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Abstract

M-theory is considered as one of the most hopeful candidate of unified theory for par-
ticle physics. On this theory, it is known that its low-energy limit is supergravity in 11-dim
spacetime, and that there are two kinds of spatially spreading stable non-perturbative ob-
jects, which are called an M2-brane and an M5-brane. However, the behavior of these M2-
and M5-branes still remains a mystery. Then this is an important subject for explication of
M-theory at present.

Recently, Bagger, Lambert and Gustavsson [1-4] have written down and proposed an
action for multiple (coincident) M2-branes’ system, which is called ‘BLG model.” This
model is characteristic in that there is a Chern-Simons-like gauge field on M2-branes’
worldvolume, and the gauge group for multiple M2-branes is defined using Lie 3-algebra,
instead of Lie algebra.

Soon after that, many researchers, including us, began studying this peculiar algebra
and the structure of BLG model. We made concrete representations of this algebra, adopted
them as examples of the gauge symmetry of multiple M2-branes’ system, and analyzed
BLG model in each case.

As a result, we [5-8] showed that BLG model does not describe only multiple M2-
branes’ system, but also a single M5-brane’s and multiple Dp-branes’ system in superstring
theory. Moreover, we also showed that the relation of M2-branes and Dp-branes, which is
known as (a part of) U-duality, can be properly written in terms of BLG model’s language.

In this Ph.D. thesis, we summarize the history of BLG model and our success in the
research on this model.
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Introduction and Summary

M-theory is a very Mysterious theory." It is considered as a Mother theory for all the known
fundamental theories of physics, that is, standard model, general relativity, supersymmetric
Yang-Mills theory, supergravity, superstring theory and so on, can be reproduced from M-
theory by somewhat Magical ways.

In fact, when one compactifies this theory on a 7-dim torus 7”7 (which doesn’t break any
supersymmetry), it becomes a 4-dim theory with N = 8 supersymmetry, whose low-energy
limit is the maximal supergravity in 4-dim spacetime. This means that M-theory includes
all kinds of fields which we have already known without any contradictions. Besides, when
one compactifies M-theory on a circle S' or a segment S'/Zs, it becomes type ITA or
Het Eg x Eg superstring theory, which are connected with all other types of superstring
theory by S-, T-, U-duality.” Therefore, M-theory is also the unified theory of all kinds of
superstring theories. (See fig. 1.)

It is well known that Membranes (or M2-branes) play important roles in M-theory, and
the formulations with a Matrix for describing M2-branes have been proposed and studied
eagerly so far. In this Ph.D. thesis, however, we discuss the newly proposed formulation
for M2-branes in M-theory, which is called ‘BLG model.” This model is very characteristic
in that a Chern-Simons gauge field exists on the M2-branes’ worldvolume and the gauge
symmetry is defined by some peculiar algebra called Lie 3-algebra, instead of ordinary Lie
algebra. The contents are as follows.

Chapter 1 We review the brief history of M-theory before BLG model.

First, we discuss why we consider supersymmetry and higher dimensional spacetime,
since it is a part of answer for the question, why we research on M-theory (§1.1). Then
we review 11-dim supergravity as low energy limit of M-theory (§1.2), the property
of an M2-brane and an M5-brane (a dual object for M2-brane) as non-perturbative
objects in M-theory (§1.3), and the relation between M-theory and superstring theory,
including U-duality (§1.4). Finally, we discuss the placement of contents of this thesis
in the related research on M-theory (§1.5).

The contents are partially based on Kaku’s textbook [9] and Ohta’s textbook [10].

'In Introduction, we dare to use the capital letter ‘M’ in some words, since these words are considered as
the etymology of ‘M’ of M-theory.
2U-duality is the minimal group including both S- and T-duality as its subgroups.



2 INTRODUCTION AND SUMMARY

Chapter 2 We review the original BLG model.

First, we collect the clues to construction of multiple M2-branes’ worldvolume the-
ory, and suggest that the 3-commutator should be a key idea (§2.1). Then we discuss
the structure of Lie 3-algebra (the algebra with 3-commutators):

[Ta’ Tb, TC} — fabchd 7 <Ta7 Tb> — hab ’

where f¢; are structure constants and h%° is a metric (or Killing form). In particular,
we show that this algebra can define a natural symmetry of a field theory, when it
satisfies the severe conditions of fundamental identity and invariant metric (§2.2).
Next, we gauge the symmetry by introducing a Chern-Simons-like gauge field, and
construct a gauge-invariant supersymmetric theory with 16 supercharges. Also, we
check that the superalgebra closes on equations of motion for the fields on multiple
M2-branes (§2.3). Finally, we show that these equations of motion are derived from
a supersymmetric action (BLG action) which is consistent with all the continuous
symmetries of the M2-branes’ system (§2.4).

The contents are mostly based on Bagger and Lambert’s paper [2].

Chapter 3 In order to obtain the concrete form of BLG action, we need to adopt one of
representations of Lie 3-algebra. So in this chapter, we classify the various represen-
tations of Lie 3-algebra, while the analysis of BLG action with each representation is
postponed until Chapter 4-7.

First, we show the famous example of A4 algebra (f%¢; = €®¢d o0 = §0) and its
direct sum (§3.1). In fact, these are only examples of finite-dimensional representa-
tions of Lie 3-algebra with positive-definite metric. Then we show the proof of this
fact (§3.2).

Next, we show the Nambu-Poisson bracket as an infinite-dimensional representation
of Lie 3-algebra. We also show that finite-dimensional truncations of Nambu-Poisson
bracket are also examples of Lie 3-algebra, whose metric isn’t positive-definite, be-
cause of the above proof (§3.3). We will analyze BLG model with these examples of
Lie 3-algebra in Chapter 4 and 5.

Finally, we classify the representations of Lie 3-algebra with negative-norm genera-
tors, and show that there are concrete examples of Lie 3-algebra, such as a central
extension of Lie algebra, which can be the symmetry algebra of BLG model (§3.4).
We will show that BLG models with these examples of Lie 3-algebra are physical
theories in spite of the existence of negative-norm generators in Chapter 6 and 7.

The contents are partially based on Papadopoulos’ paper [11], Ho, Hou and Matsuo’s
paper [12] and our papers [6,7].

Chapter 4 We show that we can obtain a single M5-brane’s worldvolume theory from BLG
model, when we adopt Nambu-Poisson bracket as an example of Lie 3-algebra.
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First, we summarize the property of Nambu-Poisson bracket defined on 3-dim man-
ifold \V as an infinite-dimensional Lie 3-algebra (§4.1). Then we show that one can
define the local fields on M5-brane’s worldvolume M x N, using the BLG fields
on original M2-branes’ worldvolume M and the basis functions of Nambu-Poisson
bracket. In particular, we can derive the self-dual 2-form gauge field on M5-brane
from the Chern-Simons gauge field and some of scalar fields in BLG model (§4.2).

Next, we derive the gauge symmetry of M5-brane’s theory from that of BLG model.
In particular, we identify the gauge transformation as the volume-preserving diffeo-
morphism of N (§4.3). The BLG action is then rewritten in terms of these fields and
we can derive the proper action and equations of motion for M5-brane’s theory (§4.4).
Next, we derive the supersymmetry transformation of the fields on an M5-brane, and
show that this transformation indicates that the BLG model in this case describes an
MS5-brane in a large C'-field background (§4.5).

Finally, we derive D4-brane’s action from this M5-brane’s one by the double dimen-
sional reduction. There, the volume-preserving diffeomorphism is replaced by the
area-preserving diffeomorphism, or Nambu-Poisson bracket is replaced by Poisson
bracket. As a result, we obtain D4-brane’s system in a B-field background (§4.6).

The contents are partially based on Ho and Matsuo’s paper [13], and mostly on our
paper [5]. My contribution in the latter paper is especially to show that one can surely
obtain M5-brane’s worldvolume action, and discuss the background spacetime of an
MS5-brane by calculating supersymmetry transformation in this action.

Chapter 5 We discuss BLG model in the case where we adopt the finite-dimensional trun-
cation version of Nambu-Poisson bracket as an example of Lie 3-algebra.

First, we show how to construct the finite-dimensional representations of Lie 3-
algebra from Nambu-Poisson bracket by somewhat artificial truncation (§5.1). Then
we discuss the structure of these kinds of truncated algebra. In particular, we show
that many components of metric in this algebra vanish (§5.2). This means that it is
hard to have nontrivial discussion on Lagrangian, so we analyze the equations of mo-
tion derived from it. Surprisingly enough, we can show that the NV 3 law (the relation
between the number of M2-branes and that of degrees of freedom) from AdS/CFT
correspondence [14] can be accounted for due to simple algebraic reason, by count-
ing the number of moduli and generators of Lie 3-algebra (§5.3).

The contents are based on our paper [6]. My contribution is especially to make sure
that this example satisfies fundamental identity and invariant metric condition, and
discuss on the counting the number of moduli from obtained equations of motion.

Chapter 6 We review how to obtain multiple D2-branes’ theory from BLG model with
Lorentzian Lie 3-algebra, which is a central extension of Lie algebra with one negative-
norm generator, as an example of Lie 3-algebra.
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First, we summarize the property of Lorentzian Lie 3-algebra and rewrite BLG action
in terms of components of this algebra. We also discuss the symmetry of this rewritten
action (§6.2). In this action, there is a ghost field which comes from the components
of the negative-norm generator. Then in order to obtain a physically meaningful
action, we must eliminate this ghost field. Interestingly enough, we can achieve it
by inserting VEV’s without breaking any gauge symmetry nor supersymmetry. As a
result, we obtain 3-dim super Yang-Mills theory, which can be regarded as the low-
energy limit of multiple D2-branes’ theory (§6.3).

On the other hand, we show that we can also obtain D2-branes’ system from BLG
model via M5- and D4-brane’s theory in Chapter 4. There, we regard Poisson bracket
in D4-brane’s theory as matrix algebra, and derive multiple D2-branes’ theory (§6.4).

The contents are mostly based on Ho, Imamura and Matsuo’s paper [15].

Chapter 7 We show that one can obtain multiple Dp-branes’ theory (p > 3) from BLG
model, when one adopt general Lorentzian Lie 3-algebra, which is a central extension
of Kac-Moody algebra or loop algebra with more than one negative-norm generators.

First, we analyze BLG model with the simplest nontrivial example of this kind of
Lie 3-algebra, and obtain massive super Yang-Mills theory with interaction (§7.1). In
order to make clear a physical interpretation of this mass in the context of M/string
theory, we consider Kac-Moody algebra as a particular example. Then we can show
that BLG model in this case describes the multiple D3-branes on a circle, and the mass
can be regarded as the Kaluza-Klein mass of the D3-brane winding a circle (§7.2).
Next, we consider the Lie 3-algebra with multiple loop algebra, as a generalized
Kac-Moody algebra. In this case, BLG model describes the multiple Dp-brane on a
(p — 2)-dim torus (p > 3) (§7.3). The relation between Dp-brane and M2-brane is
well known as U-duality, so finally we discuss that (a part of) U-duality is realized
in BLG model. In particular, for D3-brane’s case, we show that the full of U-duality
(Montonen-Olive duality) is realized (§7.4).

The contents are mostly based on our paper [7,8]. My contribution is especially
to classify the examples of Lie 3-algebra with a general number of negative-norm
generators, by discussing the conditions of fundamental identity and so on. I also
calculate and show that we can obtain Dp-branes’ action with F' A F' term, when
we use a central extension of multiple loop algebra as an example of Lie 3-algebra.
This enable to discuss how U-duality is realized in BLG model, so I argue this point
including what is shortage for discussing whole of U-duality.
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Part I : Basics and multiple M2-branes






Chapter 1

What is M-theory?

How is the Nature constructed? — This is certainly the most fundamental and commonest
question for all human beings. One way, and probably the most profitable way of tackling
this question, is the research on particle physics. In the particle physics, in the author’s
understanding, all discussion begin with the following important assumption: all existence
in the Nature can be divided into the only one or few kinds of fundamental elements, and
if we can fully understand the behavior of each kind of elements, we can also comprehend
that of all existence in the Nature. Such way of thinking is called Reductionism. So we
can say that the ultimate goal for particle physics is the clear understanding of what is the
most elementary existence, how it behaves or interacts with each other, and how it creates
all existence in our universe. From the view of Reductionism, these pieces of information
are all of what we need to understand the whole Nature.

Standard model in particle physics — Reductionism is the winner!?

At the moment, the author think, one cannot judge whether or not the Reductionism is valid
for tackling our ultimate question. However, at the same time, it must be definitely impos-
sible to deny the brilliant progress of particle physics in the 20th century. The ‘standard
model’ for particle physics is iz. In this theory, all fundamental elements of the Nature are
classified into gauge fields, matter fields and Higgs fields. (Regrettably, the gravity field
cannot be included.)

e matter fields (spin 1/2)

’ quark H lepton

Up, Ug, Up | CpyCqyCh | Trylg,ly || Ve | Vy | Vr

dy,dg,dy | Sr,Sg,5b | br,bg, by e | p | T

The matter fields are classified into the quark and lepton fields. Both fields are com-
posed of three generations (which is indicated as three columns). Each generations

9
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of fields consist of two types of fields (which is indicated as two rows). Moreover, the
quark fields in a single box (which are called flavor) are composed of three colors.

e gauge fields (spin 1)

— gluons (Gy, -+ ,Gg)
They mediate the strong interaction, that is, the interaction among the quark
fields with colors (., *4, *p). This interaction is universal for all flavors.

— weak bosons (W+, W—, Z9)
They mediate the weak interaction, that is, the interaction between matter fields
in a same column (u, d), (¢, s), (£, 0), (Ve, €), (Vy, 1), (Vr, T).
On the interaction among different generations, we use Cabbibo-Kobayashi-
Maskawa (CKM) matrix which phenomenologically describes the mixing of
(mass eigenstates of) quarks of different generations.

— photon (A)
It mediates the electro-magnetic interaction, that is, the interaction among the
matter fields with non-zero electric charge (i.e. all the matter fields except neu-

trinos Ve, vy, Vr.)

e Higgs fields ® (spin 0)

These fields interact with the matter fields. This interaction causes the mass of matter
fields.

e Gravity field (spin 2)

It mediates the gravity interaction, that is, the interaction among the matter fields
with non-zero mass (or energy-momentum). Now we believe that all interactions in
the Nature can be classified into these four kinds of interaction above.

However, as we mentioned, this gravity interaction cannot be dealt in the standard
model. It is separately described by general relativity. This is surely an unsatisfactory
point, but this causes no problem if we study the phenomena in not too high energy
scale where the gravity interaction is weaker enough than other interactions.

Concept of ‘fields’ — Naive reductionism is actually invalid.

Let us note here that we use the term ‘fields’ instead of ‘particles.” This is related to the
abstruse philosophy based on quantum theory. In quantum mechanics, the particle-wave
duality is the principle. Moreover, in quantum field theory, the particles are considered as
rippling waves (or ‘elemental excitations’) of a ‘field” which has degrees of freedom in each
point of spacetime, and so is defined as an infinitely multi-body system.

This means that we cannot fully understand the Nature when we only research on the
‘particles, and that we must research on the fundamental law for the ‘fields’ which exist
behind the particles.
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However, the direct observation of ‘fields’ are very difficult, except the gravity and
electro-magnetic fields. Then we still actually research, contradictorily at a glance, on the
various interactions among many ‘particles,” but we are always conscious of the existence of
‘fields’ behind these particles. In fact, the standard model is described in terms of quantum
field theory.

In the naive reductionism, we assume the existence of only one or a few kinds of funda-
mental ‘particles.” In this meaning, the particle physics now is not in the naive reductionism.
However, as we will see, we still assume some existence of fundamental ‘field,” so the au-
thor believe that the particle physics is even now in a kind of reductionism.

Actions of standard model

In quantum field theory, the most important quantity is the action (or Lagrangian). We
usually decide the form of action by carefully considering the symmetry which the theory
must have.

The standard model is described in terms of quantum field theory with Lorentz symme-
try SO(1, 3) and gauge (internal) symmetry SU (3) or SU(2) xU(1). So, in the Lagrangian,
all fields must be described by the representations of Lorentz and gauge symmetry group.
For Lorentz symmetry, the matter fields are represented by spinors, the gauge fields by vec-
tors and the Higgs fields by scalars. For gauge symmetry, all these fields are described as
the representations of the SU(3) x SU(2) x U(1) gauge symmetry group, e.g. the gauge
fields are adjoint representations and the matters field are fundamental representations.

Now we show the Lagrangian of standard model, which consists of the following two
theories:

GWS (Glashow-Weinberg-Salam) theory

It describes the electro-magnetic and weak interaction. The gauge symmetry is defined by
SU(2) x U(1) algebra. The SU (2) algebra is represented as

1
L7, 1%] = qebere (19, 1%) = 55“*’, (1.1)

where a,b,c = 1,2, 3. The Lagrangian is

1 1
- Z(F/fy)Q - Z(B;w)z

+ 03D, v 1B yep, EY N D, N

Laws =

2
+ (D, ®)"(D!D) — A <y<1>|2 + gi)

— fp0 (B @)+ @D ED) — fy) (N (@10l + (00N

(1.2)
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For the gauge fields, the covariant derivative D, = 0,, + ig, W%t® + 198 B,)Y and the
gaug p = Op T 1wy 2 Pu
field strength Fﬁ =0,Wy7 —&,Wl‘j —gwf“bCWﬁWVC , By = 0,B,—0,B,,. g, and gp are

=
the coupling constants. The weak bosons W, Z0 and photon A are defined as the linear

combinations of W¢ and By, such that wWE = w2 Z) = m(gwwﬁ’ — 9BB,),

A, = ﬁ(gwwg +gBBM).
The matter fields are defined as \Il(Lf) = (Ver,er), (Vur,pr), (Vrr,71), (ur,dr),

(cr,sr), (tr,br), E§{) = €R, IR, TR, AR, SR, bR, Nﬁ{) = VeR, ViR, VrR, UR, CR, LR-
The index L/ R means ‘left-/right-handed, e.g. e, r = li%e for the electron field e.

Let us note that the potential term for Higgs field ® (the 7th term) gives a non-zero
VEV (Vacuum Expectation Value) to Higgs field. When one expand ¢ around the VEV, the
Higgs kinetic term (the 6th term) give masses to the weak boson fields W= and Z°, and
the Higgs interaction term (the last two terms) give masses to the matter fields. The index ¢
there means ‘charge-conjugated.’

This is well-known Higgs mechanism. In general, the symmetry breaking occurs in such
kinds of mechanism, that is, only a part of the original symmetry is kept after the mechanism
works. In fact, the SU(2) x U(1) symmetry of GWS theory are broken to U(1) symmetry
after Higgs mechanism.

QCD (Quantum Chromo-Dynamics)

It describes the strong interaction. The gauge symmetry is defined by SU(3) algebra

1
[t 60 = ifo.c,  (t%,t%) = 55“” , (1.3)
where f?, is the SU(3) structure constant, so a,b,c = 1, --- , 8. The Lagrangian is
1 = .
Locn = =5 (E)” + B (D = mD)wd, (14)
S

where the covariant derivative D, ¥, = 0,¥, — ¢ beaGb\I/C and the field strength Fﬁl, =

0,Gy — 0,GY + fachZGf,. G}, are gluon fields and \I'gf) is a quark field of a particular
flavor. g, is the coupling constant of strong interaction. m{f) is the mass of quarks, which
is determined from Higgs interaction in GWS theory.

1.1 Beyond standard model

Towards the deeper truth — We search more fundamental existence in the Nature!

At this moment, the standard model agrees with all the experimental results with marvelous
preciseness.' In spite of such great success, however, most of researchers don’t regard the
standard model as ultimate theory, since there are serious problems:

!Only the exception is the neutrino vibration, which requires that the mass of neutrinos ve, v, v, should be
non-zero, while they are set to zero in the standard model: f.., fu,, fu, = 0.
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o It has too many arbitrary constants.

There are g’w’ gB’ 957 )\9 IU’Q’ fe, fua fT’ f’LLa fd’ fC’ fS’ ft’ fb and four parameters Of
CKM matrix. Is there anyone who can believe that God carefully adjusted so many

parameters simultaneously at the birth of universe...?

o The unification of gravity is impossible.

The gravity interaction cannot be included in the standard model. So the unification
is never possible.

In order to overcome these difficulties, it is nice and natural to follow our fundamental
thought that all the existence in our Nature consists of one or few kinds of fundamental
elements. It is because if all phenomena can be explained from one or few kinds of elements,
the number of parameters (or arbitrary constants) must also be very small. Therefore, what
we must consider here is what are the fundamental elements, in other words, how to unify
all the fields including not only the fields in the standard model but also gravity field.

Let us now consider the theory of only one or a few kinds of elementary fields which
contains the degrees of freedom of all the standard model fields and gravity field, and which
are described as the representations of the single symmetry group. This symmetry group
must contain the SU (3) x SU(2) x U (1) group of the standard model and also the Poincaré
symmetry group of general relativity as its subgroup.

Then we assume that this single symmetry group is broken into these two subgroups af-
ter symmetry breaking. After the breaking, elementary fields are classified to many kinds of
fields, i.e. standard model fields and gravity field, which are described as the representations
of the subgroups.

Supersymmetry may be the only way that we can choose.

Now we want to know whether or not such a single symmetry group exists. On this dis-
cussion, it is useful to note the Coleman-Mandula’s theorem [16] and Haag-t.opuszanski-
Sohnius’ theorem [17].

Coleman-Mandula’s theorem

The symmetry G of the S-matrix in quantum theory is restricted to the direct product of
Poincaré group and internal symmetries. In terms of algebra, this says that only the direct
sum are allowed:

(algebra of G) = (Poincaré algebra) & (Lie algebra of internal symmetries).  (1.5)

This means that there is no nontrivial single symmetry group which we are looking for.
However, if we allow a graded algebra which includes anti-commutation relations, e.g. su-
persymmetry, the situation changes desirably.
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Haag-t.opuszénski-Sohnius’ theorem

Now we set the generators of the symmetry algebra as Poincaré generators P, M, in-
ternal (gauge) symmetry generators 7", and supersymmetry generators Q°, where yu =
0,---,D — 1 (D is a spacetime dimension), i = 1,--- , N (number of supersymmetry).
Then the nontrivial algebra can be defined as

I:MMV’ Mpa] — i(nupMua _ ,',’lLO'Ml/p + nuaMup _ nupMuo) ,
(Q,Q7} = Yy, P' 4+ 18 iV
QT = (T)9qQ7,

[Tl, Tm] — iflmnTn 7
[ aaMuu] = §(Uuu)a,8Q57 (1.6)

and otherwise equal 0. Here, 0, := %[7,,, 7], and S, V% are central charges.

Therefore, now we must choose only the one way, i.e. we consider the symmetry group
including the supersymmetry.

Supersymmetry brings ‘higher dimensional spacetime’ naturally.

For simplicity, we consider here the supersymmetric theory of massless fields. Since the
supersymmetry generators change the helicity of fields by 1/2, various fields with different
helicity (or spin) can be contained in the same multiplet in supersymmetric theories. The
following table shows the multiplicity of each helicity fields in a single multiplet, when we

set the maximum and minimum helicity Apax = 2, Amin = —2:

AW [t]2]3] 4 | 5 [ 6 7 [s8]
2 11111 1 1 1 1

3/2 11213 4 5 6 7T+1 8
1 113 6 10 15+1 | 21+7 | 28
1/2 1 4 10+1| 2046 | 35+21 | 56
0 1+1| 5+5 | 15+15|35+35| 70
-1/2 1 4 1+10| 64+20 | 21+35 | 56
-1 113 6 10 1+15 | 7+21 | 28
—3/2 3 4 5 6 1+7 8
-2 11111 1 1 1 1 1

where A is the number of supersymmetry and + appears from the requirement of CPT
invariance. Here we set the maximum limit of spin as 2, since it is widely believed that the
existence of fields whose spin is higher than 2 is forbidden by the equivalence principle in
general relativity.
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Therefore, we can conclude that the single symmetry group which we are looking for
must contain the 4-dim 4 < N < 8 supersymmetry group. In these groups, a single
multiplet contains all fields, such as gravity field (spin 2), gauge fields (spin 1), matter fields
(spin 1/2) and Higgs fields (spin 0). In the following, we concentrate on the 4-dim maximal
supersymmetry group N = 8, since the N/ < 8 supersymmetry groups are only subgroups
of N' = 8 group.

The supersymmetry generators are described as the smallest representations of spinors
in each spacetime dimension, so we see here the degree of freedom of all kinds of spinors
in various dimensional spacetime (i.e. spinor representations of SO(D — 1,1)):

| rep\dim.  [[2[ 3[4 |56 |7 |8 9 ]10]11]12]
Dirac 414 | 8| 8 |16|16|32]32]|64]|64] 128
Majorana 212 |4 | —|—|—1|16]16|32|32| 64
Weyl 2| — |4 | —| 8| —|16]|—|32|—| 64
Majorana-Weyl | 1 | — | — | — | — | — | — | — | 16 | — | —

So the supersymmetry generators of 4-dim N = 8 supergravity (i.e. the supersymmetric
theory which contains a gravity field) have 4 x 8 = 32 degrees of freedom. By the way,
one can easily see that those of 11-dim N = 1 supergravity also have the same degrees of
freedom. This is an important fact for studying 4-dim N = 8 supergravity, because it is hard
to deal with this theory, but its concrete form can be easily obtained by the compactification
of 11-dim N = 1 supergravity on the 7-dim torus 7.

Now we naturally introduce higher dimensional spacetime as a convenient tool. The
discussion on the real existence of extra dimensions should be left to the future research.

1.2 11-dim supergravity as low energy limit

In the previous section, we see that 4-dim N/ = 8 supergravity may be a candidate of
unified theory beyond the standard model, and that it is useful to consider 11-dim NV = 1
supergravity for studying this theory. In this section, we briefly review 11-dim N' = 1
supergravity and its problematic points.

Fields and their degrees of freedom
In 11-dim N = 1 supergravity, the following (only) three kinds of fields exist and compose
the single multiplet.

Graviton g

It is described by the rank-2 symmetric tensor g,,, where = 0,--- , D — 1(= 10). So the
number of the degrees of freedom is

1 1 _
;D(D+1) =D~ D= DD -3) P gy, (1.7)
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where the second term is arisen from the invariance under the general coordinate transfor-
mation, and the third term is from the gauge fixing for this invariance.
Gravitino

It is described by the representation 1,,, with one vector index y and one spinor index
a=1,---,32. So the number of the degrees of freedom is

1
532 (11 —1-1-1)=128. (1.8)

The factor % is arisen from the fact that the degree of freedom of fermions is a half of that
of bosons, since Dirac equation is the first order differential equation. 32 is the number
of spinor elements, 11 is the number of vector elements, the first —1 is arisen from gauge
invariance, the second —1 is from J,9* = 0, and the last —1 is from v, = 0.

3-form field C'3)

It is described by the rank-3 antisymmetric tensor. So the degree of freedom is

(D —2)! p=11

D203 = 31(D —5)!

84. (1.9

Thus the total degree of freedom of bosonic fields g, C'3) is 128, which is the same as
that of fermionic fields 1. It is the common property for all supersymmetric theories that
the bosonic and fermionic fields have the same degrees of freedom.

Let us note the degree of freedom of the fields in 4-dim N = 8 supergravity multiplet,
which we mentioned in the previous section. That of bosonic fields is 1 +28 470428 +1 =
128 and that of fermionic fields is (8 + 56) x 2 = 128. This means that the fields of 4-dim
N = 8 supergravity and 11-dim N' = 1 supergravity have the same degrees of freedom,
and that each degree of freedom must be in one-to-one correspondence.

Supergravity action and its problems

The Lagrangian is obtained by Cremmer and Julia [18, 19] as

1 1 o (Wt 1
L = _TKQGR - §6¢u7“ ’D, < 5 ) Pp — @G(Fw,ﬂay
\/§K 7 VpoAT TV, po - \/il{
551 €OV £ 120N (F + Fupox — 52:Ca) A Flay A Flay

(1.10)

where F|y is a field strength of C3), and Fly is a super-covariantized F{y). 2x> = (2m)81)
and [}, is 11-dim Planck length. e is a vielbein, w is a spin connection and Wyqp = Wyab +
%@p'ypwbaw", where a, b, - - - are indices of a tangent flat spacetime.



1.2. 11-DIM SUPERGRAVITY AS LOW ENERGY LIMIT 17

The various lower dimensional supergravities, including 4-dim A/ = 8 supergravity,
can be obtained by the dimensional reduction of this action on appropriate manifolds. So it
seems a promising theory for the ultimate unified one. However, this 11-dim supergravity
has the following serious problems:

o This theory may not be renormalizable, i.e. the quantum theory cannot be defined.

e If one compactifies this theory on a manifold, the chiral fermions cannot appear.
Therefore, the standard model never be reproduced, where left- and right-handed
fermions act differently.

o If one compactifies this theory on 7-dim manifold, one can obtain 4-dim theory with
only SO(8) gauge symmetry. Again, the standard model cannot be reproduced, since
SU(3) x SU(2) x U(1) gauge symmetry never be contained in SO(8) symmetry.

The existence of M-branes as the solution of 11-dim supergravity’s problems

In fact, these problems can be solved, if we consider the new theory which contains 11-dim
supergravity as its low-energy limit.

Let us note that the field C3) exists in 11-dim supergravity. Then it is natural to consider
that there must be the source of electric and magnetic charge for this field C3). In 4-dim
Maxwell theory, the electric-magnetic field Aj) exists. It is well known that the electric
interaction between the point charge and field is described as

/d%ﬁ)/d‘lxj“Au, j“(x):/d75(4)($“—X“(T))@TX“(T), (1L.11)

where X#(7) is a position of the point charge in 4-dim spacetime, and 7 is coordinates on
its worldline. Then the analogy goes straightforwardly. In this present case, the electric
interaction between the source and field must be described as

/dllxﬁ D /dllxj“”pC’m,p,
GHP(x) = / Bo szt — XH (o)) R0, X19; XV 0, X7, (1.12)

where X# (o) is a position of the source in 11-dim spacetime, and o' (i = 0,1,2) are
coordinates on its worldvolume. This means that the sources of electric charge must be the
objects which spread for 3-dim spacetime (i.e. 2-dim space).

On the other hand, the magnetic interaction for C'(3) can be also described easily. In 4-
dim Maxwell theory, the source of magnetic charge is called monopole, which couples with
the dual field A/(1) satisfying dA’(l) = *x4dA(y). In this case, since the magnetic dual of C|3)
is C£6) which satisfies dC’é6) = *11dC(3), the magnetic interaction between the source and
field must be described as £ D j“”””’\TC’l’W poAT

that the sources of magnetic charge must be the objects which spread for 6-dim spacetime

From similar discussion, we can conclude

(i.e. 5-dim space).
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Therefore, it is natural to consider that there must be these electric and magnetic sources
for C(3) field in the new theory, which are called M2-branes and M5-branes. When a suf-
ficiently large number of coincident M2- and M5-branes’ charges are put in 11-dim space-
time, this system must be the solution of 11-dim supergravity, of course. In fact, it is well
known that its near-horizon limit is AdS; x S” and AdS7 x S* spacetime, respectively.

These M-branes are non-perturbative objects, since their masses are [, 3 and ly 6 which
go to infinity if /[, — O (in the low-energy limit).> Moreover, they are 1/2 BPS states which
keep a half of supersymmetry if one puts an M-brane (i.e. M2- or M5-brane) in 11-dim
spacetime, so these M-branes are stable even in quantum theory because of supersymmetry.
Therefore, this quantum theory, which contains 11-dim supergravity as its low-energy limit
and M-branes as non-perturbative objects, is called M-theory.

Then it is widely believed that M-theory has no problems, since such non-perturbative
corrections solve the problems which 11-dim supergravity has. For example,

e Renormalizability : M-theory action must have the higher order terms of curvature
tensor, and they can make the theory finite.

e Chirality : One can compactify M-theory on a non-manifold space, e.g. a segment,
then the chiral fermion appears in this case.

e Gauge symmetry : As we saw in fig. 1, for example, when one compactifies M-theory
on a circle or segment, it becomes type 1A or Het Eg X FEg superstring theories.
There, we can obtain a sufficiently large gauge group, such as U(N > 1) group in
the former case or Fg X Eg group in the latter case.

1.3 M2-brane and M5-brane

From the discussion in the previous section, it must be sure that M-theory can be the most
profitable unified theory for particle physics, and that in order to understand M-theory, it is
indispensable to research the behavior of M-branes in detail.

According to Dirac’s discussion on monopoles, M-brane’s charge is quantized. It means
that the number of charges, i.e. the number of M-branes, can be counted. Then, in this
section, we first show the action of a single M-brane’s system. The discussion on multiple
M-brane’s system is put off until §1.5.

A single M2-brane’s action

The action of an M2-brane’s system is defined on its 3-dim worldvolume, and is invariant
under the general coordinate transformation on the worldvolume. It means that the scalar

2As we will see in §1.4, M-theory is also the strong interaction limit of superstring theories. In this view of
point, M-theory must have no adjustable parameters. It means that only parameter is 11-dim Planck length, so
all the physical quantity are determined by its dimension.
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fields X* which denote the position of an M2-brane in 11-dim spacetime have 8 physical
degrees of freedom.

As we mentioned, M2-brane keeps (a half of) supersymmetry, so its action must be also
supersymmetric. This requires that there should be the spinor field U as a superpartner
of X*# in M2-brane’s action. So this field ¥ is regarded as the fermionic coordinates. Its
degrees of freedom is % . % - 32 = 8, where the first % comes from the broken half of
supersymmetry (or local x symmetry) and the last % comes from equation of motion. This
is the same as that of scalars.

Therefore, the supersymmetric action of a single M2-brane can be written in terms of
only scalars X* and fermions W. The covariant Lagrangian is obtained by Bergshoeft,

Sezgin and Townsend [20,21] as

L = —/—detll; - TI;

P _ 1 _ _
—%(elﬂkwrwa,-qf) ITIL + AT UTY0p 0 — o (UT0;0) (U7, W) | (1.13)

where IT}' = 9; X* —iWI*9; V. The indices p1,v,--- = 0,--- , 10 denote 11-dim spacetime
coordinates, while 7, j, - - - = 0, 1, 2 denote M2-brane’s worldvolume coordinates.

A single M5-brane’s action

From the similar discussion, in the case of M5-brane’s system, the scalar fields X* have
only 5 degrees of freedom. On the other hand, the spinor field on M5-brane’s theory has 8
degrees of freedom, just as in M2-brane’s case. It means that we need more bosonic fields
with 3 degrees of freedom, in order to construct the single M5-brane’s supersymmetric
action. It is well known that this bosonic field must be the self-dual 2-form field A ).

Although it is very hard to write down the covariant action including a self-dual field,
the covariant Lagrangian for an M5-brane was obtained by Pasti, Sorokin and Tonin [22].
The bosonic part is

= 1 - "
L = \/— det(gmn + 1Fmn) + 1 (8Ta)92F m"anlpapa, (1.14)
where the indices m,n,--- =0, --- , 5 denote M5-brane’s worldvolume coordinates.

Finn is a field strength of self-dual 2-form field A(z), and its dual is defined as F*/"" =
1
6v—9g
and F,,,,, =

elm"pququ. a is an auxiliary scalar field which can be eliminated by gauge-fixing,

* Ola

1
\/Wanl '
1.4 Relation to superstring theories

In the previous section, we see M-theory as the refined theory of 11-dim N = 1 supergrav-
ity, which closely relates to 4-dim N = 8 supergravity. In this section, we see M-theory as
the string coupling limit of superstring theories.
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M-theory M2 M5

/ &\ompactlﬁcatlon on /é \

Fl NSS
Type TA

DO D6 D8
VIR 4% VIR VIR 4%
/4—dua1 /4—dual /4—dual /4—dual /4—dual
¥ ¥ LU ¥ ) X
D(-1) D1 D3 D5 D7 D9
Type 1IB I S-dual O S-dual I S-dual
F1 NS5

Figure 1.1: Relation among M-branes and D-branes

We already showed the relation among M-theory and superstring theories in fig. 1 in
Introduction. It is well known that while the superstring theory is not unique, M-theory
can be regarded as the unification of all types of superstring theory. In the following, we
especially discuss the relation among M-theory and type IIA and IIB superstring theory.

