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Abstract

M-theory is considered as one of the most hopeful candidate of uni�ed theory for par-

ticle physics. On this theory, it is known that its low-energy limit is supergravity in 11-dim

spacetime, and that there are two kinds of spatially spreading stable non-perturbative ob-

jects, which are called an M2-brane and an M5-brane. However, the behavior of these M2-

and M5-branes still remains a mystery. Then this is an important subject for explication of

M-theory at present.

Recently, Bagger, Lambert and Gustavsson [1�4] have written down and proposed an

action for multiple (coincident) M2-branes' system, which is called `BLG model.' This

model is characteristic in that there is a Chern-Simons-like gauge �eld on M2-branes'

worldvolume, and the gauge group for multiple M2-branes is de�ned using Lie 3-algebra,

instead of Lie algebra.

Soon after that, many researchers, including us, began studying this peculiar algebra

and the structure of BLG model. We made concrete representations of this algebra, adopted

them as examples of the gauge symmetry of multiple M2-branes' system, and analyzed

BLG model in each case.

As a result, we [5�8] showed that BLG model does not describe only multiple M2-

branes' system, but also a singleM5-brane's and multiple Dp-branes' system in superstring

theory. Moreover, we also showed that the relation of M2-branes and Dp-branes, which is

known as (a part of) U-duality, can be properly written in terms of BLG model's language.

In this Ph.D. thesis, we summarize the history of BLG model and our success in the

research on this model.
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Introduction and Summary

M-theory is a very Mysterious theory.1 It is considered as a Mother theory for all the known

fundamental theories of physics, that is, standard model, general relativity, supersymmetric

Yang-Mills theory, supergravity, superstring theory and so on, can be reproduced from M-

theory by somewhat Magical ways.

In fact, when one compacti�es this theory on a 7-dim torus T 7 (which doesn't break any

supersymmetry), it becomes a 4-dim theory withN = 8 supersymmetry, whose low-energy

limit is the maximal supergravity in 4-dim spacetime. This means that M-theory includes

all kinds of �elds which we have already known without any contradictions. Besides, when

one compacti�es M-theory on a circle S1 or a segment S1/Z2, it becomes type IIA or

Het E8 × E8 superstring theory, which are connected with all other types of superstring

theory by S-, T-, U-duality.2 Therefore, M-theory is also the uni�ed theory of all kinds of

superstring theories. (See �g. 1.)

It is well known that Membranes (or M2-branes) play important roles in M-theory, and

the formulations with a Matrix for describing M2-branes have been proposed and studied

eagerly so far. In this Ph.D. thesis, however, we discuss the newly proposed formulation

for M2-branes in M-theory, which is called `BLG model.' This model is very characteristic

in that a Chern-Simons gauge �eld exists on the M2-branes' worldvolume and the gauge

symmetry is de�ned by some peculiar algebra called Lie 3-algebra, instead of ordinary Lie

algebra. The contents are as follows.

Chapter 1 We review the brief history of M-theory before BLG model.

First, we discuss why we consider supersymmetry and higher dimensional spacetime,

since it is a part of answer for the question, why we research onM-theory (§1.1). Then
we review 11-dim supergravity as low energy limit of M-theory (§1.2), the property
of an M2-brane and an M5-brane (a dual object for M2-brane) as non-perturbative

objects in M-theory (§1.3), and the relation between M-theory and superstring theory,

including U-duality (§1.4). Finally, we discuss the placement of contents of this thesis

in the related research on M-theory (§1.5).

The contents are partially based on Kaku's textbook [9] and Ohta's textbook [10].

1In Introduction, we dare to use the capital letter `M' in some words, since these words are considered as

the etymology of `M' of M-theory.
2U-duality is the minimal group including both S- and T-duality as its subgroups.
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2 INTRODUCTION AND SUMMARY

Chapter 2 We review the original BLG model.

First, we collect the clues to construction of multiple M2-branes' worldvolume the-

ory, and suggest that the 3-commutator should be a key idea (§2.1). Then we discuss
the structure of Lie 3-algebra (the algebra with 3-commutators):

[T a, T b, T c] = fabc
dT

d , 〈T a, T b〉 = hab ,

where fabc
d are structure constants and h

ab is a metric (or Killing form). In particular,

we show that this algebra can de�ne a natural symmetry of a �eld theory, when it

satis�es the severe conditions of fundamental identity and invariant metric (§2.2).
Next, we gauge the symmetry by introducing a Chern-Simons-like gauge �eld, and

construct a gauge-invariant supersymmetric theory with 16 supercharges. Also, we

check that the superalgebra closes on equations of motion for the �elds on multiple

M2-branes (§2.3). Finally, we show that these equations of motion are derived from

a supersymmetric action (BLG action) which is consistent with all the continuous

symmetries of the M2-branes' system (§2.4).

