level 2, we have 9 independent component fields in the universal basis,

A(1)
+ = v1∂

2c+ v2cT
m + v3c : ∂ξη : +v4cT

φ + v5c∂
2φ (3.3.82)

+ v6ηe
φGm + v7 : bc∂c : +v8∂c∂φ + v9bη∂ηe

2φ.

Note that the reality condition [4]

A+(z)† = I ◦ A+(−z∗) (3.3.83)

requires the component fields vi to be real. Substituting A+ =
√

2u c + A(1)
+ and A− =

t ηeφ into (3.3.60), we have computed the tachyon potential up to level (2,6), whose

explicit expression is shown in Appendix A.2. At this level, we have the following gauge

degrees of freedom

Λ
(1)
+ = λ1 : bc : +λ2∂φ. (3.3.84)

Now we try a few gauge-fixing conditions [4].

• The Feynman-Siegel gauge condition b0A± = 0 implies v7 = v8 = 0 in eq.(3.3.82).

By extremizing the potential (A.2.1) under the conditions v7 = v8 = 0, we have

found the tachyon vacuum solution with the potential depth

V (2,4)
∣∣
min

= −1.08273 τ̃9, V (2,6)
∣∣
min

= −0.999584 τ̃9,

at levels (2,4) and (2,6), respectively. The effective tachyon potential at each level

is shown in Figure 3.2. Though the minimum value calculated at level (2,6) is

surprisingly close to the expected value, it should just be a coincidence because

it is not clear at all even whether the minimum value of the potential is really

converging or not.
13Note that the tachyon t and the auxiliary scalar u are twist-even.
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Figure 3.2: The effective tachyon potential in the Feynman-Siegel gauge at level (1
2
, 1)

(dashed line), level (2,4) (dotted line) and level (2,6) (solid line). The dashed straight
line indicates the expected depth of −1. At level (2,6) the branch ends at t 	 ±0.691.

• In [30, 110] Aref’eva, Belov, Koshelev and Medvedev proposed a gauge choice

3v2 − 3v4 + 2v5 = 0 with the constraint v9 = 0. In this gauge (which we call

‘ABKM gauge’), the depth of the tachyon potential is found to be

V (2,4)
∣∣
min

= V (2,6)
∣∣
min

= −1.05474 τ̃9.

• Without any gauge-fixing conditions, the effective tachyon potential takes the form

shown in Figure 3.3. Although the potential depth may seem to be reasonable,

it is doubtful whether the effective tachyon potential without gauge-fixing really

converges or not.

The above results are summarized in Table 3.2.

level Feynman-Siegel gauge ABKM gauge gauge unfixed

(1
2
, 1) −0.974776

(2,4) −1.08273 −1.05474 −1.08791
(2,6) −0.999584 −0.937313

Table 3.2: The depth of the tachyon potential calculated in a few gauges (normalized by
the non-BPS D9-brane tension).

The tachyon potential at level (5
2
, 5) in the Feynman-Siegel gauge has been calculated

by Raeymaekers [14]. Although a candidate solution exists, it may not be considered
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Figure 3.3: The gauge-unfixed effective tachyon potential at level (1
2
, 1) (dashed line),

level (2,4) (chain line) and level (2,6) (solid line).

as the correct tachyon vacuum solution because it is not connected to the perturbative

vacuum t = 0 by a single branch. Therefore, it would be fair to say that it has not yet

been established whether modified cubic superstring field theory describes the tachyon

condensation correctly.

By applying the method of [35] to this cubic superstring case, the authors of [15]

found that the coefficient of the kinetic term for the tachyon field t(x) nearly vanishes

around the tachyon vacuum at level (1
2
, 1) . This result suggests that the tachyon field

becomes non-dynamical and disappears from the physical spectrum after the tachyon

condensation, in agreement with the Sen’s conjecture.

kink solutions

We turn our attention to space-dependent solitonic solutions in modified cubic super-

string field theory.14 We use the modified level truncation method, which was invented

by Moeller, Sen and Zwiebach [40] for bosonic string field theory, to construct a tachy-

onic kink solution on a non-BPS D9-brane. Here we consider a field configuration which

depends only on one spatial direction tangential to the non-BPS D-brane, say x ≡ x9.

We modify the definition of level as15

level(Φ) = h+ 1 = p2 + hN + 1, (3.3.85)

14The results shown here originally appeared in our paper [4].
15p denotes the momentum of the state |Φ〉, and hN is the contribution from the oscillator modes

only.
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namely we include the contribution from the momentum mode in the (modified) level.

The advantage of this method is that, by compactifying the x-direction on a circle of

radius R, the momentum is discretized as p = n/R so that the total number of degrees of

freedom can be kept finite at any finite level, even after including the non-zero momentum

modes.

On a circle of radius R, the tachyon field is Fourier-expanded as

t(x) =
∑
n

tne
i n

R
x. (3.3.86)

The reality condition t(x)∗ = t(x) on the tachyon field implies

t∗n = t−n. (3.3.87)

Since the tachyon potential on a non-BPS D-brane has two degenerate minima, we expect

that there exists a kink solution interpolating between them. As explained in the next

paragraph, we impose the antiperiodic boundary condition on the GSO(−) tachyon field

t(x),

t(x+ 2πR) = −t(x), (3.3.88)

which means that the discrete momentum n takes value in Z + 1
2
. For simplicity, we

consider a field configuration which is odd in x,

t(x) = −t(−x) −→ t−n = −tn. (3.3.89)

From eqs.(3.3.87) and (3.3.89), we find that every tn is purely imaginary, hence we set

tn = −t−n =
1

2i
τn (3.3.90)

with real τn. So t(x) is expanded as

t(x) =
∑

n∈�+ 1
2

tne
i n

R
x =

∑
n∈�++ 1

2

τn sin
n

R
x, (3.3.91)

where Z
+ stands for the set of positive integers.

Here we discuss the boundary conditions of the component fields. Let us recall

that the non-BPS Dp-brane and various fields on it are obtained by modding out the

coincident Dp-brane–anti-Dp-brane system by the action of (−1)FL [10, 11]. In this

setting, the GSO(−) states come from the p-p̄ strings stretching between the D-brane

and the anti-D-brane, while the GSO(+) states come from p-p or p̄-p̄ strings. If we
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turn on a Z2 Wilson line on one of the two branes along the x-direction, the boundary

condition of the states arising from the p-p̄ strings, which are in the bifundamental

representation of the gauge group U(1) × U(1), is flipped. On the other hand, since the

GSO(+) states are neutral under the gauge group, their boundary conditions are not

affected by the Z2 Wilson line. Modding out by (−1)FL , we find that GSO(+) states and

GSO(−) states on a non-BPS Dp-brane satisfy the periodic and antiperiodic boundary

conditions, respectively, in the presence of the Z2 Wilson line.

From the above considerations, we expand the scalar fields u and t as

u(x) = u0 + 2
∑
n∈�+

un cos
n

R
x, t(x) =

∑
r∈�++ 1

2

τr sin
n

R
x, (3.3.92)

and substitute them into the action (3.3.75). By extremizing it with respect to {un, τr},
we have found kink solutions. We truncate at level (4

3
, 19

6
) for R =

√
3 and at level

(67
36
, 25

6
) for R = 3. From the tachyon profile t(x) shown in Figure 3.4, we see that the

tachyon field correctly approaches one of the tachyon vacua in the asymptotic regions.
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Figure 3.4: Kink solutions at R =
√

3 (left) and at R = 3 (right).

The next step is to calculate the tension of the kink solution. We define

f(Â) ≡ − 1

(2πRV9)τ̃9
S(Â) = − π

RV9
g2
oS(Â), (3.3.93)

where V9 is the volume of the non-BPS D9-brane transverse to x. Since the additive

normalization of the string field theory action (3.3.60) is fixed by S(0) = 0, the Sen’s

conjecture about the brane annihilation is stated as f(Â0) = −1, where Â0 denotes

the tachyon vacuum configuration. In order to calculate the kink tension, we should

add a constant term representing the D-brane tension such that the energy density at

the bottom of the potential vanishes. At level (1
2
, 1), this can be done by shifting f(Â)

52



by f ( 1
2
,1)(Â0) 	 −0.974776. Then the energy density T8 of the kink solution can be

evaluated as

V9T8 = −2πRV9τ̃9

(
f(Â0) − f(Âkink)

)
. (3.3.94)

Since a tachyonic kink configuration on a non-BPS D9-brane is to be identified with a

BPS D8-brane with tension τ8 = 2πτ̃9/
√

2, we calculate the ratio

r ≡ T8

τ8
=

√
2T8

2πτ̃9
=

√
2R
(
f(Âkink) − f(Â0)

)
. (3.3.95)

We have obtained the results

r = 1.01499 for R =
√

3, (3.3.96)

r = 1.01441 for R = 3.

Although we again regard these close agreements as accidental, these results suggest that

the modified cubic superstring field theory truncated to low levels gives a quantitatively

correct description of the space-dependent tachyon condensation.

time-dependent solution

From the definition of the modified level, it is difficult to apply the modified level trun-

cation scheme to the study of time-dependent solutions, because the level number is

not bounded below if we allow large time-like momenta k2 < 0. Instead, Aref’eva,

Joukovskaya and Koshelev [111] (see also [91]) constructed a time-dependent solution by

solving the equations of motion

e−(2 lnK)�ũ+
9
√

2

16
t̃2 = 0,(

� +
1

2

)
e−(2 lnK)�t̃+

9
√

2

8
ũt̃ = 0, (3.3.97)

derived from the action (3.3.75). These equations can be solved numerically by rewriting

them as integral equations, as was done in section 2.4. In addition to the space-dependent

kink solutions constructed above, we also expect a kink solution to exist which interpo-

lates between the degenerate vacua in the time-like direction. We can in fact construct

such a solution (see Figure 3.5), and it has also been shown in [111] that, if we add to

the action (3.3.75) a constant term − 8
81
π2τ̃9 representing the non-BPS D9-brane tension,

then the pressure associated with this solution vanishes at late times, while its energy

density is conserved.
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Figure 3.5: A time-dependent solution in modified cubic superstring field theory. The
dashed lines indicate the tilded fields (t̃, ũ), while the solid lines show the profiles of t
and u fields themselves.