1.4.1 Type IIA superstring theory

Field contents and D-branes

As we saw in fig. 1, type IIA superstring theory is obtained by compactification of M-theory
on a circle S'. In this case, the graviton (or metric) § and 3-form field C’(g) in M-theory are
rewritten in terms of the bosonic fields in type IIA superstring theory as

ds?, = e_%‘bgw,d:v“dx” + e%¢(dy + C,dzt)?,

A 1 1

Ciz = ECWpdm“ Adz? A dxf + idem“ Adx”, (1.15)
where p,v,--- = 0,---,9 and y is a coordinate of the compactified circle. That is, the

fields of type IIA superstring theory are

e graviton G, = /Gy <§/w - W)

Gyy
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e NS-NS B-field B,,, = %C’Hl,y : Fl-string / NS5-brane
e dilaton ¢ = %log Jyy

e R-R 3-form field C,,, = CA‘Wp : D2-brane / D4-brane

e R-R I-form field C,, = MY . DO-brane / D6-brane
Gyy

Here we also write the objects, called Fl-string (or fundamental string), NS5-brane and

various dimensional Dp-branes, which couple to each field electrically / magnetically. This
can be understood from similar discussion nearby eq. (1.12). The relation to M-branes are
showed in fig. 1.1. It is also interesting to compare this figure with fig. 2 in Introduction.
The correspondence between them is an important topic in Part 111 of this thesis.

Compactification radius and string coupling constant

From eq. (1.15), the compactification radius for y-direction is
Ry = 6§¢\/a, (1.16)

where Vo is the string scale which are usually set to 1. When we rewrite 11-dim super-
gravity Lagrangian (1.10) as 10-dim type IIA supergravity Lagrangian using the relation
(1.15), we can obtain the Kaluza-Klein mass on this circle as
e 59 1
Rii  e?Va!

This means that the compactification radius is R1; = e?v/a/ when we measure it with 10-

(1.17)

dim metric g,,,,, and that the relation between 11-dim gravity constant x and 10-dim gravity

. 2TR 1 . . .
constant K1 1S 7211 = —5—. On the other hand, from the ratio of tension of Fl-string and
K K10

D-brane in string theory, we can obtain k1q as
7
K10 = 8m20/%g, (1.18)

where ¢ is the string coupling constant, and is determined by the VEV of dilaton field as
g = e'?)_ Then the 11-dim gravity constant is
~ 1

K1 = 2mRy 1k = 5(2#)8g3a/% . (1.19)
As we saw in eq. (1.10), the relation between ~ and 11-dim Planck length [, is 2K2 =
(2m)B1) , so we obtain [, = gival.

To summarize above discussion, we find the relations such that
3

3 d 2 l4 l3
g:<RH> L . B (1.20)
lp Ly RY, Ry

This means that the strong coupling limit ¢ — oo corresponds to R, RH — 00, L.e. M-
theory can be regarded as the strong coupling limit of type IIA string theory.
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A single F1-string’s action

The bosonic action of an F1-string’s system is known as Nambu-Goto action

d*o\/—detGi;, (1.21)

where the scalar fields X* denote the position of an Fl-string in 10-dim spacetime. The

1

2ma!

1

2ma/

NI

S:

/ d*o (— det [0; X"9; XV G ))

indices ¢, 7 = 0, 1 denote F1-string’s worldvolume coordinates o’. We note that the world-
volume 4/ — det G; is apparently invariant under the general coordinate transformation.
This action is equivalent to Polyakov action

1
4o/

S =

/ d*o V/—h "0, X 0; X" G (1.22)

where h = det h%. In fact, this action reduces to Nambu-Goto action, when we use the
equation of motion for the auxiliary field h*/, which is a metric on the worldsheet (world-
volume) of an F1-string. One can quantize this action, and all kinds of fields in superstring
theory are described as vibrations of an F1-string in the massless spectrum.

The supersymmetric action of an F1-string’s system is known as Green-Schwarz action

1

S = —
iV e%

/ d*o [\/—h RUTL; - TL; 4 26 0, XM (VT ,0; 0! — ¥2T,0,T?)
—2€7 (UM, W) (U7 ,0,12)] (1.23)

where I = 9, X# — iWoTHG, U™ (o = 1,2).

A single Dp-brane’s action

Now let us consider the action of a Dp-brane’s system. The discussion goes similarly as
M-brane’s case in §1.3.

This action is defined on its (p 4+ 1)-dim worldvolume which are invariant under the
general coordinate transformation, so the scalar fields X* which denote the position of Dp-
brane in 10-dim spacetime have (9 — p) physical degrees of freedom. On the other hand, the
Dp-brane’s system in type IIA and IIB superstring theory have 16 supersymmetries, which
means that the superpartner ¥ of the scalar fields must have 8 degrees of freedom, in terms
of bosonic degrees of freedom. Therefore, there must be an additional bosonic field with
(p — 1) degrees of freedom, in order to obtain a supersymmetric theory. It is well known
that this field is nothing but the massless vector field A; on (p + 1)-dim worldvolume.

The bosonic action of a Dp-brane’ system is known as DBI (Dirac-Born-Infeld) action

NI

S, =T, / d" o e ? (—det [Gyj + Bij + 2ma’ Fyy]) 2, (1.24)

where the indices 7, j = 0, - - - , p denote Dp-string’s worldvolume coordinates . Gij, Bij
are the pull-back of G,,,, B, such that Gy = 0; X"0;X"G,,, just as in the Fl-string’s
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case. I;; is a field strength of vector field A; on Dp-brane’s worldvolume. We note that this
action reduces U(1) Yang-Mills gauge theory in the low-energy limit (where G, = 7,
and B, = 0).

Moreover, when the background R-R fields C(q) exist, we have the additional bosonic
terms in the action such that

Sos = iT, / exp [B) + 21’ Fig)) A Y Ciy s (1.25)
q
where integrated functions must be (p + 1)-form.

1.4.2 Type IIB superstring theory
T-duality

As we saw in fig. 1, type IIA and IIB superstring theory can be related by T-duality. In order
to take T-dual for z-direction, we first compactify this direction with the radius R as

z~ z+2mR. (1.26)
In this case, the center-of-mass momentum of an F1-string for z-direction is quantized as
n
Py = R n e 7. (1.27)
in quantum theory, because the translation operator exp[27wiRp,] should be 1 under the

identification (1.26). On the other hand, one of the scalar field X* which denote the position
of a closed string in z-direction satisfies

X*(o+27)=X*(0)+2nRw, wEZ. (1.28)

where o € [0, 27] is worldsheet spatial coordinates, and w is the winding number. It only
says that a closed string must be closed in the compactified space (1.26). Without this
compactification, this condition becomes the stronger one such that X*(o + 27) = X*(0).

In this case, it can be showed that the mass spectrum of a quantized closed string is
invariant under the T-duality transformation

/

RHR’:%, n o w, (1.29)

which means that the theory is invariant, when one interchanges long length and short
length, and momentum and winding number, simultaneously.

Field contents and D-branes

All the bosonic fields in type ITIA superstring theory (in the previous subsection) are various
vibration modes of a closed string. These vibration modes, of course, change under the
T-duality. Then it is known that if we take T-dual for z-direction, the fields of type IIA
superstring theory are transformed to those of type 1IB superstring theory:



CHAPTER 1. WHAT IS M-THEORY?

24
e graviton G v
=~ Gz Gzzx - Bz Bzzz ~ Bz =~ 1
Guw =G — —* P22 Ga=FE, G = 1.30
n% nv Gzz 2z Gzz 2z Gzz ( )
e NS-NS B-field B, : Fl-string / NS5-brane
_ 2GZ[ B,,]Z _ G
B,, =B i = 2 1.31
nuv nv + Gzz ’ ZU Gzz ( )
e dilaton ¢ = ¢ — % log G,
e R-R 4-form field C'ng : D3-brane
A 3 GauBupCs 3 G202
CZ,UJ/p == g <Cy,1/p - C[H‘BVP] + GZZ - 5 GZZ . (]32)
e R-R 2-form field C’W : D1-brane / D5-brane
_ 3 2G,,B,,.C - C.G
Couw = 5C0mz = 2By + % Cop = —Crut =52 (133)
zzZ zZ
e R-R 0-form field C' = C, : D(-1)-brane / D7-brane
= 0,---,8. Similarly, we write the objects which couple to each field
electrically / magnetically. The relation to D-branes in type IIA superstring are showed in
fig. 1.1. It is important that T-duality changes the dimension p of D-brane one by one, i.e. if

where u, v, - -
we take T-dual for a transverse direction, the worldvolume of Dp-brane is extended for this

direction, and Dp-brane becomes D(p + 1)-brane, while if we take it for a longitudinal
direction, the worldvolume is reduced for this direction, and Dp-brane becomes D(p — 1)-

C_}’W, F_’(5) : invariant,

[ShsH

brane.

SL(2,Z) symmetry and S-duality

It is well known that type IIB superstring theory is invariant under the SL(2,Z) transfor-
) , e (1.34)

Hgy\ _ (d c) (Hg
b a F(3

)

mation such that
ar +b
— _
CT + d ’ F(S)
where ad —bc € Z, 7 :=C + ie_qg, and
_ _ _ 1 _ _ _

H) = dB), Fg) =
While type IIB supergravity is invariant under the SL(2, R) transformation where ad—bc €
R, type IIB string theory is only under SL(2,Z) one, since the all kinds of charge are

quantized from the Dirac’s monopole discussion which we also mentioned in §1.3.
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In particular, in the case of (a, b, ¢,d) = (0, —1,1,0) and C' = 0, we find
¢ ——¢, Bpy—Cp, Cg — —Bpy. (1.36)

Since the string coupling constant is § = e‘g, this transformation means the inversion of g,
and it is called S-duality as we showed in fig 1.1. In another case of (a, b, c,d) = (1,n,0, 1),
we find

C(o) — C_'(O) +n, 6(2) — C_'(Q) + nB(g) , (1.37)

which means the shift of R-R fields. This is also the symmetry of type IIB superstring
theory.

U-duality — the unified group of S- and T-duality

As we mentioned, U-duality is the minimal unified group including S- and T-duality as its
subgroups. We note that S- and T-duality do not commute each other, as we can easily see
in fig. 1 and 1.1. Therefore, U-duality also includes a generator like the commutator [S, 7).

As we saw in the above SL(2, Z) duality, S-duality means the interchange of two com-
pactified directions (y and z in this case), and is always included in SL(2,Z) group. The
remaining T- and U-duality group are shown in the following table:

’ dim. H T-duality group ‘ U-duality group ‘

10 (IIA) 1 1
10 (1IB) 1 SL(2,7Z)
9 Z, SL(2,Z) x Zy
8 0(2,2;Z) SL(3,Z) x SL(2,Z)
7 0(3,3;Z) SL(5,7Z)
6 04,4 7Z) 0(5,5;Z)
5 0(5,5;Z) E6(6)(Z)
4 0(6,6;7Z) By (Z)
3 O(7,7,Z) Ey(s)(Z)
2 0(8,8;Z) FEo(9)(Z)
1 0(9,9;2) Ero(10) (Z)
0 0(10,10;Z)? Eyian(Z)?

It shows that when we compactify and take T-dual for more directions, T- and U-duality
group is larger. We will discuss U-duality in detail in the context of BLG model in §7.4.

1.4.3 Multiple D-branes and U (N ) symmetry

As we discussed in the previous subsection, there is a U (1) vector field on a single D-brane.
It is known that this field is the massless vibration mode of open F1-string which ends on
the D-brane and vibrates for its worldvolume direction.
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Here we consider the multiple D-branes’ system. In this system, there are more than
one kinds of the massless vector fields, since the open Fl-strings which end on different
D-branes from each other cause the different kinds of massless vector fields. That is, the
vector fields in this system can be labeled as two indices (i, j), where i, = 1,--- | N (N
is the number of D-branes).

If the D-branes are separated, only the vector fields on the strings with ¢ = j are mass-
less, and the massive fields on the ¢ # j strings are neglected (or integrated out) in low-
energy effective theory. On the other hand, if the D-branes are coincident, all the vector
fields with (i, j) are massless. As a result, the gauge symmetry is enhanced in this case,
and the U (V) Yang-Mills gauge theory are realized on multiple D-branes’ worldvolume in
low-energy limit, which we mentioned in the end of §1.2.

1.5 M-branes revisited : placement of this research

Towards multiple M-branes’ action

Since we know that the U(/N') gauge theory is realized on the multiple D-branes’ system,
it is natural to consider what kinds of theory is realized on the multiple M-branes’ system.
However, this subject has been a very challenging one for a long time.

One difficulty comes from the fact that M-theory is the strong coupling limit of type IIA
string theory and hence M2-branes are the strong coupling limit of D2-branes. This implies
that the worldvolume theory for N M2-branes is the infra-red fixed point of a maximally
supersymmetric 3-dim U (V) super Yang-Mills theory.

However, there is no known Lagrangian description of this system. The only interact-
ing 3-dim Lagrangian with 16 supersymmetries is maximally supersymmetric Yang-Mills,
which contains one vector plus seven scalars with an SO(7) symmetry. This is a well-
known Lagrangian for multiple D2-branes in low energy. In fact, simple counting suggests
that the M2-branes’ theory should contain eight scalar fields and an SO(8) symmetry. In
the abelian case, corresponding to a single M2-brane, such a theory can be obtained directly
from the D2-branes’ worldvolume theory by dualizing the vector field into a scalar. In the
non-abelian case, however, there is no straightforward way to do this.

Preceding research

Bagger, Lambert [1-3] and Gustavsson [4] have broken through (a part of) this difficulty,
by considering Lie 3-algebra as the gauge symmetry of multiple M2-branes’ theory. This
algebra is defined with a 3-commutator [x, *, *| and trace (x, *), such that

[T, 7%, 7 = f*q1¢, (T T% =h", (1.38)

where f¢,; are structure constants and h% is metric. Tn particular, they found that one
can write down the consistent action (called BLG action) for multiple M2-branes’ system,
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when one adopts an concrete example of Lie 3-algebra which satisfies the conditions of
fundamental identity and invariant metric (Chapter 2).

Then, after that, many researchers studied on the structure of Lie 3-algebra, in order to
obtain and analyze the concrete form of BLG action.

Analysis on Lie 3-algebra : Ho, Hou and Matsuo [12] studied widely on the examples of

Lie 3-algebra, and conjectured that the finite-dimensional representations of Lie 3-algebra
with positive-definite metric are only trivial algebra (2, = 0), A4 algebra ( f2%¢; = abed,
h® = §%) and their direct sums. Soon after, this conjecture was proved by Papadopou-
los [11], Gauntlett and Gutowski [24] (Chapter 3).

Many researchers were disappointed at this result, since it seems to mean that we can
only obtain the concrete forms of BLG action for the infinite number of M2-branes or with
non-physical (e.g. ghost) fields, except the A4 case.

MS5-brane’s system : Ho and Matsuo [13] suggested that when one use the Nambu-Poisson

bracket as an infinite-dimensional representation of Lie 3-algebra, BLG action for the infi-
nite number of M2-branes describes a single M5-brane’s system. They showed it by deriv-
ing the M5-brane’s action from BLG action to the quadratic order (Chapter 4).

D2-branes’ system : Mukhi and Papageorgakis [25], and Ho, Imamura and Matsuo [15]
showed that when one use the central extension of ordinary Lie algebra with one negative-

norm generator, BLG action describes the multiple D2-branes’ system (Chapter 6).

This is a nice result especially in that the ghost field from the negative-norm generator
can be completely removed without breaking any gauge symmetry nor supersymmetry, by
a new kind of Higgs mechanism.

Towards Dp-branes’ system : As a rather mathematical study on Lie 3-algebra, de Medeiros,
Figueroa-O’Farrill and Méndez-Escobar [26] classified the Lie 3-algebra with more than

one negative-norm generators (Chapter 7).

Placement of our research

Our research have been done based on these preceding researches. We improved them, and
make clear the deeper physical meaning of BLG model as multiple M2-branes’ system.

MS5-brane’s system : We improved the discussion of [13], and showed that one can obtain

the single M5-brane’s action from BLG action in all orders of the fields, when one adopts
the Nambu-Poisson bracket as an example of Lie 3-algebra (Chapter 4).

Moreover, we showed that the truncation of Nambu-Poisson bracket can be also an
example of Lie 3-algebra which can be used in BLG model. Since this example is finite-
dimensional, one can discuss the relation between the number of M2-branes and entropy
(degrees of freedom) of the system. Then we showed that we can obtain the consistent
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result with the celebrated N2 law from AdS/CFT correspondence (Chapter 5).

Dp-branes’ system : We discussed the possibility of obtaining physically meaningful theo-

ries from BLG action, based on the discussion of [26] where one considers the Lie 3-algebra
with more than one negative-norm generators.

Then we found that when one uses the central extension of Kac-Moody algebra and
loop algebra, one can find the physical meaning in the context of M/string theory from
BLG model in this case. That is, we can obtain the multiple Dp-branes’ system which are
compactified on (p — 2)-dim torus 7P~2. As nontrivial checks, we showed that one obtains
the proper Kaluza-Klein mass on the torus and reproduce properly the relation of (a part of)
U-duality between Dp-branes and M2-branes (Chapter 7).

Related research

ABJM model : Soon after the proposition of BLG model, Aharony, Bergman, Jafferis and
Maldacena [27] proposed another (2 + 1)-dim Chern-Simons matter system with SU (N) x
SU(N) gauge symmetry. While it lacks the manifest NV = 8 supersymmetry, it has many
attractive features such as the brane construction, AdS/CFT correspondence, and relation
with the integrable spin chain. In particular, it gives a good description of M2-branes when
the coupling constant N/k (k is the level of Chern-Simons term) becomes small.

In N = 2 case, ABIM model is equivalent to BLG model with .4, algebra. However, in
other cases, the connection of both models is not still clear. For example, while the U-duality
relation in ABJM model is also discussed [28], the correspondence with our discussion in
BLG model is unknown.

BFSS/BMN matrix model : As we mentioned in Introduction, BFSS [29] and BMN [30]
matrix model are also proposed as the M2-branes’ theories. Then it is natural that one

wants to discuss the correspondence between these models and BLG model.

These matrix models describe M2-branes in a following state. First, we compactify one
of the light-cone directions, and consider the system where all M2-branes have momentum
almost only for this compact direction. The momentum for the compact direction is quan-
tized and can be regarded as a number of DO-branes in type ITA superstring theory. When
there are more than one DO-branes, the positions of branes become uncertain and seems to
spread over 2-dim space. Then these spread DO-branes can be considered as M2-branes.

Since BFSS matrix model describes M2-branes in flat spacetime, it must directly relate
to BLG model. However, the analysis of this matrix model is difficult, so it may also be
difficult to find the correspondence to BLG model.

On the other hand, BMN matrix model describes M2-branes on 2-dim sphere 52 in
pp-wave background, but the analysis is relatively easy and already studied widely. Fortu-
nately, BLG model on 52 [31] and in background field [32] have also already studied, the
discussion the correspondence with BLG model can be done in the near future.



Chapter 2

BLG model for multiple M2-branes

As we saw in Chapter 1, M-branes are very important but still mysterious objects. While the
dynamics of a single M-brane is understood (at least in classical level) as in §1.3, very little
is known about that of multiple M-branes. In fact, the construction of theory for multiple
M-branes is very challenging for a long time. (See, for example, [33].)

In such circumstances, Bagger, Lambert [1-3] and Gustavsson [4] proposed a model of
multiple M2-branes based on Lie 3-algebra which is defined using a totally antisymmetric
triple product (or 3-commutator). The examination of the supersymmetry algebra suggested
that the theory has a local gauge symmetry that arises from the 3-commutators.

Although their construction with Lie 3-algebra might not be the only solution, BLG
model is of great value in that it is the first (and only, at least at this moment,) example which
can describe the multiple M2-branes’ system. In this chapter, we review their discussion.

2.1 Clue to construction of theory

2.1.1 Indispensable conditions

The M2-branes’ worldvolume theory must have the following continuous symmetries:

1. 16 supersymmetries (A" = 8 in 3-dim spacetime)

M-theory has NV = 1 supersymmetry in 11-dim spacetime, i.e. 32 supersymmetries.
M2-brane is the 1/2 BPS object in M-theory, so must have 16 supersymmetries.

2. SO(8) R-symmetry (which acts on the eight transverse scalars)

The scalar fields describe the position of M2-branes. If we fix the gauge for world-
volume coordinate, the number of transverse scalars X/ is eight (i.e. I = 3,---,10).
When we consider M2-branes in flat spacetime background, there must be SO(8)
rotational symmetry for transverse 8-dim space. So the transverse scalars X! must
have SO(8) symmetry.

29
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3. nontrivial gauge symmetry

For multiple M2-branes’ case, there must be gauge (internal) degrees of freedom and
the nontrivial symmetry for them. Because of supersymmetry, i.e. from the simi-
lar discussion in §1.3, the gauge field on M2-branes has no degrees of freedom like
Chern-Simons field. (As we will see, this is the case.)

4. conformal symmetry

M-theory has no adjustable parameters, so no free parameters depending on the en-
ergy scale exist, of course. This also suggests that there is no weakly coupled limit
that might be described by perturbative quantization of a classical Lagrangian.

Despite the difficulties, it is still interesting to try to construct a classical theory that can
capture at least some of the features of multiple M2-branes. In the following, we will show
that in fact we can identify the field contents and supersymmetry transformations, and give
a geometrical interpretation to the fields.

2.1.2  N? law from AdS/CFT correspondence
The algebra of gauge symmetry cannot be a Lie algebra.

There are some peculiar features of the multiple M2-branes’ system. Especially, from the
discussion of AdS/CFT correspondence, it can be shown that the near horizon limit of [V
M2-branes is dual to a 3-dim CFT with IV 3 degrees of freedom [14]. It is well known
that the near horizon limit of the sufficient large number of M2-branes is AdSy x S 7 s0
we can think the AdS/CFT correspondence is satisfied. On the AdS side, we can derive
the blackhole entropy made by multiple M2-branes using Bekenstein-Hawking’s entropy
formula. The relation between this entropy and the number of branes can be regarded as
that of the degrees of freedom and the number of branes in CFT side.

When the gauge symmetry is defined by Lie algebra, the degree of freedom is necessar-
ily proportional to IN. This is the case for the multiple D-branes, whose gauge symmetry
is U(N). This means that the gauge symmetry for multiple M2-branes’ system cannot be
written by Lie algebra. Actually, there were attempts [34,35] where the scalar fields were
taken to be U (NN)-valued, transforming under a standard gauge symmetry. The gauge field
kinetic term was taken to be of Chern-Simons type, so the vector field did not introduce any
propagating degrees of freedom. Under these assumptions, no theory was found with 16
supersymmetries.

2.1.3 Basu-Harvey equation for M2-MS5 system

The multiple M2-branes’ system is included in well-known Basu-Harvey’s M2-M5 sys-
tem [36]. This system is the BPS state of IV coincident M2-branes ending on an M5-brane,
such that
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_ Joft]2[3]4[5]6]-- [10]

where ‘-’ means that the brane expands to this direction, while -’ that it doesn’t expand and
is pointlike. We note that M2-brane and M5-brane must share one direction (the direction
1 in this case) in order to keep some supersymmetry of M2-M5 system. It is known as the
intersection rule.

On the M5-brane’s worldvolume, this configuration appears as a self-dual string soliton
[37]. Basu and Harvey, however, examined this configuration from the M2-brane point
of view. They exploited an analogy with the type IIB string configuration built from N
coincident D1-branes ending on a D3-brane. In that case, the end point of the D1-branes
appears as a BPS monopole on the D3-brane’s worldvolume.

_ [ofr]2]34fs[e[ - [10]
D3f[-[-[-[-[-]-T+
DL =1 1= -1-1-1/

where we compactify the direction 6, and take T-duality for the direction 1, then we obtain
the system in type 1IB superstring theory. On the D1-branes’ worldvolume, the configura-
tion gives rise to a fuzzy funnel soliton [38] which is a fuzzy 2-sphere whose radius grows
infinitely as the D3-brane is reached. These two descriptions of the same physical state
provide a stringy realization of the Nahm construction [39-41].

ox* 1

5z X X =0, 2.1)

where a,b,c = 3,4,5. By analogy, we naturally hope that the M2-brane theory might
provide a generalized Nahm construction for self-dual string solitons.

The queer commutator appears — the hint for M2-branes’ theory?

Then Basu and Harvey proposed that the M2-branes’ worldvolume admits a fuzzy funnel
solution that satisfies a generalized Nahm equation [36,42]

dx* K
) + Ie“”cd[G, X xc x9 =0, (2.2)

where a,b,c = 3,4,5,6, K = M?/87\/2N is a constant,
[A,B,C, D] = ABCD — BACD — ACBD + ACDB + - - - , (2.3)

and G is a fixed matrix such that G = 1.
Here we use the 4-commutator with one fixed entry, so we can effectively regard it as
the 3-commutator. However the 4-commutator is chosen here, because in fact it is known



32 CHAPTER 2. BLG MODEL FOR MULTIPLE M2-BRANES

that we cannot quantize the n-commutator (n : odd) without losing trace property and by
part integration property [43]. The problem of quantization is very important, but also very
difficult. We will mention it a little in Chapter 5, but we avoid this problem in this thesis
by considering only the classical theory, so we use odd commutators without any caution
in the following.

The solution of this equation (2.2) describes a fuzzy 3-sphere [44] whose radius grows
infinitely as one approaches the M5-brane. Unfortunately, however, it is not known how
to derive the Basu-Harvey equation from first principles. In [36] a bosonic theory was
constructed, essentially by reversing the Bogomol’nyi procedure of writing the action as a
perfect square plus boundary terms. Now what we would like to do is to understand the
origin of this theory considering only the geometric and supersymmetric features of M2-
branes.

2.1.4 Supersymmetry transformations
The Basu-Harvey equation becomes an important hint for considering the supersymmetry
transformations for multiple M2-branes. Now we show this.

For D2-branes’ case

We start by considering the supersymmetry transformations of N coincident D2-branes,
written so the spacetime symmetries are manifest:

6X' = qel"w
6A, = el TV
U = OuXTTe+ JF, T + L[X, XD e, 2.4)
where p, v = 0,1, 2 denote the worldvolume coordinates, and ¢, 7 = 3,--- ,9 denote the

transverse directions of the D2-branes. There is an SO(1, 2) symmetry of the worldvolume,
as well as a manifest SO(7) symmetry of the transverse R that acts on the scalars and on
the I' matrices.

Notice the explicit appearance of I''Y. This matrix ensures that the unbroken supersym-
metries satisfy I'%'%¢ = ¢, while the broken supersymmetries satisfy I'°12¢ = —¢. All the
fermions are Goldstinos, and obey the corresponding parity condition T'1?¥ = — .

Toward M2-branes’ case

We now attempt to generalize these transformations to the case of multiple M2-branes. The
presence of the explicit I''Y forbids a straightforward lift to eleven dimensions. Therefore
we simply assume that there is some extension of the D2-brane transformations such that,
if all the vector fields are set to zero, the D2-brane transformations lift in such a way that
the SO(7) symmetry is trivially extended to SO(8). Our transformations capture the fact
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that the M2-brane theory almost certainly contains eight scalar fields, corresponding to the
eight transverse dimensions. Since we have ignored all gauge fields, we cannot expect the
corresponding Lagrangian to be invariant under the supersymmetry transformations. Nor
can we expect the transformations to close. We will discuss the gauge symmetrization and
supersymmetrization later in §2.3.

Thus in what follows we put aside all vector fields and study the scalar-spinor super-
symmetry transformations of the multiple M2-branes’ theory. As the first step, we propose
the lowest order supersymmetry transformations of the following form:

oxT = qerlw
6V = 9, X' e +in[X!, X7, XEIDITE (2.5)

where I, J, K = 3,4,5,---,10. In these expressions, « is a dimensionless constant and
(X!, X7, X&] is antisymmetric and linear in each of the fields. These transformations
imply that (X, ¥) have dimension (1, 1), as required for conformal invariance. We note
that there could be other cubic terms that are not totally antisymmetric in I, J, K and that
vanish in the D2-brane limit [45], or that correspond to higher-order terms in the Dirac-
Born-Infeld effective theory of the D2-branes. Quite a few studies on these possibilities has
done, but we do not consider here. Instead, we just stipulate the presence of a I'//% term,
and we focus on it alone.

Basu-Harvey-like equation appears as BPS equation.

There is another argument for such a T//% term in the supersymmetry transformations.
The preserved supersymmetries of N M2-branes in the presence of an M5-brane (i.e. Basu-
Harvey’s M2-MS5 system) satisfy I'2e = I'3*%¢_ or equivalently

e = eI e, (2.6)

where a,b, c,d = 3,4, 5, 6. From this, one obtains the BPS equation

dx®
d(x?)

= ike®d[XP x° X1, (2.7)

The solutions to this equation behave as X® ~ 1/vx? as X* — oo. Turning this around,
we see that 22 ~ 1/R? at small R, where R? = (X3)2 + (X*%)? + (X®)? 4 (X5)2. This
is the correct divergence to reproduce the profile of the self-dual string soliton on the M5-

PIJK

brane [37]. So we can say that the cubic term and the appearance of the are crucial to

obtaining a Bogomol’nyi equation (2.2) with the correct features.

2.2 Lie 3-algebra as gauge symmetry

In the proposed supersymmetry transformation (2.5), we use a 3-commutator which is to-
tally antisymmetric and multilinear. In general, for a D-dim linear space V = {25:1 v 1%
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vy € C}, such a multilinear map [*,--- ,*] : V®" — V can define the algebra which
is known as Lie m-algebra or Filippov n-algebra [46]. This can be regarded as a natu-
ral generalization of Lie algebra. Here, we usually require that the multilinear map (or
n-commutator) should satisfy the following two conditions:

Skew-symmetry

[T9% ), ... T%m)] = (—1)‘U|[T‘“, e T (2.8)

Fundamental identity

[T%,... Tan-1, [Tbl, o 7Tbnﬂ
n
= [T T [T Tt TOR) TP TP (2.9)
k=1

The latter can be regarded as the generalized Jacobi identity. It means that the commutator
[T91) ... [ T%~1 x| acts as a derivative on V), and it will be used to represent a symmetry
transformation. In particular, in n = 3 case, the fundamental identity becomes

[T, T°, [T, 7%, T°]
= [[T%,T° 7, T T + [T¢,[T*,T° T, T¢ + [T¢, T, [T T, T¢]. (2.10)

Non-associative algebra can make a non-vanishing 3-commutator.

In the following, we concentrate our attention on the n = 3 case. Here one may think that
T can be valued in the Lie algebra u(N), as in the D2-brane theory. If so, the [T, T?, T°]
would be given by a double commutator
1
3!
but it vanishes because of the Jacobi identity. Therefore we must take 7' to be valued in a
non-associative algebra A, with a product - : A x A — A. We require the algebra to have
a 1-dim center generated by I, and define the associator

(7%, T T¢] = —[[T%,T"], T¢] + cyclic, (2.11)

<T“, il TC) = (T°-T%) - T°— T (T* . T°). (2.12)
which vanishes in an associative algebra. We then define
1
T, 10,1 = 5= (T[“,Tb,TC]> : (2.13)
which is linear and fully antisymmetric, as required. The right hand side is what one finds
by expanding out the Jacobi identity [T, T°], T¢] + [[T?, T°], T°] + [T, T%,T%]. In a
non-associative algebra, the antisymmetrized associator leads to a natural 3-commutator
structure. With this construction, we have defined the supersymmetry transformations (2.5)
for the scalar-spinor sector of the M2-brane theory.
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The trace must satisfy the invariant metric condition.

To define an action, we require a trace form on the algebra A. This is a bilinear map
(,):Ax A— C thatis symmetric and invariant:

(T, T% = (T, T,  (T%-T° T¢ = (T T°-T°). (2.14)

We also assume Hermitian conjugation t and positivity, which implies (T%f, T%) > 0 for
any A € A (with equality if and only if 7% = 0). The invariance property implies that

<(Ta, Tb, TC)’ Td> — <(Ta . Tb) . TC, Td> o <Ta . (Tb . TC)’ Td>
= (1% 7°71°¢ - T — (T, (T° - T°) - T%)
= —(T%, (1", T¢,TY). (2.15)

It also follows that
([re, 7%, 7, 7% = —(T°,[T°, T°, T%) , (2.16)

which is called the invariant metric condition.

The metric and structure constants of Lie 3-algebra

Until now, we consider particularly the case of non-associative algebra. More generally,
however, we only require that the algebra admit a totally antisymmetric trilinear product
[, %, x]. This means that the antisymmetric product need not arise from a non-associative
product on the algebra. We call such an algebra a Lie 3-algebra.

To represent this algebra, we introduce the structure constants
[T, T, T¢ = fobe, 1, (2.17)
from which is it is clear that f%¢; = f l[abe] , The trace form (2.14) provides a metric
h® = (T T?) (2.18)

that we can use to raise indices: fe*°¢ = pde feb¢_ On physical grounds, we assume that
he is positive definite. The condition (2.16) on the trace form implies that

fabcd _ _fdbca ’ (2.19)

and this further implies that foc@ = flabedl in analogy with the familiar result in Lie
algebras. In terms of the structure constants, the fundamental identity (2.10) becomes

fefgdfzzbcg — fefagfbcgd 4+ fefbgfczzgd + fefcgfabgd ) (220)
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Hermitian conjugation

On physical grounds, we assume that all the generators are Hermitian, in the sense that
T%" = T°. Thus we should make some comments on Hermitian conjugation. A natural
definition of the Hermitian conjugate of a 3-commutator is

[T, 7%, T = [T°T, T, 7%T] . (2.21)

This relation determines the reality of structure constants. For the usual Lie algebra, if we
choose the generators to be Hermitian, the structure constants £, are real numbers, and if
the generators are anti-Hermitian, the structure constants are imaginary. This is not the case
for 3-commutators. The structure constants are always imaginary when the generators are
all Hermitian or all anti-Hermitian.

Fundamental identity is also required by local symmetry.

On physical grounds again, we expand the fields, for example, X! = X!T%(a = 1,--- , D),
where D is the dimension of A (and not the number of M2-branes).

When we study on the closure of supersymmetry transformation (2.5), we get the con-
dition that the gauge variation should be [1]

0XT ociel e [ X7, XK XT], (2.22)
which can be viewed as a local version of the global symmetry transformation
0X = [a, 8, X], (2.23)
where «, 3 € A. For (2.23) to be a symmetry, it must act as a derivation
[X,Y,Z]) = [0X,Y, Z] + [X,0Y, Z] + [X,Y,07], (2.24)
which leads to the fundamental identity (see, for example, [47])
[a, 8, [X,Y, Z]] = [la, B, X], Y, Z] + [X, [, 3, Y], Z] + [ X,V [, B, Z]} . (2.25)

In the gauge theory with ordinary Lie algebra, Jacobi identity arises from demanding that
the transformation 0 X = [«v, X] acts as a derivation. Here the analogous things happen.
In terms of the structure constants, the symmetry transformation (2.23) can be written

as
6Xa = " q0afpXc . (2.26)

However, the notation allows for the more general transformation
0Xq = f"ahapXe, (2.27)

which we assume from now on. In particular, the transformation (2.22) corresponds to the
choice
Aoy x i1 T e X X[ (2.28)
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Note that the generator A, cannot in general be written as v, 3 for a single pair of vectors
(aq, Bp). However, A,y can always be written as a sum over D such pairs.

With the Lie 3-algebra, various fields in BLG model which are symbolically written as
¢ =3, ®aT* transform infinitesimally as

oA = A [T* T ¢] or Sr¢a=Acaf aths (2.29)
a,b

for the gauge parameter A,,. The fundamental identity (2.10) implies that this transforma-
tion closes in the following sense,

[5/\1 ) 5/\2}(25 = 5[/\1,/\2}(;57 [Al, AQ]ab = AldeA2cbfdeca + AldeA2acfdecb . (2-30)
As aresult of (2.16), the metric (2.18) must also be invariant under the symmetry (2.29),

(0Ad1, d2) + (P1,0002) = 0. 2.31)

The BLG model, whose action is constructed with the structure constants and the invariant
metric, must be a gauge theory associated with this symmetry.

2.3 Gauge and super symmetrization

The minimal Lagrangian

To see that the action is invariant under global symmetries of this form, we observe that for
any Y,

VYY) = (YY) = RSV, = h A G, = [ ALY,
= 0, (2.32)
by the antisymmetry of £%*°°. In addition, the fundamental identity ensures that
OXT, X7, X5y = F% A X1, X7, XK, (2.33)
Thus the Lagrangian
L= —%@Xf,aﬂxﬂ —3e?(XT, X7 X5 (X1, X7 XKy (2.34)

is invariant under the symmetry 6 X/ = fe® A4 X/

To obtain the full Lagrangian with ¥ and A, terms, we need to discuss the gauge sym-
metry and supersymmetry. More concretely, in this section, we show how to gauge the local
symmetry and obtain a conformal and gauge-invariant action with all 16 supersymmetries.