The contents are mostly based on Bagger and Lambert's paper [2].

Chapter 3 In order to obtain the concrete form of BLG action, we need to adopt one of

representations of Lie 3-algebra. So in this chapter, we classify the various represen-

tations of Lie 3-algebra, while the analysis of BLG action with each representation is

postponed until Chapter 4-7.

First, we show the famous example of A4 algebra (f
abc

d = εabcd, hab = δab) and its

direct sum (§3.1). In fact, these are only examples of �nite-dimensional representa-

tions of Lie 3-algebra with positive-de�nite metric. Then we show the proof of this

fact (§3.2).

Next, we show the Nambu-Poisson bracket as an in�nite-dimensional representation

of Lie 3-algebra. We also show that �nite-dimensional truncations of Nambu-Poisson

bracket are also examples of Lie 3-algebra, whose metric isn't positive-de�nite, be-

cause of the above proof (§3.3). We will analyze BLG model with these examples of

Lie 3-algebra in Chapter 4 and 5.

Finally, we classify the representations of Lie 3-algebra with negative-norm genera-

tors, and show that there are concrete examples of Lie 3-algebra, such as a central

extension of Lie algebra, which can be the symmetry algebra of BLG model (§3.4).
We will show that BLG models with these examples of Lie 3-algebra are physical

theories in spite of the existence of negative-norm generators in Chapter 6 and 7.

The contents are partially based on Papadopoulos' paper [11], Ho, Hou and Matsuo's

paper [12] and our papers [6, 7].

Chapter 4 We show that we can obtain a single M5-brane'sworldvolume theory from BLG

model, when we adopt Nambu-Poisson bracket as an example of Lie 3-algebra.
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First, we summarize the property of Nambu-Poisson bracket de�ned on 3-dim man-

ifold N as an in�nite-dimensional Lie 3-algebra (§4.1). Then we show that one can

de�ne the local �elds on M5-brane's worldvolume M × N , using the BLG �elds

on original M2-branes' worldvolume M and the basis functions of Nambu-Poisson

bracket. In particular, we can derive the self-dual 2-form gauge �eld on M5-brane

from the Chern-Simons gauge �eld and some of scalar �elds in BLG model (§4.2).

Next, we derive the gauge symmetry of M5-brane's theory from that of BLG model.

In particular, we identify the gauge transformation as the volume-preserving diffeo-

morphism of N (§4.3). The BLG action is then rewritten in terms of these �elds and

we can derive the proper action and equations of motion for M5-brane's theory (§4.4).
Next, we derive the supersymmetry transformation of the �elds on an M5-brane, and

show that this transformation indicates that the BLG model in this case describes an

M5-brane in a large C-�eld background (§4.5).

Finally, we derive D4-brane's action from this M5-brane's one by the double dimen-

sional reduction. There, the volume-preserving diffeomorphism is replaced by the

area-preserving diffeomorphism, or Nambu-Poisson bracket is replaced by Poisson

bracket. As a result, we obtain D4-brane's system in a B-�eld background (§4.6).

The contents are partially based on Ho and Matsuo's paper [13], and mostly on our

paper [5]. My contribution in the latter paper is especially to show that one can surely

obtain M5-brane's worldvolume action, and discuss the background spacetime of an

M5-brane by calculating supersymmetry transformation in this action.

Chapter 5 We discuss BLG model in the case where we adopt the �nite-dimensional trun-

cation version of Nambu-Poisson bracket as an example of Lie 3-algebra.

First, we show how to construct the �nite-dimensional representations of Lie 3-

algebra from Nambu-Poisson bracket by somewhat arti�cial truncation (§5.1). Then
we discuss the structure of these kinds of truncated algebra. In particular, we show

that many components of metric in this algebra vanish (§5.2). This means that it is

hard to have nontrivial discussion on Lagrangian, so we analyze the equations of mo-

tion derived from it. Surprisingly enough, we can show that theN
3
2 law (the relation

between the number of M2-branes and that of degrees of freedom) from AdS/CFT

correspondence [14] can be accounted for due to simple algebraic reason, by count-

ing the number of moduli and generators of Lie 3-algebra (§5.3).

The contents are based on our paper [6]. My contribution is especially to make sure

that this example satis�es fundamental identity and invariant metric condition, and

discuss on the counting the number of moduli from obtained equations of motion.