Let us comment on the relation of the above solution with the space-like D-brane or

S-brane, introduced in [112]. There, the S-brane in string theory was defined in such

a way that the finely tuned incoming closed string radiation pushes the tachyon to the

top of its potential, and then the tachyon rolls down the potential to the opposite side,

dissipating the energy as the outgoing closed string radiation. In this process, the tachyon

field forms a kink profile in the time direction. It was also argued that the S-brane can

be identified with the SD-brane which is obtained by imposing on the open strings the

Dirichlet boundary condition in the time-like direction. Although the solution found in

the last paragraph looks qualitatively similar to this S-brane solution, they should be

distinct in that the solution of cubic open superstring field theory interpolates between

two closed string vacua, whereas in the case of an S-brane it is assumed that there exist

incoming and outgoing closed string radiations in the infinite past and the future. In spite

of the absence of the closed string radiation, the total energy of the cubic superstring field

theory solution is indeed conserved because the kinetic energy of the theory including

higher derivatives is not positive-definite so that the energy needed for the tachyon to

climb up the potential is compensated for by the negative contribution from the kinetic

energy. A similar phenomenon takes place in the ever-growing oscillations found in open

string field theory and p-adic string theory [81].
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3.4 Berkovits’ WZW-like Superstring Field Theory

3.4.1 Non-polynomial action

In [113] Berkovits proposed a new formulation of superstring field theory, whose struc-

ture is completely different from the cubic theories. In this theory, the behavior of the

open string field Φ̂ on a non-BPS D-brane is described by the Wess-Zumino-Witten–like

action16

S =
1

4g2
o

Tr

〈〈(
e−
�ΦQ̂Be

�Φ
)(

e−
�Φη̂0e

�Φ
)

−
∫ 1

0

dt
(
e−t

�Φ∂tet
�Φ
){(

e−t
�ΦQ̂Be

t�Φ
)
,
(
e−t

�Φη̂0e
t�Φ
)}〉〉

, (3.4.1)

with the understanding that the symbol ∗ for the star-product between the string fields

is suppressed. The string field is defined to have ghost number 0 and picture number 0,

and has the following internal Chan-Paton structure17

Φ̂ = Φ+ ⊗ I + Φ− ⊗ σ1. (3.4.3)

A notable feature of this theory is that the string field lives in the “large” Hilbert space

including ξ0. For explicit calculations, it is useful to expand the action (3.4.1) in a formal

power series in Φ̂. It can be arranged as

S =
1

2g2
o

∞∑
M,N=0

(−1)N

(M +N + 2)!

(
M +N

N

)
Tr

〈〈(
Q̂BΦ̂

)
Φ̂M

(
η̂0Φ̂

)
Φ̂N

〉〉
(3.4.4)

thanks to the cyclicity of the bracket,

Tr〈〈Â1 . . . Ân−1Φ̂〉〉 = Tr〈〈Φ̂Â1 . . . Ân−1〉〉,
Tr〈〈Â1 . . . Ân−1(Q̂BΦ̂)〉〉 = −Tr〈〈(Q̂BΦ̂)Â1 . . . Ân−1〉〉, (3.4.5)

Tr〈〈Â1 . . . Ân−1(η̂0Φ̂)〉〉 = −Tr〈〈(η̂0Φ̂)Â1 . . . Ân−1〉〉.

Clearly, the action (3.4.4) is non-polynomial in Φ̂. The BRST charge Q̂B = QB⊗σ3 and

η̂0 = η0 ⊗ σ3 satisfy the anticommutation relations

{Q̂B, η̂0} = 0, (Q̂B)2 = (η̂0)
2 = 0, (3.4.6)

16For more details about Berkovits’ superstring field theory, see [113, 114, 29], [6, 115, 13, 14] and
references therein.

17Generally, we take

Â = A+ ⊗ σ3 + A− ⊗ iσ2 for #gh(Â) odd

Â = A+ ⊗ I + A− ⊗ σ1 for #gh(Â) even, (3.4.2)

The difference in the Chan-Paton structures comes from the consistency of the ∗-product [13, 3].

55



and the Leibniz rules

Q̂B(Φ̂1Φ̂2) = (Q̂BΦ̂1)Φ̂2 + (−1)#gh(�Φ1)Φ̂1(Q̂BΦ̂2),

η̂0(Φ̂1Φ̂2) = (η̂0Φ̂1)Φ̂2 + (−1)#gh(�Φ1)Φ̂1(η̂0Φ̂2). (3.4.7)

The bracket 〈〈· · ·〉〉 is defined as

〈〈Â1 . . . Ân〉〉 = 〈g(n)
1 ◦ Â1(0) · · · g(n)

n ◦ Ân(0)〉disk, (3.4.8)

with

g
(n)
k (z) = e

2πi
n

(k−1)

(
1 + iz

1 − iz

) 2
n

, (1 ≤ k ≤ n). (3.4.9)

We should keep in mind that the correlator is evaluated in the “large” Hilbert space.

The disk correlation function is normalized as〈
ξ
1

2
c∂c∂2ce−2φeikX

〉
disk

= (2π)10δ10(k). (3.4.10)

The sign ambiguities arising in the conformal transformation g ◦ ϕ(0) = (g′(0))hϕ(g(0))

are fixed as [29]

g
(n)
k ◦ ϕ(0) =

∣∣∣∣ ( 4

n

)h ∣∣∣∣ e2πih( k−1
n

+ 1
4
)ϕ(g

(n)
k (0)). (3.4.11)

With these definitions, we find

〈〈Q̂B(. . . )〉〉 = 〈〈η̂0(. . . )〉〉 = 0. (3.4.12)

The equation of motion becomes

η̂0

(
e−
�ΦQ̂Be

�Φ
)

= 0. (3.4.13)

The action (3.4.1) is invariant under the gauge transformation

δge
�Φ =

(
Q̂BΛ̂1

)
e
�Φ + e

�Φ
(
η̂0Λ̂2

)
, (3.4.14)

with the gauge parameters of ghost number −1,

Λ̂i = Λi,+ ⊗ σ3 + Λi,− ⊗ iσ2 (i = 1, 2). (3.4.15)

As can be seen from the above expressions, this theory is formulated without us-

ing the picture-changing operators which have been the sources for difficulties of cubic

superstring field theories.
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R sector

It is possible to write down the equations of motion including both the NS and R string

fields (Φ,Ψ, respectively) of ghost number 0 in the “large” Hilbert space [116]:

η0

(
e−ΦQBe

Φ
)

= −(η0Ψ)2, QB(eΦ(η0Ψ)e−Φ) = 0, (3.4.16)

where Φ and Ψ are chosen to carry picture number 0 and 1
2
. However, it is difficult

to construct a non-vanishing action which reproduces the equations of motion (3.4.16)

without introducing the picture-changing operators. Especially, it seems impossible to

construct the Ramond kinetic term, because a natural candidate 〈ΨQBη0Ψ〉 vanishes

unless Ψ has picture number 0, which never happens for the Ramond sector. Berkovits

argued in [116] that the Ramond string field should be split into two parts Ψ,Ψ such

that Ψ has picture number +1
2

while Ψ carries picture −1
2
, then 〈ΨQBη0Ψ〉 can be

non-vanishing. He also constructed two different versions of the open superstring field

theory action using these three string fields (Φ,Ψ,Ψ). However, the splitting of the

ten-dimensional 16-component Majorana-Weyl spinor into two parts means that it is

impossible to keep the ten-dimensional Lorentz covariance manifestly. We leave further

details to the reference [116].

3.4.2 Tachyon potential

The tachyon potential in Berkovits’ superstring field theory has been calculated in [107,

29, 117, 118, 13]. As usual, we can restrict the string field to being in the universal

subspace which is obtained by acting on the oscillator vacuum |Ω〉 = ξce−φ(0)|0〉 with

the matter super-Virasoro generators Gm
r , L

m
n and the ghost oscillators bn, cn, βr, γr. We

define the level of a component field to be (h+ 1
2
) such that the tachyon field is at level

0.

We can further truncate the string field by exploiting a Z2 twist symmetry. The

action (3.4.4) is invariant under the following twist transformation [29]

Ω(Φ) =

{
(−1)hΦ+1Φ for NS(+) states (hΦ ∈ Z)

(−1)hΦ+ 1
2 Φ for NS(−) states

(
hΦ ∈ Z + 1

2

) . (3.4.17)

In the following we will keep only twist-even fields at levels 0, 3
2
, 2, 7

2
, 4, 11

2
, . . . . Let us

turn to the gauge fixing. Using the linearized gauge degrees of freedom

δΦ̂ = Q̂BΛ̂1 + η̂0Λ̂2, (3.4.18)

we can impose the following gauge conditions on the string field,

b0|Φ〉 = ξ0|Φ〉 = 0. (3.4.19)
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We proceed by assuming that the gauge conditions (3.4.19) are valid even non-perturbatively

in constructing classical solutions, though their validity has been shown only at the lin-

earized level. From these considerations, we expand the string field as as18

|Φ̂〉 = t|Ω〉 ⊗ σ1 + (ac−1β−1/2 + eb−1γ−1/2 + fGm
−3/2)|Ω〉 ⊗ I + . . . . (3.4.20)

Incidentally, thanks to the second gauge condition of (3.4.19), we find that the string

field Φ̂ in this theory and the string field A of −1-picture and ghost number 1, which

was used in Witten’s cubic superstring field theory, are in one-to-one correspondence

through the relation Φ = ξ0A.

Let us calculate the tachyon potential in the level truncation scheme. Though the

action (3.4.4) is non-polynomial, only a finite number of terms contribute to the action

at a given finite level [29]. The tachyon potential at level (0,0) approximation is

f(t) ≡ − S

V10τ̃9
= π2

(
−t

2

2
+ t4

)
, (3.4.21)

where we have used the relation [29]

τ̃9 =
1

2π2g2
o

. (3.4.22)

The potential (3.4.21) has two degenerate minima at t = ±t0 = ±1

2
and the minimum

value is

f(±t0) = −π
2

16
	 −0.617. (3.4.23)

Unlike the modified cubic theory, the t4 term has come from the Φ̂4 interaction term

in (3.4.4).

The computations of the tachyon potential have been extended to higher levels. The

minimum value of the potential at each level is summarized in Table 3.3.19 The best result

at present is due to De Smet [13]. These results seem to indicate that the depth of the

tachyon potential monotonically approaches the expected value of −1 as the truncation

level is increased. This behavior is similar to the bosonic case, though it converges

less rapidly here. [34, 28] The form of the effective potential at low levels is shown in

Figure 3.6. The fluctuation spectrum around the tachyon vacuum solution in this theory

has not been analyzed so far.

18Its vertex operator representation will appear in (4.2.14).
19We used the result of [117] at level (2,4), while a different result was reported in [118].
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level minimum

(0,0) −0.617
(3

2
, 3) −0.854

(2,4) −0.891
(7

2
, 7) −0.938

(4,8) −0.944

Table 3.3: The minimum value of the potential normalized by the non-BPS D9-brane
tension.
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Figure 3.6: The effective tachyon potential at level (0,0) (dashed line) and (3
2
, 3) (solid

line).
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3.4.3 Space-dependent solutions

We use the modified level truncation method outlined in the last section to construct

spatially inhomogeneous solutions on a non-BPS D-brane in Berkovits’ superstring field

theory. We denote by M the 9-dimensional manifold transverse to x, and decompose

the matter super-Virasoro generators as

Lm
n = LXn + LM

n , Gm
r = GX

r +GM
r . (3.4.24)

Due to the twist symmetry (3.4.17), component fields at levels 1
2

and 1 need not acquire

non-vanishing expectation values. Then the string field Φ̂ = Φ+⊗I+Φ−⊗σ1 is expanded

as

Φ− = T =
∑
r

tr ξce
−φei

r
R
X , (3.4.25)

Φ+ = E + A+G + F +H + J,

up to level 3
2
, where

E =
∑
n

en ξηe
i n

R
X , A =

∑
n

an ξ∂ξc∂
2ce−2φei

n
R
X ,

G =
∑
n

gn ξc(∂e
−φ)ψXei

n
R
X , F =

∑
n

fn ξce
−φGMei

n
R
X , (3.4.26)

H =
∑
n

hn ξce
−φ(∂ψX)ei

n
R
X , J = i

∑
n

jn ξce
−φψX∂Xei

n
R
X .

kink solution

As in the previous section, we impose the antiperiodic boundary condition on the GSO(−)

tachyon field. In terms of the expansion mode, r in eq.(3.4.25) takes value in Z + 1
2
. At

the purely tachyonic level (i.e. when we consider T only), we have found a solution shown

in Figure 3.7. The tachyon field correctly approaches the vacuum values in the asymp-

totic region automatically. The energy density of this solution relative to the D8-brane

tension is calculated to be r 	 0.640.