2.3.1 Gauge symmetry

We gauge a symmetry that arises from the 3-commutators.
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Covariant derivative

Now we wish to promote the global symmetry (2.23) to a local one. To this end, we intro-
duce a covariant derivative D, X such that 6(D,X) = D,(0X) + (6D,)X. If we let

0aXa = Aeaf P Xy = A0 X, (2.35)
then the natural choice is to take
(DpX)a = 0uXa — A 0 Xy, (2.36)

where fluba =f CdbaAHcd is a gauge field with two gauge indices. We can therefore think
of Auba as living in the space of linear maps from A to itself, in analogy with the adjoint
representation of a Lie algebra. Then the field X is, in some sense, in the fundamental
representation.
Field strength
A little calculation shows that the covariant derivative is obtained by taking

oaAly =0, — AP A, + AL A, = DAY, (2.37)
Indeed, this is the usual form of a gauge transformation. The field strength is defined as

([Dp, D)X ) = Fouba Xy, (2.38)

which leads to

F,uuba = ay*’iuba - 8ufiuba - AubcAVCa + Al/bcAuca : (239)
The resulting Bianchi identity is D[MF’V /\}ba = 0. One also finds that
5Aﬁuuba = _]\bcﬁuuca + Fuubc]\ca . (2.40)

These expressions are identical to what one finds in an ordinary gauge theory based on a
Lie algebra, where the gauge field is in the adjoint representation. Here the gauge field
takes values in the space of linear maps of A into itself. The 3-commutator allows one to
construct linear maps on A from two elements of .A.

2.3.2 Supersymmetry

Now we show how to supersymmetrize the gauged multiple M2-branes’ model. In §2.1.4,
we argued that the general form is

o X = iertw
65U = 9, X' e+ k[XT, X7, XEIDIT K (2.41)



2.3. GAUGE AND SUPER SYMMETRIZATION 39

where & is a constant. However, as we mentioned, this algebra doesn’t close, and the closure
on the scalars X/ requires the local symmetry 6 X' o i&al jrcer [X 7, X5 X1].

So let us apply the ideas of the previous subsection to gauge this symmetry. We first
introduce the gauge field Auba with its associated covariant derivative. Then the supersym-
metry transformations take the form

sXI = gerlw,
0V, = D, XTHT e X! XX foed, 117K (2.42)
0cA . = el Trx!v fett,.
where the form of A comes from the dimension counting and conformal symmetry (i.e.
no free dimensionful parameters). In fact, this algebra can be made to close on shell.

Closure of supersymmetry transformations

In order to check the closure of supersymmetry, we use the Fierz identity for arbitrary
spinors €1, €2 and Y, all of which are real spinors of 11-dim Clifford algebra and have the
same chirality with respect to '01? :

(E2x)er — (E1x)e2

1 1
=1 2(&T e )Ty — (&L r7e))T X + E(EQF#FUKLQ)F“FUKLX (2.43)
where m,n,---=0,---,10, y,v,---=0,1,2and I, J,--- = 3,4,--- , 10.
Scalar fields

‘We first consider the scalars. We find that the transformations close into a translation and a
gauge transformation
[01,09) X = v"D, X! + A, X[, (2.44)

where v# = —2i&['e; and A°, = 6ikel et X XK feb,.

Fermion fields

Next, we consider the fermions. When we evaluate [01, d2] ¥, using eq. (2.43), we find two
separate terms involving €xI',I'; y1.€1 that must cancel for closure. This implies

k= —1/6, (2.45)
so there is no free parameter, as required from the nature of M-theory. Then we find
01,02]¥, = v"D,V, + A"V,

1
+i(&T e )T <F“DH\IJCL + 5T X X \Ifbedba)

i 1
- Z(EQFKLQ)PKL <F“Du\lfa + §FI sXIx]w, fcdba> . (2.46)
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Closure requires that the second and third lines vanish. This determines the fermionic equa-
tion of motion
" 1 IyJ cdb
r DM\I/a—i—iFUXCXd\I/bf a=0. (2.47)

Thus, as required, we obtain the on-shell equation such that

[01,09] ¥y = v* D, ¥, + A, Ty . (2.48)

Gauge field

We finally consider [, 52]141“%. Again we find a term involving €I',I'r s 1.€1, but fortu-
nately, this term vanishes by the fundamental identity. Then we find

p o -
[01,02)A,%, = 2i(&rl el)ew,,\(XcID)‘XCIl+§\IICF’\\I/d) fedb,
— 2i(exTrye1) X2 D, X ] fP,. (2.49)

To close the algebra, the equation of motion for fluba must be
- i
Fule + (XD X + ixpcrwd) fedb =0, (2.50)
so that on shell
[01,02] A%, = v"Fb0 + DAY, (2.51)

is satisfied. Note that A ; 4 contains no local degrees of freedom, as required.
From the above discussion, we see that the 16 supersymmetries close on shell.

Equations of motion

The equations of motion for ¥ and A,, are already obtained as eq. (2.47), (2.50). To find
the remaining bosonic equation of motion, we take the supervariation of the fermion’s one.
This gives

- 1
0 = 1! <D2Xg - %\IJCFI TX]w, et + 3 fredgpete Xy xExIx ] xE > ¢
1 . -

+ 1 X! <25WFW% — X/ DAX] fedb, — %wcmd fcdba) €. (2.52)
The second term vanishes as a consequence of the vector equation of motion (2.50). So the
first term determines the scalar equations of motion

ov
8Xla

D?X] = S X ] 0 — S =0, (2.53)

where V = 3 fobed fefo, XTXI XK XXX = Jo (X!, X7, X K], (X7, X7, XK)),



2.4. BLG ACTION AND SUMMARY 41

2.4 BLG action and Summary

Let us summarize the results.
Gauge symmetry transformations

(5AX({ = ]\baXl{ ;o 0AV, = Aba\I/ba 61\Aub¢1 = D#Ab‘l’ (2.54)
where Auba = A,ucddeba, Aba = Acddeba’ and

DuAab = a,uAab - deeaAucheb + deebA,uchew (255)
Supersymmetry transformations

ox! = erly,
1
o, = Duxgr“r’e—gx,{xgxf fred r17E
6Ab, = el DX w, e, . (2.56)

Equations of motion

1
F“DM\IIQ+§F1JXCIX;{\I/;,deba = 0

D*X] - %@crf T X ], — 8‘;‘; =0
Fula e (XIDX] + D00 1, = 0, 2.57)
where V = L([X7, X7, XK, [x1 X7 XK]), and
DuXg = 0, X5 = " Aue Xy, DpWa = 0,9] — f*0 AV (2.58)

Closure of supersymmetry

After using the equations of motion, the supersymmetry closes into translations and gauge
transformations

01,0)X) = 09, X!+ (A%, — v A0, X])

[51, 52}\1161 = v“@u\lla + (]\ba — ’L}V/L,ba‘lfb)
01,0204, = v"0,A, 0 + DA, — 0" A0, (2.59)
We have explicitly demonstrated that the supersymmetry variation of the fermion equa-
tion of motion vanishes, and that the algebra closes on shell. It follows that all the equations

of motion are invariant under supersymmetry. Furthermore, one can check using the funda-
mental identity that the Bianchi identity e*” )‘D“F uala = 0 is satisfied.
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BLG action

Finally we obtain the action for this system. The equations of motion (2.57) can be obtained
from the Lagrangian

L = £X+£\P+Lint+['pot+*ccs

Lx = —%(DMXI,D“XI>

Ly = %(ﬁz,rwﬂm

Ling = %(@,F”[XI,XJ,\IJD

Lo = —35(IX7X7 X [XT, X7, X))

Los = S (™ A v + 5 F g I Ay AyeaArey) . (2:60)

This theory provides an example of the multiple M2-branes’ model. It is invariant under
16 supersymmetries and an SO(8) R-symmetry, and conformal invariant at the classical
level. These are all the continuous symmetries that are expected of multiple M2-branes.
Moreover, it contains no free parameters, up to a rescaling of the structure constants. This
is also appropriate nature for M2-branes’ theory.

Notes on Chern-Simons term

It is important to note that the structure constants f abe , enter into the Chern-Simons term in
a non-standard way. This ‘twisted’ Chern-Simons term

2
Q= (FUA,0p0, Ared + 3 £, FeI9 A b AyeaAnes) dat A da” A da? (2.61)

satisfies
dQ = F N F, (2.62)

where ijba = Fued fedb,. Q is written in terms of Apap and not the physical field
fl#ba = Ajcd fedb, that appears in the supersymmetry transformations and equations of
motion. However, one can check that 2 is invariant under shifts of A, that leave flﬂba
invariant. Thus it is locally well defined as a function of jluba.

This Chern-Simons term naively breaks the parity that is expected to be a symmetry of
the M2-branes’ worldvolume. However, we can make the Lagrangian parity invariant, if we
assign an odd parity to f2°°?. In particular, if we invert x> — —x2, we must then require
that X g and A Mba be parity even for 1 = 0, 1, while Agba and f abed pe parity odd, and that
U, — I'2¥,. Note that this assignment implies that A, is parity odd for u = 0, 1, while
Agqp 18 parity even.

Finally, one may consider that since the Chern-Simons term exists, it is natural to expect
the f2*“? to be quantized. However, up to now, the way of quantization is not revealed.



Chapter 3

Examples of Lie 3-algebra and no-go
theorem

In the previous chapter, we successfully obtain the action for multiple M2-branes’ world-
volume theory. This theory is called as BLG model, which is defined with an abstract Lie
3-algebra as gauge symmetry, at this stage. In fact, the concrete examples of BLG model
are given by the concrete examples of Lie 3-algebra. So what we have to do next is nothing
but the construction and classification of Lie 3-algebra, satisfying all required conditions in
§2.2. The trivial solution is to put all structure constants zero f2*¢; = 0. In this chapter, we
discuss the various examples except it.

3.1 A, algebra and its direct sum

3.1.1 A, algebra

The simplest nontrivial solution which satisfy the fundamental identity (2.10) of Lie 3-
algebra starts from the number of generators D = 4 such that

(T, 7% T¢ = ie®*T?  (a,b,c,d =1,2,3,4) (3.1)
and the metric is fixed by the requirement of invariance (2.16) to be
(T, TP = §°. (3.2)

Here we normalize the generators by an overall constant factor, and we have a factor of ¢ on
the right hand side of (3.1) due to our convention of the 3-commutator’s Hermiticity (2.21).

In this case, the space G generated by all matrices Ay = Agpfo, is the space of all
4 x 4 antisymmetric matrices and hence G = so0(4) with the invariant 4-form €**°?. This
algebra is invariant under SO(4) and will be denoted as A4 [48]. The structure constant is

given by the totally antisymmetrized epsilon tensor f2¢; = 3¢?0°?,

43
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3.1.2 Direct sum of A, algebra

From the A4 algebra, one may obtain higher rank algebras by direct sum as usual. For
n = 3 case, the algebra A4 @ - - - @ Ay (p-times) with D = 4p is written as,

[Tty Tlsys Te) = €005 TG (3.3)

where a,b,c,d = 1,--- 4, ,3,7,0 = 1,--- ,pand 6485 = 1 (if o = 3 =~ =d)or 0
(otherwise).

A nontrivial question here is whether there exists any Lie 3-algebra which cannot be
reduced to the direct sums of the algebra 44, up to a direct sum with a trivial algebra. For
n = 3, one may directly solve the fundamental identity by computer for lower dimensions
D. Ho, Hou and Matsuo [12] examined the cases D = 5,6, 7, 8 with the assumption that
the metric h? is invertible and can be set to 6?° after the change of basis. In this case, the
structure constants ¢, can be identified with totally anti-symmetric four tensor f2.

For D = 5, 6, one can solve directly the fundamental identity algebraically by computer.
For D = 7,8, they assumed the coefficients f2°°? are integer and | f?**?| < 3 and scanned
all possible combinations. After all, the solutions can always be reduced to .A4 up to a direct
sum with a trivial algebra, or A4 & A4 (D = 8) after a change of basis.

This observation suggests that the Lie n-algebra for n > 3 is very limited.

3.2 No-go theorem

Unfortunately, the examples of Lie 3-algebra are actually so rare. This means that we can
obtain only a few concrete examples of BLG model for multiple M2-branes’ system.

On this regrettable fact, Ho, Hou and Matsuo [12] proposed first' the conjecture that all
finite-dimensional Lie 3-algebras with positive-definite metrics are direct products of Ay
with trivial algebras, and give a little intuitive proof by noting the resemblance between the
fundamental identity and the Pliicker relation when a positive-definite metric is assumed.

Soon after, the rigid proof for this conjecture is given by Papadopoulos [11], Gauntlett
and Gutowski [24]. In this section, we review the former proof for this no-go theorem.

Summary of the proof

In the following, we prove the conjecture that the structure constants f48¢P of a Lie 3-
algebra a3 with a positive-definite metric can be written as

Ja = fABED e i Neg Nec Aep = Z,ur dvol(V,), V,C agg 3.4)

where the 4-dim planes V. and V,. are orthogonal for » # 7’ and p” are constants. The
indices A, B,C,--- = 0,---,D — 1, where D is the dimension of aj3. {eo, -+ ,ep-1}

!Comment: Gustavsson [49] studied a weaker form of the conjecture.
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is the basis of az;. Since we assume the invariant metric condition f ABCD — f [ABCD]

should be satisfied, we will use the differential form for the structure constants. In addition,
of course, we require that the fundamental identity

FHIABC fDIEM () (3.5)

To prove this conjecture, we first observe that if a vector X € a3 is given, one can
associate a metric Lie algebra ay)(X) to a3 defined as the orthogonal complement of X €
ag3) with structure constants ix f(4). It is easy to verify that ix f(4) satisfy the fundamental
identity. Then we will demonstrate the following three statements:

e If a3 admits an associated Lie algebra ay)(X ) and ajz (X)) doesn’t have a bi-invariant
4-form,? then J(4) is volume form of a 4-dim plane.

e If all the associated metric Lie algebras of a3} are ap(X) = ®‘u(1) @ ss, for some
£ > 0, where ss is a semi-simple Lie algebra which commutes with @eu(l), then f(4)
is as in (3.4).

e all metric Lie algebras are isomorphic to &‘u(1) @ ss.

Step 1 : Lie 3-algebras and invariant 4-forms

Now we prove the first statement. Without loss of generality, we can take the vector field
X to be along the 0 direction. Then we split the indices as A = (0,7), B = (0, ) where
i,4,---=1,---,D—1, and so on.

First, if we set A = M = 0 and the rest of the free indices in the range 1,--- , D — 1 in
(3.5), it is easy to see that

pisk . gOisk  pijkl . ikl (3.6)
satisfy the Jacobi identity of ordinary Lie algebras and f“* are the structure constants of
ajg) (X). In terms of the differential form, we can rewrite the structure constants (3.6) as

1

4'F”kl eiNej Neg Ae (3.7)

1 ..
f(4) = gf”keo/\ei/\ej/\ek%-

where (eq, ;) is an orthonormal basis.

“Here we see the assumption that ajo)(X) doesn’t have a bi-invariant 4-form. It is known that bi-invariant
forms on the Lie algebra of a group give rise to parallel forms with respect to the Levi-Civita connection on
the associated simply connected group manifold. So if ajz)(X’) admits a bi-invariant 4-form, the associated
group manifold G admits a parallel 4-form which is necessarily harmonic. For compact Lie groups, parallel
4-forms represent nontrivial classes in the 4th de Rham cohomology of G. Thus if a compact Lie group admits
a parallel 4-form, then H3r(G) # 0. However, for a large class of Lie groups, which includes all semi-simple
ones, Hjz(G) = 0.

Therefore, this assumption is always satisfied, as long as an associated Lie algebra ajz)(X) to af) is semi-
simple, which is also the assumption in the second statement for £ > 1 case.
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Next, we set M = 0 and the rest of the free indices in the range 1,--- ;D — 1 in (3.5).
Using the skew-symmetry of f4), one finds that

Fhligk pdle, — (3.8)

This implies that the 4-form F{4) is bi-invariant with respect to ag) (X ). Since such a form
cannot exist by assumption, we conclude that F4) = 0. Thus, we find that

1 ..
f(4) = gf”keo Ne; Nej Neg. 3.9)
Finally, if we take all free indices in (3.5) in the range 1, - - - ,D — 1, we find that
fligk ghlde — o (3.10)

This is the classical Pliicker relation which implies that f** is a simple 3-form, i.e. the
wedge product of three 1-forms. Thus one concludes that the only solution to (3.5) is

f(4):,u€0/\€1/\€2/\€3, (3.11)

for some constant i, where we have chosen the four 1-forms, without loss of generality, to
lie in the first four directions. This proves the first statement.

Step 2 : Lie 3-algebras and Lie algebras

In fact, we have already proved the second statement in the £ = 0 case at the end of Step
1. So next, let us consider the £ = 1 case, where for some X, the associated Lie algebra
is a(X) = u(1) @ ss. In this case, Hj,(G) # 0 and there are bi-invariant 4-forms on
aj2)(X). Such bi-invariant 4-forms can be written as

1
F(4) =ep_1 N P3) = 5(‘00‘/87 ep—1 N\eqg N\ €s A €y, (3.12)

where ¢ is a bi-invariant form on the semi-simple part ss of a3 (X). We choose the u(1)
direction along ep_1, without loss of generality. So the indices o, 3,y = 1,--- ;D — 2.
Thus we have

1 1
f(4) = gfaﬁn/ eg Neqg Neg Ney+ ggoa&, ep-1NeaNegNey. (3.13)

Since ¢ is a bi-invariant 3-form on a semi-simple Lie algebra, it is a linear combination
of the structure constants f, of the simple Lie algebras in ss = @©"s,. Thus f(4) can be
rewritten as

fay=> (neo+v"ep 1) A fr, (3.14)

r

where p” 7 0 and ©/" are some constants.



3.2. NO-GO THEOREM 47

Next, since f, and f.» (r # r’) are orthogonal, the fundamental identity (3.5) with
A,B,C €s,and D, E, M € s, implies that " eg + v"ep_1 and ,uT/eg + v ep_q are also
orthogonal. Moreover, the fundamental identity (3.5) with A, B,C, D, E, M € s, implies
that f, satisfies the Pliicker relation, as in (3.10), and so f,, must be a simple 3-form.

In conclusion, f(4) is the sum of volume forms of at most two orthogonal 4-dim planes,
i.e. without loss of generality, it can be written as

f(4):ueerl/\62/\€3+V64/\65/\66/\67, (3.15)

where 11 and v are constants.

This discussion can be extended to the ¢ > 1 case, where all associated Lie algebras
with Lie 3-algebras are ap(X) = @fu(1) @ ss for £ > 1.

First, we write f4) = €o A f(3) + Fl4) as in (3.7), where f3) are the structure constants
of ss and F(y) satisfies (3.8). Since semi-simple Lie algebras do not admit bi-invariant 1-,
2- and 4-forms, and ©‘u(1) commutes with ss, the most general invariant 4-form Flyyis

Fay=> 0" Nor+¢&u), (3.16)
I

where p! are the 1-forms along the ©‘u(1) directions, 7 are bi-invariant 3-forms of ss and
§(4) is a 4-form along the @®*u(1) directions.

Since the bi-invariant 3-forms of semi-simple Lie algebras are linear combinations of
those associated with the structure constants of the simple components s,, we have ¢; =
vr" fr. Then f(4) can be rewritten as

fay=>_0" N+, (3.17)

for some constants 1" # 0 and v;", where 0" = p"eg+> vi"pl. Since f, and f. (r # ')
are orthogonal, the fundamental identity (3.5) implies that ¢” and o are also orthogonal.
Thus there is an orthogonal transformation in ©‘u(1) such that f(4) can be written, without
loss of generality, as

fa ZZN er N fr + &) (3.18)

for some constants A, where e, belong to an orthonormal basis in the @eu(l) directions,
i.e. in particular e, | e, for r # 1’ and i., fs = O for all  and s. As in the previous
cases, the fundamental identity (3.5) with A, B,C, D, E, M € s, implies that f,. satisfies
the Pliicker relation (3.10), and so f, must be a simple 3-form. Thus the component of f(4)
orthogonal to £y is as in (3.4).

Furthermore, from the orthogonality of f; and &4y and the fundamental identity (3.5)
with A, B,C € s, and D, E, M € @‘u(1), one finds that

i, &4 = 0. (3.19)
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This means that the 4-form 4y on ®u(1) satisfies (3.5), i.e. @‘u(1) is also a metric Lie
3-algebra b3 with structure constants §(4). Since the dimension of b(3; C aj3) is strictly less
than that of the original metric Lie 3-algebra a3}, the analysis can be repeated and it will
terminate after a finite number of steps.

To summarize, we have demonstrated (3.4) under the assumption that all the associated
Lie algebras ajy(X) of a3} are isomorphic to ofu(l) @ ss.

Step 3 : Metric Lie algebras

Finally, we show that all metric Lie algebras are isomorphic to ®‘u(1) @ ss.

It is known that any Lie algebra g, which is not semi-simple, contains the radical ¢, such
that g/v is semi-simple. This follows from the definition of semi-simple Lie algebras.

Now we assume that g admits a Euclidean invariant metric (*, *). In such a case, one
can define the semi-simple algebra ss as the orthogonal complement of v in g. From this
and the invariant metric condition ([g, g|, g) + (g, [, g]) = 0, one finds that

[ss,85] Css, [ss,t] Cv, [r,t]Crt (3.20)

So in order to prove the statement, we have first to show that for metric Lie algebras g, v is
abelian. From the definition of radical, there is a k such that t* is an abelian Lie algebra,
where t'*! = [t?, t/] and t = t. The metric restricted on t and t” is non-degenerate. Since
¥ is abelian, it is easy to see that

(%, eF), Py o (8 R, 1)) = (oF R ) =0 (3.21)

So if [t*71 t*] £ {0}, it is orthogonal to the whole of t*. However, since [t*~1,¢t*] C ¢*

and the metric is non-degenerate, one concludes that [t*~! t*] = 0. Similarly, we find

([0 e, ) 4 (R [ ) = (R R ) =0 (3.22)

tP=1 k=] = ¢* £ {0} and the metric is non-degenerate, one concludes that

Since |
[tk=1 t*=1] = 0. Therefore, t*~! is also abelian and t*~! = t*. Continuing in this way,
one can show that t = t” is abelian. As a result, without loss of generality, we can write
v = @lu(l).

It remains to show that [ss, t] = 0. This follows again from the invariant metric condi-
tion. Indeed,

([t,s8],t) + (ss, [t,t]) = ([r,85],v) =0, (3.23)

using that v is abelian. Thus if [r, ss] # {0}, the subspace [t,ss] of t is orthogonal to the
whole t. Since the metric is non-degenerate, one again concludes that [t, s5] = 0. Thus all
metric Lie algebras can be written as ©‘u(1) @ ss with ss to commute with ©fu(1).

Then we finally finish the proof.
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3.3 Nambu-Poisson bracket and its truncation

As we saw in the previous section, when both of the following conditions are satisfied,
1. the number of generators D is finite
2. the metric h® = (T, T (a = 1,--- , D) is positive-definite

it is shown that all the examples of Lie 3-algebra are only (1) trivial algebra f*¢; = 0,
(2) the so-called A4 with D = 4 and the structure constants f*¢; = i€?“? and (3) their
direct sums. Therefore, it means conversely that when the constraints (1) D is finite and / or
(2) h is positive-definite are replaced by milder ones, there may be many varieties of Lie
3-algebras which satisfy the fundamental identity (see, for example, [12, 50]).

In particular, in this section, we discuss the D = oo positive-definite Lie 3-algebra
which can be defined on any manifolds with Nambu-Poisson structure [S1-57]. In Chapter
4, we will show that one can obtain an M5-brane’s system from BL.G model, when one
adopt this example of Lie 3-algebra as the gauge symmetry algebra.

3.3.1 Nambu-Poisson Brackets

Let My be a d-dim manifold, and C'(M,) an algebra of functions on M,. A Nambu-
Poisson bracket is a multilinear map from C'(M)®3 to C(My) that satisfies the following
conditions [58]:

1. Skew-symmetry
{Fo): o) fom} = (DN A1, fo, £} (3.24)
2. Leibniz rule

{flaf2agh}:{flvaag}h+g{flaf25h}' (325)

3. Fundamental identity

{gahv {flvf?af?»}}
= {{g7h7f1}7f27f3} + {flv {gah7 f2}7f3} + {f17f27{gah) f3}} (3.26)

The prototype of a Nambu-Poisson bracket is the Jacobian determinant for three vari-
ables ' (i = 1,2, 3)

{1, fa. f3} = €750, 1 0; f2 On f3. (3.27)

where ¢, j, k = 1,2, 3. This is the classical Nambu bracket. More general Nambu-Poisson
bracket can be written in terms of the local coordinates as

{fiofo fay = > D (=1)TPYEB(@) 0y, f1 iy fo Oi fo - (328)

i1<i2<i3 0€S3
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It is proved that one can always choose coordinates such that any Nambu-Poisson
bracket is locally just a Jacobian determinant [52-56]. Locally we can choose coordinates
such that

{f,g,h} = €7%0;f 0;g Orh, (3.29)

where i, 7,k = 1,2, 3, and dz'dz?dx? defines a local expression of the volume form. As a
result, it is straightforward to check that the Nambu-Poisson bracket can be used to generate
volume-preserving diffeomorphisms on a function f

of ={91.92, f} (3.30)

specified by two functions g; and go.

Nambu-Poisson algebra can also be regarded as an infinite-dimensional Lie 3-algebra.
For a 3-manifold on which the Nambu-Poisson bracket is everywhere non-vanishing, it is
natural to use the volume form picked by the bracket to define an integral | - and then the
metric can be defined by

(f,9) = /M fg (3.31)

Symmetries of the algebra are then automatically preserved by the metric.

Nambu-Poisson bracket with general order

The notion of Nambu-Poisson brackets can be naturally generalized to brackets of order
n, as a map from C(My)®" to C(My). The fundamental identity for Nambu-Poisson
brackets of order n is

{fl?"' 7fn717{gla' o >gn}}

n
= Z{gla >gk—1a{f17"' afnflagk}agk—i—l,"' 7gn} (332)
k=1

Both the Leibniz rule and the fundamental identity indicate that it is natural to think of
{f17 o 7fn—17 *} : C(Md) - C(Md) (3.33)

as a derivative on functions.
Each Nambu-Poisson bracket of order n corresponds to a Nambu-Poisson tensor field
P through the relation

{fla”' 7fn} = P(df17 7dfn)7 (334)

where

(3.35)
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The theorem mentioned above can also be generalized to brackets of order n, which means
that any Nambu-Poisson tensor field P is decomposable, i.e. one can express P as

P=ViA---AV, (3.36)

for n-vector fields V;. For a review of Nambu-Poisson brackets see, e.g. [57].

Let us now focus on the case n = 3. When all the coefficients of the Nambu-Poisson
tensor field are linear in z, that is, P12 (z) = Y j firizis jxj for constant f172%; we call
the bracket a linear Nambu-Poisson bracket, and it takes the form of a Lie 3-algebra on the
coordinates

{a' a7, 2} = fikal, (3.37)

l

Apparently, a linear Nambu-Poisson bracket is also a Lie 3-algebra when we restrict our-
selves to linear functions of the coordinates z°. We have to be careful, however, in that the
reverse is not true, as they also have some differences. For the Nambu-Poisson bracket, one
may change the coordinates by a general coordinate transformation. On the other hand, for
Lie 3-algebra, we only allow linear transformations of the basis. Since the requirement of
Leibniz rule for the Nambu-Poisson bracket is not imposed on a Lie 3-algebra, we expect
that only a small fraction of Lie 3-algebras are also linear Nambu-Poisson algebras. In par-
ticular, we don’t expect that the Nambu bracket of a generic Lie 3-algebra be decomposable.

It has been shown that any linear Nambu-Poisson tensor of order n on a linear space V;
can be put in one of the following forms by choosing a suitable basis of V; [59].

Here the choice of coordinates is made such that the Nambu-Poisson tensor field is
linear, instead of trying to make its decomposability manifest. When we interpret these
brackets as Nambu brackets on the linear space generated by {z*}, we are no longer allowed
to make general coordinate transformations on the generators x*, and the decomposability
of the Nambu-Poisson tensor field is no longer relevant.

Linear Nambu-Poisson bracket: type I

The Nambu-Poisson tensor field (3.35) for this type of bracket is labeled by a pair of integers
(r, s) such that

r+1
P(r,s) = Z:I:.Z‘Jal/\..-Aaj_l/\aj+1/\.../\8n+l
j=1

S
+D "N Ay A Drjya A ADugr,  (338)
j=1

where —1 <7 <n,0 < s <min(d —n — 1,n — r). Explicitly, we have
+a7, 1<j<r+1,

{al, 2l Ty =0 2T 2 < <r4s+1, (3.39)
0, r+s+2<j<d.
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P30y in (3.38) with plus signs for n = 3 gives A4 algebra. For other values of (r, s),
P, s) gives a new algebra.

Linear Nambu-Poisson Bracket: Type II

d
P=0O1 AN ANOp_1 A Z aij:ci8j . (3.40)
1,J=n
In other words,
{zt,-- ,x"_l,z]}:Zaijxl, j=mn,---,d. (3.41)
i=n

The linear Nambu-Poisson algebra of type II (3.40), (3.41) for arbitrary constant matrix
a;; has the 3-commutator

d
[T, 7% T = ayT' (j=3,---.d). (3.42)
=3

The invariance of the metric implies that

d
hil = hig = Z hjiaik =0 (3.43)
i=3
for ¢,5,k = 3,---,d. Thus a = 0 if h is invertible. Conversely, if a is invertible then

hij = 0 fori,j = 3,---,d. As T' and T2 don’t appear on the right hand side of the
3-commutator, there is no constraint on h11, h1s or hos.

As Nambu-Poisson brackets, we can extend the Lie 3-algebra on the space of linear
functions V = {Zle a;T*} to all polynomials of 7%s. The product of T%s defines a
commutative algebra.

3.3.2 Truncation of Nambu-Poisson bracket

In this subsection, we make examples of D < oo Lie 3-algebra by truncating Nambu-
Poisson bracket. From the no-go theorem in §3.2, these examples must not have positive-
definite metrics, but have zero-norm generators.

We start from a Nambu-Poisson bracket on d-dim manifold, defined by local coordinates
' (u=1,---,d)by

{f17f27f3} = P(f17f27f3)

d
= Z prikzps (:U)a,m flau2f28y3f3 (3.44)

pi1,p2,pu3=1



3.3. NAMBU-POISSON BRACKET AND ITS TRUNCATION 53

where PH1H2H3 () is an antisymmetric tensor. In order to apply to the BLG model, it is
essential to assume here that the Nambu-Poisson bracket satisfies fundamental identity

{f1, f2, {fs: fas f5}}
= {{fl’f27f3}’f47f5} + {f3’{f17f27f4}’f5} + {f3af4v{f17f27f5}} . (345)

The Leibniz rule

{fof1, f2, f3} = folf1, f2, f3} + {fo, fo. f3} S (3.46)

is usually required in the literature. In the context of BLG model, however, the role of
this condition is not very clear at this moment. The fundamental identity imposes a severe
constraint on P#1#2K3 (). As we mentioned in the previous subsection, it is known that
the fundamental identity implies the decomposability of P, in mathematical literature [57].
Namely it should be rewritten as

P = PM#2i3 (1), A Oyy AOpy = Vi ANVa A V3,
Vi(z) = V/(2)d, . (3.47)

It implies that the Nambu-Poisson bracket is essentially defined on 3-dim subspace N spec-
ified by the tangent vectors V; (: = 1,2,3). As we will discuss in Chapter 4, this can be
used to obtain the M5-brane’s system from BLG model whose worldvolume is the product
M x N (M is the original M2-branes’ worldvolume).

In the following, since we need to restrict P#1#213 () to be polynomials of a fixed
degree for the consistency of the cut-off, we will not use this decomposability. When
PH1#213 (1) is a homogeneous polynomial of degree p, we call the 3-commutator as the
homogeneous Nambu-Poisson bracket. Ho, Hou and Matsuo [12] proposed a truncation of
the Nambu-Poisson bracket (3.44) which satisfies the fundamental identity. The idea was
to truncate the Hilbert space C'(X) (functions on X) to polynomials of z* of degree < N.
We will write this truncated Hilbert space as C'(X) y. For such truncation to work properly,
we need to restrict the antisymmetric tensor P#1#2#3 () to be a homogeneous polynomial
of degree p > 0.

On C(X)n, we redefine the Nambu-Poisson bracket to project out all the monomials
of order > NN. We denote such projector as 7 which acts on the polynomials of x* as

oo

o Y el ) (2

n1,ng=0
|| <N

= Y elmng) @)™ @, (3.48)

ni, - ,ng=0

where |71] := Z?Zl n;. The Nambu-Poisson bracket on the truncated Hilbert space C'(X) x
is then defined as

{f1, fo, fa}n = 7n (P(f1, fo, f3)) - (3.49)
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It satisfies the fundamental identity

{f1, fo A f3s fa, fsIN TN

= {{flvaafB}N7f47f5}N + {f37{f1>f27f4}Naf5}N + {f37f4a{f1af2af5}N}N7
(3.50)

because of the following reason. For simplicity, we assume f; to be a monomial of degree
p;. Since (3.50) is satisfied trivially if f; =const, one may assume p; > 0. The fundamental
identity becomes nontrivial if the outer bracket is non-vanishing, namely,

pr+p2+pstpat+ps—6+2p<N. (3.51)

The fundamental identity is broken if the inner bracket vanishes due to the projection, but
this doesn’t happen. For example, for the left hand side of (3.50), the above inequality
together with p; > 1 implies

p3+ps+ps <N+6—2p—p1 —p2 < N+4—-2p< N+3—p. (3.52)

In the last inequality, we used p > 1. Therefore whenever the outer bracket doesn’t vanish,
the value for the outer bracket is identical with the original bracket. So the fundamental
identity on the truncated Hilbert space comes from the fundamental identity on the original
space.

C(X)y is generated by finite number of monomials, (z!)™ --- (z4)" = T(i7) =
T(ni,--- ,ng) where n; > 0 and |7i| < N. Therefore, the truncated Nambu-Poisson
bracket defines a Lie 3-algebra such that

{T(711), T(ity), T(ita)}y = Y [, T(iiy), (3.53)

which satisfies the fundamental identity

—

fﬁg 475 e fﬁl Mol i

_ fnlngngﬁﬁfn6n4n5ﬁ7 + fn1n2n4ﬁ6fn3n6n5ﬁ7 + f”1"2”5ﬁ6 f”3"4"6ﬁ7 . (3.59)

We remark that the geometrical meaning of the algebra becomes clear when one takes the
large N limit where the algebra of polynomials can be completed in different ways and this
corresponds to different topological spaces.

We note that because of the constraint p > 1, we cannot define the truncated Lie 3-
algebra from the Jacobian

P=01 N0y NO05. (3.55)

As for the Leibniz rule (3.46), we have to be careful how to define the product of func-
tions in the truncated Hilbert space. We define

feng=nn(fg), (3.56)
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which gives a commutative and associative product on the truncated space. We replace the
Leibniz rule by using this product rule

{foen fi, f2, f3}n = foon {f1, fo. f3}n + {fo, fo, f3a}n on f1- (3.57)

‘We show that this condition is also satisfied for p > 1.

trivially satisfied when pg = 0 or p; = 0. The condition that the left hand side of (3.57) is
non-vanishing is

Let us assume that f; are monomials of x with degree p; > 1, since the Leibniz rule is

po+p <N, po+pr+p2+p3+p—3<N. (3.58)

Since the second condition gives a stronger condition than the first for p > 1, we take the
second condition. The first term on the right hand side is non-vanishing if

p1+p2+p3s+p—3<N, po+pr+p2+p3+p—3<N. (3.59)

Again the second condition gives a stronger constraint. The second term on the left hand
side is non-vanishing with the same condition. To summarize, the conditions for the both
sides of equation are the same. So the truncation is compatible with the Leibniz rule (3.57)
forp > 1.

From the discussion above, we show that the truncated Nambu-Poisson bracket { x, *, % } n
with the truncated product e 5r can make consistent examples of Lie 3-algebra. We will show
the concrete examples i.e. the truncation version of eq. (3.38) and (3.40) in §5.1.