Chapter 6 We review how to obtain multiple D2-branes' theory from BLG model with

Lorentzian Lie 3-algebra, which is a central extension of Lie algebra with one negative-

norm generator, as an example of Lie 3-algebra.
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First, we summarize the property of Lorentzian Lie 3-algebra and rewrite BLG action

in terms of components of this algebra. We also discuss the symmetry of this rewritten

action (§6.2). In this action, there is a ghost �eld which comes from the components

of the negative-norm generator. Then in order to obtain a physically meaningful

action, we must eliminate this ghost �eld. Interestingly enough, we can achieve it

by inserting VEV's without breaking any gauge symmetry nor supersymmetry. As a

result, we obtain 3-dim super Yang-Mills theory, which can be regarded as the low-

energy limit of multiple D2-branes' theory (§6.3).

On the other hand, we show that we can also obtain D2-branes' system from BLG

model via M5- and D4-brane's theory in Chapter 4. There, we regard Poisson bracket

in D4-brane's theory as matrix algebra, and derive multiple D2-branes' theory (§6.4).

The contents are mostly based on Ho, Imamura and Matsuo's paper [15].

Chapter 7 We show that one can obtain multiple Dp-branes' theory (p ≥ 3) from BLG

model, when one adopt general Lorentzian Lie 3-algebra, which is a central extension

of Kac-Moody algebra or loop algebra with more than one negative-norm generators.

First, we analyze BLG model with the simplest nontrivial example of this kind of

Lie 3-algebra, and obtain massive super Yang-Mills theory with interaction (§7.1). In
order to make clear a physical interpretation of this mass in the context of M/string

theory, we consider Kac-Moody algebra as a particular example. Then we can show

that BLGmodel in this case describes the multiple D3-branes on a circle, and the mass

can be regarded as the Kaluza-Klein mass of the D3-brane winding a circle (§7.2).
Next, we consider the Lie 3-algebra with multiple loop algebra, as a generalized

Kac-Moody algebra. In this case, BLG model describes the multiple Dp-brane on a

(p − 2)-dim torus (p ≥ 3) (§7.3). The relation between Dp-brane and M2-brane is

well known as U-duality, so �nally we discuss that (a part of) U-duality is realized

in BLG model. In particular, for D3-brane's case, we show that the full of U-duality

(Montonen-Olive duality) is realized (§7.4).

The contents are mostly based on our paper [7, 8]. My contribution is especially

to classify the examples of Lie 3-algebra with a general number of negative-norm

generators, by discussing the conditions of fundamental identity and so on. I also

calculate and show that we can obtain Dp-branes' action with F ∧ F term, when

we use a central extension of multiple loop algebra as an example of Lie 3-algebra.

This enable to discuss how U-duality is realized in BLG model, so I argue this point

including what is shortage for discussing whole of U-duality.
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Part I : Basics and multiple M2-branes





Chapter 1

What is M-theory?

How is the Nature constructed? � This is certainly the most fundamental and commonest

question for all human beings. One way, and probably the most pro�table way of tackling

this question, is the research on particle physics. In the particle physics, in the author's

understanding, all discussion begin with the following important assumption: all existence

in the Nature can be divided into the only one or few kinds of fundamental elements, and

if we can fully understand the behavior of each kind of elements, we can also comprehend

that of all existence in the Nature. Such way of thinking is called Reductionism. So we

can say that the ultimate goal for particle physics is the clear understanding of what is the

most elementary existence, how it behaves or interacts with each other, and how it creates

all existence in our universe. From the view of Reductionism, these pieces of information

are all of what we need to understand the whole Nature.

Standard model in particle physics � Reductionism is the winner!?

At the moment, the author think, one cannot judge whether or not the Reductionism is valid

for tackling our ultimate question. However, at the same time, it must be de�nitely impos-

sible to deny the brilliant progress of particle physics in the 20th century. The `standard

model' for particle physics is it. In this theory, all fundamental elements of the Nature are

classi�ed into gauge �elds, matter �elds and Higgs �elds. (Regrettably, the gravity �eld

cannot be included.)

• matter �elds (spin 1/2)

quark lepton

ur, ug, ub cr, cg, cb tr, tg, tb νe νµ ντ

dr, dg, db sr, sg, sb br, bg, bb e µ τ

The matter �elds are classi�ed into the quark and lepton �elds. Both �elds are com-

posed of three generations (which is indicated as three columns). Each generations

9



10 CHAPTER 1. WHAT IS M-THEORY?

of �elds consist of two types of �elds (which is indicated as two rows). Moreover, the

quark �elds in a single box (which are called �avor) are composed of three colors.