We proceed to the next level. For R =
√

77/6 the first harmonics (|n| = 1 modes)

of (3.4.26) are at level

3

2
+

1

R2
=

243

154
,

which coincides with the level number of the |n| = 9/2 modes of the tachyon field. Trun-

cating the string field and the action at level
(

243
154
, 243

77

)
, we have found a kink solution.
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Figure 3.7: The solid line shows a plot of t(x) found at the purely tachyonic level. The
dashed lines indicate the vacuum expectation values ±t = ±0.5 of the potential minima
at level (0,0).
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Figure 3.8: The plot of t(x) found at level
(

243
154
, 243

77

)
(solid line). The dashed lines indicate

the vacuum expectation values ±t = ±0.58882 of the tachyon field at the minima of the
level

(
3
2
, 3
)

tachyon potential.
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The profile of the tachyon field in this solution is plotted in Figure 3.8. The tension of

the kink solution can be calculated by the formula

r ≡ T8

τ8
=

√
2R
(
f(Φ̂kink) − f(Φ̂0)

)
. (3.4.27)

where the depth of the tachyon potential at level
(

3
2
, 3
)

is f( 3
2
,3)(Φ0) 	 −0.854 [29]. We

have found r 	 0.949, which is considerably better than the result obtained at level (0,0).

So far, we have seen the energetic aspect of the brane descent relation. However, in

order to prove that the kink solution on a non-BPS D9-brane can really be identified

with a BPS D8-brane, we should further show that the fluctuation spectrum arising

around the kink solution agrees with the known spectrum of a BPS D8-brane. Here a

question arises: The spectrum of a BPS D-brane consists of GSO-projected open string

states only, whereas that of a non-BPS D-brane contains both GSO(±) states. When is

the GSO-projection performed? It is possible that, even if the string field itself is not

GSO-projected, the new BRST cohomology arising around the kink solution contains

the GSO-projected states only. However, it seems to contradict the assumption that the

dynamics of a BPS D-brane is described by the GSO-projected open string field theory

even at the off-shell and non-perturbative level. Furthermore, it is not known how to

recover the ten-dimensional N = 1 spacetime supersymmetry on the kink.

kink-antikink pair

We have also tried to construct a solution which is even in x and satisfies the periodic

boundary condition. t(x) = t(−x) combined with the reality condition (3.3.87) implies

tn = t−n = t∗n ≡ τn. (3.4.28)

The tachyon profile is now given by

t(x) =
∑
n∈�

tne
i n

R
x = τ0 + 2

∑
n∈�+

τn cos
n

R
x. (3.4.29)

Since the resulting configuration is expected to represent a brane-antibrane pair, we

should now calculate

r ≡ T8

2 × τ8
=

R√
2

(
f(Φ̂kink-antikink) − f(Φ̂0)

)
. (3.4.30)

For R = 4 and at the purely tachyonic level, we get a solution whose energy density is

r 	 0.639. The level
(

25
16
, 25

8

)
approximation gives us a solution shown in Figure 3.9. We
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Figure 3.9: The plot of t(x) found at level
(

25
16
, 25

8

)
(solid line).

see that a kink and an antikink are created at diametrically opposite points of the circle

in the compactified x-direction. The tension of this solution can be calculated using the

formula (3.4.30), and is found to be r 	 0.988. This close agreement strongly suggests

that the kink-antikink solution found above indeed corresponds to the brane-antibrane

system.

3.5 Possible Relation between Non-Polynomial and

Modified Cubic Theories

Having seen two potentially valid formulations of open superstring field theory, we now

want to ask: is there some relationship between them, or are these theories completely

unrelated? To answer this question, let us consider the specific combination Â(Φ̂) ≡
e−�ΦQ̂Be

�Φ of the NS string field Φ̂ in the non-polynomial theory. Since Φ̂ has vanishing

ghost and picture numbers, we find that

Â has ghost number 1 and picture number 0. (3.5.1)

In terms of Â(Φ̂), the equation of motion (3.4.13) is written as

η̂0(Â) = 0. (3.5.2)

In addition, Â(Φ̂) satisfies by definition

Q̂BÂ + Â ∗ Â = 0, (3.5.3)

because Q̂B is a nilpotent derivation and annihilates the identity string field I ⊗ I =

e−�Φ ∗ e�Φ. On the other hand, in modified cubic superstring field theory the NS string
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field Â is defined to have

ghost number 1 and picture number 0. (3.5.4)

Since the cubic theory is formulated within the “small” Hilbert space, Â must not contain

the zero mode of ξ. In other words, it must satisfy

η̂0(Â) = 0. (3.5.5)

The equation of motion in the cubic theory is, up to the kernel of Y−2,

Q̂BÂ + Â ∗ Â = 0. (3.5.6)

Comparing eqs.(3.5.1)–(3.5.3) with eqs.(3.5.4)–(3.5.6), we find that the sets of equations

coincide with each other. It immediately follows from this fact that, if we have a solution

Φ̂0 in non-polynomial theory, then we can use it to construct a solution Â0 in modified

cubic theory as

Â0 = Â(Φ̂0) ≡ e−
�Φ0Q̂Be

�Φ0 . (3.5.7)

Furthermore, we can show that the physical interpretations these solutions Φ̂0, Â0 have

in respective theories are the same. First note that, when we expand the string field Â
around a classical solution Â0 in cubic theory, the action for the fluctuation field Â−Â0

takes the same cubic form as the original one, but with a different kinetic operator

Q̂′
cubicX̂ = Q̂BX̂ + Â0 ∗ X̂ − (−1)#gh( �X)X̂ ∗ Â0.

(This issue will be discussed in some detail in subsection 4.1.1.) In the non-polynomial

theory as well, if we expand the string field as e
�Φ = e

�Φ0e
�φ around a classical solution Φ̂0,

then only the form of the kinetic operator changes into [119, 120]

Q̂′
non-polyX̂ = Q̂BX̂ + Â(Φ̂0) ∗ X̂ − (−1)#gh( �X)X̂ ∗ Â(Φ̂0).

Since in both cases nothing other than the kinetic operator has been changed in the

action, the properties of the solution should be encoded in the form of the kinetic operator

around it. If we assume that the solutions Â0 and Φ̂0 are related through (3.5.7), we

find that the above kinetic operators Q̂′
cubic, Q̂

′
non-poly agree with each other, which implies

that also the solutions Â0 and Φ̂0 themselves are physically the same. From this physical

consideration, we expect that there is a one-to-one correspondence between the solutions

of Berkovits’ non-polynomial theory and those of modified cubic theory, though we do

not give a mathematical proof of it.
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We remark here that, even if Â0 can be written in the form e−�Φ0Q̂Be
�Φ0 , it does

not immediately follow that this Â0 is pure-gauge in cubic theory. This is because

in Berkovits’ formulation we can seek an appropriate configuration Φ̂0 in the “large”

Hilbert space, whereas to make an assertion that Â0 is pure-gauge in cubic theory we

must find a suitable gauge parameter Λ̂ satisfying Â0 = e−�ΛQ̂Be
�Λ within the “small”

Hilbert space. Conversely, let us suppose that we have a pure-gauge configuration Â0

in the cubic theory. Then there exists a gauge parameter Λ̂ which has ghost number

0 and satisfies Â0 = e−�ΛQ̂Be
�Λ and η̂0Λ̂ = 0. If we regard this Λ̂ as a string field in

Berkovits’ non-polynomial theory, such a configuration (i.e. annihilated by η̂0) turns

out to be pure-gauge (see section 4.2). So the story is quite consistent in the sense that

a pure-gauge configuration in one theory is mapped under (3.5.7) to some pure-gauge

configuration in the other theory.20

In the study of tachyon condensation in modified cubic superstring field theory, we

have found the following unusual features:

(i) the potential depth and the kink tension are very close to the expected values

already at the lowest level
(

1
2
, 1
)
,

(ii) the vacuum energy does not seem to improve regularly as the truncation level is

increased,

(iii) the tachyon vacuum is not reached in the Feynman-Siegel gauge at level
(

5
2
, 5
)

[14].

These are in contrast with the results obtained in bosonic string field theory and in

Berkovits’ superstring field theory. We consider these behaviors should be attributed to

the unconventional choice (0-picture) of field variables. Given the correspondence Â0 =

e−�Φ0Q̂Be
�Φ0 , the low-lying fields in Â0 would receive contributions from various higher

modes in Φ̂0, because the ∗-product mixes fields of different levels. Furthermore, since

b0 is not a derivation of the ∗-algebra, a Siegel gauge solution in Berkovits’ theory does

not map to a Siegel gauge solution in modified cubic theory. Given that the Siegel gauge

solution for the tachyon vacuum shows the ‘regular’ behavior in Berkovits’ theory [13],

the above consideration may give a possible explanation for all the strange behaviors

(i)–(iii) of modified cubic theory.

So far, we have argued that there may be a relationship between the modified cubic

and Berkovits’ non-polynomial theories in the space of classical solutions (namely, on-

shell). Our next question is to what extent this relation can be extended to the off-shell

20More generally, we can show that two gauge-equivalent string field configurations in non-polynomial
theory are mapped to two gauge-equivalent configurations in cubic theory, and vice versa.
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region. As mentioned before, the modified cubic theory based on the 0-picture formalism

has a larger set of off-shell fields than the theories in −1-picture, though the on-shell

degrees of freedom (in a perturbative sense) are in one-to-one correspondence. Since

the natural Fock vacuum c1e
−φ(0)|0〉 annihilated by all the positively moded oscillators

carries picture number −1, let us suppose that the correct off-shell degrees of freedom

are those in the −1-picture. It then follows that we must eliminate extra auxiliary fields

in advance by their equations of motion to get a correct off-shell theory from modified

cubic superstring field theory. In fact, we have already seen that the correct Maxwell

action and the tachyon potential can be obtained only after integrating out some of the

auxiliary fields. Of course, such a manipulation makes the action take a complicated

form which would no longer be cubic. This leads us to conjecture that the redundant set

of field variables allows the action to take a simple cubic form. This simplicity makes it

possible that the symmetries of the theory become more transparent in modified cubic

theory. For example, the spacetime supersymmetry is seen only in the cubic formulation,

and the cubic action can be written down in a Lorentz-covariant way with the aid of the

picture-changing operators.

On the other hand, at the price of having a slightly complicated action, Berkovits’

theory is liberated from the difficulties caused by the picture-changing operators. More-

over, off-shell degrees of freedom in this theory correspond in a one-to-one manner to

those of −1-picture if we choose a partial gauge ξ0|Φ〉 = 0. We then guess that Berkovits’

theory and the ‘reduced’ 0-picture theory, which is obtained from modified cubic super-

string field theory by integrating out the extra auxiliary fields, might somehow be related

off-shell, though we can give no compelling argument for this speculation.
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Chapter 4

Towards Supersymmetric Extension
of Vacuum String Field Theory

In this chapter we attempt to extend the ideas of VSFT to the supersymmetric case.

We are motivated by the fact that in the superstring case there are some features that

are not present in bosonic string theory. First, in type II superstring theories, there

are two kinds of D-branes: stable BPS D-branes and unstable non-BPS D-branes [11].