3.4 Lorentzian Lie 3-algebra

In the previous sections, we avoided considering the examples of Lie 3-algebra which con-
tain negative-norm generators. Now let us consider these cases, which provide other con-
crete examples of BLG model.

3.4.1 Central extension of a Lie algebra

We first consider the one-generator extension.

For a given Lie algebra G with generators 7" and structure constants f%/}:
[T, 19 = f9T*, (3.60)
we can introduce a new element v and define a Lie 3-algebra as

[u7TZ7TJ] = fZ]kav
T, 17, T = 0, (3.61)
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fori,j,k =1,--- ,dimG. For a simple Lie algebra G, the invariant metric condition (2.16)
demands that

([u, T, T, T%) + (19, [u, T", T*]) =0 = fi9,;plk 4 fkpli = 0. (3.62)

This suggests that h/ should be proportional to the Killing form of G. However, the invari-
ant metric conditions also include

(T, T, T, u) + (T, [T, T9 u)) =0 = f9,nlk =0,

Therefore, we cannot use the Killing form of the Lie algebra G as h'  but instead the metric
should be taken as

R = (T" T7) =0, Y = (u, T =0, R = (u,u) = K , (3.64)
where K is an arbitrary constant. This is a new example, but too simple to use as the gauge
symmetry algebra in BLG model.

Lorentzian Lie 3-algebra as a central extension of Lie algebra

Then we consider a more nontrivial example [15,60,61] by adding extra generator v such
that the 3-commutator is defined as

[v, T4, TP = o0,
[w, T, T] = if",T",
(T8, 79, TF] = —ifiiky, (3.65)

where i, j,k = 1,---,dimG, T4 = {T% u,v}, and f9% := ;! is totally antisym-
metrized. One can check that all these 3-commutators satisfy the fundamental identity

e, T, e, T4, 7]
= ([T, T°, T, T T + [T [T, T°, T%,T° + [T°, 7% [T, T°, T%)]. (3.66)
for all a, b, ¢, d, e. The requirement of invariance of the metric
(T, 7%, 7, T + ([T¢, [T, T°,T%)) = 0 (3.67)
implies that the metric has to be defined as

(v,v) =0, (v,u)y =1, (v, T" =0,
(u,u) = K, (u, T% = 0, (T, T7) = h¥, (3.68)
where K is an arbitrary constant. In this case, as compared with the previous case, h*/ can

be non-zero, so we can obtain some nontrivial form of BLG model by using this algebra.
This discussion will be done in Chapter 6.
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Note that there is an algebra homomorphism
u — U+ au, (3.69)
that preserves the Lie 3-algebra, but changes the metric by a shift of K:
K = (u,u) » K —2a. (3.70)

Thus one can always choose u such that K = 0.

3.4.2 Lie 3-algebra with two or more negative-norm generators

In this subsection, we consider some generalizations of the Lorentzian 3-algebra in the
previous subsection by adding pairs of generators with Lorentzian metric. The positive-
norm generators are denoted as e (i =1,---,N), and the Lorentzian pairs which cause
the negative-norm generators as uq,vq (@ = 1,--- , M). If we set M = 1, it is reduced to
the previous case (3.68).

We assume that the invariant metric for them is given by the following simple form

(eh,e7)y =69, (ug,vp) = Oup - (3.71)
In terms of the four-tensor defined by
fABC'D — fABCEhED ’ (372)

the invariance of the metric and the skew-symmetry of the structure constants implies that
the condition that this 4-tensor is antisymmetric with respect to all indices.

We also assume that the generators v, are in the center of the Lie 3-algebra. This
condition is necessary to obtain the physically meaningful Lagrangian from BLG model
(i.e. a kind of Higgs mechanism to get rid of the ghost fields arising from negative-norm
generators works well). We will discuss it in detail in Chapter 6. In terms of the 4-tensor
this condition is written as

freBeP = (3.73)

for arbitrary B, C, D. Therefore, the index in the 4-tensor is limited to e’ and u,. For the
simplicity of the notation, we write i for e’ and a for u, for indices of the 4-tensor, for
example fie .= fe'e¢’uat and 50 on.

Fundamental identities
In the following, we introduce some notation for the 4-tensor
fijkl _ Fijkl’ faijk: — f;jkv fabij _ JCZ'L%’ fabci — Kib

aoc?

O = Lopea.  (3.74)
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Now we rewrite the fundamental identity in terms of this notation (3.74):

FijknFnlmp + Fijlannmp + Fijmanlnp . FklmnFijnp — O, (375)

Fiakn pnim o pijln gk pigmn ghin. - pklmn gijn _ o (3.76)
fiamprkim . pikn pintm . piln piknn _ ginm pikin _ g, 3.77)
(S fp™ o+ £ A + PR =0, (3.78)
Jim gkl 4 gan pimkl - pkm pigml - gin pigkm — ), (3.79)
(T S0 o T FE* o T ) = FUMEG = 0, (3.80)
Fiakn gnl_ pidin gk piin gkl | gl gkl — g (3.81)
(i for% = T fr0%) - (fam ggk — fikm ) = o, (3.82)
— Kl £y + Ko + T — Tt J 5 = 0, (3.83)
R A A A D o (3.84)
(ot + Toa b = J2Tia) = F1 K g = 0, (3.85)
—Jui Kb = T K eq + JaeKbg + Ji Ky = 0, (3.86)
félell;cd - ZﬂKicd + fcileébd - éﬂKclwc =0, (3.87)
Koo Kher — KpgeKbop + Kiop Kbge — Kot Kige = 0. (3.88)

There are a few comments which can be made without detailed analysis:

Case of lower M

For lower M (i.e. smaller number of Lorentzian pairs (uq, v4)), Some components of the
structure constants (3.74) vanish identically due to the antisymmetry of indices. For exam-
ple, for M = 1, we need to put J 5 = K

abc

= Lgpeq = 0. For M = 2, one may put J;%

nonvanishing but we have to keep K ébc = Lgpeq = 0 and so on.

On Fijkl

A constraint for F7*! (3.75) is identical to the fundamental identity of a Lie 3-algebra with
the structure constants F7*! So if we assume positive definite metric for ¢?, it automatically
ijkl

implies that F"/* is proportional to €*! or its direct sums, from the discussion in §3.2.

On Labcd

In the fundamental identity (3.75)—(3.88), there is no constraint on L,p.q. It comes from
the fact that the contraction with respect to Lorentzian indices automatically vanishes due
to the restriction of the structure constants (3.73). So it can take arbitrary value for M > 4.
This term, however, is not physically relevant in BLG model, since they appear only in the
interaction terms of the ghost fields which will be erased after Higgs mechanism.
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On the change of basis

‘We note that there is some freedom in the choice of basis when keeping the metric (3.71)
and the form of 4-tensor (3.73) invariant:

& =0k + P, "= Qfe' + Rju’ + Sju°, % = ((R")™Hi",  (3.89)
where
O'0=1, Q=-RP'O, R 'S+ (R 'S)!=-P'P. (3.90)

The matrices O and R describe the usual rotations of the basis. The matrix P describes the
mixing of the Lorentzian generators u,, v, with e'.

By a change of basis (3.89), various components of the structure constants (3.74) mix.
For example, if we put O = R = 1 for simplicity and keep only the matrix P nontrivial
(which implies S = —%PtP), the structure constants in terms of the new basis {éi, a®, v}
are given as

gkl _ Fijlcl, (3.91)
fgkl _ fg’kl + P;ﬁ Fz‘jkl7 3.92)
T4 = U P P PR, 393)
~Z;Lbc = cizbc + PngZ - PgJé]c + PCJJ(%’
+fMPERy — [N PYPL+ [ PYPL PIPPRLFIR . (3.94)

We will find that many solutions of the fundamental identities can indeed be identified with
well-known Lie 3-algebra after such redefinition of basis. In this sense, the classification of
the Lorentzian Lie 3-algebra has a character of cohomology, namely only solutions which
can not reduce to known examples after all changes of basis give rise to physically new
system.

In the following, we give a somewhat technical analysis of the fundamental identity
(3.75)—(3.88). Solutions which we found are summarized in the end of this subsection.
We don’t claim that our analysis exhausts all the possible solutions. But as we will see in
Chapter 7, they play an important physical role in string/M theory compactification.

Case 1 : Lorentzian extension of Nambu-Poisson bracket

Let us examine the case with F7¥! =£ 0 first. As we already mentioned, eq. (3.75) implies
that F'7% o €% and its direct sum. So without loss of generality, one may assume N = 4
and Fkl = ¢kl for the terms which include nontrivial contraction with F7k!,

Suppose féj F = 0 for some a. Then by the skew-symmetry of indices they can be
written as féj k= i klPl“ for some P*. This expression actually solves (3.76) and (3.77).
However, this form of féj *is exactly the same as the right hand side of (3.92). It implies
that such féj k can be set to zero by a redefinition of basis.
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Therefore, at least when Lie 3-algebra is finite-dimensional, it is impossible to construct
Lorentzian algebra with nontrivial F/* -£ 0. The situation is totally different if Lie 3-
algebra is infinite-dimensional which we discussed in §3.3.1. The realization of Lie 3-
algebra was given as follows. We take N as a compact 3-dim manifold where Nambu-
Poisson bracket [51],

{f1, fa, f3} =D € 0a f10b f20. f3 (3.95)
a,b,c
is well defined. Namely A is covered by the local coordinate patches where the coordinate
transformation between the two patches keeps the 3-commutator (3.95) invariant. If we take
X" (y) as the basis of H: the Hilbert space which consists of functions which are globally
well-defined on N, and one can choose a basis mutually orthonormal with respect to the
inner product

X' x7) = /N Py x' ()X (y) = 6. (3.96)
It is known that the structure constants
Filt— (I 3 3k} (3.97)

satisfy the fundamental identity (3.75).

We are going to show that it is possible to extend this Lie 3-algebra with the additional
generators with the Lorentzian signature. For simplicity, we consider the case N” = T°. The
Hilbert space H is spanned by the periodic functions on T°3. If we write the flat coordinates
on T3 as y® (a = 1,2, 3), where the periodicity is imposed as y® ~ y® 4 p?, and p® € Z.
The basis of H is then given by

X' (y) =" e 7P, (3.98)
with the invariant metric and the structure constants:

XX = 87 + ) (3.99)

FUP — (977)3ebn®mPIe5(7 + 11 + [ + p) . (3.100)

The idea to extend the Lie 3-algebra is to introduce the functions which are not well-

defined on 7 but the 3-commutators among H and these generators remains in . For

T3, such generators are given by the functions v, = y®. The fundamental identity comes

from the definition of derivative and it doesn’t matter whether or not the functions in the

3-commutators is well-defined globally. Therefore, even if we include extra generators

the analog of fundamental identity holds. More explicitly, we define the extra structure
constants as

fc?ml = <{UaaXﬁ7Xm},X> =
W= <{ua, ub,xﬁ} XY = (271 eapen®S (7 + 1),

e = <{u“,u”,uc},xﬁ>:eabcé(ﬁ). (3.101)

—

(271)2eapen®me8 (7t + 1 + 1),
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It is not difficult to demonstrate explicitly that they satisfy all the fundamental identities
(3.75)—(3.88).

We have to be careful in the treatment of the new generators. For example, the inner
product (3.96) is not well-defined if the function is not globally well-defined on V. The fact
that the structure constants (3.100)—(3.101) satisfies the fundamental identities (3.75)—(3.88)
implies that we can define the inner product abstractly as (3.71). Namely we introduce extra
generators v, (a = 1,2, 3) and define

(Uay 08 = Oapy  (Uay X") = (Var XY = (U, up) = (Va,vp) = 0 (3.102)

while keeping (3.99).

We also need to be careful in the definition of the 3-commutator itself. The naive 3-
commutator needs to be modified to make the structure constants FABCP totally antisym-
metric in all four indices. This condition is broken in the original 3-commutator after the
introduction of the extra generators u®. We have to come back to our original definition of
Lie 3-algebra where this symmetry is manifest. This implies the following redefinition of
Lie 3-algebra:

[Xﬁ7 N Xf _ Fﬁﬁ‘zfﬁxﬁ _ ijf Ve,

[Ua,XﬁaXm_ = ffmfxf+ J(?bmvba

[uav ub7 Xﬁ- = Jfbrﬁxm - fbcvcv

[u“, W] = KX (3.103)

This Lie 3-algebra may be regarded as the “central extension” of the Nambu-Poisson bracket.
The additional factors which are proportional to v on the right hand side is necessary to
make the metric invariant. One might worry if the fundamental identity may be violated by
the redefinition of the algebra. In this example, fortunately this turns out not to be true. So
we have a consistent Lie 3-algebra with Lorentzian signature. It may be useful to repeat our
emphasis that, although ©® was originally defined through ill-defined function y*, we have
to neglect this fact to define the metric and Lie 3-algebra.

While the Lie 3-algebra (3.103) is new, the BLG model based on it turns out to be the
same as that on the original Nambu-Poisson bracket (i.e. the single M5-brane’s models)
which we will see in Chapter 4, although it was not noticed explicitly [7].

It is straightforward to obtain similar Lorentzian extensions of Nambu-Poisson type Lie
3-algebras defined on different manifolds A such as S% and S? x S'. So far, the only
nontrivial Lie 3-algebra with positive-definite metric are .44 and the Nambu-Poisson type
Lie 3-algebras. The examples we consider here would exhaust the Lorentzian extensions
which can be obtained from them.
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Case 2 : Constraints from the fundamental identities for 75 =

In the following, we restrict ourselves to the case F/*' = 0. The fundamental identities
(3.75)—(3.88) are now simplified to be the following:

faib i <o, (3.104)
Fm ikt = (3.105)
FI I+ fc’fm T R gt =, (3.106)
Ty fR =0, (3.107)
R =0, (3.108)
J”[b lfk Y =0, (3.109)
2K by Sy = T ij — Jik gk (3.110)
FORKE = [bJ VE (3.111)
3Klb[c‘]”} = cdeJc%, (3.112)
T K2 =0, (3.113)
S Kl =0, (.114)
3K o Ko r = Keae Ki (3.115)

In the above, we used the notation that all indices in parentheses are fully antisymmetrized.
For instance,

1
Aa[bBcd]e = 6 (AabBcde + AacBave + AadBoce — AabBace — AacBbde — AadBcbeo3~116)

The constraints above are not all independent. We can use (3.106) alone to derive
(3.104) and (3.105) as follows. Taking (3.106) and replacing the indices as (ijk) — (jki)
and (ab) — (ba) and subtracting the derived equation from (3.106), we get (3.105). It is
also obvious that (3.105) and (3.106) implies (3.104).

Similarly, (3.109) can be easily derived from (3.107) and (3.108).

Detailed analysis

Now we try to solve the fundamental identities displayed above and find a class of solutions.
First, a solution for (3.104) is to use a direct sum of Lie algebras g = g1 & - - - & g. We
divide the values of indices into n blocks I = I; U --- U I,, and let

fiIk =y fik, (3.117)

where f(ij ¥ is defined by

ijk .
ijk _ o Za]akGIaa 3118
Ja { 0 otherwise. (3.118)
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Here f;ik are the structure constants for g, while v is a real number.
Note that the number n doesn’t have to equal M. It is possible to have some of the sets
I, empty. An example has g = g1 and all I,+; empty. In this case, for v = ', we have
fjk = ;{k and f7% = 0 forall a # 1.
If all the other components of Lie 3-algebra structure constants vanish, one obtains from
(3.117) a set of solutions to the fundamental identity. The BLG model for this Lie 3-algebra
is not new, however. For each range of index, say I, we have

[, el eF 27 . [ut el el Z*y flkek (3.119)

By a suitable rotation (3.89) with

V=g, (3.120)

we always have
[, el ef] = =/, [ €, e] = 0 Z fiakek (3.121)
k

Therefore it is reduced to the standard Lorentzian Lie 3-algebra for M = 1 after the restric-
tion of indices to /.
In order to obtain something new, we have to allow other coefficients to be nonzero.
The simplest class of solutions can be found when f7¥ = 0 for i, j,k € I,. In this
case, for this range I,, arbitrary antisymmetric matrix J% (i, j € I,) solves the constraints
It demonstrates the essential feature that the supersymmetric system acquires mass propor-

tional to eigenvalues of J [7]. However, since we put f” k

= 0, there is no interaction. In
order to have the interacting system, we need nonvanishing f;’ b
For simplicity, let us assume that there is a suitable basis of generators such that the
solution (3.117) is simplified as
ijk .
Z]k: a Z,j,kela, 3 122
Ja { 0 otherwise, (3.122)

where the indices are divided into n disjoint sets [ = [ U---UI,, and féj ¥ are the structure
constants for a Lie algebra g,.

Starting with (3.122), we can solve all the constraints (3.104)—(3.115) as follows, while
(3.122) already solves (3.104)—(3.106).

Eq. (3.108) is trivial if two of the indices a, b, ¢ are identical. Assuming (3.122), eq.
(3.108) imposes no constraint on J ifi € I, ori € I. Tn general, if f7% £ 0 forc # a
and ¢ # b, then Jé% =0ifz € I.. Hence we consider the case

J940  omlyif djel, or ijel, (3.123)
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Eq. (3.109) is now trivial if all indices a, b, c are different. If two of the indices are the same,
it is equivalent to (3.107).

According to (3.107), Jgp is a derivation for both Lie algebras g, and g,. A derivation
D is a map from g to g such that

D([e}, e?]) = [D(e?), e7] + [¢!, D(e?))]. (3.124)
As a result of (3.107), one can define a derivations D, by
Dap(et) = JHel. (3.125)
The simplest case is when J,; corresponds to an inner automorphism, so

T = Ny 75— Af £k (3.126)
where Agb = Ounless k € I,. (Note that the indices a, b are not summed over in (3.126).) In
this case Dy (*) = [(A¥, — AL )ey, ]. It will be more interesting if Dy, instead corresponds
to an infinitesimal outer automorphism (an outer derivation). 3

If all indices a, b, ¢, d are all different, (3.110) is trivial due to (3.123). Ifa = d # b # ¢,
(3.110) says that the Lie bracket [J,p, Jqc] is an inner automorphism. The solution of (3.110)
is in general given by

Kape := K" = [Dac, Doe) + [Dbas Deal + [Det Dav) + Caves (3.127)

where the antisymmetric tensor Cp. = C’;bc is a central element in g. Since all derivations
of a Lie algebra is always a Lie algebra, the Lie bracket [Dy;, D.q] satisfies the Jacobi
identity.
For J, given by an inner automorphism (3.126), K ébc can be solved from (3.110) to be
abe = NN fi7" + M Apo f + MG AGSE" + Cope (3.128)
(Indices a, b, c are not summed over in this equation.) The term AibA’;C féj F corresponds to
the Lie bracket of the two automorphisms generated by A, and A,. on g,. However, the
case of J,;, generating an inner automorphism is not interesting because J;; and K;b . can
be both set to zero after a change of basis (3.92) and (3.93),

= e =Y At for iel,, (3.129)
b

~

up = g — Y Aj,el. (3.130)
b

Therefore, in the following we will focus on the case when Ji;, is an outer automorphism.

3We have to keep in mind that the existence of such automorphisms is quite nontrivial. We will come back
to this issue below.
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When all indices a, b, ¢, d, e are different, (3.112) can be easily satisfied if
e =10 unless 1€l UL Ul (3.131)

Together with (3.123), this implies that Kébc (3.127) vanishes unless ¢ € I, U I, U I..
Due to (3.123) and (3.131), eq. (3.112) is trivial if all indices a, b, ¢, d, e are different. If
e =a,ltis

Koo + Koy 4+ KE  Ji9 = 0. (3.132)
One can then check that this follows from (3.127) and the constraint
Dab(cacd) + Dac(cadb) + Dad(cabc) =0 (3.133)

as a result of the Jacobi identity of the Lie bracket of D,;’s. The same discussion applies to
(3.111), (3.113), (3.114) and (3.115).

Before closing this analysis, let us comment on infinitesimal outer automorphisms. For
finite-dimensional Lie algebra, we have two examples. The first example is when the Lie
algebra is abelian, and any nontrivial linear map of the generators is an outer automorphism.
The 2nd example is when the Lie algebra is that of matrices composed of upper triangular

blocks
A B
3.134
(47) s

where A, B, C'are m x'm, mxn and n xn matrices, respectively. An arbitrary scaling of the
off-diagonal block B is an outer automorphism. In both of these examples, the coefficients
of e; in the expansion of X’ or ¥ don’t participate in interactions in the BLG model, unless
e’ is inert to the outer derivation. Hence the appearance of outer derivation in these cases is
irrelevant to physics. A nontrivial example is found when ¢ is an infinite-dimensional Lie
algebra. This example will be studied in §7.2.

Summary of solutions

To summarize the result of our construction of a new Lie 3-algebra, the general solution of
the fundamental identity for our ansatz

[a, up, ue) = Klpei + Lapeav?,
[tia, up, €'] = J,%eg bV
[ug, €', e’] = J30* + filkey,
el el e — flikya (3.135)
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is given by (3.122), (3.125) and (3.127), which are repeated here for the convenience of the
reader,

P R
¢ 0 otherwise,
Jel = Dyle’)  foraderivation Dy,
Kabc = (izbcei = [Daca Dbc] + [Dba, Dca] + [ch, Dab] + Cabm (3136)

where Cyy. are central elements in g satisfying (3.131) and (3.133)

— unless 1€l UL, U,

abc

Dab(Cacd) + Dac(cadb) + Dad(cabc) =0. (3137)
The nontrivial part of the metric is given by
(€', el) =g, (uq, ") =0}, (3.138)

where g% is the Killing form of the Lie algebra g. Although we have assumed that g%/ is
positive definite in the derivation above, it is obvious that the Lie 3-algebra can be directly
generalized to a generic Killing form which is not necessarily positive-definite.

Compared with the Lie 3-algebra in the previous subsections, the Lie 3-algebra con-
structed above contains more information. While e’’s are generators of a Lie algebra
g =091 %D - B gn, Jup’s correspond to infinitesimal outer automorphisms (outer deriva-
tions), and K 4. encodes both the commutation relations among J,;;’s and choices of central
elements in g.

The concrete form of examples is showed in Chapter 7.

3.5 Summary

In this chapter, we show the various examples of Lie 3-algebra. Then, in the reminder of
this thesis (Part II and III), we discuss the BLG model with gauge symmetry of these Lie
3-algebra. While the BLG model is originally proposed as the superconformal N = 8
Chern-Simons theory for multiple M2-branes’ system, we will see that this model can also
describe a single M5-brane’s or multiple Dp-branes’ system.

Chapter — 4, algebra (§3.1.1)
[T, T° T¢ = ie®tedTd (T Tb) = 59 (3.139)
BLG model with this algebra describes two M2-branes’ system.

Chapter 4 Nambu-Poisson bracket (§3.3.1)

afeafbofe
Oyt Oy? Oyr’

[F, £, f) = P (f*, ") = /N Py ff°, (3.140)



3.5. SUMMARY 67

where A is a 3-dim manifold where the Nambu-Poisson bracket is equipped. BLG
model with this algebra describes a single M5-brane’s system.

Chapter 5 Truncation version of Nambu-Poisson bracket (§3.3.2)

of of° of
Oyt Qy¥ OyP

[F, 15, f) = 7 (P“”p(y) > <f“,f">=/ d%y N (f“f"),(3.141)
N

where 7y is the projector which neglect the order > N terms. BLG model with this
algebra is useful to see the N2 law.
Chapter 6 Lorentzian Lie 3-algebra (§3.4.1)
[, T8, T = if9, %, [T°, 77, T = —ifi%y, [v,%,% =0,
(T, T7) = h¥, (u,v) =1, otherwise=0. (3.142)
BLG model with this algebra describes multiple D2-branes’ system.
Chapter 7 General Lorentzian Lie 3-algebra (§3.4.2)

} 4 ) Y ,
[Ua, Up, ue] = Kgpe€i + Labea?®,  [Ua, Up, €'] = Ja{;ej — Kopv©

& abcV
[wa, €', €7] = T’ + filfer, (¢ el €] = — fiTFo?,
<ei, ej> = gij, (Ug, ’Ub> = 53, otherwise = 0, (3.143)

where the structure constants féj k, JL% and Kéb . are constrained by the conditions
(3.136) and (3.137). BLG model with this algebra describes multiple Dp-branes’

system on (p — 2)-dim torus 772 (for p > 3).
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Part II : MS5-brane and applications






Chapter 4

MS5-brane as infinite number of
M2-branes

As we saw in §3.3.1, Nambu-Poisson bracket is an example of infinite-dimensional positive-
definite Lie 3-algebra. Then, in this chapter, we discuss the BLG model with the Lie 3-
algebra defined by Nambu-Poisson bracket, and show that it describes a single M5-brane’s
system whose worldvolume spreads over the original M2-branes’ worldvolume M and a
3-dim manifold A/ where Nambu-Poisson bracket is equipped.

It is known that the M5-brane’s worldvolume theory contains a self-dual 2-form gauge
field, in addition to the scalars corresponding to fluctuations of the M5-brane in the trans-
verse directions, as well as their fermionic superpartners. Especially, we will show that one
can nontrivially obtain the self-dual 2-form field in our setup.

4.1 Nambu-Poisson bracket as Lie 3-algebra

Now we examine the BLG model with infinite-dimensional Lie 3-algebras based on 3-dim
manifolds A/ with Nambu-Poisson structures. We will show that the field theory on the
M2-branes’ worldvolume M can be rewritten as field theory on a 6-dim manifold M x N
whose bosonic components consist of the self-dual gauge field on M x N and scalar fields
which define the embedding. As this is the field content of an M5-brane [22, 62, 63], we
interpret it as a model of M5-brane constructed out of infinitely many M2-branes.

We use the simplest example of Nambu-Poisson bracket.

For the construction of M5-brane, we introduce an “internal” 3-dim manifold N equipped

with the Nambu-Poisson brackets. The Nambu-Poisson bracket is a multilinear map from
C(N)®3 to C(N) defined as

{fi, fo, f3} = P )0 f105 f205 f3 4.1
L,

71
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where P/.U., 5 1s an anti-symmetric tensor. We use the coordinate yﬂ (Lt = 1,2, 3) to parametrize
N. As arealization of Lie 3-algebra, the Nambu-Poisson bracket needs to satisfy the fun-
damental identity

{gv ha {fla f27f3}}
={{g,h, f1}, fo, f3} + {f1. {9, b, f2}, f3} + {f1. fos {9, b, f3}}, (42)

which gives severe constraints on Pl.“., 5.(y) (see, for example, [57]).
The simplest possible Nambu-Poisson bracket is the Jacobian determinant for 3 vari-
ables y*

{fi, fo, f3} = Z €.301f105 f205 f3. 4.3)
/R29)

This is the classical Nambu bracket. In general, it is known that a consistent Nambu bracket
reduces to this Jacobian form locally by the suitable change of local coordinates. This prop-
erty is referred to as the “decomposability” in the literature [52-56]. So we can use (4.3)
in the following for simplicity and also without loss of generality. We also note that the
dimension of the internal manifold N is essentially restricted to 3, because of the decom-

posability.
Nambu-Poisson bracket may be regarded as the definition of Lie 3-algebra in the infi-
nite dimensional space C(N). We write the basis of functions on C'(N) as x%(y) (a =

1,2,---,00). So we define the Lie 3-algebra structure constant by Nambu-Poisson bracket
as
{x“ﬂ xbyxc} = > €I 0ux 05X = Y 1" ax () (44)
[0, d

Then eq. (4.2) implies that the structure constant %, here satisfies the fundamental iden-
tity.

Inner product can be defined as integration.

As we mentioned in §3.3.1, we write the inner product as integration on the manifold N

ULJ»-—[;mwu@»ﬁ@nh@n. (4.5)

The measure factor x(y) is chosen such that the inner product is invariant under the Nambu-
Poisson bracket as (2.16), namely

<{*7*7f1}7f2>+<f17{*7*7f2}>:0' (4.6)

Here we simply choose 1(y) as

<nm=;4fmwmm @)
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where ¢ is a constant. Then we can the invariant metric as
W = (X, hay = (B Hap - (4.8)

Here we choose the dual set of basis x,(Y) in C(N) such that (x4, x) = 62 As we
see, the indices of the structure constant can be changed by contraction of the metric. In
particular, »__ h* f bed — fbeda defines a totally anti-symmetric 4-tensor. In order to have
finite metric, we need to restrict A/ to a compact manifold. One may, of course, discuss
noncompact manifolds by appropriate limits of the compact spaces.

Because we have already fixed the scale of y™ at (4.3), we cannot in general remove the
coefficient g from the metric (4.8). As we will show later, however, if the internal space is
N = R3, it is possible to set this coupling at an arbitrary value by an appropriate rescaling
of variables.

Except for the trivial case (V' = R3), we have to cover A by local patches and the
coordinates y* are the local coordinates on each patch. If we need to go to the different
patch where the local coordinates are v/, the coordinate transformation between y and v’
(say y'* = f#(y)) should keep the Nambu-Poisson bracket (4.3). It implies that

{rrery=1 (4.9)
Namely f#(y) should be the volume-preserving diffeomorphism. As we will see, the gauge
symmetry of the BLG model for this choice of Lie 3-algebra is the volume-preserving dif-
feomorphism of A which is very natural in this set-up.

We note that we don’t need the metric in 3" space. For the definition of the theory
we only need to specify a volume form in /. The gauge symmetry associated with the
volume-preserving diffeomorphism is kept not by the metric but the various components of

the self-dual 2-form field which comes out from A4 and X ” (longitudinal components of
X) as we will see.

Concrete examples of Nambu-Poisson bracket

It is of some interest to see the algebra itself explicitly, so we present a few examples where
explicit computation is possible.

Case of T2 and R?

The simplest example of infinite-dimensional Lie 3-algebra is given by 7 with radius R.
The basis of functions are parametrized by 7 € Z?3 as (if we take 1 = (27 R)~3)

X"(§) = exp(2mifi - 7/R),  xa(§) = exp(~2mifi - j/R). (4.10)
The metric and the structure constants are given by
R = (i) + i),
fratns = (2mi ) R)3iy - (g X fi3)0(f1 + Ao + Az — 4)

franefisis — (97 ) RY3fy - (flg X fig)d(iy + g + g + fiy) . (4.11)
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If we take R — oo, we obtain the Lie 3-algebra associated with R3. The label for the
basis becomes continuous and the metric becomes the delta function.

Case of S3

We introduce four variables y1, - - - , y4 and the Nambu-Poisson bracket defined by
P=—1y10o NO3NOs+y201 NO3 N Oy —y301 ANDo AN Oy + ysO1 NO3 AND3. (4.12)

If we restrict C(N\) to the linear functions of y;, it agrees with A4. We impose a constraint
o(y) == y% + y% + yg + yi — 1 =0 in R* which defines S®. This restriction is compatible
with the Nambu-Poisson bracket in a sense {¢(y) f1(v), f2(y), f3(¥)} |¢)=0 = 0 for any
fi(y).

Square integrable functions on S are given by combinations of ;" y32y5%y,;*. By the
constraint ¢(y) = 0, whenever powers of y4 higher than 2 appears, we can reduce it to zero
and one. Therefore the basis of functions are given as

ni,na2,n3 ni, na2,n3

Ti=vi' v s s Sa=u1" v y3ya,  (ni 20). (4.13)
The Lie 3-algebra becomes

{Tﬁ,Tﬁ‘L,TE} = ﬁ(rﬁx )S 7 =y

Al
3
{T3, T, Sgb = - (m < {) Tﬁ+m+i—ﬁ_§:Tﬁ+m+1,ﬁ+2é’i
i=1

3
{Tﬁv Sy SZ} = - (mx 1) <5ﬁ+m+f—ﬁ_ Z Sﬁ+m+i—ﬁ+2a>

i=1

{S2,8m. 87} = A -(mx0)|T, 722 Taimiipioes + > :Tﬁ+m+é!ﬁ+2a+25j
i=1 12

N Z €(ft x m + 17 X £+ £ x ﬁ)(Tﬁ+m+Z—ﬁ+2€i - Tﬁ+rﬁ+i—ﬁ+4€i)

+ Z(gi +E) (X mA+m X E+ EX )T g 5oz 0z

where g = €1 + & + €3.
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4.2 Construction of fields on M5-brane

In this section, we redefine the fields of BLG model, in order to obtain an M5-brane’s
worldvolume theory. Let us first comment on the indices. We consistently use

o [ JK,---=1,---,8: label the transverse directions of the M2-branes M.

In the following, we decompose this 8-dim space as a direct product of a 3-manifold N and
remaining 5-dim space. Then we will use

o (1,0, )\, =1,2,3: label the directions of N

e i,j,k,---=1,---,5: label the transverse directions of the M5-brane M x N.

Definition of 6-dim fields

By combining the basis of C'(N\), we can treat X! () and ¥, () as 6-dim local fields

X'wy) =Y X @), Ulx,y) =) Ta(z)x"(). (4.15)
Similarly, the gauge field Aib can be regarded as a bi-local field:
A y,y) =D AL @)X WX - (4.16)
a,b

The existence of such a bi-local field doesn’t mean the theory is non-local. Let us expand it
with respect to Ay” := 't — y as

1 o
Ax(z,y,Y) = ax(z,y) + bz, y) AyF + QC)\[w(xv YAy Ay 4 - (4.17)

Because Ajq;, always appears in the action in the form ¢4, Ay, the field Ay(y,y') is
highly redundant, and only the component

(4.18)

0
bra(z,y) = WAA(% Y, Y)
y'=y

contributes to the action. For example, the covariant derivative (2.58) of BLG model is

rewritten for our case as,

DX (z,y) = (OX"(2) — gf* A X (2))x" ()
s 02 AN (2,0, 1) OX!(z,y)
— I _ M]/p )\ 7y7y 7y
X (wy) —ge dyhay"” ‘yy’ dyP
= WX'(z,y) — 9" (Oubrs (. ) (9, X (2,1))
= X! —g{ba,y”, XT}. (4.19)

The covariant derivative for the fermion field is similarly,

Dy\VU(z,y) = OW\U(x,y) — ge"P(9ubry(2,v))(0;¥ (z,y))
= OV — g{brs,y", V}. (4.20)
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Longitudinal fields

This theory written in terms of fields on 6-dim spacetime is identified with the theory de-
scribing a single M5-brane. At this point, only the z# part of the metric g, = 7 is
defined, and we still have SO(8) global symmetry, which is different from the SO(5) sym-
metry expected in the M5-brane theory.

This is quite similar to the situation in which we consider the D-brane Born-Infeld
action. The Born-Infeld Dp-brane action of 10-dim superstring theory possesses SO(1,9)
Lorentz symmetry regardless of the worldvolume dimension p+ 1. The rotational symmetry
is reduced to SO(9 — p) for the transverse directions only after fixing the general coordinate
transformation symmetry on the worldvolume with the static gauge condition '

XH(o) = ot (4.21)

This gauge fixing breaks the global symmetry from SO(1,9) to SO(9 — p), and at the same
time the worldvolume metric is induced from the target space metric through (4.21).

We can interpret the 6-dim theory we are considering here as a theory obtained from
an SO(1,10) symmetric covariant theory by taking a partial static gauge for three among
six worldvolume coordinates. As we mentioned above, however, we don’t have full diffeo-
morphism in the 3 space. The action is invariant only under volume-preserving diffeomor-
phism. This implies that we cannot completely fix the fields X*, and there are remaining
physical degrees of freedom. For this reason, we should loosen the static gauge condition
as

XMz, y) =y + (2, y),  buw = euiph’ . (4.22)

The tensor field b;,;, will be identified with a part of the 2-form gauge field on a M5-brane.

Comments on the coupling constant

In the case of ordinary Yang-Mills theories, there are two widely-used conventions for cou-
pling constants and normalization of gauge fields. One way is to normalize a gauge field by
the canonical kinetic term —(1/ 4)F3u and put the coupling constant in the covariant deriva-
tive D = d—igA. The other choice is to define the covariant derivative D = d —iA without
using the coupling constant and instead put 1/g? in front of the kinetic term of the gauge
field. Similarly, there are different conventions for coupling constant in the case of the BLG
model, too. In the above, we put the coupling constant g in the definition of the metric (4.8).
This corresponds to the second convention we mentioned above. We can move the coupling
dependence from the overall factor to the interaction terms by rescaling the fields

X' —eXt, WU, by — by, (4.23)

"Turning on a background field such as the B-field will of course also break the global symmetry. For the
discussion here we are treating the background fields as covariant dynamical fields.



4.2. CONSTRUCTION OF FIELDS ON M5-BRANE 7

with ¢ = g. In general, as ordinary Yang-Mills theories, we cannot remove the coupling
constant completely from the action.

If the internal space NV is R?, however, we have an extra degree of freedom for rescaling,
and it is in fact possible to the coupling constant from the action. Let us consider the
following rescaling of variables.

X = BXT 0 BY, by — M, Yt — Yt (4.24)
This variable change is associated with an outer automorphism of the algebra, and doesn’t
change the relative coefficients in the action. The only change in the action is the overall
factor. We can thus absorb the coupling constant by (4.24), and this implies that the 6-dim
theory doesn’t have any coupling constant.

We can adopt an elegant convention in which no coupling constant appears. However,
we adopt a different convention below. Because we interpret the 6-dim theory as a theory
of an M5-brane, we would like to regard the scalar field X as the coordinates of the target
space with mass dimension —1. We also give the meaning to the variables y* as the world-
volume coordinates, which also have mass dimension —1. We choose the parametrization
in the y” space so that the linear part of the 6-dim action is invariant under Lorentz trans-
formations in the (z*, y”*) space. After fixing the scale of X’ and y* in this way, we can no
longer use the two rescalings (4.23) and (4.24) to change the coupling constant and overall
coefficient of the action. These two parameters have physical meaning now.

In the following, in order to express the coupling constant dependence of each term in
the action clearly, we separate the coupling constant g from the structure constant. We also
introduce an overall coefficient Ty, which is regarded as an effective tension of the M5-
brane. This plays an important role in the parameter matching in §4.6, but we will omit this

factor in §4.3 — 4.5 for simplicity because it is irrelevant to the analysis in these sections.

Comments on the degrees of freedom

In this section we will show that the BLG model with a Nambu-Poisson structure on a 3-dim
manifold contains the low-energy degrees of freedom on an M5-brane. Before going on,
let us count the number of degrees of freedom in the bosonic and fermionic sectors in our
model.

The fermion ¥ is a Majorana spinor in (10 + 1)-dimensions with a chirality condition,
and thus it has 16 real fermionic components, equivalent to 8 bosonic degrees of freedom.
For a M5-brane, there are 5 transverse directions corresponding to 5 scalars X?. For an
ordinary 2-form gauge field in 6-dim spacetime, there are 6 propagating modes. But since
we don’t have the usual kinetic term for A,,, but rather a Chern-Simons term, there are only
3 propagating modes. The low-energy effective theory of an M5-brane contains the same
number of bosonic and fermionic degrees of freedom. But a salient feature of the M5-brane
is that the 2-form gauge field is self-dual. Hence our major challenge is to show that the
gauge field of the BLG model is equivalent to a self-dual 2-form gauge field.
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4.3 Gauge symmetry of MS5-brane from Lie 3-algebra

Gauge symmetry transformation

The gauge transformations of the scalar fields X/ and fermion fields ¥ are given by

Xz, y) = ghap(@) [ X (@)x ) = ghan(x){x*, X", X}
= g(6ry)0; X (2, y),
AU (z,y) = ghw(z){x" X", U} = g(6ry")0, ¥ (z,y), (4.25)

where we used

o = X xa) DX Wxa(y) =8Py =), (4.26)

and 6o y" is defined as
5Ay}\ = GXW@;;A»(JU, y),
Na(m,y) = O A 0,9 )y, M@, y,y) = Aa(2)x* W)X (W) . (4.27)

We note that although the parameter of a gauge transformation may be expressed as a bi-
local function A(ar, y,%'), the gauge transformation induced by it depends only on its com-
ponent Aj,(z,y) which is local in V. It comes from the fact that the gauge transformation
by Agp is always defined through the combination f adeAab ;

The same argument can be applied to the gauge field A, (z,y,y’). As we already men-
tioned, since it appears only through the combination A, f abe | the local field bu 5(7,y)
defined as (4.18) shows up in the action.

The transformation (4.25) may be regarded as the infinitesimal reparametrization

y* =yt — goy’. (4.28)

Since 8ﬂ5yﬂ = 0, it represents the volume-preserving diffeomorphism. Since the symmetry
is local on M, the gauge parameter is an arbitrary function of z. So what we have obtained
is a gauge theory on M whose gauge group is the volume-preserving diffeomorphism of \V.
In this sense, the worldvolume of M5-brane may be regarded as the vector bundle N” — M
but the gauge transformation on each fiber is not merely the linear transformation but the
diffeomorphism on the fiber which preserves the volume form

w = alyi A dy2 A dy3 . (4.29)

As we mentioned in the previous section, among 8 scalar fields X, the last 5 compo-
nents X are treated as scalar fields representing the transverse fluctuations of the M5-brane.
The other 3 X# (longitudinal field) are rewritten as as

. yﬂ 1 ..:
XP(y) = 7T ie“nAbk;\(y) : (4.30)
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‘We chose the coefficients so that we obtain Lorentz invariant kinetic terms in the 6-dim
action. The gauge transformation of b;,;, can be derived from (4.25) and (4.30) as

Oabs(y) = 0uls — 95 A + 9(Oay?)pb (y) - (4.31)

The gauge transformation of the gauge field Ay (x,y,y’) is given by dy Ax(z,y,y) =
D ,\]\(:1:, y,'). The covariant derivative of a bi-local field is defined by tensoring the covari-
ant derivative (4.19) for a local field, and we obtain

DaA(y,y') = O\A(y,) — g [01bas () pA (Y, ¥) + o (V) O5A (y,y)] . (432)
From this we can extract the transformation law of the component field b)s
0abxs = 010N AN(Y, Y )|y =y = OrAs — 90586 — 9Ogcbis | (4.33)
where 0gcb)s is the coordinate transformation in y-space
Ogcbrs = —0ay" Orbrs — (950ny)bx+ , (4.34)

and & is defined by
&= epl}p(aﬂb)\,;/\p + b)\ﬂal',Ap) . (4.35)

In addition to these gauge transformations derived from (2.58) and (2.55), there is an
additional gauge transformation which acts only on the field b),. As we can see in (4.19),
by, appears in the covariant derivative in the form of the rotation in the y" space. This
means that D, ® is invariant under

Sbry = —Ouhy. (4.36)

‘We can easily check that the Chern-Simons term is also invariant under this transformation,
and thus (4.36) is also a gauge symmetry of the theory.
Now we summarize the gauge transformation of the 6-dim theory.

IAXP = g(éAyp)ﬁpXi,
A = g(0ry")0,Y,
oab.s = Oxly — O5Mk + g(0ay”)0pb, 5
dabrxs = OaAs — 05A) — ggcbys - (4.37)

We absorbed £, in (4.33) into the definition of the parameter A . In the weak coupling limit
g — 0, we obtain the standard gauge transformation on an M5-brane.
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Covariant derivatives in 6-dim theory

An intriguing feature of our 6-dim model is that one may define the covariant derivative in
the fiber direction.

By using the fundamental identity, it is easy to show that if &1, ®,, and P53 are covariant
fields (such as X' or W), not only D, ®; but {®y, $o, P3} are also covariant because of the
fundamental identity,

NP1, Po, P3} = {0aDP1, Po, D3} + {P1, 04 P2, P3} + {P1, P, 0aP3}.  (4.38)

It implies that the following combination defines the “covariant” derivative along the fiber

direction,
g’ ) 3
D,® = ?e[u;ﬁ{X”, X, o}
: . 2 o
= 0P + g(0;0°0,® — 9pb 05 D) + %e[w,ﬁ{b% W0}, (439)
Together with (4.19), which we repeat here again,
D,® = D,® =0, — g{bu,y’, O}, (4.40)

we have a set of covariant derivatives on M5-brane’s worldvolume.
These covariant derivatives possess the following important properties.

e [ eibniz rule:

Dﬁ{fbl, Dy, O3} = {Dﬁél, Dy, O3} + { Py, Do, O3} + {Pg, Do, Dﬁfbg} . (4.41)
e Integration by parts:
/ dPzd’y ®1D, Py = — / d’zd*y (D, ®1)Ps . (4.42)
Here D, (p = 0,1,---,5) represents both D, and Dj,.

Field strength

As special cases of these covariant derivatives, we define the following field strengths of the
tensor field:

Hypw = €,
= Hyuw — g€ " (05br+)0pbpus, (4.43)
Mgy = ¢ {X1, X% X%} - 7=,V D

= Hiss+ g(aﬂbﬂaﬂb” — 970 b) + g2 b1, b2, b7} (4.44)
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where V is the “induced volume”
vV =g3xt X2 X3, (4.45)
and H is the linear part of the field strength

Hypp = Oabuy — 0ubyy + Opbyy,
Hj\ﬂ” 8}\[);10 + 6,1% + 5',)[))'\[‘ . (4.46)
‘H are covariantly transformed under the gauge transformation.

Just like the case of ordinary gauge theories, the field strength H arises in the commu-
tator of the covariant derivatives defined above:

D, Do)® = GPepo{Hiss X%, P}, (4.47)
D). D;]® = ¢*{H,,;, X", 2}, (4.48)
[D,, D, = _%ewmﬁwmqn (4.49)

where the dual field strength H is defined by
~ 1y ~ 1 .
HS = ST H ey, HIP = e (4.50)
By using the explicit form of the covariant derivative in (4.40), we obtain
[Dy, D)@ = —gF},0:®, (4.51)

where the explicit form of Fl’fy in terms of the potential is

FITV = e’:“"“)ﬁlﬂﬂbw-, — ge"‘”p'aﬂbw-,e’:’”’\*@p@;\bw — (u — I/) . (4.52)

Because the (non-covariant) derivative appears on the right hand side, F;f,, defined by (4.51)
is not covariant. We can define the covariantized F' by

[Dy, D)@ = —gF};,Di®. (4.53)

These two fields are related by F/Z,&;(I) =F /’f,,D,JI), and by substituting ® = X £ into this
relation and using
gD X’ = V67, (4.54)

we obtain .
i A i
V}"W = gFW(?/\X . (4.55)

F can be expressed as the covariant derivative of the field strength H.
VFn, = gf,f,,D;X F = € D, Dy X = €, \D,H . (4.56)

In the first step, we used the relation (4.54). Substituting this into (4.53), we obtain (4.49).
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4.4 MS-brane’s action and equation of motion

MS5-brane’s worldvolume action as a final result

We rewrite the various parts of the BLG action in terms of the 6-dim fields and their covari-
ant derivatives, then obtain

1 . 1 . 1 1
Sx + Spot = /d3$ <—2(D/LX1)2 - §(D>}XZ)2 - ZHiﬂb - ﬁHizm

1 g4 . . 9 94 . . k42
o~ XXX - LX) )

Sy + Sy = / & <;x11r#1)u\1/ + %@rﬁriégpqu
’ig2 — . . ng _ . .
+ 5 U (X, X7, W) 4 STy (X, X, 0 ). (4.58)

The scalar kinetic term is manifestly Lorentz symmetric up to the different structure in-
side the covariant derivatives D,, and D;,. The Chern-Simons term cannot be rewritten in
manifestly gauge-covariant form.

1 ..
Scs = /d?’;zce“”A <—26W’\8ﬂbwﬁyb}v~\
g

+6eﬂbAaﬂbypﬁﬁd%adbAp(aj\bm' - 0+bﬂ)~\)>

= /d3x/€m/>\ <;dbu A Oyby — %(*dbu) A (xdby) A (*dbk)> . (4.59)
Y

In the second expression we treat b,,;, as a one-form field b, = bwdy” in the y-space. How-
ever, the equation of motion which is derived from these actions turns out to be manifestly
gauge-covariant.

Comments on fermion action

In the fermion kinetic terms in (4.58), only the SO(1,2) x SO(3) subgroup of the Lorentz
symmetry is manifest due to the existence of I';53 in one of two terms. We can remove this
unwanted factor from the kinetic term by the unitary transformation

UV=VU v=UV, (4.60)
where U is the matrix
T 1
U = exp (*Zfizs) = \ﬁ(l —Tiss) - (4.61)

The supersymmetry parameter € is also transformed in the same way. Note that both ¥ and
U are transformed by U. This is consistent with the Dirac conjugation. As the result of the
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unitary transformation, the fermion terms in the action become
Sy + St = / A3 <;\I/T“Du\ll’ + %@Tﬁp,jqﬂ
ng =/ 1oy ig2 T/ i vt
+7\Il Lpi{X#H, X" 0} — T\II [iTia3{ X" X707} ) L (4.62)

After the unitary transformation, the condition [012¢ = 012¢ 10129 = — 0120 becomes
the chirality condition in 6-dim spacetime,

I'd =€, T70 = -0, (4.63)
where the chirality matrix I'7 is defined by
Hveri2s = et (4.64)

This means that the supersymmetry realized in this theory is the chiral N = (2,0) super-
symmetry, which is the same as the supersymmetry on an M5-brane.

Equations of motion

It is easy to obtain the equations of motion for the scalar fields and fermion fields. We also
derive the gauge-covariant equations of motion for the gauge fields, as we mentioned.

Scalar fields
_ 2 yi 2yt
0 = D2X'+D;X"
4
gt (X X7 X X, XYy + (0, xR (0, xR X0
i92 T VR iQZ T/ i
5 {0 Ty, XF 0} - {WTy Ty, X7, 07 (4.65)
Fermion fields
0=T'D, W +TPDy0 + ¢°T i { X", X', U/} — 5 T Tisa{ X, X7, U’} (4.66)

Gauge field by,

For a variation of b;,;;, we have the following variations of the action.
. . 1 L
0Sx = /d3$<5bHDuDuX“> ) /d3x<5bu€“p0DuHuﬁé>’
4
o = % [ o (X! X, (X!, X, X0,

§Sint = Zg/d3x<@,rﬂj{5bﬂ,XJ,\1:}> :—Zg/d3x<6b“{\IprJ,XJ7\Il}>(4.67)
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and the equation of motion is

1 ...
0 = §€upJD#H“pd+ {Xf X7 AXT, X7 XMy — ( VH{UT gy, X7, WY

1 ...
= 5" DuMups + DpMizs + 9 6”“T{XZ7XP>DT'XZ}
g4 . . . . . 192 _
5 {0, X0 AKX, X7, X} = {0, X, 0} (4.68)

or, equivalently,
D, HM + DyHM = gJ 7, (4.69)

where the current is given by
JP7 = g({XzaDé'XzaXp} - (p e U)) - ?Epa—‘u{XzaX]? {szvaX#}}
ig - .. ] ) iq .. - .
+59({\I/T”,XP, VY~ (po &) + geﬂﬂﬂ{qf’rm,xa vy, (470)

Gauge field by

For the variation of the gauge field by, we obtain

55y = /d3 (UTM8by,, v, U}) = /d3 (0bx {UTA, T, y}),
1
S5es = / (M by, FL ). @.71)

The equation of motion for b, is

15, . 19 = .
S EL, + g{XT DXy + T, W,y = 0. “.72)

This is not covariant, but we can covariantize this by multiplying g0, X v,

%4

56’\“”.7-"" + X! Dy X, X} 4 {xprA U, XM =0. (4.73)
By using (4.43) and (4.56), we can rewrite this equation of motion as follows:

DpHPM 4 Dy HEM = g™ (4.74)

where the current is given by

U = g{X', D X", X7} + S{UTH, W, X7} (4.75)
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Bianchi identity and self-duality of

The Bianchi identity (4.81) is obtained by substituting ® = X* to the commutation relation
(4.48). By using the definition of the field strength H, we can rewrite the left hand side as

, , 1 ...
['DA, 'D}\]X“ = 55@)\7'[123 — ie“pUD}\H,\pg, , 4.76)
and the right hand side becomes
M50 X7 XA} = DM 5 4.77)
Combining these, we obtain the Bianchi identity

DyH —'D)'\H)\p(; _,DPH)\(;/'\ —DdH)\)'\p =0. 4.78)

Apor
This is equivalent to (4.81).

The equations of motion of gauge fields b, and b;,,, and the Bianchi identity are com-
bined into the self-dual form:

DAHY 4 Dy = g, @79
DTV 1 D = g1 (50)
D)\ﬁ)\uu + fD)_\ﬁ/\MV =0. (4.81)

The first two are equations of motion obtained from the action, while the last one is a
Bianchi identity derived from the commutation relation (4.49).

The self-dual tensor field H, chiral fermion field ¥/, and the five scalar fields X* form a
tensor multiplet of N = (2, 0) supersymmetry [64], which is the same as the field contents
on an M5-brane.

4.5 Supersymmetry of MS-brane

Supersymmetry transformation

In this section, we rewrite the supersymmetry transformations (2.56) in terms of the 6-dim
covariant derivatives and field strength. The transformation law (2.56) of the gauge field
Apab With coupling constant inserted is

Al =igel, T X1, fe,. (4.82)

We cannot determine uniquely the transformation law of the component field b,,;, from this
equation because of the existence of the gauge transformation (4.36), which acts only on
b,.. In fact, the transformation (4.82) only gives

5 (e”l)p.aﬂby,apf(y)) = igEF)\FI{XI> v, f(y)}, (4.83)
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where f(y) is an arbitrary function of y*. One possible choice for & by 1s
by = ig(eT T, ¥)9, X" (4.84)

We can easily check that this transformation law reproduces (4.83).

In some situations an explicit appearance of b, is not necessary, but all we need is
B,f = e”"’/’&;b,%p, which satisfies the constraint 9, B,* = 0. The supersymmetry trans-
formation for B,* is uniquely determined from (4.83) as

§B,* = igel, T 10, X 70, T, (4.85)
and it is obvious that the constraint is supersymmetry invariant, i.e.
§(0Bu") = 0. (4.86)
The transformation laws rewritten in terms of the 6-dim notation are

XY = T, (4.87)
SV = D, XTI + Dy XTI
1 s 1
—5 Myl = <g + Hms) T'jg3€
RS XINDATH e 4 E{X’, X7, XFITUkpIBe - (4.88)
(5[),19 = —i(E’Fﬂp\I/I), (4.89)
Sbuy = —iV(ET, Ty +ig(el, TiT 55 V") 0 X" (4.90)

The M5-brane in our theory is in a constant C-field background.

A peculiar property of this supersymmetry transformation is that the perturbative vacuum
(the configuration with all fields vanishing) is not invariant under this transformation due to
the term in §U’ proportional to 1/g. We can naturally interpret this term as a contribution of
the background C'-field. In the M5-brane action coupled to background fields, the self-dual
field strength is defined by H = db+ C' (up to coefficients depending on conventions). The
inclusion of C-field in the field strength is required by the invariance of the action under
C-field gauge transformations. The shift of the field strength 54 by (1/g) in the action as
well as in the supersymmetry transformation suggests that the relation C' o< g~! between the
Nambu-Poisson structure and the C'-field background. This statement of course depends on
the normalization of the gauge field C. For more detail about this relation, see §4.6, where
we derive the precise form of this relation including the numerical coefficients.

In fact, M5-brane in a constant C'-field background is still a 1/2 BPS state. The effect
of the C-field is changing which half of 32 supersymmetries remain unbroken. We can
find this phenomenon in our 6-dim theory. In addition to 16 supersymmetries we described
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above, the theory has 16 non-linear fermionic symmetries § (n) | which shift the fermion by
a constant spinor

SO =, 0D xT =My, = s, = 0. (4.91)

The action is invariant under this transformation because constant functions in i/ space are
in the center of the Lie 3-algebra. The perturbative vacuum is invariant under the combina-

tion of two fermionic symmetries

1
S — 55(, b (4.92)

€

In the weak coupling limit ¢ — 0, the transformation laws for this combined symmetry
agree with those of an A = (2, 0) tensor multiplet [65].

0XP = @Tihv, (4.93)
. . 1

oV = BEX’FEF%’—EHEHBFEQEI, (4.94)

by = —i(€T V). (4.95)

We obtained the transformation (4.95) only for v = f1 and pv. To obtain the transforma-
tion law of the b,,, components, we first compute the transformation of H,,;, and H,,;; by
using the transformation law of b;,;, and b,,;. Because the field strength is self-dual, it also
gives 571“,[-, and 5ﬁuyp. The equations of motion (4.79) and (4.80) are the Bianchi identi-
ties as well for these components of field strength. If we can solve these Bianchi identities
on shell and express them by using b,,,,, we can extract the transformation law of b,,,, from
57'7#1/;3 and (57Tlm,p. In the free field limit g = 0, we can easily carry out this procedure and
obtain (4.95) for b,,,.

4.6 D4-brane’s action from M5-brane

In this section, we demonstrate that the double dimensional reduction of the 6-dim theory
correctly reproduces the action of noncommutative U (1) gauge theory, which is realized on
a D4-brane in a B-field background.

We here recover the overall factor Tg in the front of the action. This has mass dimension
6 and can be regarded as the tension of the five-brane, while the coupling constant g is a
dimensionless parameter. We should note that this tension 7§ is not necessarily the same as
the usual M5-brane tension Ti5, because it may be corrected by the background C-field.
We will later determine the parameters g and T by comparing the 5-dim action obtained by
the double dimensional reduction of the 6-dim theory to the noncommutative U (1) action
realized on a D4-brane in a B-field background in type IIA theory. Once we obtain the
expression for g and Tg in terms of type 1IA parameters, it will be easy to rewrite them in
terms of the M-theory Planck scale and the magnitude of the C-field.
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Double dimensional reduction : M5-brane to D4-brane

The double dimensional reduction means that we wrap one leg of the M5-brane on a com-
pactified dimension, so that through Kaluza-Klein reduction we get one fewer dimension
for both the target space and the worldvolume. Let us choose the compactified dimension to
be X3. In the double dimensional reduction, we suppress yg—dependence of all fields except
X3, We have

X3=293  p=o. (4.96)

We used a gauge symmetry generated by A; and A, to set b3 = 0. We impose the periodicity
condition
X~ X3+ Ly (4.97)

The relation (4.96) and (4.97) implies that the compactification period of the coordinate y3
is gL11, and thus, the overall factor of the 5-dim theory becomes gL1175.

Let us now first carry out the dimensional reduction for the bosonic terms in the action.
Since all the fields except X 3 have no dependence on y‘é’, we set J; = 0 unless it acts on
X3. We will use the notation that indices ¢, 3, - - take values in {i,2}, and a,b, - - - take
values in {0, 1, 2, 1, ?}. The antisymmetrized tensor e is defined as o — 6‘5‘/33.

Expecting that we will obtain a gauge field theory on a D4-brane, let us define the gauge
potentials

ay = bug fld = bdfi' (4.98)

The covariant derivatives become

D, X% = —¢F o D,X*=-a, D,X'=D,X' (4.99)

where Fab, a,, and D, are defined by

~

Fop = aadb_abda+g{aaa&b}7 (4.100)
ay = eé‘ﬁadbuﬁ-, (4.101)
D,® = 9,9+ g{a,, o} (4.102)

The Poisson bracket {-, -} is defined as the reduction of the Nambu-Poisson bracket

{f.9y =14’ f.9}. (4.103)

We note that the components b 3 only show up through the form a, in D4-brane’s action.
Thus we find that, after double dimensional reduction, the scalar kinetic term in the BLG
Lagrangian become

T; LuT, . L
-2 / Br((D,X1)?) = _917216 / dBad?y (ai +E2 (DNXZ)Q). (4.104)
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The Nambu-Poisson brackets which appear in the potential terms of the BLG action are

L5 s 1 - 1
X11X27X3 — 7F+77
{ } 92 1 gg
{X3 X% X"} = ?EQ’BD/@XZ,
; S 1 S
(X3 X' X7} = —{X', X} (4.105)
g

The potential term becomes

o [ Pl X X

1/~ 1\? 1 . 2
= nglTﬁ/d3azd2y [—2 (Fm + g) — 5(Dd)ﬁ)2 — gZ{X’,XJ}Q .(4.106)

Upon integration over the base space and removing total derivatives, we can replace (F s+
1/9)% by Ffé +1/g%
It is also straightforward to show that the Chern-Simons term (4.59) gets simplified

considerably as
9L T

2
Here again the action depends on b 3 only through a,. As the action depends on the field
ay, only algebraically (namely without derivative), we can integrate it out. There are only

/ Bad*y Ny ay. (4.107)

two terms involving a,, and by completing square, we find that the effect of integrating out
ay, is to replace all terms involving a,, by

LT, .
—gzﬁ / dBrd’y B2, (4.108)
The fermion part can be evaluated similarly. The covariant derivatives and bracket are
I“D, ¥ =T,V +g{a,,¥'}) :=T"D,V, (4.109)
1 . .
§F1J{XI, X7 v} = Taliss D0 + Tyl { X7, 0} (4.110)
DB-\II’ = 83\11’ + g{ag, v’} 4.111)

It is quite remarkable that, after collecting all the kinetic, potential and Chern-Simons
terms, the (4 + 1)-dim Lorentz invariance is restored (up to the breaking by the noncommu-
tativity). The sum of all these terms is simply

9L11T6 / d’zd*y [

N 1. 2 1
(DaXZ)2—7F2 —i{XZ,Xj}z—
by 2

1
2 it 27

+% (@”Paﬁa\lﬂ’ + 9B T XY, 11:”})} @112
We performed the unitary transformation ¥/ = (1/v/2)(I'; + I'")¥” to obtain the correct

chirality condition I'; ¥ = —W" for the gaugino on the D4-brane. (Note that 3 is now the
“eleventh” direction and I'; is the chirality matrix in IIA theory.)
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Comparison with the D4-brane’s action in the B-field background

Let us compare the action (4.112) with the known result [66,67] for a D4-brane in a B-field
background, and match the parameters in this theory and those in type IIA string theory. The
noncommutative gauge theory on D4-brane in a B-field background is described with the
Moyal product *, and the corresponding commutator, the so-called Moyal bracket [, -]nioyals
defined by

i nij

F(@) * ga) = 35655 f(o + )g(a + Ole=¢=0, (4.113)
[fs O)Moyal = [ g — g% f = 0709;£9;9 + O(6%). (4.114)

The noncommutativity parameter 6%/ has the dimension of (length)?. Because the action
(4.112) includes only finite powers of derivatives, it should be compared to the weak cou-
pling limit & — 0 of the noncommutative gauge theory. These two match if we truncate the
Moyal bracket into the Poisson bracket by

0
[fag]Moyal - T{f)g}a (4115)
str

where we turn on the noncommutativity in the 1-2 directions by setting

o

i2 _
0 =T
str

P = gHv = (). (4.116)

Note that 6 is defined as a dimensionless parameter. In the small 6 limit, the bosonic part of
the action of the noncommutative U (1) gauge theory on a D4-brane is given by [66,67]

S = Tg‘l/d?’dey[

in the open string frame. The worldvolume coordinate y* in the open string frame is related
to the target space coordinates X< by

1
F2
4jﬂstr ab

, 62 .
(DgX")? — - Z{X’,Xﬂ}2 - (4.117)

1
2 202 |’

L1 .
X5 = oy, (4.118)

The covariant derivative and the field strength are
i i o i 0
D, X" = 8uX + 7{Aa, X }, Fopy = 0, Ay — OpAs + 7{Aa, Ab} 4.119)
Tstr Tstr

We normalize the gauge field A, so that it couples to the string endpoints by charge 1
through the boundary coupling S = | ar1 A of the fundamental string worldsheet, and
this gauge field has mass dimension 1. In the weak coupling limit, the noncommutativity
parameter 6 is related to the background B-field by

. . TS r . .
B =Ty, 0dX' A dX? = Ttdyl A dy?. (4.120)
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By comparing two actions (4.112) and (4.117), we obtain the following relations among
parameters:

T
Ts = %, (4.121)

g = 0. (4.122)

To relate quantities in IIA and M-theory, we use the following relations among tensions of
M-branes and I1A-branes.

Tps = L11Tvs, Tste = L11Tp2 = L11Tw2. (4.123)

The relation T3, = 2mTys is also useful.

In addition to the agreement of the action through the relations (4.121) and (4.122), we
can check the consistency in some places.

Firstly, the relation (4.118) between the worldvolume coordinates and the target space
coordinates can naturally be lifted to the relation (4.30).

Secondly, the overall factor 75 agrees with the effective tension of M2-branes induced
by the background C-field. The background B-field (4.120) is lifted to the background
three-form field

T2
02

(We use the convention in which the gauge fields B and C couple to the worldvolume

Cs = 0Tad X1 A dX2 A dX3 = 222 a0l A dy? A dy’. (4.124)

of corresponding branes by charge 1 through the couplings fFl B and sz C.) Each flux
quantum of this background field induces the charge of a single M2-brane on the M5-brane,
and effective M2-brane density in the y-space is 0~ 2Ty12/(27). Thus, if we assume that the
tension of M5-brane is dominated by the induced M2-branes, the effective tension becomes
Tz X 072Tve/(27) = 6~ 2Tyy5. This agrees with the overall coefficients Tg given in the
relation (4.121).

Finally, the charge of the self-dual strings is consistent with the Dirac’s quantization
condition. From the comparison of the actions we obtain the relation of gauge fields

1
O = A . 4.125
Qq, Toer a ( )

As we mentioned above, the gauge field A couples to string endpoints by charge 1. By
the correspondence (4.125) we can determine the strength of the coupling of @ and b to
boundaries of the corresponding branes. The boundary interactions are given by

T

S = Tstr/ G =12 b. (4.126)
OF1 0 Joma

To obtain the second equality in (4.126), we used the fact that a string endpoint is lifted to

an M2-brane boundary wrapped on the S' along y* with period gL1. The coupling (4.126)

shows that the charge of self-dual strings (boundary of M2-branes ending on the M5-brane)
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is Q = 0~ 'T\1o. Because the gauge field b is a self-dual field, Q is the electric charge as
well as the magnetic charge of a self-dual string, and it must satisfy the Dirac’s quantization

Q2
?6 =
We can easily check that this relation certainly holds.

condition
2. 4.127)

We can now explain the constant shift in the field strength as follows. The M2-brane
action includes the following coupling to the bulk 3-form field C' and the self-dual 2-form
field b:

1

Smo= [ Cs+ 2 [ (4.128)
M2 0 Jomz
The gauge invariance of this action requires that under the gauge transformation 0C3 = daa,
the self-dual field on the M5-brane must transform as by = —awo /(0 Ty2). Thus, the
gauge invariant field strength H of the tensor field b should be defined by

0

H=dv+—C. (4.129)
T2

Therefore, the background gauge field (4.124) shifts the field strength as
H=db+ 5dyl A dy? A dy?. (4.130)

This is the same as the constant shift in the definition (4.44) of H ;3.

Now we have relations between parameters in the BLG model and those in M-theory.
The D4-brane action obtained by the double dimensional reduction is the weak coupling
(9 = 6 — 0) limit of noncommutative U (1) theory because the Moyal bracket is replaced
by the Poisson bracket. The coupling constant is determined by the background C'-field,
and the weak coupling means strong C'-field background through the relation (4.124). Our
M5-brane theory is expected to apply better to the limit of large C'-field background. This
is also confirmed in the comparison of the five-brane tension. As we mentioned above, the
effective tension Tg is dominated by the tension of M2-branes induced by the background
C-field. This is the case when the background C-field is very large.

For a finite C-field background, we expect that the Nambu-Poisson bracket should be
replaced by a quantum Nambu bracket.

4.7 Summary and remarks

In this chapter, we discuss a model of the M5-brane’s worldvolume field theory which
is constructed as a system of infinitely many M2-branes [5, 13]. In the BLG model, a
background configuration of the M2-brane system corresponds to the choice of a Lie 3-
algebra [46], and the Lie 3-algebra used for the M5-brane is the Nambu-Poisson algebra [51]
on a 3-manifold AV which appears as the internal space from the M2-branes’ point of view,
but it constitutes the M5-brane’s worldvolume together with the M2-branes’ worldvolume.
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We show that the gauge transformation defined by this Lie 3-algebra can be identified as
the diffeomorphism of A/ which preserve its volume 3-form. The gauge potential associated
with this symmetry can be identified with the self-dual 2-form gauge field b,,; (an index p
for the worldvolume and another © for the internal space A') which is a particular combina-
tion of the BLG gauge field A,,,;,. We show that only a particular combination of A, is
relevant to define the gauge symmetry, the action and the supersymmetry. We note that the
internal space A/ may be regarded as the fiber on the 3-dim M2-branes’ worldvolume M in
a sense.

Another characteristic feature of the system is that not only the covariant derivative
defined by the gauge potential b,,; is covariant, the triplet commutator { X i X7 &} is also
covariant. This follows from the fundamental identity of the Nambu-Poisson structure.
From this combination, we obtain the second 2-form field b;,;, by which we can define the
covariant derivative in the fiber direction /. By combining two covariant derivatives, one
obtains various 6-dim field strengths associated with b,,;,, b,

The BLG action and the equations of motion are rewritten in terms of these fields. The
equations of motion for the tensor field are written in a manifestly gauge-covariant form
and combined with the Bianchi identity into a self-dual form.

4.7.1 Seiberg-Witten map

In §4.5, we discuss that the obtained theory describes the M5-brane in large C-field back-
ground. Then in our paper [5], we also argue the Seiberg-Witten map [67], which relates
the gauge symmetry on a noncommutative space with the gauge symmetry on a classical
space:

3;,8(®) = D(D + 5,D) — (P), (4.131)

where ® and 6 5 are the field and the gauge transformation in the noncommutative gauge
theory, while ® and ¢, are the correspondence living on the classical space.

Therefore, it is a nontrivial check that we see the Seiberg-Witten map between the gauge
theories on spacetimes with and without the Nambu-Poisson structure, corresponding to
M5-brane theories in trivial or constant C'-field background.

In §4.3, we find the gauge transformations in M5-brane’s theory with C-field back-
ground as

50Xt = gl X', 60 = giha, T,
/A\BI'W = 8,11&0 — 81-,]\,1 + g:‘%)\a)'\i)l'w y
5[\bﬂﬂ = aﬂAp — apAH + g/%”&-,bw + g(é?ﬂ/%”)bw-, s 4.132)

S

where i/ := ¢#23;A;. On the other hand, in the trivial background, the gauge transfor-
mations are

SX'=08U =0, Oabu =0uNy — Ny, Sabus = Oy — O, . (4.133)
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In this subsection only, we denote all variables in our M5-brane theory by symbols with
hats, and those in trivial backgrounds by symbols without hats. As a result, we make sure
that the both of gauge transformations are related by the Seiberg-Witten map, up to order
O(g"). It should be possible to prove it for higher order terms order by order.

4.7.2 Other dimensional Mp-branes from BLG model

One may wonder the possibility of constructing other Mp-branes (which should not exist)
in M-theory from multiple M2-branes. However, even if we had considered a higher di-
mensional manifold A with Nambu-Poisson structure, due to the decomposability of the
Nambu-Poisson bracket, locally one can always choose 3 coordinates {y*, y2, >} in terms
of which the bracket is simply

{fig9,h} = 6"‘”8;11‘ dp9 O5h. (4.134)

Hence the rest of the coordinates (y* for a > 3) of N will not induce derivatives or gauge
field components. There can never be more than 3 of the X !’s turning into covariant deriva-
tives. The decomposability of the Nambu-Poisson bracket is thus the mathematical basis of
why there are no other Mp-branes with p # 5.

In order to understand this statement, it may be instructive to consider a straightforward
extension

P=01 NIy N0+ 04 /N5 N O (4.135)

which would give us a theory on M8-brane. This doesn’t work, however, since this bracket
does not satisfy the fundamental identity. One may easily confirm this by examining

{y1y47y2’{y3ay5ay6}} = 0, but
Hv1ya, v2,y3}, v, 6} + {ys, {v1ya, Y2, ys}, ve} + {y3, Y5, {194, Y2, v6}} = 1.

The fact that the fundamental identity is so restrictive is helpful here to restrict the branes
of M-theory to M2-brane and M5-brane.