Because of the qualitative difference between these two families, it should be a challenging

problem to reproduce them correctly from vacuum superstring field theory. Furthermore,

we would like to understand the spacetime supersymmetry restored around the tachyon

vacuum. After the decay of the non-supersymmetric brane systems through the tachyon

condensation, it is believed that the true vacuum for the type II closed superstrings is

left behind, where d = 10,N = 2 spacetime supersymmetry should exist. Since the exact

tachyon vacuum solution has not yet been found and it seems difficult to investigate the

supersymmetric structure in the level truncation scheme, the only way to proceed is to

construct superstring field theory around the tachyon vacuum directly. If we can achieve

this, we will find the mechanism of supersymmetry restoration in terms of open string

degrees of freedom. To this end, it is necessary to reveal the complete structure of the

theory including both the NS and R sectors, but as a first step we deal with the NS

sector only.
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4.1 Ghost Kinetic Operator of Vacuum Superstring

Field Theory

4.1.1 General properties of the kinetic operator around the

tachyon vacuum

In this and the next subsections, we consider modified cubic superstring field theory.

Since we have found in subsection 3.3.2 a candidate solution for the tachyon vacuum

in the level truncation scheme, we postulate the existence of an exact tachyon vacuum

solution Â0 and expand the string field around it as Â = Â0 + â. Then, as in the bosonic

case, the cubic action for â becomes

S(â) =
1

2g2
o

Tr

[
1

2
〈〈Ŷ−2|â, Q̂â〉〉 +

1

3
〈〈Ŷ−2|â, â ∗ â〉〉

]
, (4.1.1)

where we have omitted a constant term. The new kinetic operator Q̂ has been defined

by

Q̂Φ̂ ≡ Q̂BΦ̂ + Â0 ∗ Φ̂ − (−1)#gh(�Φ)Φ̂ ∗ Â0 (4.1.2)

for generic Φ̂, not necessarily of ghost number 1. To understand why we have adopted

the ghost number grading instead of the Grassmannality, recall that the internal Chan-

Paton factors have originally been introduced in such a way that the GSO(±) string

fields with different Grassmannalities obey the same algebraic relations [29]. Note that

if we restrict ourselves to the GSO(+) states, these two gradings agree with each other:

(−1)#gh(Φ+) = (−1)|Φ+|.1 From the fact that the tachyon vacuum solution Â0 has a non-

vanishing GSO(−) component, Q̂ should in general contain Grassmann-even operators

as well as Grassmann-odd ones, with the following internal Chan-Paton structure [108]

Q̂ = Qodd ⊗ σ3 +Qeven ⊗ (−iσ2), (4.1.3)

where Qodd and Qeven are Grassmann-odd and Grassmann-even operators respectively.

Explicitly, Qodd and Qeven act on a generic Φ as

QoddΦ = QBΦ + A0+ ∗ Φ − (−1)|Φ|Φ ∗ A0+, (4.1.4)

QevenΦ = −A0− ∗ Φ + (−1)GSO(Φ)Φ ∗ A0−. (4.1.5)

Here we argue that non-zero Qeven is necessary to have a sensible vacuum superstring

field theory. To this end, suppose Qeven = 0, so Q̂ = Qodd ⊗ σ3. Since this Q̂ has the

1Generically a relation (−1)#gh(�Φ)(−1)|�Φ|(−1)GSO(�Φ) = 1 holds among the ghost number #gh(Φ̂),
Grassmannality |Φ̂| and GSO parity GSO(Φ̂) of Φ̂.
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same structure as Q̂B = QB⊗σ3, the action expanded around the tachyon vacuum would

again take the same form as the original one (3.3.60) with QB replaced by Qodd. Then,

the resulting theory would have a Z2-reflection symmetry under a− → −a−, which means

that if we have a solution a+⊗σ3+a−⊗iσ2 then we find one more solution a+⊗σ3−a−⊗iσ2

with the same energy density. However, we do not expect such a degeneracy of solutions

in vacuum superstring field theory, because this GSO symmetry is spontaneously broken

(Figure 4.1). There remains a possibility that any relevant solutions in this theory, such

t

V

Figure 4.1: A schematic picture of the tachyon potential. The reflection symmetry should
be broken after the tachyon condensation.

as D-branes, consist only of GSO(+) components so that we can avoid having a pair of

degenerate solutions, but we do not believe this to be the case. Next we show that Qeven

plays the rôle of removing this unwanted degeneracy. Taking the trace over the internal

Chan-Paton matrices in (4.1.1), we find

S =
1

g2
o

[
1

2
〈〈Y−2|a+, Qodda+〉〉 +

1

2
〈〈Y−2|a−, Qodda−〉〉

+
1

2
〈〈Y−2|a+, Qevena−〉〉 +

1

2
〈〈Y−2|a−, Qevena+〉〉 (4.1.6)

+
1

3
〈〈Y−2|a+, a+ ∗ a+〉〉 − 〈〈Y−2|a+, a− ∗ a−〉〉

]
,

where we have used (4.1.3). In the second line of eq.(4.1.6) the GSO(−) string field a−
enters the action linearly, so that the above-mentioned Z2 symmetry is absent in this

action.2

2This argument relies on the very fundamental assumption that in vacuum superstring field theory
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We also comment on the twist symmetry of the action. Suppose that we have found

a twist-even solution, Ω|Â0〉 = |Â0〉, in the original theory (3.3.60). When we expand

the string field around it, we find that the resulting action is also invariant under the

same twist transformation as (3.3.81). Since the tachyon vacuum solution is believed to

be twist-even, it then follows that the superstring field theory action around the tachyon

vacuum, (4.1.1), should preserve the twist symmetry.

We list some of the properties that the kinetic operator Q around the tachyon vacuum

should have in the supersymmetric case:

• Q̂ should satisfy the axioms such as nilpotency, derivation property and hermiticity

in order for Q̂ to be used to construct (classical) gauge invariant actions,

• Q̂ should have vanishing cohomology to support no perturbative physical open

string excitations around the tachyon vacuum,

• the universality requires that Q̂ should contain no information about specific D-

branes,

• Q̂ should preserve the twist symmetry of the action,

• Qeven should be non-zero in order that the VSFT action does not possess the Z2

GSO symmetry a− → −a−.

At this stage the kinetic operator Q̂ is regular and is not considered to be pure ghost.

4.1.2 Construction of pure-ghost Q̂
Now we discuss how to construct an explicit example of the kinetic operator Q̂ made

purely out of ghost operators, following the argument of [44] (reviewed in section 2.3).

In the superstring case, there are two negative-dimensional operators c and γ. Suppose

that after a reparametrization of the string coordinate implemented by a function f , the

kinetic operator (4.1.3) turns into

Q̂ =

∫ π

−π
dσ ac(σ)[f ′(σ)]−1c(f(σ)) ⊗ σ3

+

∫ π

−π
dσ aγ(σ)[f ′(σ)]−

1
2γ(f(σ)) ⊗ (−iσ2) + . . . . (4.1.7)

we do not perform the GSO-projection in the open string field, as in the case of the open superstring
theory on non-BPS D-branes.
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Let us postulate a function f which around the open string midpoint σ = π
2

behaves as

[f ′(σ)]−
1
2 ∼ 1

εr
δ
(
σ − π

2

)
and [f ′(σ)]−1 ∼ 1

ε2
r

δ
(
σ − π

2

)
with εr → 0. If we take such f that behaves similarly near σ = −π

2
and is regular

everywhere except at σ = ±π
2
, then Q̂ (4.1.7) in the limit εr → 0 is dominated by

Q̂ =
1

ε2
r

(
ac

(π
2

)
c
(π

2

)
+ ac

(
−π

2

)
c
(
−π

2

))
⊗ σ3 (4.1.8)

+
1

εr

(
aγ

(π
2

)
γ
(π

2

)
+ aγ

(
−π

2

)
γ
(
−π

2

))
⊗ (−iσ2),

where we have used f
(
±π

2

)
= ±π

2
. We then require Q̂ to preserve the twist invariance

of the action, by which the form of Q̂ can further be restricted without knowing precise

values of ac,γ
(
±π

2

)
. As we have seen in section 3.3, the modified cubic superstring field

theory action (3.3.60) is invariant under the twist transformation

Ω|A〉 =

{
(−1)hA+1|A〉 for GSO(+) states (hA ∈ Z)

(−1)hA+ 1
2 |A〉 for GSO(−) states (hA ∈ Z + 1

2
).

(4.1.9)

Since QGRSZ given in (2.3.15) preserves the twist eigenvalues on both GSO(±) sectors and

is Grassmann-odd, the odd part Qodd (4.1.4) of the kinetic operator, after the singular

reparametrization, becomes

Qodd =
1

2iε2
r

(c(i) − c(−i)) (εr → 0), (4.1.10)

where we have made a finite rescaling of εr for convenience. On the other hand, since

γ(z) has half-odd-integer modes in the NS sector and mixes the GSO(±) sectors, its

twist property becomes much more complicated. For example, let us consider a GSO(+)

state |A+〉 with Ltot
0 -eigenvalue h+. From eq.(4.1.9), we have

Ω|A+〉 = (−1)h++1|A+〉. (4.1.11)

When γr (r ∈ Z + 1
2
) acts on |A+〉, the resulting state γr|A+〉 is in the GSO(−) sector

and hence its twist eigenvalue must be evaluated as a GSO(−) state:3

Ω(γr|A+〉) = (−1)(h+−r)+ 1
2 (γr|A+〉). (4.1.12)

Combining eqs.(4.1.11) and (4.1.12), we find the following relation:

Ω(γr|A+〉) = (−1)−r−
1
2γr(Ω|A+〉). (4.1.13)
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Figure 4.2: (a) The action of γr on GSO(+) twist-even states. γr with r ∈ 2Z − 1
2

preserve the twist eigenvalues (indicated by solid arrows), whereas the wrong ones with
r ∈ 2Z+ 1

2
reverse the twist eigenvalues (dotted arrows). (b) The action of γr on GSO(−)

twist-even states. Now it is γr with r ∈ 2Z + 1
2

that preserve the twist.

Thus we conclude that γr acting on a GSO(+) state |A+〉 commutes with the twist,

Ω(γr|A+〉) = γr(Ω|A+〉), when r ∈ 2Z − 1
2
. This argument is illustrated in Figure 4.2(a).

Since we find

1

2i
(γ(i) − γ(−i)) =

1

2i

 ∑
r∈�+ 1

2

γr

ir−
1
2

−
∑
r∈�+ 1

2

γr

(−i)r− 1
2

 =
∑
n∈�

(−1)nγ− 1
2
+2n, (4.1.14)

we identify a candidate for the twist-preserving kinetic operator as

QGSO(+)
even =

q1
2iεr

(γ(i) − γ(−i)) (εr → 0), (4.1.15)

where q1 is a finite real constant. However, it turns out that this kinetic operator, when

acting on a GSO(−) state, does not preserve the twist eigenvalue. To see this, consider

a GSO(−) state |A−〉 with Ltot
0 -eigenvalue h−. From the relation

Ω(γr|A−〉) = (−1)(h−−r)+1(γr|A−〉) = (−1)−r+
1
2γr(Ω|A−〉), (4.1.16)

3Note that the r-th mode γr lowers the Ltot
0 -eigenvalue by r.
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γr commutes with Ω if r ∈ 2Z+ 1
2
, rather than r ∈ 2Z− 1

2
(see Figure 4.2(b)). Therefore,

the twist-preserving kinetic operator acting on a GSO(−) state should take the form

QGSO(−)
even =

q2
2εr

(γ(i) + γ(−i)) (4.1.17)

=
q2
εr

∑
n∈�

(−1)nγ 1
2
+2n

in the εr → 0 limit, where q2 is another constant.