4.7.3 Toward multiple MS-branes’ theory

In this chapter, we construct a single M5-brane’s action from the BLG model. One of
the most challenging issue is how to construct the action of multiple M5-branes. For that
purpose, we need to construct a set of generators TAXa(y), where TA (A =1,--- ,d) are
the generators of an internal algebra and x“(y) is the basis of functions on N. However,
as far as we try, it seems difficult to find Lie 3-algebras of this form which satisfies the
fundamental identity.
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Vortex string and volume-preserving diffeomorphism

As we commented, in our construction of M5-brane’s action, we do not need the metric on
N but only its volume form, or in other words, the 3-form flux C on it. Our computation
further implied that it is natural to assume that there is a very large 3-form flux C' on the
M5-brane’s worldvolume. This set-up reminds us of the open M2-branes in large C-flux.
Since we can neglect the Nambu-Goto part (which contains the metric), the action becomes
that of the topological M2-branes [68,69]

S~ /CM,,de“/\dX”/\pr. (4.136)
When this M2-branes has the boundary on M5-brane, this topological action gives
S~ /CWpX”dX” NdXP. (4.137)

It gives an action for the string which describes the boundary of the open M2-branes. When
the target space has 3 dimensions and C' ~ € this action is identical to the kinetic term
of the vortex string [70], which was found long ago. In the M2-branes’ context, it was
studied in [47,71-76]. In particular, it was found that it can be equipped with the Poisson
structure with the constraint associated with the diffeomorphism which defines the volume-
preserving diffeomorphism naturally [75]

vf = 20, fOsg, Ot =0,

o(f,g) = / do F(X)dg(X) 4.138)

Here {, } p is the Dirac bracket associated with the kinetic term and - - - in the first line de-
scribe the extra variation along the worldsheet which can be absorbed by the reparametriza-
tion of the worldsheet. In BLG model, the gauge parameter has an unusual feature that it
has two index Ag. In this picture, this structure is naturally interpreted as a result of the
fact that for the string we can introduce two functions f, g to define the generators on the
worldsheet. We hope that this connection with the vortex string would give a new insight
into the BLG model.
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Chapter 5

Truncation version for finite number
of M2-branes

As we saw in §3.3.2, there exists a cut-off version of Nambu-Poisson bracket which defines
a finite-dimensional Lie 3-algebra. The algebra still satisfies the fundamental identity and
thus produces N/ = 8 supersymmetric BLG-type equation of motion for multiple M2-
branes. Unfortunately, as we will see, this algebra contains a lot of zero-norm generators
which make all the terms of BLG Lagrangian vanishing. Thus we can analyze only the
equation of motion in BLG model with this truncated algebra.

In this chapter, we discuss the concrete examples of this kind of algebra, and the BLG
model with this algebra. As a result, we will derive an entropy formula which scales as N 3
as expected for the multiple (N) M2-branes, by counting the number of the moduli and the
degree of freedom.

To see the N> law, we need to derive a finite number of M2-brane’s system.

As we mentioned in §2.1.2, one of the crucial test of multiple M2-brane theory is whether
one can reproduce the celebrated N 3 scaling law for entropy [14] as is predicted by AdS/CFT
correspondence. For any theory based on Lie algebra, however, this seems to be difficult.
The number of moduli is related to the rank of the Lie algebra and the number of the gener-
ators is given by the dimension. It will produce N 3 scaling only if one consider delicately
chosen tensor products of Lie groups [77] or so far hidden mechanism changes the degrees
of freedom.

In this chapter, we take a different approach to this issue. In the previous chapter, it was
proved that BLG model based on infinite-dimensional Lie 3-algebra defined by Nambu-
Poisson bracket is equivalent to a single M5-brane’s worldvolume theory. What we are
going to do is to cut-off this Lie 3-algebra to finite dimensions. It is actually very natural to
expect to have NV 3 law from the following geometrical reason.

97
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‘We note that the Nambu-Poisson bracket can be defined on a 3-dim manifold as

3

{f.9.0} = > upduf dugd,h, (5.1)

Hov,p=1

2, 3. Suppose we can truncate

where f, g, h are arbitrary functions of three variables zbx
this infinite-dimensional Hilbert space into a finite-dimensional one, let us assume that we
have N degrees of freedom for each dimension, by truncating all functions to polynomials
x# of degree < N. Then the number of independent generators behaves as #G ~ N3. On
the other hand, the number of M2-branes is, roughly speaking, identified with the number
of the moduli which are related to mutually commuting degree of freedom. In this case,
due to the structure of the Nambu-Poisson bracket, mutually commuting generators may be
taken as functions which depend only on two variables, say ' and 2. The number of such
generators can be estimated as #M ~ N2. By combining it, we have the desired scaling
#G ~ (#M)2!

In §3.3.2, we ascertained that one can obtain a finite-dimensional Lie 3-algebra from a
truncation of the Hilbert space where Nambu-Poisson bracket is defined. The fundamental
identity of the Lie 3-algebra is preserved by the cut-off, but, as we will see, it becomes
generally difficult to keep a non-trivial invariant metric. Therefore, although it is difficult
to write BLG action, we can define the N' = 8 supersymmetric equation of motion as
considered in [78]. The counting of the moduli is given as above and we obtain the N 3
scaling law of entropy rather robustly.

By definition, our truncated algebra becomes the infinite-dimensional Lie 3-algebra
from Nambu-Poisson bracket in the large N limit. In this sense, it gives an intermediate
geometrical structure between M2-brane and M5-brane. This is somewhat analogous to the
fact that D(p + 2)-brane is obtained by collecting large N limit of Dp-brane. Therefore, it
may serve as a candidate of multiple M2-branes, although it requires many improvements
to define a realistic theory.'

Quantization of Nambu-Poisson bracket is a difficult problem.

Before proceeding to concrete discussion, let us briefly mention the previous studies on the
quantum Nambu bracket, since our truncated Nambu-Poisson bracket must be understood
as nothing but a candidate for quantum Nambu bracket.

One of the most natural direction is to seek an analog of the Moyal product as a deforma-
tion of Poisson bracket. It was studied most extensively by Takhtajan [58] and his collabo-
rators. Despite much efforts, however, the natural analog of the Moyal product has not been

'We note that a derivation of N2 law for M2-branes was considered previously in [42] (see also [33,79])
in the context of Basu-Harvey equation [36] which describes a “ridge” configuration of M2-MS5 system. Their
analysis is based on the fuzzy S defined in [80,81]. Since it appeared before [2], the essential ingredients of
the BLG model such as Lie 3-algebra and the fundamental identity were not taken into account.
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found so far. At some point, they changed the strategy and found a deformation of Nambu-
Poisson bracket which was called “Zariski quantization” [82]. This construction, however,
needs to use an analog of the second quantized operators and is infinite-dimensional by its
nature.

Another approach is to use a generalization of the matrix commutator (see, for exam-
ple, [83]). Although it gives rise to a very simple finite-dimensional system, the triple com-
mutator satisfies so called generalized Jacobi identity instead of the fundamental identity.
In this sense, it is not obvious how to apply their algebraic structure to the BLG model.

The third approach is to use the cubic matrix (three index object like “A; ;") to represent
the 3-algebra (see for example [50,84]). Although there were some success, for example in
the construction of “representations” of A, algebra [48], the cubic matrix in general doesn’t
satisfy the fundamental identity. So it is still mysterious how to apply it to BLG model.

To summarize, although there are some attractive proposals in the quantum Nambu
bracket, our simple cut-off procedure of the Nambu-Poisson bracket seems to be the first
example which can be readily applicable to BLG model. We do not, of course, mean that
other approaches which we mentioned are meaningless in the BLG model. On the contrary,
we are trying to find applications of these constructions.

5.1 Homogeneous Nambu-Poisson brackets

In §3.3.2, we saw that one can define a truncated algebra for each IV, for any homogeneous
Nambu-Poisson brackets, i.e.

d
{f,9.h}n = an | D, P*"P(x)0,fdugd,ph |, (5.2)

Hyv,p=1

where P*7P(z) is a homogeneous polynomial of degree p, and 7y is a projector which acts
on the polynomials of z* as

[e.9]

ﬂ-N Z CTL17'” 7nd (xl)nl e (xd)nd

ni, - ,ng=0
ni+-4+ng<N

= S @)@, (5.3)

ni, - ,ng=0

where ¢, ... n, are coefficients. We also define the product e of functions in the truncated
Hilbert space as

feng=nn(fg). (5.4)

In the following, we give some examples of homogeneous algebra which satisfies the
fundamental identity and associate each algebra with a 3-dim manifold. In general, we
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have descriptions of the homogeneous Nambu-Poisson bracket in terms of d variables, as
eq.(5.2). The fact that Nambu-Poisson bracket is defined in 3-dim space can be derived
by observing that there are d — 3 elements f,(z) which commute with any functions of z,
namely,

{fa;g:h} =0 foranyg,h. (5.5)

So one may use the hyper-surface defined by f, () = ¢4 (a = 1, -+, d—3) as the definition
of 3-dim submanifold in R®. If we introduce the cut-off, one may call the corresponding
geometry as “fuzzy spaces” by employing the terminology of the noncommutative geometry
although our definition of the deformation is very different.

5.1.1 p=1 case

We start from the p = 1 case. In this case, we call the bracket as linear Nambu-Poisson
bracket [59] in the following. We note that the coordinates x* define a Lie 3-subalgebra,

{aht gh2 ghs) = Z fumwamxm . Pranzis(g) — Z fl¢1/i2l13“4$,u»4 ] (5.6)
pa Ha

As we saw in §3.3.1, the mathematical classification of the linear Nambu-Poisson bracket
was already made. It is classified into two groups:

Typel: Foreach—1 <r <3and0 < s < min(3—r,d—4), one may define the bracket
as

r+1 s
Plo=Y daloi A G- N0+ " TTO A Bryja - ADs, (57)
j=1 j=1

where & means that we delete that element in the wedge product, and we can choose the
plus/minus sign freely for each term in the summation.

Type 1I:
d .
PU{I =01 ANOg A (Z aiszaj) . (5.8)
i,j=3
In the following, we pick up interesting examples that come from this classification
theorem for each d, the number of coordinates.
d = 3 case

The only possibility comes from the type 1I algebra

P =08, ANdy Az305. (5.9)
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In this case, the 2% may be taken as a real number or a phase ¢?%3. When  is taken as real,
and with an appropriate completion, the truncated algebra can be thought as a deformation
of R3.2 Due to the extra factor of x3, the Poisson structure (5.9) breaks O(3) symmetry.
In the correspondence with M5-brane’s case [5, 13], P represents the 3-form flux on M5-
brane’s worldvolume. The breakdown of rotational symmetry comes from the fact that the
3-form background doesn’t respect the symmetry. When x> is a phase, one can think of
the truncated algebra as a deformation of R? x Si, where S}F is dual to the algebra of
functions with only non-negative Fourier modes. In this case, P ~ 01 A 02 A O, defines a
Nambu-Poisson bracket on R? x S}r.

d = 4 case

In this case, a variety of examples comes from type I algebra.

r=3,s =0 case

For this case, a well-known example is
P(370) = :L'182 AN O3 A\ Oy — 1'281 A O3 A Oy + 1‘301 A Oy N Osg — 1‘461 ANOa A0O3. (5.10)

In this case, the Lie 3-algebra generated by the coordinates is 44. It defines a Nambu-
Poisson bracket on S3, since 2 = (2!)2 + (22)2? + ()2 + (2*)? becomes the center of the
Lie 3-algebra. Namely,

P(r2f1, fa, f3) = r*P(f1, fo, f3) (5.11)

for any f1, f2, f3. So one may put 2 = const. This means that the truncated algebra defines
a fuzzy S% in R*.
From this example, by taking Wick rotation, we obtain other examples. For example,

the bracket after % — iz*

P = $182 A O3 N Oy —1'281 A O3 N Oy +I‘361 A O A84+$481 Ny AND3, (5.12)

defines a bracket on 3-dim de Sitter space dS3, since (z')2 4 (22)2 + (23)2 — (2*)? becomes
the center of the algebra and can be set to a constant.
Similarly after taking the Wick rotation for 23 and z#, we obtain

P:m182A83A84—x281 /\83/\84—.%’381 /\82A84+$481A82/\83. (5.13)

In this case, (z1)? + (22)2 — (23)2 — (2*)? becomes the center of 3-algebra and can be set
to a constant, which defines 3-dim anti-de Sitter space AdSs.

2To avoid possible confusion, we emphasis that this is not the standard R® as a Poisson manifold. There the
Poisson structure is SO(3) and translationally invariant.
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r=2,s=0case

For this case, we have

P(Q,O) = $182 A O3 A Oy + $261 AN O3 A0y 1'381 A Oy N Oy
= (wlag A O3 + 172(91 A O3+ x3c‘)1 A (92) AOs. (5.14)

The center takes the form (z1)? + (22)? & (2?)? and 3-dim manifold associated with it is
S22 x Ror (A)dS, x R, where R is described by x*. For finite N, we have a deformation
of these manifolds.

d > 4 case

From the definition of type I algebra, in order to have s > 0, we need to take d > 4.

d=5,r<2 s=1case

For example for s = 1, we need d = 5 and
Py = Ppg £2°01 Ada A Os. (5.15)

In this case, since z° doesn’t appear in the derivative, it is the center of Lie 3-algebra.
Actually, the algebra for the linear functions is identical with the Lorentzian algebra (in
§3.4.1) for g = SU(2) or SL(2) where z*, 2° play the role of u, v, respectively. In general,
the parameter s represents the number of pairs of the Lorentzian generators. For smaller r,
we can add more pairs (3 — r) of Lorentzian generators. For r = 2, s = 1, the center of the
algebra becomes

(9?2 + (222 £ (232 £ 22%2° and 2, (5.16)

to which we can assign arbitrary value.
For 7 = 1, we obtain S* x R? or R? and its generalizations with pairs of Lorentzian
generators. We note that here we obtain S' or R! from a constraint (2!)? & (22)? = const.
For r = 0, we obtain R3 with the bracket

P=2x'9N05 N0y, (5.17)

where ! becomes the center of 3-bracket and can be set to a constant.
For » = —1, we have only the Lorentzian pairs.
5.1.2 p>1 case

For p > 1, we don’t have the classification theorem. We have, however, a few interesting
examples of Nambu-Poisson bracket where fundamental identity is satisfied.
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For p = 2, we have, for example,
P =0, Az?0y A 230s. (5.18)

If we take 22, 23 real, the we have a deformed R? with linear flux introduced in these two
directions. By taking x? or/and 2 to be a phase, we can also have deformed R? x S}F or
R x T2 (where T? represents S} x S1). Another example is

P = (€u\7"0, A O)) A x*0y (5.19)

which can describe the deformation of S? x R! or §% x S1.
For p = 3, we have an example

P =2'9; A 220y A 2304 (5.20)

which can describe the deformed R?, R? x S1, R x T? or T? depending on the interpre-
tation of x*.

The last example of deformed 7T’ _?; will be used in the following, since it has the simplest
structure. In particular, the algebra (3.53) takes the following form (after minor change of
the normalization factors)

(T(71), T(72), T(i3)} = 1 - (7a x fi3)T(7y + fia + 7). (5.21)

Its truncated version becomes
{T(711), T(12), T (7is) v = 7y - (Miz X 7i3) 0 (N - |Zﬁz‘|> T(iy + iz + 1i3) , (5.22)
i

where all the elements of 77; > 0 and

1 >0
e(n):{ . Z;O . (5.23)

The explicit forms of the algebra for other cases are straightforward to write down. For
example, S° case (5.10) is given as

{T(ﬁl), T(ﬁz), T(ﬁg)} = eu,,)\p(nl)l,(ng),\(ng)pT(ﬁl + ﬁz + ’ﬁ:g — (? + 2€H) 5 (5.24)

where (e/), = 0y, and & = Zle €u. The truncated Lie 3-algebra can be obtained by
restricting the generators to |77| < N and including a truncation factor (N +2 — > . |7;])
on the right hand side.

5.2 Truncated Nambu-Poisson bracket algebra

Before analyzing the BLG model with these truncated Nambu-Poisson algebras, we discuss
some details on these kinds of Lie 3-algebra in this section.
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5.2.1 Structure of algebra

We note that the truncated 3-algebra, especially the deformed T_?; case (5.20), can be de-
composed into three subspaces:

Ao : A subspace spanned by generators T(E) where one or two components of k is zero.
In the definition of Nambu-Poisson bracket (5.20), we always multiply z1x223 after
taking the derivation. So the generators which belong to .4 never appear on the right
hand side of the 3-commutator. We will denote a generic generator which belongs to
Ag as Tx.

A_1: A subspace spanned by generators T'(k) where |[k| = N — 1, N. These generators are
the center of the algebra, namely

{Ty,T(E), T(D}x =0 for¥p, g (5.25)

where Ty is a generic generator which belong to .A_;. It comes the fact that we need
IPl, |g] > 1 to have a nonvanishing 3-commutator. These generators can show up on
the right hand side of the 3-commutator .

A : A subspace spanned by the generators which belong to neither Ay nor A_;. We will
write generic elements of Aas Ty.

We note that there are some elements which belong to N' = AgN.A_;. Since every ele-
ment in this subspace has vanishing 3-commutator with anybody else and never appears on
the right hand side of the 3-commutator, they decouple from the algebra as T(ﬁ) Therefore,
we have to remove them from the algebra. Then we will write

0o=Ao/N, A =A4/N, (5.26)

to represent the relevant part of the algebra. The number of generators which belong to each
subspace is

In the large N limit, the number of the elements which belong to Ay, A_1 increase as
O(N?), but it is still much smaller than that of A.
5.2.2 Invariant metric

By definition, any element 7% € A’ ; must appear only on the right hand side of the 3-
commutator. It implies

(T¢, Ty) = (17, 179,77, Ty) = —(T%, [T", T, T}]) = 0

(T3, Ty) = ([T, 79, T, Ty) = (T, [T", 79, 1y]) = 0
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for some TF, 79, T and T' s A. So all the elements in A’ | must be orthogonal to any
elements in A’ ; and A.

Similarly, for two elements 7', T)b( € Aj, since they don’t show up in the 3-commutator,
there are no constraints for their inner product from the symmetry:

(TE, T%) = Ky, (arbitrary) . (5.28)

We can also deduce that any elements in .4’ ; and A are orthogonal with the elements
of Afj:

(T%,Ty) = (T%,Ty) = 0. (5.29)

A proof is as follows. For the generic elements T}, gk, € A’ | U.A, we have k1, ko, k3 # 0.
So one may write it as a 3-commutator

1

—|T; T T .
klkgkig[ k1005 L 0k20> 00k3] ) (5 30)

Tk1k‘2k3 =

where Tk, kg = T'(k1€1 +k2€2+ k3€3). On the other hand, for any element T}, ,p, € Aj,
one of p; must be zero. Let us take it p; = 0, without loss of generality. Then we have

(Topops> Trikoks) < (Topaps» [Th1005 Toko0> To0ks))
= —{[Topaps> Tok»05 Tooks], Tky00) = 0. (5.31)

Finally, for any two elements T}, p,ps, L1 g0q5 € A, one can derive similarly

<Tp1p2p37Tq1q2Q3> X <Tp1p2p3v[TQ1007T0q207T00q3]>
= _<[Tp1p2p3’TOII207T00613]7TQ100>' (5.32)

On the right hand side, [Tngzpsv T0g50, T0ogs] is zero or belong to either Aor A 1- Since
the inner product between A or A’ ; with any element in \Aj, is already shown to be zero,
we arrive at

(TS, TH) =0  for "T2, TS c A. (5.33)
As we can easily see, the requirement of invariance of metric
(T, [T°, 7, T%) + ([T, T°, T, T% = 0 (5.34)

imposes very severe constraints on the form of the metric. At the end, the metric has lots
of null directions, making it not useful for physical applications. For example, the potential
term of the BLG model ([ X', X/, XX] [X! X7, XK]) is identically zero, because non-
trivial metric components only exist for elements in .Aj,, while elements in .4, never appear
as the right hand side of a 3-commutator.
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5.3 Application to BLG model and entropy counting

As we saw in the previous section, the metric of the truncated Nambu-Poisson bracket has
a trivial structure and is useless in the construction of the invariant Lagrangian.> Never-
theless, we can write down an A/ = 8 supersymmetric equation of motion (2.57) in terms
of the structure constants of this kind of Lie 3-algebra, which satisfies the fundamental
identity [78],

Dix! - %\Ifcrf TX]Up e, + % fredofelo X XEXIX{xE =0,

1
"D, ¥, + 5ru)(g)(;{xlfbfw”’a =0,

(Fu)’a + (X! DX + %@CFA%) fetb =0. (5.35)
The supersymmetry transformation (2.42) is

6X! =jertw,

6V, = D, X T"Tre — éX,fXngfbedaFUKe,

6(A,)0q = el T X W e, . (5.36)
The gauge symmetry transformation (2.54) is
SAX! =N X[, AT, =A%V, 6rA0. =DA% . (5.37)

An essential point here is that the structure constant contracted with metric f°? =
fabe hed doesn’t appear at all. It enables us to discuss important issues such as the BPS
equation or the moduli without knowing the Lagrangian.

The classification of field components : Are they moduli or not?

Let us pick the algebra (5.20) and study the moduli. From the equation of motion, the
moduli would be described by solutions of the equation

FraxIXIxE =o0. (5.38)

We have to be careful in the structure of the truncated algebra. In the previous section,
we show that the algebra (5.20) has a structure which is similar to the Lorentzian algebra.
Namely, after removing generators which decouple from the algebra, the set of generators
is classified into the following three subsets:

Ajy : The generators which don’t appear on the right hand side of 3-commutators, i.e. the
generator T¢ where f®¢; = 0 for any a, b, c. Such generators have the form T'(k)
where one or two components of k are zero.

30f course, there may be a chance to add extra generators to obtain a nontrivial and useful metric as in
[15,60,61].
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A’ | : The generators which are in the center of Lie 3-algebra, i.e. the generator T where
f¢, = 0 for any b, ¢, d. Such generators take the form T(E) where Y . ki = N —
1,N.

A': The generators which don’t belong to A{, nor A’ ;.

Then we study the roles of fields in each subgroup. Let us denote the generic fields
which belong to Aj, A" 1 Aas X , Y, Z, respectively. Then the equation of motion is
written schematically as

?X =0, 0°Y=F(X,2), Z=F(X,2), (5.39)
and supersymmetry and gauge symmetry transformations are written similarly as
0X =0, Y =G1(X,2), 6Z=GX,2), (5.40)

where F o, G 2 represent some nonlinear functions. To find moduli, we can put the left
hand side of equation of motion (5.39) to be zero.

First, we note that there is no constraint for Y from (5.38). Besides, the fields Y never
appear in the nonlinear terms in the equations of motion. We can take any solutions of Y
of their equations of motion, and it will not have any effect on the rest of the fields. In this
sense, the fields Y should be viewed as non-physical fields, and we will not treat them as
part of the moduli.*

Secondly, if we assign VEV to the fields X, the field equation and the symmetry trans-
formations do depend on the VEV. On the other hand, the supersymmetry and gauge sym-
metry transformation (5.40) for the fields X implies that these symmetries are not violated.
This behavior is what one expects for a vacuum state. In the Lorentzian BLG model which
we will discuss in Chapter 6, however, the VEV for X was interpreted as the coupling
constant of the super Yang-Mills theory on D2-branes and hence is not counted as part of
the moduli space. So further analysis is needed to decide whether these fields X are to be
counted as part of the moduli space or not. However, we don’t care of it here, since, as we
will see, whether one includes them or not doesn’t affect our entropy counting below.

Finally, the assignment of VEV for Z doesn’t seem to have such strange behavior.
Therefore, this is the degree of freedom which should be identified with the moduli of
M?2-brane in ordinary sense.

Counting of moduli and entropy — We can ‘derive’ the N 3 law!

It turns out that the equation (5.38) can give rise to various solutions. For the Lie 3-
algebra (5.20), three polynomials fi, f2, f3 which depend only on two polynomials of x,

4On the other hand, if we treat them as part of the moduli, the number of solutions of (5.38) can be of order
N3. We can take 6 of the scalars X7 to be fields Y, and the rest 2 of the X*’s can be arbitrary. For large N,
the number of free parameters in these 2 arbitrary fields X’ dominates and it is proportional to N3.



108 CHAPTER 5. TRUNCATION VERSION FOR FINITE NUMBER OF M2-BRANES

say g1(x), g2(x), in general commute with each other

{f1(g91,92), f2(91, 92), f3(91,92)}n = 0. (5.41)

Therefore, the moduli space is described by (truncated) polynomials of g;(x) and ga2(x).
Depending on the choice of g; 2, we have different type of “Higgs” branches.

If we take both g1 2 as function of single variables, say g1 = z!, go = (22)™, all the
functions of g; 2 belong to the group Aj. The number of such functions is of the order of
NZ2. As we explained above, these may or may not be counted as part of the moduli space.

On the other hand, suppose we take g1 2 such that their polynomials depend on all the
coordinates nontrivially, for example g1 = x! + 22 and go = ()2, the set of polynomials
of them contains elements belonging to A. In this case, the VEV’s are assigned to the fields
Z and should be interpreted as the moduli of M2-branes. We can count the number of the
M2-branes for given set of g1 2. Suppose we choose them such that all the VEV’s of fields
can be interpreted as the moduli of M2-branes. If the degzree of g1,2 is ny 2 respectively, the
Qﬁ n2
smaller than N. We have the estimate for the number of M2-branes as

number of independent generators are approximately ~ N?2, as long as n1y,2 are much

#M ~ N2 (5.42)

This permits us to calculate the behavior of the entropy. The number of fields is given as
the number of generators (#G). It can be estimated as

(N+1)(N+2)(N+3)
6

4G = ~ N3/6 ~ (#M)5. (5.43)
This is nothing but the celebrated N 3 law for M2-branes!

One may do essentially the same counting for other d = 3 algebras associated with R3
(5.9,5.18) which give the same behavior. So one may guess the behavior of N 3 law as a
generic feature of the d = 3 truncated Nambu-Poisson 3-algebras.

This excellent result can be obtained only in d = 3 case.

We note that there are some subtlety if one continues to do the similar analysis for d > 3
cases. In these cases, as we have seen, there are d — 3 generators ¢ (x) which satisfy

{dsf1, fo, f3} = ds{f1: fo, f3} (5.44)

for any f1, f2, f3. One may set such generators as constant ¢5(x) = ¢, and this constraint
gives 3-dim algebra.

For the truncated algebras, since such ¢ has nontrivial degree as the polynomial of .
For example, ¢ = (x1)? + (22)% 4 (23)% + (2*)? which appear for S® case has degree two.
So the above relation should be modified as

{#s on f1, f2, f3}N = ¢s on {f1, f2, f3}N—g] (5.45)
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where || is the degree of ¢. It implies that we cannot put ¢ to a c-number if we want
to keep the fundamental identity. If we treat them as the independent generators, we would
have different scaling. For example, for any d = 4 cases, we have a simple estimate that

#M ~ O(N3), #G ~ O(N?). (5.46)

Therefore, we obtain N 4/3 relation between the number of M2-branes and the number of
degrees of freedom. This strange behavior for d > 3 signals the breakdown of the truncation
process which doesn’t properly respect the local factorization of the space into 3-dim and
(d — 3)-dim spaces. Therefore, this anomalous scaling law should be understood as coming
from an incorrect regularization of the system.

5.4 Summary

In this chapter, we analyze the BLG model with truncated Nambu-Poisson brackets as ex-
amples of Lie 3-algebra. This model has the following two remarkable properties:

o It naturally shows the N 3 scaling of M2-branes with clear geometrical meaning.

e In the large N limit, it can reproduce the M5-brane’s theory which we discuss in
Chapter 4.

On the other hand, it has obvious shortcomings at this moment, namely we cannot define
nontrivial Lagrangian with the current form of the algebra. A hope is that one may cure it
by adding some extra generators, just as in [15,60,61].

Of course, the truncated algebra which we considered here is rather exotic algebra which
was not considered seriously in the literature. For example, it would be much more desirable
to do similar truncation by some generalization of the Moyal product or by some general-
ization of the concept of matrices. We note that, however, our derivation of NV 3 law is quite
robust and the derivation of the scaling law will be similar even for these cases.
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Part III : Multiple Dp-branes and U-duality






Chapter 6

D2-branes from Lorentzian BLG
model

As we saw in §3.4.1, we can construct an example of Lie 3-algebra as an extension of an
arbitrary Lie algebra by adding zero-norm generators. Then, in this chapter, we analyze
the BLG model based on this example of Lie 3-algebra. Since a linear combination of
zero-norm generators becomes negative-norm one, the ghost field exists in this case.

Fortunately, however, we show that one can treat the field components corresponding to
zero-norm generators as non-dynamical parameters without breaking supersymmetry nor
gauge symmetry. This interpretation, called a new kind of ‘Higgs mechanism,” completely
removes the ghost field for our example of Lie 3-algebra.

This is a very unusual procedure for removing the ghost field, so one may doubt if this
is a justifiable one from the viewpoint of quantum field theory. The detailed justification
must be done in the future research. At this moment, we should regard it as the way to
find a special aspect of BLG model for convenience. In fact, this kind of Higgs mechanism
also compactifies one transverse spatial dimension for M2-branes, and as a result, we obtain
multiple D2-branes’ theory from BLG model for multiple M2-branes.

Moreover, we also present another derivation of D2-branes’ theory from M2-branes. It
is based on the construction of a D4-brane from M2-branes through an M5-brane, which we
discussed in Chapter 4. There, we first obtain an M5-brane by using the infinite-dimensional
Lie 3-algebra with the Nambu-Poisson bracket on 3-dim manifold. Then we compactify one
dimension in the internal 3-dim manifold, and wind one direction of an M5-brane along
this direction. In this way, we obtain the noncommutative D4-brane’s action where the
noncommutativity is infinitesimal.

In this chapter, we show that when the internal 2-dim space of this D4-brane is 72, by
suitably choosing the noncommutativity parameter, one may obtain U (/V') symmetry on the
D2-branes’ worldvolume. As a result, we again obtain multiple D2-branes’ theory from
BLG model by passing another way.

113
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6.1 Notation

BLG action

In Part 111, we write the original BLG action as

S = / deL:/ d*x (Lx + Ly + Lint + Lpot + Les), (6.1)
M M

Lx = —%(DMXI , DXy, (6.2)

Ly = %(@, D, V), (6.3)

Lint = %(\T!,FU[XI,XJ,\I/]), (6.4)

Lpot = —1—12<[XI,XJ,XK],[XI,XJ,XKD, (6.5)

Los = SfAPPAap ndAcp + 5 PG FPPOP Ap A Acp A App . (66)

where the indices 1 = 0, 1, 2 specify the longitudinal directions of M2-branes, [, J, K =
3, -+, 10 indicate the transverse directions, and the indices A, B, C, - - - denote components
of Lie 3-algebra generators. M is the M2-branes’ worldvolume.

The covariant derivative is

(D, ®(x)) 4 = 0,4 + fPB 4 Auon(z)®p 6.7)
for ® = X!, W. The 3-commutator for the Lie 3-algebra in BLG model
(T4, T8 7€) = i fABC pTP (6.8)
must satisfy the fundamental identity and the invariant metric condition. Note that the
notation is slightly different from that in Part I and 1I, in order to make the field A, ap
Hermite.
Symmetry transformations
The supersymmetry transformations are
b XL = derlwy,
60y = D, XAiTHTe— éXéXéXg fEOP D17
6 A4 = el T XEUpfOPBL, A Bs=AuenfOPPA. (69
The gauge symmetry for the bosonic fields are written as
oA Xh = AepfOPBuxE, oaALPA=0,AB4 —ABcA 4+ ABCA 4. (6.10)

(The gauge transformation of W is the same as X'.)
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6.2 Lorentzian Lie 3-algebra
As we saw in §3.4.1, for any given Lie algebra G
[T, T7) = f9,T* (6.11)

with structure constants %/, and Killing form h*, we can define a corresponding Lie 3-
algebra as follows. Let the generators of the Lie 3-algebra be denoted {74} = {7, u, v}
(i = 1,---,dimG), where T"’s are one-to-one corresponding to the generators of the Lie
algebra G. The 3-commutator is defined by

v, T4, TP = o0,
[w, T, T] = if",T",
78,77, 7% = —ifi%y, (6.12)

where f* := f%,h!* is totally antisymmetrized. The invariant metric can be defined as

(v,v) =0, (v,u) =1, (v, T" =0,
(u,u) =0, (u, T" =0, (T',T7) = h . (6.13)

Note that the norm of u + av is —2«, which is negative for o > 0. That is why this algebra
is called Lorentzian Lie 3-algebra.

Mode expansions of BLG fields

The mode expansions of the fields are

X' = XiT4 = Xlu+ XIv+ X1,
U = U7 =T,u+Tu+ U,
A, = AuapT*eTP

= V@A —ApRvtu A, — A, Qu+ AT T, (6.14)
where
X = X;Th, W:=WT" Ay = A,aTh A, =2A4,,T. (6.15)
We also define
Al = Ay [T, (6.16)

for the last term of (6.14). We will see below that A, are completely decoupled in the BLG
model, and X! and ¥, are Lagrange multipliers.
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Mode expansions of symmetry transformations

The BLG action has N/ = 8 maximal supersymmetry in d = 3. In terms of the modes, the
supersymmetry transformation (6.9) can be written as

oxI = yerlw,, ox! =ier’vw,, 6X! =iV,
80, = 9,XIrrTe,
U, = (8,XI — (AL XT)IHTTe - %<X1XJ XEVPLIK
5U = D,X'TPIe - %Xgpza XKPLIE
§A, = el (X[ ¥ - X'0,), A, =i, /(X' U] (6.17)

The gauge transformation (6.10) can be written in terms of the modes as

oxP=o0, oxl=( X, o6X'=IA X7,

5A, = 0uA — [Ay,A], 0Al =0,N —[A,,N]—[A,,A], (6.18)
where

A=2A,T, N = A9, 1" (6.19)

Lagrangian in terms of modes and its symmetry

Plugging the mode expansions (6.14) into the Lagrangian (6.1)—(6.6), we get, up to total

derivatives,
Lo~ o1 N, tEoun o, s A
L = <—2(DMX - A, X0+ S YT D, + i\lluF“A;\ll
1= N o 7 - N N
+§\IIFUX£[XJ, 0] — 5fourM\IJ[XI,XJ]
1 s 1 s 1 s
7 (G AP = S (XX, X)) 4o AF,WA;> + L ,(6.20)
N i
Ly = — <8MX{LA;XI + (8, XD (8, X1 — 2\IlvF“8u\Ilu>, (6.21)
where
D, Xx":=9,X" —[A,,X"T], D,V:=9,V—[A, V],
B =0,A,—0,A, —[A, A). (6.22)

This Lagrangian is invariant under the parity transformation:
T TH — —TH
(XX X)) — (X =Xy, X)),
(0,0, W) = (=W, —Ty),
(Ap, A — (A, A). (6.23)
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Another symmetry of this model is the scaling transformation of the overall coefficient
of the Lagrangian. Usually a scaling of the structure constants is equivalent to a scaling of
the overall constant factor of the action through a scaling of all fields. This overall factor
is then an unfixed coupling, which is undesirable in M-theory. However, the situation is
different for Lorentzian Lie 3-algebra. In fact, a scaling of the structure constants

FA5p = g? 1% (6.24)
can be absorbed by the scaling
w—g*u, v—g v, T —T, (6.25)

which does not change the metric at all. This means that the scaling of the overall coefficient
of the Lagrangian is a symmetry. Explicitly, scaling the Lagrangian (6.20) by an overall
coefficient 1/g? can be absorbed by the field redefinition

XL xLxh) — (¢X', g7'X], X0,
(‘I/a \II”LH\II'U) - (9\117 g_lqjuv gg\:[]'v)a
(Au, A — (A, $2A)). (6.26)

Hence this Lagrangian has no free parameter at all, which is desirable property for M2-
branes’ theory.

Ghost fields from X, , and ¥, , can be eliminated by putting a VEV.

Note also that X! and ¥,, appear only linearly in L gy, and thus they are Lagrange multipli-
ers. Their equations of motion are

’?Xxl=o0, T1H9,P,=0. (6.27)

Hence we treat Xi and ¥, as classical fields, in the sense that off-shell fluctuations are
excluded from the path integral. Actually, we can set

XTI = const., U, =0, (6.28)

without breaking the supersymmetry (6.17) nor gauge symmetry (6.18).

After we set (6.28), the Lagrangian is given by (6.20) without the last term Lgy,. It
is remarkable that the ghost degrees of freedom associated with X/ and ¥, have totally
disappeared for this background. The resulting theory is clearly a well-defined field theory
without ghost fields.

The fact that the background (6.28) does not break any symmetry suggests an alternative
viewpoint towards the BLG model. That is, we can change the definition of the BLG model
by defining X, W, as non-dynamical constant parameters fixed by (6.28). The resulting
model has as large symmetry as the original definition of the BLG model, but has no ghost
fields. In this interpretation, the parameter X/ plays the role of coupling constant.
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As we pointed out in the beginning of this chapter, this procedure for removing ghost
fields is extraordinary. In particular, we must study further whether the process of regarding
fields X/, ¥, as mere parameters is justified from the viewpoint of quantum field theory.

Comments on why the symmetries are unbroken

Since the assignments (6.28) for a special type of generators preserve all supersymmetry
and gauge symmetry, one can take the viewpoint that these variables are non-dynamical by
definition. We have seen earlier that this interpretation removes the ghost field from the
BLG model for Lorentzian Lie 3-algebra.

The origin of the decoupling of the ghost field comes from the specific way that Lorentzian
generators appear in the Lie 3-algebra. Namely, the generator v is the center of the Lie 3-
algebra and u is not produced in any 3-commutators. This property ensures that the system
is invariant under the translation of the scalar fields X /.

The decoupling of the ghost field can be made more rigorous [85, 86] by gauging this
global symmetry. Namely, by adding extra gauge fields C', and x through

Lnew = =Wux + 0" X,CL, (6.29)
we have an extra gauge symmetry:
SXI = A 5CY = 0, A, oW, =, ox = iTHO,m . (6.30)

Tt enable us to put X! = ¥, = 0. The equations of motion by variation of Ci and y give
the assignment (6.28) correctly.

6.3 D2-branes’ action from M2-branes

In the previous section, we saw that the ghost field in BLG model can be completely re-
moved. Now we derive this physical theory, which can be interpreted as D2-branes’ theory.

D2-branes’ action : M2-branes to D2-branes
Let us now consider the theory defined by Lagrangian (6.20) for the particular background
XI =\ U, =0, (6.31)

where A is a constant vector. Without loss of generality, for space-like vector A, we can
choose A to lie on the direction of X °

M=ot (6.32)
As we mentioned above, fixing the fields X/ and ¥, by (6.31) removes the ghost term Lgp
from the Lagrangian. We can now integrate over A’ and find
1 . o Pz e e A A - 1

_ I1\2 I g2, A2 I 2
Leﬁ——§(DuX) +§\I'F“DM\I'+—[X , X7] +§\IJFI[X =‘I’]_4T\2Fuw(6-33)
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where I, J = 3,---,9. This is nothing but supersymmetric Yang-Mills Lagrangian in 3-
dim spacetime.

It is very interesting to note that all degrees of freedom in the spatial coordinate X9
have totally disappeared from both the kinetic term and the potential term of the action. It
is fully decoupled from the Lagrangian for the particular background under consideration.
This vanishing X '°’s degree of freedom is eaten by the gauge field, which are changed from
Chern-Simons to Yang-Mills gauge field.

The VEV ) corresponds to the compactification radius.

Let us now recall that when M-theory is compactified on a circle, it is equivalent to type
IIA superstring theory and M2-branes are matched with D2-branes. The background (6.31)
considered above is reminiscent of the novel ‘Higgs mechanism’ in [25]. It was originally
proposed to describe the effect of compactification of X 19, and later found to correspond to
a large k limit of a Zy, M-fold [87, 88].

The M-theory parameters can be converted to those of type 1IA superstring theory via

R=gd, and 1, = g3, (6.34)

where R is a radius of the compactified circle, [, is 11-dim Planck length, g, is the string
coupling and [ is the string length. It is natural to consider that one set 11-dim Planck
length /), and M2-brane’s tension 15 = [; 3 to 1 in the original BLG Lagrangian. Thus
we see that the Lagrangian (6.33) is exactly the same as the low-energy effective action of
multiple D2-branes, if A is given by the radius of the compactified dimension

A=RILP2 (6.35)

Furthermore, in our setup, the translation symmetry of the center-of-mass coordinates
corresponding to the u(1) factor of Lie algebra G is manifest. This can be regarded as a
strong signature of the reduction of M2-branes to D2-branes due to a compactification of
the M-theory on S*.

6.4 D2-branes’ action from an M5-brane

In this section, we present a very different derivation of D2-branes from M2-branes. It is
based on the derivation of M5-brane from BLG model in Chapter 4.

Step 1 : M2-branes to M5-brane

We consider a 3-dim manifold A equipped with the Nambu-Poisson structure. By choosing
the appropriate local coordinates y# (1 = 1,2, 3), one may construct an infinite-dimensional
Lie 3-algebra from the basis x* (a = 1,2,3,--- , 00) of functions on \ as

0f1 0f2 Of3
a . b .cl _ abc d _ .
{x X5 X } = Ed fax® A fa fs) = ﬂ% A A Dyt Dy oy (6.36)
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From the property of the Nambu-Poisson structure, this Lie 3-algebra satisfies the funda-
mental identity with positive definite and invariant metric for the generators

XX = /N &y X (X" (y) - (6.37)
By the summation of these generators with the BLG fields
X',y) = ) XM @)X ()
a
U(z,y) = > Tal2)Xx* ()
a

A,y y) = ) A (@)X W)X (), (6.38)

we obtain the fields on the 6-dim manifold M x N where M is the worldvolume of the
original M2-branes. We note that the gauge field A,(x,y,y’) appears to depend on two
points on /. However, if we examine the action carefully, one can show that it depends on
A, (z,y,y') only through

0
b}LZ)(x7 y) = ay/y A,Uf(x7 y7 y/) * (639)
y'=y

Therefore, the action can be written in terms of the local fields. It was shown that the BLG

Lagrangian, after suitable field redefinitions, describes the field theory on a single M5-brane
which properly includes the self-dual 2-form field.

Step 2 : M5-brane to D4-brane

As we discuss in §4.6, in order to obtain a D4-brane from M2-branes, we have to wind
X3 around the compact y3 direction and impose the constraints that the other fields do not
depend on y3 Other than that, we use the same field configuration:

X3:y3’ Xd:yd+edﬁ-a6~(x,y),
ap(@,y) =bs(,y),  ax(@,y) = e430ady 5,

03X" = 030 = Dga = Dya, = D3ax =0, (6.40)
where we use the indices «;, ﬁ ,- -+ to denote i, 2 such that the worldvolume index of a D4-
brane is i and .. We use the notation ¢ = 1, - -- , 5 for the transverse directions. Note that

b, appears only through a,, and a,.

Various terms of the D4-brane’s action can be computed straightforwardly. After inte-
grating out the auxiliary field a,,, and neglecting the constant and total derivative terms, we
obtain the D4-brane’s action as

1 . DT B
S = sz/df’ [—4ij — (DX + %\IJFEDE\II - XXy %\PFi{Xl, U} (6.41)
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where p, v, - - - are the integrated indices for u, v and @, ﬁ running from 0 to 4. R is the
radius of the compactified direction. Since the integrand does not depend on yg, we ob-
tain overall factor of [ dy3 = 27w R. The definition of the field strength and the covariant
derivatives are

Fuy = 0uAy, — 0,A, + {A AL},
D, X' =0, X' +{A, X"}, D,V =0,X"+{A,, ¥} (6.42)

While we expect to have the abelian U (1) gauge field on the D4-brane’s worldvolume, we
have everywhere the Poisson bracket

{f.9Y = D e€i50af0s9. (6.43)
&,B=1,2
We note that A, = a,,, as is not exactly the commutative U(1) gauge field, but it includes
noncommutativ?ty in p = 3, 4 directions (originally & directions).
We also note that in the computation, there are no ambiguities associated with the inner
product. The origin of the noncommutativity is obvious. It comes from the Nambu-Poisson
bracket where the space of the function is truncated to

{y*}uCcN), (6.44)

where we decompose N into y° direction and N described by y2. For fi(yi, y2) €
C(N"), the Nambu-Poisson bracket becomes

(3, 11, fodne = {f f2} » {fu for falvp =0, otherwise = 0. (6.45)

The commutator terms in the Lagrangian come from this algebra. This algebra turns out to
be identical to Lie 3-algebra (6.12) if we put A to zero. The generator that corresponds to u
is yg, which describes the winding of M5-brane’s worldvolume around S*. This discussion
is closely related to Lie 3-algebra with the “central extension” of Nambu-Poisson bracket
(3.103).

Step 3 : D4-brane to D2-branes

The Poisson bracket { f, g} can be obtained from the matrix algebra, when the matrix size
N is infinite. By using the standard argument (see, for example, [89-92]), it is easy to claim
that the D4-brane’s action which we just obtained can be regarded as describing an infinite
number of D2-branes.

However, in order to obtain the finite N theory on D2-brane, this is not sufficient. We
need to quantize the Nambu bracket. In general, the quantum Nambu bracket is very difficult
to define, as we discussed in the beginning of Chapter 5. However, for the truncated Hilbert
space (6.44), this is actually possible. We deform the Nambu-Poisson bracket by

3

[f1, f2, f3lon = Z €iji(fix f7) O3.fk (6.46)

i k=1
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where * is the Moyal product

(f*x9)(y',y°) = explie, 500,50 5) f(y' y?)g (2", 2%) — (6.47)
It does not satisfy the fundamental identity, when we consider C' () as a whole. However,
if we restrict the generators to (6.44), we can recover the fundamental identity. If we take
N’ as T? and quantize 6 suitably, the quantum 7 reduces to the U(N) algebra

UV =VUw, w¥N=1, UN=VVN=1, (6.48)

In this case, the quantum Nambu-Poisson bracket reduces to the one-generator extension
of U(N) algebra

[u, T", T = f9, 7% [T, 79, TF] = 0. (6.49)

Thus finally, the multiple D2-branes’ action can be obtained by expanding the functions in
y12 directions by U, V and replacing the covariant derivative Dy, by the commutators

Da® — [X4, (6.50)

for general ®.

6.5 Summary

In this chapter, we study two approaches to obtain multiple D2-branes’ action from the
BLG theory. In the first approach, one defines Lie 3-algebra which contains generators of
a given Lie algebra. Such an extension inevitably contains a generator with negative norm.
We argued that by suitably choosing such extension, one might restrict the field associated
with it to constant or zero, while keeping almost all of the symmetry of BLG theory. Such
truncation leads to a new kind of ‘Higgs mechanism’ [25] and generates the standard kinetic
term for the Yang-Mills gauge fields on the multiple D2-branes’ worldvolume.

In the second derivation of multiple D2-branes, we found that the extra generator has a
simple physical origin, i.e. the winding of M5-brane around S' which defines the reduction
from M-theory to type IIA superstring theory.

However, in these approaches, the physical meaning of the extra generators are still not
very clear. In particular, our understanding is hindered by the fact that the limit A — oo
doesn’t mean the expansion of 11th direction. We hope that this point will be revealed by
future works.



Chapter 7

Dp-branes from General Lorentzian
BLG model

In the previous chapter, we discuss the BLG model with Lorentzian Lie 3-algebra, which has
a ghost field but it can be completely decoupled by ‘Higgs mechanism.” It was realized that
the inclusion of the Lorentzian generators is associated with the compactification of a spatial
dimension, and this Lorentzian model reproduces the multiple D2-branes’ worldvolume
theory in type IIA string theory.

In this chapter, we study some generalizations of such Lorentzian Lie 3-algebra for
which ghost fields can still be decoupled. We analyze the BLG model with these kinds of
Lie 3-algebra, and show that we obtain the multiple Dp-branes’ theory on (p — 2)-dim torus
TP=2 (p > 3), when we choose a suitable example of Lie 3-algebra. The general argument
about these kinds of algebra has already done in §3.4.2. According to that discussion, we
find that there are the following concrete examples.

Here we denote the generators of the general Lorentzian Lie 3-algebra as e' (i =
1,---,M)and uq,v* (e = 1,--- , N). When we require that the algebra should satisfy the
fundamental identity and invariant metric condition, the form of 3-commutators becomes

[ta, up, ue) = Klpeei + Lapeav®,

[ta, up,€'] = Je; — Kipv®,

[ua,ei,ej] = Jé{;vb + féjkek,

el e, ek] = —féjkv“, (7.1)

and, after the suitable change of basis, the nontrivial part of the metric is given by
(eh,e)) =g (ug,0”) =d°, (7.2)

where g% is the Killing form of the (direct sum of) Lie algebras g = g1 @ - - - & g,,, which
is not necessarily positive-definite.

123
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Based on the analysis in §3.4.2, which gives the conditions for the structure constants
igk J'J and K!, , we can obtain the following concrete examples of general Lorentzian

Lie 3-algebras:

1. M =2, J;{) = €wJY (i,j = 1,---,n), others = 0 : This is the simplest finite-
dimensional example where some character of the Lorentzian symmetry is displayed.
Namely, the BLG model defines the massive N/ = 8 supersymmetric vector multi-
plets [7].

2. M =2, J(% = egpJY, flijk # 0, others = 0 (§7.1) : This is the simplest nontrivial
example which contains the interaction. We will present our result by studying the
Yang-Mills system where the gauge symmetry is defined by Lorentzian Lie algebra.
This is possible since the Lie 3-algebra can be written in the form (7.4). In such case,
one can skip the discussion of eliminating one pair of ghost fields. It also illuminate
the structure of the Yang-Mills system with Lorentzian Lie algebra.

3. Lie 3-algebra associated with affine Kac-Moody Lie algebra (§7.2) : This is the spe-
cial case of the previous example, where the Lorentzian Lie algebra is given by the
affine Lie algebra. In this case, BLG action describes the multiple D3-branes on a
circle. It illuminates how Kaluza-Klein mass (on the circle) is generated by the ghost
fields.

4. Lie 3-algebra associated with general loop algebras (§7.3) : This is the generalization
of the previous example, and BLG action with this algebra describes the multiple
Dp-branes on the (p — 2)-dim torus with constant B-field flux.

5. Lorentzian Lie 3-algebra with F7¥ = 0 : We have already presented the concrete
form of this algebra in eq. (3.103). BLG action in this case describes the single M5-
brane’s system, just as in Chapter 4 [7].

7.1 Massive super Yang-Mills theory

In this section, we consider the simplest nontrivial (i.e. interaction terms exist) example of
general Lie 3-algebra, such that

TR0, =0, J9#0. (7.3)
In this case, we can rewrite the 3-commutator as

[ulaTAaTB} — fABCTCa
(v, T4, TB] = o0,
74,72, 17° = —n“P A8 puy, (7.4)
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where A, B,--- = {e!,ug,vo}, fUF = ffjk and f“2¥ := J¥_ This algebra is similar to
that of Lorentzian Lie 3-algebra, that is, a (u1,v;)-extension of Lie 3-algebra (6.12). A
different point is that this Lie 3-algebra {T4} = {e’, us,v2} has Lorentzian generators,
while eq. (6.12) is a standard (positive-definite) Lie algebra.

In the following, we denote generators of this algebra as {e, u, v}, instead of {e?, ua, v2}.
Then the metric (or Killing form) and structure constants are

(e, ed) =69, (u,v) =1;

fUk o puid — g otherwise = 0, (7.5)
where ¢ = 1,--- , N. The Jacobi identity is written as

fijlflkm + fjk‘lflim + fkilfljm -0

filelk + fjlil’i + fk’ilJlj — O7 (76)

which are consistent with the fundamental identity for the Lie 3-algebra {1, uj 2, v12}.
This is the simplest “Lorentzian extension” of Lie algebra

[el,el] = fU, el + Ju, [u,el] = JYel. (7.7)

This extension is trivial, if J% is an inner automorphism
JU = fii, ok (7.8)

for some parameter o*. One may then redefine the basis

e’i:ei—kaiv, u/:u—oziei, vV =, (7.9)
such that the algebra becomes the direct sum of the original Lie algebra and Lorentzian
pairs:

[, €] = [, other commutators = 0;

(e",e7y =6 (u' vy =1, otherinner products = 0. (7.10)

In the following, we will focus on the nontrivial case where J gives an infinitesimal outer
automorphism.

As we discussed in the previous chapter, the BLG model with Lorentzian Lie 3-algebra
results in super Yang-Mills theory with Lie algebra. So, let us consider the Yang-Mills
theory coupled with scalar fields X/ (I = 1,---,n) and spinor fields ¥ based on this
extended algebra:

1 A2
L _§<Lu;(IaEu‘-<I> 41<[‘(I7‘-<J]a[;(1a‘-(J]>
+1<¢/ I'“D, o) +—M1 (O, Ty[XT, @) — n (F,, FM)
2\ " 2 ' ’ 4N3

=: Lx + Lpot + Ly + Lint + L4, (7.11)
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where X takes the adjoint representation

X' = X!+ Xlu+ Xlv,
(D X" = 0.X] — % AXE— JiC,X] + A X]
= (D, X1+ J7A,; XTI
(DMXI)u = 8MX£,
(DuX")y = 0.X)+J9AX],
Apw = Cy, Ay =D,, (7.12)

and similar expressions for ¥. The covariant derivative corresponding to the gauge symme-
try generated by e’ should thus be defined as

D, =08, —C,D, — Ae, (7.13)
where D,, is the derivation defined by J:
Dy(e') = J9el. (7.14)

On the right hand side of (7.13), € is used to imply the adjoint action of e?, namely e’(x) =
[e?, z]. The gauge transformation is written as

60; = fIFe®p + JEND — TP,
5, = 0,
5"4/” = 8”61' + fjkiGjA“k + Jki’yA#k — inejCM
= (Due); + JIiyA,, (7.15)

for ® = X1 0.

Lagrangian : massive super Yang-Mills theory with interaction
The kinetic term for X/ becomes

1 - . .
Lx = i(DuXiI + JAXD? + O X0, X - TTALX]) . (7.16)

The variation of X/ gives 92X = 0. So we take it as a constant, as in the previous chapter,
XI = N\obpy . (7.17)

After imposing this VEV, this term becomes

n

1 . p 1
Ly =~3 Z(DHX{ )2 — Q—VFEU, (7.18)
I'=2 1

where

Fuu:=[Dy, D], Dy:=M(\D, + Xie). (7.19)
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We are thus led to interpret D,, (or J) as the derivative of a certain noncommutative
space in the direction of X,. The situation here is reminiscent of the result of quotient
conditions in the context of Matrix Models in dealing with orbifolds and orientifolds [93].

In analogy, since we have taken the VEV of X, to be in the direction of X!, X jl plays
the role of a gauge potential and J;; that of a covariant derivative on a noncommutative
space, and thus D,, mimics a covariant derivative. We will see in the next section that for
the compactification on a circle, ﬁu is indeed the covariant derivative in the compactified
direction.

If we fix the gauge by X! = 0, the second term of (7.18) becomes

A o
_E(J )ij AuiAuj - (7.20)
This is the mass term for vector bosons.
The potential term is

)‘% - I J"2 1 - a J'\2
Lpot=4ll§j_2[X X7 2£(Dux ). (7.21)

If we gauge away Xi1 using the gauge symmetry, the last term above is simply

s zn:(J2)i4XJ’X.J’ (7.22)
2 J'=2 e

which gives the mass term for X~/ "
The kinetic term for the gauge field becomes

1 1

—N@u, FHY) = D {(Fuwi)® + FuwuF™,} (7.23)
1 1

where

F;wi = 8uAui - aVAm' - fjkiAujAuk + Jij(CuAjV - CI/AjM) )
F,uz/u = a,ucy - auc,u )
Fuw = 0B, —0,B,— J9A,A,;. (7.24)

Variation of gauge field B, gives a free equation of motion for C),,
0"9,C, =0. (7.25)
If we start from the original BLG action (6.1)-(6.6), we have slightly different Lagrangian

Lo = eWAA;ﬁl,CA, (7.26)

UIf J is an inner automorphism, i.e. J** = f7¥ 1, one may shift le = —pu; to absorb J in X*. This is
consistent with our comment above that J can be redefined away if it corresponds to an inner automorphism.
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where AL is an auxiliary field.

From the viewpoint of the super Yang-Mills theory, although it is not presented from
the beginning, one can add this term as a way to gauge the global symmetry of translation
of C,, analogous to (6.29), where we gauged the translation of X, and ¥,,. By variation
of AL, C, becomes topological and pure gauge. Hence we should set C,, to be a constant.
It can be interpreted as the projection of the “u”-direction on the D-branes’ worldvolume,
while X/ is the projection of the u-direction in the transverse directions.

On the fermionic parts, after setting the VEV to ¥,, = 0 as in the previous chapter, they
become

(U, T#D, W), (7.27)

and

n . .
A = / 1 - ~
Lint = 12—2 71@1/ Ly XF, W) + 5 Uil D, Y;. (7.28)
In the gauge Xi1 = 0, the second term becomes the mass term for the fermions with their
masses given by the matrix A AaJ.

To summarize, in the gauge X' = 0,

L = Lx+Ly+ Lint+La,

- [P I'\2 )\%)\% ' 72 I
Lx = I/;Q—Q(DuXi ) +?Xi (J)ij X5
S MA
Ly = 5@/@@@-%@1( r)J90;,
I'=2
- )\% I’ /19 Z)\l = I’
Limp = ) 2 X , X7 + 5 (L, T [X5,9]),
I,J'=2
1 2 )‘% 2 ! 1
L, = _K%FW—E(J )i Al Al (7.29)

which is of the form of a massive super Yang-Mills theory with the mass matrix A;A2.J;;.

7.2 Dp-branes to D(p + 1)-branes

In this section, we consider an example of the general theory studied in the previous section.
We consider the Kac-Moody algebra as an example of the Lorentzian extension of a Lie
algebra, and show that the super Yang-Mills theory with the gauge symmetry generated by
the Kac-Moody algebra is equivalent to a super Yang-Mills theory with a finite-dimensional
gauge group on a base space of higher dimensions.
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We consider Kac-Moody algebra as an example.

Here we consider a concrete example of Lie 3-algebra which is defined as (7.4) where Lie
algebra G itself is a Lorentzian Lie algebra. The simplest example is when G is the affine

Lie algebra g,

[u, Tin] = mTy, ,

(75, Ta) = mvg™ G + i f Ty

[v,u] = [v,T}] =0, (7.30)
where a,b,c =1,--- ,dim g, m,n € Z and g“b is the Killing form of a compact Lie algebra

g. This algebra has an invariant metric

(T, T8 = g, (u,v) =1. (7.31)

mr)—n

We note that the generator v is the center of Kac-Moody algebra and usually taken as a
quantized c-number. Here we identify it as a nontrivial generator. On the other hand, the
generator u gives the level (or —Lg in the Virasoro algebra). While 7,7 has a positive-
definite metric, the generators u, v have a negative-norm generator.”

We follow the method in §7.1, where we use the super Yang-Mills system on D2-branes
with gauge symmetry ¢ by using the Higgs mechanism for one Lorentzian pair.

In fact, the following analysis can be carried out for any Dp-branes’ system and provides
a general mechanism of the gauge theory with affine gauge symmetry. What we are going
to show is that the Dp-branes’ system whose gauge symmetry is ¢ can be identified with
D(p + 1)-branes’ system with Lie algebra g.

We start here from (p + 1)-dim super Yang-Mills theory.

If we start from the BLG model directly, we have a different perspective in which we will
treat more general argument given in the next section. Then we start from the ordinary super
Yang-Mills action

1 1 A2
L = FpuaF“y>_§<DMXI)DNXI>+Z<[X17XJ]7[XI7XJ]>

“pe!
i - -
+5 UTD, W+ Ty [X 0], (1.32)
where X!(z) (I = 1,---, D) are the scalar fields and ¥(z) is the spinor field. Both are in

the adjoint representation of g. The worldvolume index is given as p,v = 0,--- ,p. The
covariant derivative and the field strength are defined (only in this subsection) as

D,® = 9,® — i[A,,®], F,, = 0,A, —0,A, —ilA, A, (7.33)

for® = X!, 0.

>We note that a different type of Lie 3-algebra based on Kac-Moody symmetry was obtained in [94].
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Mode expansions

‘We consider the following component expansion

Ay = AT+ B+ Cuu,
X' = XlpwTh+ Xu+ X,

Vo= W T8+ Tyu+ V. (7.34)

Various components of the covariant derivative and the field strength are given as

I I be I I
(DNX )(an) = aMXaTL + f a Z A,u(b,m)X(c,n—m) - nC’MX(am)
+inAu(a7n)X£
= (DuX")(an) + A0 XL
(D,uXI)u = aquf )
(DuX")y = XL+ img™ Apam) Xy my (7.35)
be

(FHV)(am) = a,UAV(a,n) - 8VA}L((1,7L) +f a Z Au(b,m)AV(c,n—m) )

(F)u = 0,0, —0,C,,

(Fur)o = 0uBy = 0By + Y img™ Ay m Auo,—m) (7.36)

and similar expressions for D, W. From the kinetic part for u, v components, the equations
of motion for X, ¥,, and C), are free,

"o, XL =1"9,9, = 0"(9,Cy — 9,C,) = 0. (7.37)
We fix their values as
X! =const. =: NP, ¥, =0, 9,0,-0,C,=0. (7.38)

For the first two relations, we need to use the method of ‘Higgs mechanism’ which we
discussed in the previous chapter. We need to introduce the extra gauge symmetry as com-
mented in the paragraph after (7.25) to derive the last one. For general worldvolume dimen-
sions, the additional action is

1
Sadditional = _47)\2D,LLI/(8/J,CV - 8llc,u) y (739)

where D, is a new field. It gives rise to a new gauge symmetry,
0Dy, = 0,5, —0,E,, 0B,=-E,, (7.40)

by which we can gauge fix B, = 0. The equation of motion by the variation of D,,,
gives the flatness condition of C,. Since the gauge field C), is essentially flat, we can
ignore it for simplicity (namely, set C), = 0) in the following. After this, the ghost fields
Cu, By, Xi, Xg , Uy, U, disappear from the action, and the system becomes unitary.
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Redefinition of fields

‘We identify the infinite components of the scalar, spinor and gauge fields as fields in p 4 2
dimensions,

Xalw,y) =3 Xfgm(@)e ™/ Ba(ay) = Y Wimy(a)e ™",

m
A,ua(x> y) = Z A,u(a,n) (l,)e—iny/R’ (7.41)
m
where an extra coordinate v is introduced to parametrize S with the radius R. We also
rename
- 1 -
X7 (@,y) = S Ayalw,y). (7.42)

We finally obtain (p + 2)-dim super Yang-Mills theory.

The kinetic term of the scalar field X7 can be rewritten as

D—-1

1 dy ST b -~ S\ 1 =5
2] 2R Xo = [ aAwXe)” + 51 4
2 / 2R ;(a“ o = fTaAwXe)” + N2 hyal| (7.43)
where
Fuya = 0pAya — Oy Aua + [P A Ay . (7.44)

Here the second term can be produced properly if we identify
R=1/2\. (7.45)

This relation seems strange if we compare with (6.35). It can be fixed by applying the
T-duality transformation [95].

The second term of (7.43), when combined with the kinetic term for gauge fields, prop-
erly reproduces the kinetic term for (p+2)-dim worldvolume. The Kaluza-Klein mass from
the compactification radius (7.45) is nAX" which is consistent with the result in the previous
section.

Similarly, we can rewrite the commutator term as

3 & I xJ I xyJ 3 Y o1 I W v
T ) = S [ R ) (R R))
I,J=1 1,J=1
D—-1
1 dy F1\2
—= ——(D,X")". .

Here again the second term can be combined with the kinetic term for X to give the kinetic
energy on (p + 2)-dim worldvolume.
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Finally, we can rewrite the interaction term as

D .
i\ - z)\ ~ i dy = ~
2N oy X! v — [ —=9TYD, V. 4
212 1l Z/%R ]+2/27TR v (7.47)

Here, in this time, the second term can be combined with the kinetic term for ¥.3

In the end, the Lagrangian thus obtained is the same as the original Lagrangian (7.32)
except that we change the dimension parameter D — D — 1 and p — p + 1 and the gauge
symmetry G = § — g

L = LA+LX+L‘IJ+Lpot+Lint7

1 dy =2 (2
Ly = F2, 4 257
4 4>\2/ ok Fuw +2)
1 dy 27!
Ly = —- |2 [DXIQ DX”],
x 2/%}2;(#)“1,)
Ly = l/ W §rup, VD 2
Y7 2/ 2R "
N L dy ey e ey -
Lo - R I J I J
i = O [ (R R R))
I,J=1
.\ D—1
A dy = ~r =
Liw = 2 W Gr, X, .
¢ 2 2 | 3cR 1l ] (7.48)

7.3 Dp-branes’ action from M2-branes

In this section, we consider the generalized system from the previous section’s one, namely
the compactification and T-dualization of D2-branes’ worldvolume on torus. However, in
this time, we start from the original BLG model for multiple M2-branes corresponding to
an example of the Lie 3-algebra. The formulation here will be more general than above as
we will turn on noncommutativity and a gauge field background.

7.3.1 Summary of procedure
Lie 3-algebra with multiple loop algebra (Kac-Moody algebra)

We start by defining a Lie algebra go with generators 77, structure constants

3We should notice the definition of T',, and T'; here. We see from the kinetic term of ¥ in the Lagrangian
(7.32) that ', satisfies {I',, ', } = diag. (+ — - - - —). On the other hand, I'; should satisfy {I'z,T's} = 41
as usual. So we choose I'P = —iI'¥ and obtain (7.47).
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and metric
gimum — g s, (7.50)
where m is a d-dim vector of integers.
The simplest example of gg has

Ti = T'e™? (7.51)

m

where T is the generator for U(N) and Z is the coordinate on a d-dim torus. More gener-
ally, one can consider a twisted bundle on a noncommutative torus Ted. In this case

=Tz 2 (1.52)

where T denotes a generator of the U (NN ) gauge group, and Z; are noncommutative alge-
braic elements satisfying

Z:7; = % 2,7, (1.53)

The parameter 6 is in general not the same as the noncommutative parameter 6 of the
noncommutative torus 7}, and it depends on the rank of the gauge group and its twisting.
Z; maps a section of the twisted bundle to another section. For the trivial bundle, Z; = eiTi
and (7.52) reduces to (7.51). The case of d = 2 was studied in [96,97]. Tt is straightforward
to generalize it to arbitrary dimensions.

Since the structure constant (7.49) of go has the property

FADG) (7)o 5§+ﬁz+ﬁ. (7.54)
go has derivations
J(()iﬁ)(jﬁ) = M) (7.55)

Now we consider the Lie 3-algebra with the underlying Lie algebra g = go and I,0’s
empty. We take J; = 0if a, b #~ 0, and Jy, given by (7.55). Tt follows that the first 3 terms
in (3.127) vanish, hence

abc

K7 = 6067 By, (7.56)

assuming that T° is the identity of U (N ), so that T’ (00) i5 the identity of go. In the following,
we choose

éTb = 566? Bap
ZLTC = 0, otherwise. (7.57)

It will be shown below that the constants B, corresponds to a nontrivial gauge field back-
ground.
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To summarize, the Lie 3-algebra is defined by the 3-commutators

[0, ta,up) = BapTg + Loabet®,

[uo, Uq, T, ] = maTi —(56(5qBabvb

o, T, T = magBo5mv” + FnTh .

1%, T2, TF) = l’;’“5?+m+ﬁv0, (7.58)

where a,b,c = 0,1,2,--- ,d and 4,5,k = 1,2,--- ,N. This Lie 3-algebra is actually
precisely the Lorentzian algebra (7.4) which is constructed from the (multiple) loop algebra
defined by

[Uaa ub] = Bang + Loabcv©,

[, T%] maT’; - Kéabvb

v TL] = 0, (7.59)
where a,b = 1,--- ,d. In the sense that one can construct the Lie 3-algebra (7.58) from

a Lie algebra by adjoining two elements (ug,v), this Lie 3-algebra is not a good repre-
sentative of the new class of Lie 3-algebras. However, it is still a good example because
it demonstrates the roles played by the new parameters J,; and K,p., which encode the
information about derivatives of the Lie algebra g, which is a subalgebra of the loop algebra
(7.59).

We derive D(d + 2)-branes’ theory on d-dim torus from BLG model.

It follows from the discussion in the previous chapter that the BLG model with the Lie
3-algebra (7.58) is exactly equivalent to the super Yang-Mills theory defined with the Lie
algebra (7.59). In §7.2, we showed explicitly that for d = 1, the resulting super Yang-
Mills theory is the low-energy theory for D3-branes. Now we briefly sketch the derivation
for generic d to obtain the super Yang-Mills theory for D(d + 2)-branes. The concrete
calculation will be done in the next subsection.

Expanding the fields in the BLG model, we have

d
X' = > Xlua+ X1(2Z) + Vv,
a=0

¥ = Z\I/aua+\iz(2)+q>ava,

Ay = fZAuabua/\ub—i—Zua/\A,w Zv N AL
,b=0

a=0

l\D\)—l

d

1 . .

Z Al v A+ 5 > Ay T A T2, (7.60)
b=0 z_]
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where we have used (7.52) and the notation

XNz) = > Xlarizm...zme
W(Z) = i Wiy T2 -

Aua2) = ZAW(M Tigm ... gma,

A (2) = ZAW(W Tizm ... zma, (7.61)

and X/ (Z), V;(2) flua(Z) and A:W(Z) are sections of a twisted bundle on T
As we have done it many times already, we fix the coefficients of u, as

X,f = const., v,=0, Auay =0, where a,b=0,1,---,d, (7.62)

and the coefficients of v, can be ignored. Here A, is chosen to be zero for simplicity. If
A,ap’s are nonzero, it corresponds to turning on a constant background field strength with
nonvanishing components of F),;.

To proceed, we first define covariant derivatives D, on the noncommutative torus, such
that

(Do, Z™ -+ 2] = maZ™ ... 2, (7.63)
[Da,Dy] = B, (7.64)

where B, is the constant background field strength that determines the twisting of the
bundle on T(;i.

The rest of the derivation is essentially the same as §7.2. Finally, after integrating out
the field A, the BLG Lagrangian turns into that of a super Yang-Mills theory

9 .
1 _ X
=3 (Fap, FAP) + L(0,T4D,0), (7.65)
4 2
A,B=0
where
Fu :=[D,, D)), Fu:=[D,Di, Frj:=[D;,Dj]+Biy, (7.66)
and

D,:=09,-An2z), D' :=Xxp,-X"2), 07 :=XIX/By. (167

Roughly speaking, only d of the DP’s are covariant derivatives and the rest 7 — d are scalar
fields. To turn on the background field B,,;, we can assign nonzero values to Aan and
A b

na
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7.3.2 Concrete calculation

In this subsection, we pick up an example of Lie 3-algebras which produces the worldvol-
ume theory of Dp-brane (p = d + 2): 4

U(],ua,Ub] 07

[

[uo, ua, L] =maTh

[uo, T T2 = mav® S 47di; + i f9,Th o

T} TJ Ta] = —if %y o a0 (7.68)
where a,b=1,---,d, 1, m,i € Zand f% (i, j,k = 1,--- ,dim G) is a structure constant

of an arbitrary Lie algebra g which satisfies Jacobi identity. The nonvanishing part of the
metric is given as

(ua,vp) = dap, (T, T%) = 6ii0m 17 - (7.69)

where A,B=0,1,--- ,d.
We note that this Lie 3-algebra can be regarded as original Lorentzian metric Lie 3-
algebra (7.142) where Lie algebra is replaced by

[uaa ub] = 07 [Ua, Tfrlﬁ] = TZ"
[T%,T]] M0 0 radij +if7,TE 5. (7.70)

For d = 1, this is the standard Kac-Moody algebra with degree operator u and the central
extension v. Therefore, this algebra is its higher loop generalization.

Since this is a generalized case of §7.1, where BLG model reduces to super Yang-
Mills theory, one might guess that BLG model based on the Lie 3-algebra (7.68) should be
equivalent to super Yang-Mills whose gauge group is the loop algebra (7.70). It turns out
that this is not the case. As we explain below, BLG Lagrangian contains extra topological
term such as 0 [ F'F, which can not be reproduced from super Yang-Mills action.

Component Expansion
For the Lie 3-algebra (7.68), we expand various fields as
X' = Xl T+ Xhua+ Xhva,
v o= ‘If(im)Tfﬁ + U gug + Vo,

. 1 4
A, = Au(lm)(jﬁ)T;ﬁ A\ TTZL + §A#(“ﬁ)u0 A Tl + 2Aua(lm)ua NTY
1
+§A”au0 A Uq + Apaptiq A up + (terms including vy) . (7.71)

* In the previous subsection, more general Lie 3-algebra is considered with the anti-symmetric tensor Bap,
i.e [uo,Uq,up] = Bang instead of eq. (7.68). This tensor is related with the noncommutativity parameter on
Dp-brane. In this subsection, we omit this factor for the simplicity of the argument.
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Now we will rewrite the BLG action (6.1) as an action for Dp-branes (p = d + 2). More
precisely, if we denote the original M2-branes’ worldvolume as M, the worldvolume of
Dp-brane is given by a flat 7 bundle over M. The index 7 € Z¢ which appears in some
components represents the Kaluza-Klein momentum along the T°%.

In this geometrical setup, each bosonic components plays the following roles:

e X (Izm) : These are split into three groups. Some are the collective coordinates which
describe the embedding into the transverse directions, others are the gauge fields on
the worldvolume, and the other is the degree of freedom which can be absorbed when
M-direction disappears. The concrete expression is eq. (7.108).

o X 1{1 : Higgs fields whose VEV’s determine either the moduli of 7' or the compacti-
fication radius in M-direction.

o A, (im): gauge fields along the M2-branes’ worldvolume M.

e A,, : aconnection which describes the fiber bundle T¢ — M. The equation of
motion implies that it is always flat 9, A}, = 0.