Our proposal that the kinetic operator Qeven should take different forms (4.1.15),

(4.1.17) depending on the GSO parity of the states on which Qeven acts may seem strange,

but such a behavior is in fact necessary for Q̂ = Qodd ⊗ σ3 +Qeven ⊗ (−iσ2) to meet the

hermiticity condition

〈〈Ŷ−2|Q̂Â, B̂〉〉 = −(−1)#gh( �A)〈〈Ŷ−2|Â, Q̂B̂〉〉. (4.1.18)

Given the internal Chan-Paton structure (similarly for B̂)

Â = A+ ⊗ σ3 + A− ⊗ iσ2 for #gh(Â) odd

Â = A+ ⊗ I + A− ⊗ σ1 for #gh(Â) even, (4.1.19)

eq.(4.1.18) in particular means

〈〈Y−2|QevenA+, B−〉〉 = −〈〈Y−2|A+,QevenB−〉〉, (4.1.20)

〈〈Y−2|QevenA−, B+〉〉 = 〈〈Y−2|A−,QevenB+〉〉. (4.1.21)

Using the definition (3.3.63) of the 2-point vertex, the left-hand side of (4.1.21) can be

written as

〈〈Y−2|QGSO(−)
even A−, B+〉〉 = 〈Y (i)Y (−i)I ◦ (QGSO(−)

even )I ◦ A−(0) B+(0)〉UHP, (4.1.22)

while the right-hand side of (4.1.21) is

〈〈Y−2|A−,QGSO(+)
even B+〉〉 = 〈Y (i)Y (−i)I ◦ A−(0)QGSO(+)

even B+(0)〉UHP. (4.1.23)

For these two expressions to agree with each other, we must have

I ◦ QGSO(−)
even = QGSO(+)

even , (4.1.24)

with the sign convention (3.3.64), but this equation can never be satisfied if we stick

to the case QGSO(+)
even = QGSO(−)

even , because no linear combination of γ(i) and γ(−i) is
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self-conjugate under the inversion I.4 Thus we conclude that in order for Q̂ to satisfy

the hermiticity relation (4.1.21) Qeven must inevitably take different forms on GSO(±)

sectors. In fact, we find from (4.1.17)

I ◦ QGSO(−)
even =

q2
2εr

I ◦ (γ(i) + γ(−i))

=
q2
2εr

(
(I ′(i))−

1
2γ(I(i)) + (I ′(−i))− 1

2γ(I(−i))
)

=
−q2
2iεr

(γ(i) − γ(−i)) (4.1.25)

due to the definition (I ′(±i))− 1
2 = ±i (3.3.64). Hence, our choice (4.1.15) and (4.1.17)

of kinetic operator indeed satisfies the hermiticity condition (4.1.24) if we set q1 = −q2.
With this choice, one can verify that eq.(4.1.20) also holds true. Although the ratio

q1/q2 of the finite normalization constants of QGSO(±)
even has been fixed by requiring the

hermiticity condition, it is difficult to determine the precise value of q1 itself because

it requires the detailed information about the reparametrization function f and ac,γ(σ)

appearing in (4.1.7).

To summarize, we have seen that the twist invariance condition Ω(Q̂|Â〉) = Q̂(Ω|Â〉)
combined with the hermiticity condition (4.1.18) points to the choice

QGSO(+)
even =

q1
2iεr

(γ(i) − γ(−i)) (4.1.26)

QGSO(−)
even = − q1

2εr
(γ(i) + γ(−i)),

or collectively

Qeven|ψ〉 = q1
1 − i

4εr
((−1)GSO(ψ) − i)

(
γ(i) − (−1)GSO(ψ)γ(−i)

)
|ψ〉. (4.1.27)

We have determined a specific form of Qeven from the requirements of the twist

invariance and the hermiticity. For the kinetic operator Q̂ with the above Qeven to be

nilpotent, it turns out that we must add to Qodd (4.1.10) a non-leading term in εr as [108]

Qodd =
1

2iε2
r

(c(i) − c(−i)) − q2
1

2

∮
dz

2πi
bγ2(z). (4.1.28)

Since Q2 ≡ −
∮

dz
2πi
bγ2(z) is the zero mode of a weight 1 primary bγ2, it manifestly

preserves the twist eigenvalues. Since we have

Q̂Q̂|Â〉 =
{
(Q2

odd −Q2
even) ⊗ I − [Qodd,Qeven] ⊗ σ1

}
|Â〉, (4.1.29)

4Generically, operators of half-integer weights satisfy I ◦ I ◦ O = −O so that it seems impossible to
construct operators which are real and self-conjugate under I.
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we must show both

(Q2
odd −Q2

even)|Â〉 = 0 and

[Qodd,Qeven]|A±〉 = (QoddQGSO(±)
even −QGSO(±)

even Qodd)|A±〉 = 0. (4.1.30)

The latter holds because Qodd (4.1.28) contains no β field and Qodd does not change the

GSO parity of the state, as indicated in (4.1.30). The former can be shown as follows:

Q2
odd|A±〉 = − q2

1

4iε2
r

{∮
dz

2πi
bγ2(z), c(i) − c(−i)

}
|A±〉 = − q2

1

4iε2
r

(
γ(i)2 − γ(−i)2

)
|A±〉,

(4.1.31)

and, from eqs.(4.1.26),

Q2
even|A±〉 = QGSO(∓)

even QGSO(±)
even |A±〉 = − q2

1

4iε2
r

(
γ(i)2 − γ(−i)2

)
|A±〉, (4.1.32)

where |A+/−〉 denote any states in the GSO(+/−) sectors respectively, and we have

used the fact that Qeven reverses the GSO parity of the states. From (4.1.31) and

(4.1.32), it follows that (Q2
odd − Q2

even)|Â〉 = 0. This completes the proof that Q̂ =

Qodd⊗σ3 +Qeven⊗ (−iσ2) with Qodd given by (4.1.28) and Qeven by (4.1.26) is nilpotent.

We can further show that this kinetic operator annihilates the identity string field,

〈I|Q̂ = 0, and acts as a derivation of the ∗-algebra: Some details are found in Ap-

pendix A.2.

In summary, our kinetic operator

Q̂ = Qodd ⊗ σ3 + Qeven ⊗ (−iσ2); (4.1.33)

Qodd =
1

2iε2
r

(c(i) − c(−i)) − q2
1

2

∮
dz

2πi
bγ2(z),

QGSO(+)
even =

q1
2iεr

(γ(i) − γ(−i)),

QGSO(−)
even = − q1

2εr
(γ(i) + γ(−i)),

where we take εr → 0 and q1 is some unknown constant, satisfies the following properties:

1. Q̂ is made purely out of ghost operators;

2. Q̂ satisfies the axioms such as nilpotency, derivation property and hermiticity;

3. Q̂ has vanishing cohomology;

4. Q̂ contains non-zero Qeven so that the unwanted Z2 reflection symmetry is broken;
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5. Q̂ has been constructed in such a way that the action preserves the twist invari-

ance (4.1.9).

To show the property 3, suppose that we have a state |Â〉 which is annihilated by Q̂.

Then, |Â〉 itself can be written as

|Â〉 = {Q̂, ε2
rb̂0}|Â〉 = Q̂(ε2

r b̂0|Â〉),

with b̂0 = b0 ⊗ σ3. Since any Q̂-closed state |Â〉 has, at least formally, been expressed as

a Q̂-exact form, it follows that Q̂ has vanishing cohomology. From the properties, the

cubic vacuum superstring field theory action,

S =
κ0

2
Tr

[
1

2
〈〈Ŷ−2|Â, Q̂Â〉〉 +

1

3
〈〈Ŷ−2|Â, Â ∗ Â〉〉

]
(4.1.34)

= κ0

[
1

2
〈〈Y−2|A+,QoddA+〉〉 +

1

2
〈〈Y−2|A−,QoddA−〉〉 + 〈〈Y−2|A−,QGSO(+)

even A+〉〉

+
1

3
〈〈Y−2|A+,A+ ∗ A+〉〉 + 〈〈Y−2|A−,A+ ∗ A−〉〉

]
,

where κ0 is some constant, is gauge-invariant, and we expect that it is suitable for the

description of the theory around the tachyon vacuum.

4.1.3 Non-polynomial theory

In this subsection we consider Berkovits’ non-polynomial superstring field theory ex-

panded around the tachyon vacuum. As we mentioned in section 3.5, if we expand the

non-GSO-projected string field Φ̂ as e
�Φ = e

�Φ0 ∗ e�φ around a classical solution Φ̂0 to

the equation of motion (3.4.13), then the action for the fluctuation field φ̂ takes the

same form as the original one (3.4.1), except that the BRST operator Q̂B is replaced by

another operator Q̂ defined by

Q̂X̂ = Q̂BX̂ + Â0 ∗ X̂ − (−1)#gh( �X)X̂ ∗ Â0, (4.1.35)

where Â0 = e−�Φ0Q̂Be
�Φ0 [119, 120]. Notice that Berkovits’ superstring field theory ac-

tion (3.4.1) including both GSO(±) sectors is invariant under the twist operation (3.4.17)

Ω|Φ〉 =

{
(−1)hΦ+1|Φ〉 for GSO(+) states (hΦ ∈ Z)

(−1)hΦ+ 1
2 |Φ〉 for GSO(−) states (hΦ ∈ Z + 1

2
).

, (4.1.36)

which is the same as the action of the twist operator (4.1.9) in modified cubic super-

string field theory. Hence, exactly the same arguments as in the case of modified cubic
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superstring field theory presented in the previous subsections should hold in this non-

polynomial case as well. We thus claim that the non-polynomial vacuum superstring

field theory action for the NS sector is given by

S =
κ0

4
Tr

〈〈(
e−
�ΦQ̂e�Φ

)(
e−
�Φη̂0e

�Φ
)

−
∫ 1

0

dt
(
e−t

�Φ∂tet
�Φ
){(

e−t
�ΦQ̂et�Φ

)
,
(
e−t

�Φη̂0e
t�Φ
)}〉〉

, (4.1.37)

with Q̂ given by (4.1.33). In addition to the properties shown in the last subsection, Q̂
anticommutes with η̂0 = η0 ⊗ σ3 because Q̂ does not contain ξ0 and η̂0 does not change

the GSO parity of the states. These properties guarantee that the action (4.1.37) is

invariant under the infinitesimal gauge transformation

δ(e
�Φ) = (Q̂Λ̂1)e

�Φ + e
�Φ(η̂0Λ̂2). (4.1.38)

4.2 Search for Solutions

In bosonic string field theory, the string field had non-vanishing ghost number. This

forced us to use the twisted projectors in constructing classical solutions in vacuum string

field theory. On the other hand, in Berkovits’ superstring field theory the NS string field

Φ is taken to be of ghost number 0 and 0-picture, so that the simplest projectors can be

considered as classical string field configurations. Furthermore, we find that surface state

projectors actually solve the equation of motion, as shown below. We claim, however,

that such projectors are pure-gauge configurations and hence it fails to describe D-branes

in non-polynomial vacuum superstring field theory. As in section 3.5, we use the notation

A(Φ) = e−ΦQeΦ, (4.2.1)

but we do not specify the precise form of the kinetic operator Q. The equation of motion

is

η0A = η0

(
e−ΦQeΦ

)
= 0. (4.2.2)

The supersliver state Ξ is defined in the CFT language as

〈Ξ|ϕ〉 = 〈f ◦ ϕ(0)〉UHP, (4.2.3)

where f(z) = tan−1 z and |ϕ〉 is an arbitrary Fock space state. Just as in the bosonic

case, Ξ squares to itself, Ξ ∗ Ξ = Ξ. Note that the sliver state, as well as any surface
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state |Σ〉, is annihilated by η0:

〈Σ|η0|ϕ〉 =

〈
fΣ ◦

∮
C

dz

2πi
η(z) · ϕ(0)

〉
UHP

=

〈∮
C′

dz

2πi
η(z) · (fΣ ◦ ϕ(0))

〉
UHP

= 0,

(4.2.4)

where fΣ(z) is the conformal map associated with the Riemann surface Σ, and C,C ′ are

the integration contours encircling 0 and fΣ(0), respectively. The second equality holds

because η0 is the contour integral of a primary field of conformal weight 1. The last

equality can be shown by the contour-deformation argument. Alternatively, eq.(4.2.4)

can be shown in the following way: Any surface state |Σ〉 can be expressed as [21, 48, 121]

|Σ〉 = U †
fΣ
|0〉 with U †

fΣ
= e

�
vnLn , (4.2.5)

where the coefficients vn’s are determined by the conformal map fΣ, and Ln’s are the

total Virasoro generators. Then we see η0|Σ〉 = 0 simply because Ln commutes with η0

and the SL(2,R)-invariant vacuum |0〉 is annihilated by η0.

Suppose that we are given a string field Φa which is annihilated by η0. From the

derivation property of η0, we find

η0e
Φa = η0e

−Φa = 0. (4.2.6)

Given that {η0, Q} = 0, Φa trivially satisfies the equation of motion (4.2.2) as

η0

(
e−ΦaQeΦa

)
= (η0e

−Φa)(QeΦa) − e−ΦaQ(η0e
Φa) = 0. (4.2.7)

In fact, we will show that any such state Φa is pure-gauge in Berkovits’ superstring

field theory, irrespective of the details of Q. Note that the WZW-like action (3.4.1) is

invariant under the finite gauge transformation

eΦ −→ (eΦ)′ = hQ1 ∗ eΦ ∗ hη02 , (4.2.8)

where the gauge parameters hQ1 , h
η0
2 are annihilated by Q, η0, respectively. Because

of (4.2.6), we can take hη02 = e−Φa . By choosing hQ1 to be the identity string field

I,5 we find that the string field configuration Φa can be gauged away:

eΦa −→ I ∗ eΦa ∗ e−Φa = e0.

5The identity string field is defined to be an identity element of the ∗-algebra, I∗A = A∗I = A [122].
For recent discussion of the identity string field see [37, 123, 64, 124, 121].
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This proves that the string field obeying η0Φ = 0 is pure-gauge, beyond the linearized

approximation. The conclusion that any string field configuration annihilated by η0 is

pure-gauge seems very restrictive from the viewpoint of vacuum superstring field theory

because the ∗-algebra projectors known so far [51, 60, 61, 62] are constructed within

the “small” Hilbert space and all annihilated by η0. For the same reason as above,

the configurations Φ which are annihilated by Q are also pure-gauge, but this criterion

crucially depends on the choice of Q.

Thus far, no exact brane solution has been found in spite of some efforts [2, 3, 125,

126]. It is clear that, if we use the pure-ghost kinetic operator, the equations of motion

admit matter-ghost factorized solutions also in vacuum superstring field theory, but we

do not know whether it is possible to reproduce the complicated D-brane spectrum of

type II superstring theory (i.e. it depends on its dimensionality whether the D-brane

is BPS or non-BPS) with this ansatz. Furthermore, aside from the D-brane solutions,

we should be able to construct ‘another tachyon vacuum’ solution corresponding to

the other minimum of the double-well potential. Since it seems difficult to construct

these solutions exactly, we resort to the approximation scheme below. As mentioned in

section 2.3, Gaiotto, Rastelli, Sen and Zwiebach showed by the level truncation analysis

that there exists a spacetime-independent solution in bosonic VSFT whose form, up to

an overall normalization, converges to the twisted butterfly state [44]. It is believed that

this solution corresponds to a spacetime-filling D25-brane. We can consider this as an

indication that the level truncation calculations may be useful in VSFT as well. Here

we will try a similar analysis in vacuum superstring field theory.

Let us start with the cubic theory. Looking at the action (4.1.34), we find that, since

c(±i) are in the kernel of Y (i)Y (−i), they give no contributions to the action. On the

other hand, γ(±i) in Qeven are still non-vanishing, lim
z→i

Y (z)ηeφ(i) = −ce−φ(i). After the

rescaling A± → q21
2
A± of the string fields, the VSFT action can be written as

S = κ0

(
q2
1

2

)3 [
1

2
〈〈Y−2|A+, Q2A+〉〉 +

1

2
〈〈Y−2|A−, Q2A−〉〉

+
1

iε
〈〈Y−2|A−, (γ(i) − γ(−i))A+〉〉 (4.2.9)

+
1

3
〈〈Y−2|A+,A+ ∗ A+〉〉 + 〈〈Y−2|A−,A+ ∗ A−〉〉

]
,
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where Q2 = −
∮

dz
2πi
bγ2(z) and ε ≡ q1εr. Inserting the expansion

A+ =
√

2uc+ v1∂
2c+ v2cT

m + v3c : ∂ξη : +v4cT
φ + v5c∂

2φ

+ v6ηe
φGm + v7 : bc∂c : +v8∂c∂φ + v9bη∂ηe

2φ, (4.2.10)

A− = tηeφ,

into (4.2.9), we obtain the action truncated up to level (2,6). Explicit expression of it is

shown in Appendix A.2.

Up to level (2,4), the GSO(+) fields can be integrated out exactly. In the Siegel

gauge v7 = v8 = 0, the resulting effective potential for t becomes

V
( 1
2
,1)

eff (t) ≡ −
S

( 1
2
,1)

V,eff

κ0V10(q
2
1/2)3

=
t2(16 + 9εt)2

256ε2
, (4.2.11)

V
(2,4)
eff (t) ≡ −

S
(2,4)
V,eff

κ0V10(q2
1/2)3

=
t2(96237504 + 119417628εt+ 37335269ε2t2)

127993536ε2
.

Note that the potential is no longer an even function of t as a consequence of the presence

of Qeven. From the profiles shown in Figure 4.3, it is clear that there are two transla-

-2 -1.5 -1 -0.5 0 0.5

0

0.05

0.1

0.15
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0.25

0.3

T

V_eff

Figure 4.3: The effective potential at level (1/2,1) (dashed line) and at level (2,4) in the
Siegel gauge (solid line). The horizontal axis represents T = εt, while the vertical axis
ε4Veff .

tionally invariant solutions at each level, one of which (maximum) would correspond to

the unstable D9-brane, while the other (minimum) to ‘another tachyon vacuum’ with

vanishing energy density. If we did not impose any gauge-fixing condition, we would

obtain the effective potential shown in Figure 4.4 at level (2,4). In this potential there
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Figure 4.4: The effective potential at level (2,4) without gauge-fixing.

is no clear distinction between the maximum and the non-trivial minimum. Hence we

proceed by choosing the Siegel gauge.

At level (2,6), we can no longer integrate out the massive fields analytically. Instead

of constructing the effective potential numerically, we solve the full set of equations of

motion including that for t. In the Siegel gauge, we have found four real solutions. The

field values and the potential height for each solution are shown in Table 4.1. Comparing

level (2,4) level (2,6)
minimum maximum solution(1) solution(2) solution(3) solution(4)

εt −1.58654 −0.812353 −1.17746 −1.27738 −0.602025 −2.21251
ε2u −1.38402 0.160340 0.293931 0.475872 −0.554083 2.04485
ε2v1 −1.02701 −0.486343 −0.483380 −0.309084 0.528839 −0.948461
ε2v2 0.177618 0.0701144 0.207129 0.156708 −0.116926 −0.660358
ε2v3 −0.330186 −0.255363 −0.311352 −0.174039 −0.0944988 0.852255
ε2v4 −0.00116238 −0.139197 −0.161496 −0.0484503 0.327373 0.260061
ε2v5 1.23853 0.249494 0.132412 0.0669892 0.0981466 −0.207735
v6 0 0 0 0 0 0
v9 0.276184 −0.463130 0.220859 0.988841 −3.10354 −2.24061

ε4Vmin 0.0148204 0.123052 0.165213 0.175943 −0.0233896 −0.625412

Table 4.1: The vacuum expectation values of the fields and the height of the potential
for the Siegel gauge solutions.

them with the level (2,4) solutions, we expect that the solution (1) would correspond to

the maximum of the potential. However, it seems that there is no candidate solution

for the minimum: The energy of the solution (3) is almost zero, but the vev of t is un-
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acceptably too small. Therefore, although the seemingly desirable double-well potential

was obtained at low levels, this success may not continue to level (2,6) or higher.

We have also examined the non-polynomial vacuum superstring field theory action

considered in subsection 4.1.3. Expanding the exponentials in a formal power series, the

action (4.1.37) is rewritten as

S =
κ0

2

∞∑
M,N=0

(−1)N

(M +N + 2)!

(
M +N

N

)
Tr

〈〈(
Q̂Φ̂

)
Φ̂M

(
η̂0Φ̂

)
Φ̂N

〉〉
. (4.2.12)

For terms with M +N ≥ 1, Q̂ reduces to Q̂2 = −
∮

dz
2πi
bγ2(z) ⊗ σ3,

6 since the conformal

transformations of c(±i) and γ(±i) give rise to vanishing factors of (f
(n)′
k (±i))h with

h < 0. For the quadratic vertex (M = N = 0), f
(2)′
k (±i) is finite, so that the midpoint

insertions can survive. From these considerations, we find that the Z2-symmetry breaking

effect (i.e. Qeven) emphasized in subsection 4.1.1 could come only from the following

vertex

〈〈(QevenΦ+)(η0Φ−)〉〉. (4.2.13)

However, the actual calculations show that all the above Z2-breaking terms vanish for

level-2 string field (in the Feynman-Siegel gauge)

Φ+ = a ξ∂ξc∂2ce−2φ + e ξη + f ξce−φGm,

Φ− = t ξce−φ + k ξc∂2(e−φ) + l ξc∂2φe−φ (4.2.14)

+m ξcTme−φ + n ξ∂2ce−φ + p ξ∂ξηce−φ.

As a result, the effective potential for the lowest mode t becomes left-right symmetric

as shown in Figure 4.5. To make matters worse, there exist no real solutions other than

Φ̂ = 0. This failure may be attributed to the fact that there is no t3 term in the action. To

make the 3-string vertex 〈〈(QevenΦ−)Φ−(η0Φ−)〉〉 non-vanishing for Φ− = tξce−φ, however,

we must change the form of Qeven. In particular, the insertion of negative-dimensional

operators to the open string midpoint does not fulfill this purpose. However, no other

example of nilpotent Q̂ with Qeven �= 0 is known up to now.

The above level truncation analysis might suggest that, unfortunately, the pure-ghost

kinetic operator (4.1.33) fails to describe the theory around the tachyon vacuum. It is

even possible that the pure-ghost ansatz for the kinetic operator is too simple in the

superstring case.