The other bosonic components become Lagrange multiplier or do not show up in the action
at all. In the following, we set A, = A, q, = 0 for simplicity.

Solving the ghost sector

The components of ghost fields X and ¥ appear in the action only through the following
terms:

i - _
Lgh = _(DuXI)UA(DuXI)vA + 5 (\I’UAFHDM\IJUA + \I’UAFMDM\I’UA) (1.72)
where

(DMXI)UA = 8,UX1{X )

(DuX"y = 00X+ ima(Apaimy X —m) + Apgirm) i, Xa)
ijk
— 7" Ay Gy X (ki)
(DX vy = 0 XL — ima( Ay X —m) + Apimy - Xo) ,  (1.73)

and similar for . The variation of X {4 and V¥ 4 always give the free equations of motion
for X j{x and V¥ 4, namely

"9, XL =0, THrY,W,=0. (7.74)
By introducing extra gauge fields C{L 4 and x through [85,86]

Lnew = Cla0, X4 — x4, (7.75)
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one may modify the equations of motion for X A and ¥ 4 to
O Xh=0, Wy=0, (7.76)

and absorb the ghosts X 1[4 and W by gauge fixing. This is how the ghost fields can be
removed, as we did in many times. Since the equations of motion for X 1{‘ (7.76) imply that
they are constant vectors in R3, we fix these constants as

X4 =X RH CRS. (7.77)

In Chapter 6, there is only one X = X which specifies the M-direction compactification
radius. This time, we have extra VEV’s Xa which give the moduli of the toroidal compacti-
fication 7¢.

In the following, we prepare some notations for the later discussion. We write the dual
basis to X 4 as T4, which satisfy

g -7 =068 (7.78)
We introduce a projector into the subspace of R® which is orthogonal to all XA as

Pl =" N "\t (7.79)
A

which satisfies P2 = P. We define ‘metric’ as
Gap = Aa- g, (7.80)
where A}, play the role of vierbein. Using this metric, 7° can be written as

1 - G
= X — 27,
Goo Goo

(7.81)

and from now we use {Xo, 7%} as the basis of R%*! spanned by X4. Note that Xg L 7 for
all a. Our claim that the R%*! is compactified on 7%t will be deduced from the Kaluza-
Klein mass which is generated by the Higgs mechanism. This will be demonstrated below.

Comments on Higgs potential

Since X 4 plays the role of Higgs fields, it is natural to wonder if one may introduce a
potential for them and fix the value of VEV’s. This seems to be physically relevant since
they are related to the moduli of torus. One naive guess is to add a potential —V()Z' A) to the
action. Since the supersymmetry and gauge transformations of X 4 are trivial, this potential
breaks neither supersymmetry nor gauge symmetry. However, the kinetic term is glven in
the mixed form X 40X 4, the potential does not fix X 4 but physically irrelevant X X4
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Derivation of Dp-brane action

We finally rewrite the BLG action (6.1) in terms of Lie 3-algebra components and by putting
VEV’s to ghost fields X 1{1 and VU 4.

Kinetic terms for X and ¥

The covariant derivative becomes, after the assignment of VEV’s to ghosts,

(DuX )iy = (DX ") iy + ALy N — 1MaApugam) M (7.82)

where
(DuXNmy = 0uXimy + i Aum Xy (7.83)
Ay = —imaAya(im) + 75 AuGm—i) (o) - (7.84)

We decompose this formula into the components into the orthogonal spaces R"~¢ and R4+!
by using the projector P! as

(DuX )iy = P (DX )y + Y Na(Fpa) iy (7.85)
A

where

p(i,m
= L DG Xy — 22D, (70 Ky + A
= Cm u(Ao - X) m) Coo w7 X)) + Ay, (7.86)
(Fu@my = Du(m - X)im) — imaAp(im) - (7.87)

We will rewrite 7% - X as A, below, since they play the role of gauge fields along the fiber
T¢ as we mentioned. F, " will be regarded as the field strength with one leg in M and
the other in 7% Fu0 seems to be the field strength in a similar sense with one leg in M-
direction. However, the gauge field A; (ir7) is an auxiliary field as we see below, and after
it is integrated out, F, MO will completely disappear from the action. In this sense, F, MO do
not have any geometrical meaning. We suspect, however, that it may give a hint to keep the
trace of the compactification of M-theory to type IIA superstring theory.
Finally, using eq. (7.85), the kinetic term for X! becomes
Lx = —%f)MX(Iim)PI TDuXT iy — %GABFHA Fui _

(im)

(7.88)

m)*
Similarly, the kinetic term for ¥ becomes

i .
Ly = 50 m Dy (7.89)
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Chern-Simons term and integration of A’

The Chern-Simons term is written as
Los = ( /( ) A dA(Z —i7) + A(i,fﬁi) A dA/(im))
—ZfZ]kA/im) A A(]ﬁ) A A(k,—ﬁi—ﬁ) , (790)

or, up to the total derivative terms,

1
Log = 3 (Zm) A F(;—m) + (total derivative) (7.91)
where
Fouim) = OuAy(im) — OvAugim) + F*i A Au i) - (7.92)

Since the gauge field A’ shows up only in Log and Lx, one may algebraically integrate
over it. Variation of A’ gives the equation of motion gives

/ o I~ 3 ”a GOa GOa a
Ay = _7GooD (Ao - X) (i) + GooD uAa(im) — o (FL) (i)
1
2G e,uu)\(FVA)(iﬁ’l) ) (793)

where A, := 7% - X. By putting back this value to the original action (7.90),

1. . 1~
Lx+Los = —5Dy x'PD,x7 ~ (F0)? — =GupFF,
4G00 2
G
i@ E Fox + Lua, (7.94)
where
- GaoG
Gap = Gup— ‘g’ w0 (7.95)
00
1 a e a1
Ltd = —mfl“,)\ﬁu _ZD ()\ X) 26Vpa- po A)\ . (796)

Here we omit the indices (i) for simplicity. Note that the redefinition of the metric G, —
Gap is very similar to that of T-duality transformation in M-direction. The term L., is total
derivative which does not vanish in the limit Gg, — 0. Since we know that the total
derivative terms do not play any role for the case G, = Xo - Xa = 0, we will neglect them
in the following. In a sense, this is equivalent to redefine the BLG action,

&m:/fﬂmm—am (7.97)

where Lpr is the original BLG Lagrangian. On the other hand, while the fourth term
in eq.(7.94) is also total derivative, we must not neglect it. This is because this term is
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proportional to GGp, and becomes essential to understand the U-duality. For d = 1 case,
it becomes the 6 term of the super Yang-Mills action and it should be involved in the S-
duality transformation in the complex coupling constant 7 = Cjy 4 ie~®. We note that this
is the term which does not show up if we analyze the Yang-Mills system with loop algebra
symmetry (7.70).

Kaluza-Klein mass by Higgs mechanism

At this point, it is easy to understand how compactification occurs after the Higgs mecha-
nism. Note that in the definition of F},* (7.87), we have a factor with m,, in front of A ;).
In the language of D2-branes’ worldvolume, it gives rise to the mass proportional to O (173?)
for A, (im). Also, we will be able to see that similar mass term exists for all fields with
index m. Because of the dependence of mass on 1 with the correct radius dependence, it is
natural to regard these terms as the mass terms for the winding modes on the torus 7.

In order to be more explicit, we will use the T-dual picture [95] in the following. We
identify the various fields with index 77} with the higher (3 + d)-dim fields by the identifica-
tion

O (z) = O(w,y) 1= ()™ (7.98)
1
where ¢/ € [0, 271]% are coordinates of 7. F,,“ can be identified with the field strength by

(Fh); = DAL — — A (7.99)

9
0Yq

where A%(x,y) := @ - X;(x,y). The kinetic terms of gauge fields in eq. (7.94) imply that
we have a metric in ¥ direction as

ds?® = N dxt dz” + gabdy“dyb where gqp := GooGlap - (7.100)

When X4 are all orthogonal, one may absorb the metric g, in the rescaling of y* as y'* =
X0l Xal ¥ or 4, = (| Xo||Xa]) " va (Where Yo = gapy®). Since y, has the radius 1, ¢/, has

the radius This is consistent with the analysis in §7.2. In this scaling y, — v, the

L
o [Aol|Xal )
kinetic terms for gauge fields in eq. (7.94) become
1

4G

((F)? +2F2,) (7.101)

which is also consistent with our previous study for d = 1.

We note that the use of Kac-Moody algebra as the symmetry of the Kaluza-Klein mode
is not new. See, for example, [98—101]. Here the novelty is to use the Higgs mechanism to
obtain the Kaluza-Klein mass.
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Worldvolume as a flat fiber bundle

So far, since we put A,, = 0 for the simplicity of the argument, the worldvolume of
Dp-brane is the product space M x T?. In order to see the geometrical role of Apa, let
us keep it nonvanishing for a moment. The covariant derivative (7.82) get an extra term,
maAW(m)X([m), which becomes on M x T,

iAW(:c)ale{ (z,y). (7.102)

A,q turns out to be the gauge field for the gauge transformation from those of BLG:

~ ) 6 ~
0X] (z,y) = wa(fv)aanf(m,y) - (7.103)

The existence of the gauge coupling implies that the worldvolume is not the direct product
M x T but the fiber bundle Y:
T ——Y

|

M

where T act as the translation of y.
The kinetic term for the connection comes from the Chern-Simons term:

Liier = € DyalyAras  Dya =D _ naAuii i) (7.104)
7

Since D,,, does not appear in other place in the action, its variation gives,
A =0. (7.105)

Therefore Y must be a flat bundle as long as we start from BL.G model.
There seem to be various possibilities to relax this constraint to the curved background.
One naive guess is to replace L ¢ipe, to

1
L/fiber = EMV)\Dua(aVA)\a - §F$)>\) ) (7.106)

for an appropriate classical background Fa(gz\

Interaction terms

The compactification picture works as well in the interaction terms. For the fermion inter-
action term L;,,;, we use

XU, X7 W) iy = —ma g AWy + i FEN X W iy (1.107)
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and from eq. (7.81),
x! = PYXT 4 M7 X)

A+ Aé) A, (7.108)
Then L;,; can be written as

\Il(zm) (TrAN]) <_ma\1’(i,fﬁz) + Z'fjkiAa(jﬁ)\I}(k,anfﬁ))

%\Tj(i y(T17AD) (ifjkzPJKXffﬁ)W(k —m—ﬁ)>

_ d < brep, + VG GO [P X7 ,@]) : (7.109)

Lint =

K

where g = det gap, DoV := 9,0 — i[Aa, \Tl] and

re.— %rUAgAg, Iyi=———T N, (7.110)

24/ Go
which satisfy {I'*, T’} = g, and {T'/, T/} = ;.
On the other hand, the potential term for the boson Ly, is the square of a 3-commutator:

X7 X7 X5y = ma NI X (o + PN X X (7.111)
The square of the first term gives
2
(maAgf AgX{f]mQ = 6gaymamp XL PL X (7.112)
where
s st oA+ PRI — G, Ka) AN + AN
" (Mol [Am[* = (Ao, Ai)?)
i = Mata, (7.113)
which satisfy
PN =P\ =0, P%=Ps. (7.114)

The mixed term vanishes and does not contribute to the action. The commutator part is

(P Xy X ()2 = 3 (Good X7, XKT2) —2(((Ro - %), X)) .115)

(i,m)

which is identical to the similar term in the previous chapter and it produces the standard
commutator terms. Using eq. (7.108), these terms can be summarized as

ddy 1 AN vIpl]Py vJ 1 o
Lyt = — —=gap Do X P Dp X7 — ——gacpaFupFe
pot / (27r)d\/§< Yab b 1Gog JecdvalavFed
Gfo [PIEXKE pILxL)? ) (7.116)
where D, X! = 9, X7 — z'[fla, XI] and Fp = 0, Ay — Oy A, — i[fla, flb].
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Summary

By collecting all the results in this subsection, the BLG action (6.1) becomes

L = Lpg+Lprp+ Lx+ Ly + Lpot + Lint + Lta,

1 d? - S -
Ly = T / (27T:l;d\/§<F5y+2.gabF,uaFub+gacgbdFachd) ;
GOa ddy Ao T
Lpp = — (4 FaFon)
mr 8G00/(277)d\/§ ‘ patvA
1 dy A vIpllfy vJ A wIpllpy vJ
Lx = - (%)d\/g?(DuX PYD, X7 + guyDo X P Dy X ) ,
j d? ~ . N\ =~
= Y "D, +T9D, ) ¥
L\lj - 5 W\/‘a\p F o + a 5
Goo [ d% IK K pJL L2
L = — PR X2 P/ X
pot 4 (27T)d\/§[ 9 ] )
ivVG d? = ~ -
Lint — / (Qﬂﬁdﬂ\PFz[P”XJ,\P]. (7.117)

It is easy to see that this is the standard Dp-brane action (p = d + 2) on ¥ X T% with the
metric (7.100). Interpretation and implications of this action is given in the next section.

7.4 U-duality in BLG model

In the previous section, we saw that we obtain the multiple Dp-branes’ system on a torus
from BLG model, when we consider a particular example of general Lorentzian Lie 3-
algebra. On the other hand, the original BLG model describes the multiple M2-branes.

Since the relation between Dp-branes and M2-branes is well known as U-duality, which
we mentioned in §1.4, we now examine how this U-duality relation [102] is realized in the
theory (7.117).

7.4.1 D3-branes case

For d = 1, if we write XO = €, M =T7 €0 + 12€1 (Where the basis {€p, €1 } is orthonormal),
the action for the gauge field is given as

1 dy ) G01 dy ~
La+Lpp = — Y JGF? - Y
At LFF 4G o ox V9 8Goo J 27
1 _
S /dy (QFFJFTQF?) (7.118)
8 2
where now g = g11 and
F?* = F2, +2guFuFy,

FF (4y/g11 €M) Fa Fy . (7.119)
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This shows that the action (7.117) in this case is the standard D3-brane action with the
term.
Under the SL(2, Z) transformation

Xl a b Xl
G e

the moduli parameter 7 is transformed as,

at +b
. 7.121
T +d ( )
Forb = —c = 1, a = d = 0, it gives rise to the standard S-duality transformation 7 —

—1/7. On the other hand, a = d = 1, b = n and ¢ = 0 gives the translation 7 — 7 + n.

On S-duality

We do not claim that we have proven S-duality symmetry from our model. At the level of
Lie 3-algebra (7.68), there is obvious asymmetry between ug, vg and up, v1. Nevertheless,
it is illuminating that the S-duality symmetry can be interpreted in terms of Higgs VEV’s
XOJ in so simple manner.

On T-duality shift

On the other hand, the translation symmetry reduces to the automorphism of the Lie 3-
algebra (7.68),

ug — up —nNuUr, U — Uy,

v9 — Vg, U] — U1 +nug. (7.122)

It is easy to see that the transformation changes neither Lie 3-algebra nor their metric. It
induces the redefinition the ghost fields as,

X' = quouo +X§1u1 +.--= Xio(uo —nuy) + (X{L1 +7IX£O)U1 +---. (7.123)

It implies the transformation Xo — Xo , Xl — X1 + nxo . Of course, at the classical level,
there is no reason that the parameter n must be quantized. It is interesting anyway that part
of the duality transformation comes from the automorphism of Lie 3-algebra.

On T-duality

The T-duality symmetry Zs of D3-brane comes from the different identification of compo-
nent fields. Namely, we have constructed 4-dim field X’ (x,y) from the component fields
X ém) (z) by Fourier series (7.98). One may instead interpret X (Iim) (z) as the 3-dim field
and interpret 1 index as describing open string mode which interpolate mirror images of a
point in 7' = R/Z. This is the standard T-duality argument [95].
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The relation between the coupling constant and the radius in T-duality transformation
is given as follows. Let us assume for a moment that Xo 1 X for simplicity. It is well
known [25] that putting a VEV Xuo = Xo means the compactification of M-direction with
the radius

Ro= o132, (7.124)

where lp is 11-dim Planck length. From the symmetry of X,, < X,,, putting a VEV
X w = = X, must imply the compactlﬁcatlon of another direction with the similar radius R =

Al lp/ before taking T-duality along X1. At this point, we have D2-branes’ worldvolume
theory with string coupling

gs = goals = N ls. (7.125)

where [ is the string length, satisfying lg = g4l3. Tn the previous section, we obtain D3-
branes since we compactify the \; direction with radius R; and simultaneously take T-
duality for the same direction. Thus the D3-branes are compactified on S with the radius

R E E ! (7.126)
1= == = s .
Ry M/A3E Aoh
and the string coupling for D3-branes’ worldvolume theory is
l Ao
L=gs= = —. 7.127
9 =95 = (7.127)
This result is consistent with our results.
To summarize, the U-duality transformation of D3-brane action is
SL(2,7Z) > Zs, (7.128)

where the first factor is described by the rotation of Higgs VEV’s and the second factor is
described by the different representation as the field theory.

7.4.2 U-duality for d > 1

We consider M-theory compactified on 79! (where d = p — 2). This theory has U-
duality group E411(Z) and scalars taking values in Fy,1/Hg1 where Hg1 is the maximal
compact subgroup of E4.1. See, for example, [103] for detail. We call the space of these
scalars ‘parameter space’ in the following.

Parameters in U-duality group from L-BLG models

In this subsection, we compare the parameters obtained from L-BL.G model with that in the
parameter space. We can extract various parameters on Dp-brane from the action obtained
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in §7.3.2 which are all determined by the Higgs VEV’s X . The first one is the Yang-Mills
coupling :

2 (QW)dGoo
Gym=—"F7—", ¢g:=det(gap)- (7.129)
v M NG (9ab)
Secondly, the metric
Jab = GooGap — GoaGop (7.130)

gives the moduli of the torus 7. Finally, Lrp gives a generalization of # term for d = 1
case. Since the 6 term may be regarded as the axion coupling, a natural generalization for
general d is the R-R field B(4_1), which appears in the Dp-brane Lagrangian of string theory
like as C g1y A F' A F. Such term was discussed in the literature, for example, in [103].

In our setup in the previous section, the existence of such coupling C' A F' A F' can be
understood as follows. There the compactification of the M-direction was determined by Xo
and we took T-duality on T specified by {Xa} = {Xl, i ,Xd}. If Go, = Xo o # 0, we
obtain the non-zero C'q) field, after the compactification of M-direction and the T-duality
transformation along only y®. After taking T-duality in the remaining d — 1 directions on
T? too, we obtain the nonzero C(d_l) field whose nonvanishing component is C...4...4,
where the index with " should be erased. This component of R-R field must interact with
gauge fields on D-brane as e“"/\l"'dCl...d...dFWF,\a. In our action (7.117), L g describes
this coupling. It determines the components of C4_y) as

Goa \/§
Chi=Clogod = , 7.131
b 4em Goo Vs (30

where no sum is taken on a.

SL(d + 1,Z) transformations in U-duality can be reproduced.

(d+1)

The number of parameters thus obtained is 1 + dT +d = w

which coincides
with the number of metric Gap = A4 - Ap. Asis d = 1 case, it is natural to guess the
SL(d+ 1,Z) transformation

My=AapXp, Aap€SL(d+1,Z), (7.132)

is related to the first factor of SL(d+ 1, Z) <t O(d, d; Z) in U-duality transformation. Now
we derive the transformation law of these parameters explicitly.
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SL(d+ 1,Z) is generated by the following two kinds of (d + 1) x (d + 1) matrices:

AAB:(SAB (fOfA,B?é'i,j),

S(i,j) - Ai A\ [0 1
(o \Aji Ay -1 0/
(

AAB:(SAB (fOI'A,B#Z.,j),

T(Z,j,n) : A“ Az’j B 1 n
Aji Ajj 0 1)

where i,5 = 0,1,---,d (1 < j)and n € Z. Obviously, S(i,7) is a generalization of

S-duality transformation and 7(, j; n) is the generalization of translation generator.

(M A = S(0,4) (i # 0): This transformation interchanges Xg and X; , i.e. M-direction
and one of the torus directions. It is a generalization of S-duality transformation for d = 1
case. Goa and g,y are transformed as

! / !/
00 — Gii, 0i = —Goi O0a = Gia

9 = Giis  Gia = —(GiiGoa — GioGia) s gup = GiiGap — GiaGip, (1.133)
for a, b # 0, 4. In the simple case of Gy, = Go; = Giq =0,

2 = 00 L) 2 i \em) L
9ym = \/:zz =1/ . - 9ym = \/> Goo P \/Ei’ (7.134)

00

where éz is the minor determinant of G4 excluding the ’th row and column. On the other
hand, C; remains zero in this simple case.

(1) A = T(0,4;n) (i £ 0): This transformation shifts the M-direction as Xg — Ao + nX;
and should be a generalization of T-duality transformation. Gg 4 and g, are transformed as

Gf)o = Goo + 2nGo; + n2Gu‘ , 6a = Goq + nGiq ,
g(/lb = gab + n(2G0;iGap — GoaGivr — GiaGop) + nQ(GiiGab — GiaGip) (7.135)

for a, b # 0. In the simple case of Gy, = G4 = 0 (wWhere a # b),

d
, G\ 2
gyM = 9¥m = <1+n2G;;> G- (7.136)

On the other hand, R-R field C'(4_y)is shifted as in the D3-branes case,

\/‘a

C:=0 — Cl=nGy —7
i 4(27)4G) /3L

(7.137)



7.4. U-DUALITY IN BLG MODEL 149

(I A = S(i, ) (i,j # 0): This transformation interchanges X; and Xj and should make
no physical change. In fact,

G60 = Goo, Gf)z’ = Gy, 6j = —Goi,
i =95 9= —9ji> 95 =0, 9= Giis (7.138)

and other G, and g, remain the same. The coupling constant g% a7 18 invariant under this
transformation. The components of C4_) is shuffled by the interchange of the basis { A, },
but this doesn’t mean any physical changes.

(IV) A = T(i,j;n) (i,j # 0): This transformation shifts the torus direction as i —
Ai +nA;. In this case, Goa and gq, are transformed as

Goo = Goo, Gy = Goi +nGoj, Gy, = Goa,
gh = gii + 2ngi; + 120 Gla = Gia +NGjas Gy = Gap,  (1.139)

for a,b # 0,i. So g%/ s varies only by the change of /g (or the volume of T%) caused by
the shift of \;. The components of C';_1), just as in the case of S(3, j), is effected by the
transformation of the basis { ), }, but it is not physically meaningful.

The transformation laws are less illuminative compared with d = 1 case, since the pa-
rameters g}Q/ a and C depend on G 4 in a complicated way. However, since the number
of the parameters is the same, it is straightforward to obtain the inverse relation G op =
GaB (g% A1 Yab, Ca). This combination Gap = X4 - X\ transforms linearly under SL(d +
1,Z). In this sense, it is possible to claim that SL(d + 1,Z) is a part of the U-duality
symmetry and G 4 g gives the parameter which transforms covariantly under SL(d + 1, Z).
The closure of these parameters under SL(d + 1,Z) was discussed in the literature, for
example, [103].

Towards the whole of U-duality in Dp-branes’ cases

The parameters obtained from X 4, however, do not describe the full parameter space to
implement U-duality. In the following, we compare it with the dimensions of the parameter
space. As we see, for d = 1, it correctly reproduces the moduli. The discrepancy of
the number of parameters starts from d > 1. We will explain some part of the missing
parameters is given as the deformation of Lie 3-algebra (7.68).

D3-brane (d = 1) : It corresponds to M-theory compactified on 7. The parameter space
in this case is (SL(2)/U(1)) x R which gives 3 scalars. They correspond to Goo, Go1 and
g, in other words, g% - Cj and g11, all of which appear in the D3-brane action (7.117).

D4-branes (d = 2) : It corresponds to M-theory compactified on 7. The parameter space
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in this case is (SL(3)/SO(3)) x (SL(2)/U(1)) which gives 7 parameters. They corre-
spond to G 4, By, © and Cj; which transform in the 341+ 1+ 2 representations of SL(2).
® and C; is dilaton and R-R 1-form (or p — 3 form) field which are the same in the above
discussion.

B, is NS-NS 2-form field which we have not discussed so far. As we commented in
the footnote 4, such parameters were introduced in eq. (7.58) as the deformation of the Lie
3-algebra, [ug, ug, up] = Bang, -+ It describes the noncommutativity on the torus along
the line of [93,104]. We have not used this generalized algebra for the simplicity of the
computation but can be straightforwardly included in the L-BLG model. It is interesting
that some part of moduli are described as dynamical variable (“Higgs VEV”) while the
other part comes from the modification of Lie 3-algebra which underlies the L-BLLG model.

D5-branes (d = 3) : It corresponds to M-theory compactified on 7. The parameter space

in this case is SL(5)/SO(5) which gives 14 parameters. They correspond to Ggp, Bap, P,
Cj and Cj;, which transform in the 6 + 3 + 1 + 3 + 1 representations of SL(3).

Cae
X F Fyg Py or e“”’\C&BéF ualypF e . In the context of Lie 3-algebra, there is a room to

is R-R 0-form (or p — 5 form) field which causes the interaction like as e“”’\C&Bé

include such coupling. It is related to the Lie 3-algebra associated with Nambu-Poisson
bracket. As shown in Part II, the worldvolume theory becomes not the super Yang-Mills
but instead described by self-dual 2-form field which describes the M5-brane.> The precise
statement on the moduli becomes obscure in this sense.

To see U-duality, we must also consider the transformation of B, and Caéa- Especially,
the interchange B, <> C; and C;, <> ® means S-duality.

D6-branes (d = 4) : It corresponds to M-theory compactified on 7°. The parameter space
in this case is SO(5,5)/(SO(5) x SO(5)) which gives 25 scalars. They correspond to G,
Bap, @, C; and C;, which transform in the 10 + 6 + 1 + 4 + 4 representation of SL(4).
To see U-duality, we must also consider the transformation of B, and C&Bé'

D7-branes (d = 5) : It corresponds to M-theory compactified on 7. The parameter space

in this case is Es/U Sp(8) which gives 42 scalars. They correspond to Gup, Bap, ®, Cs,
C.;sand C; 5. which transform in the 15+ 10+ 1+ 5+ 10+ 1 representations of SL(5).

abe
Clj2ds 18 R-R O-form (or p—7 form) field which causes the interaction like as A Clieds

X F o FyeFge and so on. Note that Cj in this case must be the self-dual 4-form field.

To see U-duality, we must also consider the transformation of By, C&Bé and C&Bé e

Especially, the interchange By, <> C;. and C;,5. <> ® means S-duality. However we

don’t know the way to introduce the field C; ;. at this moment in time, so this discussion
may be difficult.

3In order to satisfy the fundamental identity, Nambu-Poisson bracket must be equipped on a 3-dim manifold.
So, in this case, we must choose the specific 7% where Nambu-Poisson bracket is defined from the whole
compactified torus T*.
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D8-branes (d = 6) : It corresponds to M-theory compactified on T7. The parameter space
in this case is 7 /SU (8) which gives 70 scalars. They correspond to Gy, Bap, ®, Ca, C;
and C;, ;. which transform in the 21 +15 + 1 + 6 + 20 + 6 representations of SL(6), plus

one additional scalar Bp.q.r Which is the dual of NS-NS 2-form *B(Q). To see U-duality,

we must consider the transformation of all these fields.

D9-branes (d = 7) : It corresponds to M-theory compactified on T8, The parameter space
in this case is Fg/SO(16) which gives 128 scalars. They correspond to Gup, Bap, P,
Cs, O&Bé’ Cdi;edé and C&Ba(iéfg which transform inthe 28 +21 +1+7+35+21 +1
representations of SL(7), plus 14 additional scalars Bgpeqer and Cpq . This Cyy is R-R

2-form field which has legs belong to one of worldvolume coordinates z* and one of torus
coordinates y®.
To see U-duality, we must consider the transformation of all these fields. However we

and C,

don’t know the way to introduce the field C@Ba e abedefg at this moment in time, so

this discussion may be very difficult.

7.5 Summary and remarks

In this chapter, we considered some general Lorentzian Lie 3-algebras and studied the BLG
models based on the symmetry. In the examples we studied, we naturally obtain the M/string
theory compactification on the torus. The mass term generated by the Higgs VEV’s of ghost
fields can be identified with the Kaluza-Klein mass in the toroidal compactification. The
dimension of the torus can be identified with the number of negative-norm generators of the
Lie 3-algebra.

We also argued that one may use our technique to consider the D-branes’ system where
its gauge symmetry is described by infinite-dimensional loop algebras. In particular, we
presented a detailed derivation of Dp-brane action on a torus 7¢ (d = p — 2) from BLG
model. In this case, the Higgs VEV’s of ghost fields X 4 give the moduli of torus g, the
coupling constants gy ps of super Yang-Mills and the R-R (p — 3)-form field C; through the
‘metric’ Gap = XA . XB.

For D3-branes (d = 1), the parameters thus obtained are enough to realize full Montonen-
Olive duality group SL(2, Z) through the linear transformation on X 4. Moreover, some part
of the symmetry is actually the automorphism of Lie 3-algebra. For higher dimensional case
d > 1 (Dp-branes with p > 3), these parameters are enough to implement a subgroup of
U-duality transformation, SL(d + 1, Z), which acts linearly on X 4. The transformations of
various parameters can be determined through the linear transformation of the metric G 4.
In order to realize the full U-duality group, however, they are not enough.

We argued that one of the missed parameters, NS-NS 2-form background, can be intro-
duced through the deformation of the Lie 3-algebra. For higher d, however, we need extra
R-R background which we could not succeed to explain in the context of BLG model so far.
To achieve this, we may have to consider more general structures of algebra.
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7.5.1 Relation with ABJM model

It is interesting to derive the U-duality symmetry from ABJM model, which we mentioned
in §1.5. While some work have been done in [28] for D3-branes, in their study, the coupling
constants of the super Yang-Mills depend on one real parameter and the proof of the S-
duality is limited. In particular, it may be interesting how to incorporate the loop algebras
in ABJM context which would help us to go beyond D3-branes’ case. As we explained, the
loop algebra is suitable symmetry to describe the Kaluza-Klein modes.

7.5.2 Toward lower dimensional branes’ theory

It is also interesting to see the U-duality in lower dimensional branes from BLG model. It
is rather trivial to Dp-branes’ system (p < 1), since we obtain it essentially by the double
dimensional reduction of D2-branes’ worldvolume. Therefore, if we want to have nontrivial
discussion, we may have to derive the multiple F1-strings’ system from BLG model, and
discuss the U-duality relation with M2-branes and Dp-branes.

However, to obtain the multiple F1-strings is a challenging subject, since in particular
we have no idea how to eliminate the Chern-Simons gauge field in BLG model without
breaking supersymmetry. On the other hand, if BLG model actually describes the multiple
M2-branes, the multiple F1-strings’ system must be derived. Then this is also an important
future work.
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In this Ph.D. thesis, we discuss how BLG model can describe the various M-branes’ and
D-branes’ system, and U-duality between M2-branes and D-branes.

BLG model is originally proposed as the multiple M2-branes’ worldvolume theory [1-
4]. This breakthrough is very meaningful, since it gave the researchers the first opportunity
to discuss multiple M2-branes’ system. This model is the Chern-Simons matter system
which has A/ = 8 supersymmetry in (2 4+ 1)-dim spacetime. Their action is distinctive in
that the gauge symmetry is based on a new mathematical framework, Lie 3-algebra.

The Lie 3-algebra which can be used in BLG model must satisfy the fundamental iden-
tity and invariant metric condition, in order that the model properly has gauge symmetry
and supersymmetry. However, it was soon realized that these constraints are too restrictive
that the only allowed Lie 3-algebra is so-called A4 algebra

[T, T T¢] = ie®dT?,  (T%, T = 59 (7.140)

where a,b,--- = 1,--- /4, if we consider the finite-dimensional representation of Lie 3-
algebra with positive-definite metric. BLG model in this case describes the two M2-branes’
system [11,12,24].

Then, in order to obtain the description of larger number of M2-branes, many studies
have been made to generalize the BLG framework. Concretely, we consider the infinite-
dimensional representation of Lie 3-algebra or Lie 3-algebra with negative-norm generators.
Regrettably, however, nobody finds how to obtain the more than two (and finite number of)
M2-branes’ system, up to now. Instead of this, we could show that the BLG model offers
the broader framework, in that it can describe the other systems than M2-branes’ one.

In Part II of the thesis, we discuss BLG model with Nambu-Poisson bracket [5,6, 13]

ofrofbofe

a £b pcy . _prp
{f ’f 7f} € ayuayyaypv

(f*, £ = /N Py frr, (7.141)

as an infinite-dimensional representation of Lie 3-algebra. Here A is a 3-dim manifold on
which the Nambu-Poisson bracket is defined, y* (u = 1,2, 3) is coordinates on A/, and
f* = f*y") (a = 1,--- ,00) is the functions on /. BLG model in this case describes
the infinite number of M2-branes’ system and realizes the worldvolume theory of a single
M5-brane in the C-field background on the 3-dim manifold.

153
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Moreover, we show that when we use the truncation version of Nambu-Poisson bracket,
we can discuss the celebrated N3 law for the degrees of freedom of the multiple M2-branes’
system in BLG model.

In Part III, we discuss BLG model with Lorentzian Lie 3-algebra [15,60,61], which is
the Lie 3-algebra with a pair of Lorentzian metric generators u, v and arbitrary Lie algebra
generators T*, such that

[, T, T = ifd, 7% [T, 77, T%] = —if%, [v,%%] =0,
(w,v) =1, (T",T9) =h"  otherwise =0, (7.142)

where f%}, and h" are structure constants and metric (or Killing form) of the Lie algebra
G. While the components associated with the generators u, v become ghosts, they can be
removed by a new kind of Higgs mechanism proposed by [25]. This mechanism is unusual
procedure, and in the future research, we must discuss closely whether it can be justified
from the viewpoint of quantum field theory. However, at this moment, it is regarded as the
very useful procedure for obtaining unitary theories from BLG model with Lorentzian Lie
3-algebra. In fact, surprisingly enough, this mechanism keeps all the gauge symmetry and
N = 8 supersymmetry. After the ghost is removed in such a way, when we choose U () as
Lie algebra G, the Chern-Simons matter system is reduced to the ordinary super Yang-Mills
system which describes multiple D2-branes’ system [7,26,105-113].

This framework is also generalized by including more Lorentzian metric generators [7,
26, 113]. In particular, we show that when we use the central extension of Kac-Moody
algebra or multiple loop algebra, BLG model describes the multiple Dp-branes’ system on
(p — 2)-dim torus TP~2. In this framework, we can discuss U-duality by comparing BLG
model in this case and the original BLG model which describe Dp-branes and M2-branes,
respectively. As a result, we can show that BLG model can properly realize (a part of)
U-duality.

Until now, while we cannot get many pieces of information on the multiple M2-branes’
system itself, we can make sure that BLG model has nontrivial information on M-theory,
by showing that it can also describe M5-brane and D-branes and realize U-duality. Finally,
for future directions, we want to discuss the following subjects:

Whole U-duality As we mentioned in Chapter 7, in order to see whole U-duality, we need
to improve the Lie 3-algebra so that the algebra includes all the degrees of freedom
of parameter space of U-duality group.

Multiple F1-strings’ system This is also mentioned in Chapter 7. It is easy to do the dou-
ble dimensional reduction of M2-branes’ worldvolume in BLG model, but we have
no idea how to eliminate the Chern-Simons gauge field without breaking supersym-
metry. We have to find a good way to do it, since there must be no gauge field on
F1-strings’ worldsheet.

Covariant formulation of multiple M2-branes As we saw in Chapter 1, the covariant ac-
tion of a single M2-brane is DBI-type action. Thus it is natural that the covariant
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action of multiple M2-branes is also of DBI-type. However, it is difficult to put the
Chern-Simons gauge field in the action of such a form.

More than two M2-branes’ system This may be one of the ultimate goals for BLG model.
In this moment, we have no idea. One way is to improve the truncated Nambu-
Poisson bracket which we used in Chapter 5, so that we can analyze BLG model in
the Lagrangian level. Or, perhaps this cannot be done by Lie 3-algebra, and we need
to consider more general Lie n-algebra (n > 3).

Relation to ABJM model and BFSS/BMN matrix model As we mentioned in Chapter 1,
these models also describe the multiple M2-branes’ system. Therefore it is interesting
to study whether or not there are agreements and contradictions among BL.G model
and these models.
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