6This is reminiscent of the pregeometric action proposed in [127].
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Figure 4.5: The effective potential calculated from the non-polynomial vacuum super-
string field theory action at levels (0,0) (dashed line) and (3

2
, 3) (solid line).
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Chapter 5

Conclusion

In this thesis, we have investigated the covariant formulation of open superstring field

theory. Its present status can be summarized as follows: In contrast to the simplicity

of bosonic string field theory, the construction of covariant open superstring field theory

based on the RNS formalism becomes complicated mainly due to the concept of ‘picture’.

It turned out that Witten’s original proposal [95] for cubic superstring field theory,

where the NS string field was taken to be in the −1-picture, suffered from the contact-

term divergence problems caused by the colliding picture-changing operators [99]. In

the early 1990’s, several authors [100, 103, 102] argued that Witten’s theory could be

remedied without spoiling its cubic nature. There, the NS string field was defined to carry

picture number 0 so that the quadratic vertex had the same picture-changing operator

insertion as the cubic vertex. Although the modified cubic action still contains the

picture-changing operators, it was shown [103, 102] that this theory is free from contact-

term divergence problems. Furthermore, with the help of picture-changing operators,

we are able not only to include the R sector string field in a ten-dimensional Lorentz

covariant manner, but also to show that the resulting action is invariant under the

ten-dimensional N = 1 spacetime supersymmetry transformation. However, there still

remain subtle problems regarding the picture-changing operators.

In the middle of 1990’s, Berkovits [113] constructed a novel gauge-invariant action for

the NS open string field, using the techniques developed in [128]. The most remarkable

feature of this theory is that a non-vanishing action can be written without any need

of picture-changing insertions, and it is considered as the most promising approach to

the formulation of open superstring field theory, if we restrict our attention to the NS

sector. However, it is quite difficult to include the R sector string field in the action

keeping the ten-dimensional Lorentz covariance [116]. Consequently, the ten-dimensional

supersymmetric structure of this theory is still unclear.
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We have also examined whether these proposals for open superstring field theory

correctly describe the tachyon condensation, in particular the vacuum solution and the

kink solutions, using the level truncation scheme. It seems that the results obtained in

modified cubic theory and Berkovits’ theory are in agreement with the Sen’s conjectures,

though there is still some skepticism in modified cubic theory.

The distinguishing feature of vacuum string field theory proposed by Rastelli, Sen

and Zwiebach in the bosonic case was that the kinetic operator is made purely out of

ghost operators. As a result, we could obtain analytic solutions corresponding to D-

branes using the matter-ghost factorization ansatz. We have tried to apply these ideas

to the superstring case as well, and revealed some novel features of the kinetic operator

around the tachyon vacuum. However, no D-brane solutions have been constructed in

this theory as yet. Moreover, level truncation experiments suggest that the pure-ghost

kinetic operator constructed above fails to reproduce the known spectrum of D-branes

in type II superstring theory.

We conclude this thesis with some comments on open questions concerning string

field theory. Let us first consider how the interrelation between open and closed strings

is realized in the framework of string field theory. One of the intriguing possibilities is

that the closed string degrees of freedom are already contained in (quantum) open string

field theory. As is well known, the closed string poles appear in the open string loop

diagrams [129]. Unitarity of the theory then requires that the closed strings must also

appear as asymptotic states, though we do not know at present how to extract them. In

addition to the scattering processes represented by Riemann surfaces with boundaries,

pure closed string amplitudes are also obtained in VSFT as the correlation functions

among the corresponding gauge-invariant operators [130, 44]. This should be natural

because VSFT is aimed at describing the physics around the ‘closed string vacuum’ from

the open string point of view. However, it is quite possible that open string field theory

can describe the closed strings only in a singular fashion, so that it may prove not to be

useful for practical computations. Especially, there has been no compelling evidence that

open string field theory can describe even the deformation of closed string backgrounds.

Anyway, it is interesting to see if VSFT and closed string field theory really give a dual

description of the same background, namely the closed string vacuum.

Another possible approach is to start with closed string field theory, where the dy-

namical degrees of freedom are contained in the closed string field. Recall that D-branes

are regarded as solitons in closed string theory, and that the fluctuation modes of the

D-branes are represented by open strings. Just as in VSFT, we expect that we can con-
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struct a D-brane as a solution to the equation of motion of closed string field theory and

that physical open string states arise around the solution. Recently, such a scenario has

partly been realized in [131].1 It is also interesting to study how the resulting system is

related to open-closed string field theory [87, 88].

Although we have learned much about the condensation of open string tachyon, we

have only limited knowledge about the fate of closed string tachyons. When the closed

string tachyon in question is localized, convincing arguments have been given based on

an analogy with the open string tachyon condensation [134]. However, we scarcely know

what happens when the bulk closed string tachyon condenses. For the tachyon in bosonic

closed string theory, it is extremely difficult to compute the tachyon potential directly

from non-polynomial closed string field theory [135, 136], because the potential receives

infinitely many contributions from higher order interaction terms, in contrast to the case

of Berkovits’ non-polynomial open superstring field theory.

We also do not understand how to formulate closed superstring field theory. Even

though the string duality allows us to know to some extent the strong coupling behavior

of superstring theory in terms of weakly coupled superstring theory, we know little about

the underlying unified theory. If we assume that superstring field theory really gives a

non-perturbative definition of string theory, it should tell something about M-theory in

eleven dimensions which arises as the strong coupling limit of type IIA superstring theory.

However, no one knows whether the range of validity of closed superstring field theory is

big enough to cover the full moduli space of M-theory. That is, as long as we represent

the string field as a vector in the string Hilbert space, it resides only in a tangent space

to the true string configuration space, which may generally be a curved manifold. In

the case of open string field theory, the study of open string tachyon condensation has

revealed that the space of open string field is big to the extent that it can describe the

decay of D-branes. It would be quite exciting for string field theorists if it turns out that

the complete non-perturbative description of M-theory is given in terms of superstring

field theory.
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Chapter A

Appendices

A.1 Conventions

We mostly follow the conventions used in the textbook by Polchinski [137]. We are

working in units where c = � = α′ = 1, and we take the flat spacetime metric to be

ηµν = diag(−1,+1, · · · ,+1). We often omit the normal-ordering symbol : . . . :.

basic notations

We use the symbols #gh,#pic to denote the ghost and picture numbers, |a| the Grassman-

nality of a (|a| = 0/1 mod 2 if a is Grassmann-even/odd) and GSO(a) the GSO parity

of a ((−1)GSO(a) = ±1 if a is in the GSO(±) sector). [... ] denotes the antisymmetrization

operation

A[µBν] =
1

2!
(AµBν −AνBµ), (A.1.1)

A[µBνCρ] =
1

3!
(AµBνCρ + AνBρCµ + AρBµCν − AµBρCν − AνBµCρ −AρBνCµ).

world-sheet CFT

We use the following mode expansions

∂Xµ(z) = −
√

2i
∑
n

αµn
zn+1

, ψ(z) =
∑
r

ψµr

zr+
1
2

,

b(z) =
∑
n

bn
zr+2

, c(z) =
∑
n

cn
zr−1

, (A.1.2)

β(z) =
∑
r

βr

zr+
3
2

, γ(z) =
∑
r

γr

zr−
1
2

.
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For convenience we also use the notation aµn = 1√
n
αµn, a

µ†
n = 1√

n
αµ−n for n ≥ 1. The

non-vanishing operator product expansions (OPEs) on the world-sheet boundary are

∂Xµ(z)∂Xν(w) ∼ −2
ηµν

(z − w)2
, ψµ(z)ψν(w) ∼ ηµν

z − w
,

c(z)b(w) ∼ 1

z − w
, γ(z)β(w) ∼ 1

z − w
, (A.1.3)

η(z)ξ(w) ∼ 1

z − w
, φ(z)φ(w) ∼ − log(z − w).

The energy-momentum tensor and the world-sheet supercurrent are

Tm = −1

4
∂Xµ∂Xµ −

1

2
ψµ∂ψµ, Gm =

i√
2
∂Xµψµ,

T bc = (∂b)c− 2∂(bc), T ηξ = (∂ξ)η, T φ = −1

2
∂φ∂φ− ∂2φ, (A.1.4)

3-string vertex

The Witten’s 3-string vertex in bosonic string field theory at the zero-momentum sector

is written in the operator language as

|V3〉123 = exp

 3∑
r,s=1

−1

2

∑
n,m≥1

ηµνa
µ(r)†
n V rs

nma
ν(s)†
m +

∑
n≥1
M≥0

c(r)†n Ṽ rs
nMb

(s)†
M


 3∏
r=1

|Ω〉r, (A.1.5)

where |Ω〉 = c0c1|0〉, and the explicit expressions for the Neumann coefficients V, Ṽ are

given in [19, 21]. The twist matrix C used in the text is defined as Cmn = (−1)mδmn

(n,m ≥ 1). Using this 3-string vertex, the ∗-product is calculated as

|A ∗B〉1 = 2〈A|3〈B||V3〉123, (A.1.6)

where 〈A| is the BPZ conjugate of |A〉.

cocycle factors in the bosonization

We bosonize the β-γ ghost system as [138, 4]1

β = e−φ(−1)−NF ∂ξ, γ = ηeφ(−1)NF , (A.1.7)

1Alternatively, the theories formulated within the “small” Hilbert space can be written in terms of
the βγ ghosts. For example, the inverse picture-changing operator can be written as Y = cδ′(γ), with
δ′(γ) satisfying the property γδ′(γ) = −δ(γ).
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where

NF =

∮
dz

2πi

(
− : bc : − : ξη : +

4∑
a=0

: ψ+
a ψ

−
a :

)

and ψ±
0 = 1√

2
(±ψ0 + ψ1), ψ±

a = 1√
2
(ψ2a ± iψ2a+1) (a = 1, 2, 3, 4). Since NF is an

operator that counts the number (mod 2) of the world-sheet fermions ψµ, b, c, ξ and

η, (−1 )NF anticommutes with them. Thus (−1)±NF is considered as a cocycle factor

attached to e±φ such that e±φ(−1)±NF anticommutes with the world-sheet fermions as a

whole. Furthermore, from the OPE

: eq1φ(z) :: eq2φ(w) : = (z − w)−q1q2 : eq1φ(z)eq2φ(w) :

= (z − w)−q1q2
(
: e(q1+q2)φ(w) : +O(z − w)

)
one finds that eq1φ and eq2φ naturally anticommute with each other when both q1 and

q2 are odd integers. After all, we have found that eqφ(−1)qNF with odd q anticommutes

with all of the fermions and eq
′φ(−1)q

′NF with odd q′, whereas eqφ(−1)qNF with even

q = 2n commutes with everything because 2nNF in the NS sector is always an even

integer. Therefore, we can abbreviate eqφ(−1)qNF to eqφ, with the understanding that

eqφ should be treated as a fermion/boson when q is odd/even, respectively. In this paper

we simply regard eqφ with odd q as fermionic, without writing down the cocycle factors

(−1)qNF explicitly.
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A.2 Some Technical Details

level-truncated action

The tachyon potential truncated at level (2,6) in the modified cubic theory is found to

be

f = − S

τ̃9V10

= −2π2g2
oS

V10

≡ fquad + fcubic; (A.2.1)

fquad = −2π2

[
1

4
t2 +

1

2
u2 +

√
2uv1 + v2

1 +
15

8
v2

2 −
1√
2
uv3 + 2v1v3

+
1

4
v2

3 − 2
√

2uv4 − 8v1v4 − 4v3v4 +
77

8
v2

4 + 2
√

2uv5 + 6v1v5 + v3v5

− 13v4v5 +
11

2
v2

5 −
15

2
v2v6 +

15

2
v4v6 − 5v5v6 +

5

2
v2

6 +
1√
2
uv7 + v1v7

− 1

2
v3v7 − 2v4v7 + 2v5v7 + 3v3v8 − 5v4v8 + 2v5v8 + v7v8 +

1√
2
uv9

+ 2v1v9 −
15

4
v2v9 + v3v9 −

5

4
v4v9 + v5v9 + v7v9 + v8v9

]
, (A.2.2)

fcubic = −2π2

[
9
√

2

16
t2u+

9

8
t2v1 −

25

32
t2v2 −

9

16
t2v3 −

59

32
t2v4 +

43

24
t2v5 +

40

9

√
2

3
uv2

6

+
80

9
√

3
v1v

2
6 −

20

9
√

3
v2v

2
6 −

40

9
√

3
v3v

2
6 −

1180

81
√

3
v4v

2
6 +

3440

243
√

3
v5v

2
6 +

2

3
t2v7

+
1280

243
√

3
v2

6v7 +
√

3u2v9 +
70

9

√
2

3
uv1v9 +

86

9
√

3
v2

1v9 −
25

3
√

6
uv2v9 −

875

81
√

3
v1v2v9

+
4435

648
√

3
v2

2v9 +
5

9

√
2

3
uv3v9 +

350

243
√

3
v1v3v9 −

125

162
√

3
v2v3v9 −

37

18
√

3
v2

3v9

− 193

9
√

6
uv4v9 −

6755

243
√

3
v1v4v9 +

4825

324
√

3
v2v4v9 −

965

486
√

3
v3v4v9 +

39809

1944
√

3
v2

4v9

+
86

9

√
2

3
uv5v9 +

6020

243
√

3
v1v5v9 −

1075

81
√

3
v2v5v9 +

430

243
√

3
v3v5v9 −

979

27
√

3
v4v5v9

+
4082

243
√

3
v2

5v9 +
8

3

√
2

3
uv7v9 +

1552

243
√

3
v1v7v9 −

100

27
√

3
v2v7v9 +

40

81
√

3
v3v7v9

− 772

81
√

3
v4v7v9 +

688

81
√

3
v5v7v9 +

16

9

√
2

3
uv8v9 +

32

9
√

3
v1v8v9 −

200

81
√

3
v2v8v9

+
80

243
√

3
v3v8v9 −

1544

243
√

3
v4v8v9 +

1120

243
√

3
v5v8v9 +

256

81
√

3
v7v8v9

]
. (A.2.3)

where the component fields u, t, vi are defined in eq.(4.2.10).

The cubic vacuum superstring field theory action truncated up to level (2,6) is, after
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the rescaling A± → (q2
1/2)A±, given by

S = κ0

(
q2
1

2

)3

V10

(
−f̃quad −

1

2π2
fcubic

)
, (A.2.4)

−f̃quad =
1

2
u2 +

√
2uv1 + v2

1 +
15

8
v2

2 −
1√
2
uv3 + 2v1v3 +

1

4
v2

3 − 2
√

2uv4 − 8v1v4

− 4v3v4 +
77

8
v2

4 + 2
√

2uv5 + 6v1v5 + v3v5 − 13v4v5 +
11

2
v2

5 +
1√
2
uv7

+ v1v7 −
1

2
v3v7 − 2v4v7 + 2v5v7 + 3v3v8 − 5v4v8 + 2v5v8 + v7v8

+
1

ε

(√
2tu+ 2tv1 − tv3 −

5

2
tv4 + 3tv5 + tv7

)
,

where ε = q1εr and fcubic is the same as in (A.2.3).

some properties of Q̂

〈I|Q̂ = 0

Given that the identity string field 〈I| is defined as

〈I|ϕ〉 = 〈f (1)
1 ◦ ϕ(0)〉UHP (A.2.5)

with f
(1)
1 (z) = h−1(h(z)2) = 2z

1−z2 , both 〈I|c(±i) and 〈I|γ(±i) contain divergences be-

cause the conformal factors (f
(1)′
1 (±i))h diverge for h < 0. However, if we regularize

them by the following replacements [44, 108]

c(i) −→ cε(i) =
1

2

(
e−iεc(ieiε) + eiεc(ie−iε)

)
,

c(−i) −→ cε(−i) =
1

2

(
e−iεc(−ieiε) + eiεc(−ie−iε)

)
, (A.2.6)

γ(i) −→ γε(i) =
1

e−
πi
4 − e

πi
4

(
e−

πi
4
− iε

2 γ(ieiε) − e
πi
4

+ iε
2 γ(ie−iε)

)
,

γ(−i) −→ γε(−i) =
1

e−
πi
4 − e

πi
4

(
e−

πi
4
− iε

2 γ(−ieiε) − e
πi
4

+ iε
2 γ(−ie−iε)

)
,

in Q̂, then all of cε(±i), γε(±i) annihilate 〈I|, while in the ε → 0 limit they näıvely

reduce to the original midpoint insertions.

〈I|Qeven = 0 can also be shown by noticing that the action of Qeven on a state |ψ〉
can be expressed as an inner derivation,

Qeven|ψ〉 = lim
ε→0

(
|Σε ∗ ψ〉 − (−1)GSO(ψ)|ψ ∗ Σε〉

)
,

|Σε〉 = Γε|I〉, (A.2.7)

Γε = q1
1 − i

4εr

(
γ(ieiε) + iγ(−ie−iε)

)
.
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Computing the inner product 〈ϕ|Qeven|ψ〉 with a Fock space state 〈ϕ| à la [124], we

actually recover the expression (4.1.27)

〈ϕ|Qeven|ψ〉 = q1
1 − i

4εr

(
(−1)GSO(ψ) − i

)
〈ϕ|
(
γ(i) − (−1)GSO(ψ)γ(−i)

)
|ψ〉. (A.2.8)

From the expression (A.2.7), it is obvious that Qeven annihilates the identity |I〉: Sub-

stituting |ψ〉 = |I〉 and (−1)GSO(I) = +1, one finds

Qeven|I〉 = lim
ε→0

(|Σε ∗ I〉 − |I ∗ Σε〉) = lim
ε→0

(|Σε〉 − |Σε〉) = 0.

Derivation property of Q̂
It is known [48, 43] that QGRSZ = 1

2i
(c(i)− c(−i)) is a graded derivation of the ∗-algebra

because QGRSZ can be written as

QGRSZ =
∞∑
n=0

(−1)nC2n,

C0 = c0, Cn = cn + (−1)nc−n for n �= 0,

and each Cn obeys the Leibniz rule graded by the Grassmannality. The derivation prop-

erty of Q2, which is the zero-mode of a primary field of conformal weight 1, is proven by

the contour deformation argument. Taking the internal Chan-Paton factors into account,

Q̂odd = Qodd ⊗ σ3 satisfies

Q̂odd(Â ∗ B̂) = (Q̂oddÂ) ∗ B̂ + (−1)#gh( �A)Â ∗ (Q̂oddB̂). (A.2.9)

For Qeven, we will make use of the expression (A.2.7). Let us consider Qeven acting on

the ∗-product A ∗B of two states A and B. From the property of the GSO parity that

(−1)GSO(A∗B) = (−1)GSO(A)(−1)GSO(B) one obtains

Qeven|A ∗B〉 = |Σε ∗ A ∗B〉 − (−1)GSO(A∗B)|A ∗B ∗ Σε〉
=

(
|Σε ∗ A〉 − (−1)GSO(A)|A ∗ Σε〉

)
∗ |B〉

+ (−1)GSO(A)|A〉 ∗
(
|Σε ∗B〉 − (−1)GSO(B)|B ∗ Σε〉

)
= |(QevenA) ∗B〉 + (−1)GSO(A)|A ∗ (QevenB)〉,

where we have omitted the symbol limε→0 and used the associativity of the ∗-product.

Attaching the Chan-Paton factors to A and B, and then multiplying (−iσ2) from the

left, we have for Q̂even = Qeven ⊗ (−iσ2)

Q̂even|Â ∗ B̂〉 = |(Q̂evenÂ) ∗ B̂〉 + (−1)GSO( �A)(−iσ2)|Â ∗ (QevenB̂)〉. (A.2.10)
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When (−iσ2) passes Â, we find from (4.1.19)

(−iσ2) · Â = −(−1)GSO( �A)Â · (−iσ2) for #gh(Â) odd,

(−iσ2) · Â = (−1)GSO( �A)Â · (−iσ2) for #gh(Â) even,

which can be written collectively in the form

(−iσ2) · Â = (−1)#gh( �A)(−1)GSO( �A)Â · (−iσ2).

Applying it to eq.(A.2.10), we eventually find

Q̂even(Â ∗ B̂) = (Q̂evenÂ) ∗ B̂ + (−1)#gh( �A)Â ∗ (Q̂evenB̂). (A.2.11)

Since both Q̂odd and Q̂even obey the same Leibniz rule (A.2.9) and (A.2.11), so does

Q̂ = Q̂odd + Q̂even:

Q̂(Â ∗ B̂) = (Q̂Â) ∗ B̂ + (−1)#gh( �A)Â ∗ (Q̂B̂). (A.2.12)

94



Bibliography

[1] K. Ohmori, “Tachyonic Kink and Lump-like Solutions in Superstring Field The-

ory,” JHEP 0105 (2001) 035 [hep-th/0104230].

[2] K. Ohmori, “Comments on Solutions of Vacuum Superstring Field Theory,” JHEP

0204 (2002) 059 [hep-th/0204138].

[3] K. Ohmori, “On Ghost Structure of Vacuum Superstring Field Theory,” Nucl.

Phys. B648 (2003) 94-130 [hep-th/0208009].

[4] K. Ohmori, “Level-Expansion Analysis in NS Superstring Field Theory Revisited,”

to be published in Int. J. Mod. Phys. A [hep-th/0305103].

[5] K. Ohmori, “Toward Open-Closed String Theoretical Description of Rolling

Tachyon,” to be published in Phys. Rev. D [hep-th/0306096].

[6] K. Ohmori, “Study of Tachyon Condensation in String Field Theory,” master’s

thesis, University of Tokyo, 2001;

“A Review on Tachyon Condensation in Open String Field Theories,” hep-

th/0102085;

its concise version is available in: Soryushiron Kenkyu (Kyoto) 104-2 (2001) 61.

[7] See for example,

C.M. Hull and P.K. Townsend, Nucl. Phys. B438 (1995) 109-137 [hep-th/9410167];

E. Witten, Nucl. Phys. B443 (1995) 85-126 [hep-th/9503124]; A. Dabholker, Phys.

Lett. B357 (1995) 307-312 [hep-th/9506160]; C.M. Hull, Phys. Lett. B357 (1995)

545-551 [hep-th/9506194]; J.H. Schwarz, Phys. Lett. B360 (1995) 13-18, Erratum-

ibid. B364 (1995) 252 [hep-th/9508143]; J. Polchinski and E. Witten, Nucl. Phys.

B460 (1996) 525-540 [hep-th/9510169]; P. Hořava and E. Witten, Nucl. Phys.
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