• gauge �elds (spin 1)

� gluons (G1, · · · , G8)

They mediate the strong interaction, that is, the interaction among the quark

�elds with colors (∗r, ∗g, ∗b). This interaction is universal for all �avors.

� weak bosons (W+,W−, Z0)

They mediate the weak interaction, that is, the interaction between matter �elds

in a same column (u, d), (c, s), (t, b), (νe, e), (νµ, µ), (ντ , τ).
On the interaction among different generations, we use Cabbibo-Kobayashi-

Maskawa (CKM) matrix which phenomenologically describes the mixing of

(mass eigenstates of) quarks of different generations.

� photon (A)

It mediates the electro-magnetic interaction, that is, the interaction among the

matter �elds with non-zero electric charge (i.e. all the matter �elds except neu-

trinos νe, νµ, ντ .)

• Higgs �elds Φ (spin 0)

These �elds interact with the matter �elds. This interaction causes the mass of matter

�elds.

• Gravity �eld (spin 2)

It mediates the gravity interaction, that is, the interaction among the matter �elds

with non-zero mass (or energy-momentum). Now we believe that all interactions in

the Nature can be classi�ed into these four kinds of interaction above.

However, as we mentioned, this gravity interaction cannot be dealt in the standard

model. It is separately described by general relativity. This is surely an unsatisfactory

point, but this causes no problem if we study the phenomena in not too high energy

scale where the gravity interaction is weaker enough than other interactions.

Concept of `�elds' � Naive reductionism is actually invalid.

Let us note here that we use the term `�elds' instead of `particles.' This is related to the

abstruse philosophy based on quantum theory. In quantum mechanics, the particle-wave

duality is the principle. Moreover, in quantum �eld theory, the particles are considered as

rippling waves (or `elemental excitations') of a `�eld' which has degrees of freedom in each

point of spacetime, and so is de�ned as an in�nitely multi-body system.

This means that we cannot fully understand the Nature when we only research on the

`particles,' and that we must research on the fundamental law for the `�elds' which exist

behind the particles.
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However, the direct observation of `�elds' are very dif�cult, except the gravity and

electro-magnetic �elds. Then we still actually research, contradictorily at a glance, on the

various interactions among many `particles,' but we are always conscious of the existence of

`�elds' behind these particles. In fact, the standard model is described in terms of quantum

�eld theory.

In the naive reductionism, we assume the existence of only one or a few kinds of funda-

mental `particles.' In this meaning, the particle physics now is not in the naive reductionism.

However, as we will see, we still assume some existence of fundamental `�eld,' so the au-

thor believe that the particle physics is even now in a kind of reductionism.

Actions of standard model

In quantum �eld theory, the most important quantity is the action (or Lagrangian). We

usually decide the form of action by carefully considering the symmetry which the theory

must have.

The standard model is described in terms of quantum �eld theory with Lorentz symme-

try SO(1, 3) and gauge (internal) symmetry SU(3) or SU(2)×U(1). So, in the Lagrangian,
all �elds must be described by the representations of Lorentz and gauge symmetry group.

For Lorentz symmetry, the matter �elds are represented by spinors, the gauge �elds by vec-

tors and the Higgs �elds by scalars. For gauge symmetry, all these �elds are described as

the representations of the SU(3) × SU(2) × U(1) gauge symmetry group, e.g. the gauge

�elds are adjoint representations and the matters �eld are fundamental representations.

Now we show the Lagrangian of standard model, which consists of the following two

theories:

GWS (Glashow-Weinberg-Salam) theory

It describes the electro-magnetic and weak interaction. The gauge symmetry is de�ned by

SU(2) × U(1) algebra. The SU(2) algebra is represented as

[ta, tb] = iεabctc , 〈ta, tb〉 =
1
2
δab , (1.1)

where a, b, c = 1, 2, 3. The Lagrangian is

LGWS = − 1
4
(F a

µν)
2 − 1

4
(Bµν)2

+ iΨ̄(f)
L γµDµΨ(f)

L + iĒ
(f)
R γµDµE

(f)
R + iN̄

(f)
R γµDµN

(f)
R

+ (DµΦ)†(DµΦ) − λ

(
|Φ|2 +

µ2

2λ

)2

− fE(f)

(
Ē

(f)
R (Φ†Ψ(f)

L ) + (Ψ̄(f)
L Φ)E(f)

R

)
− fN(f)

(
N̄

(f)
R (Φ†

cΨ
(f)
L ) + (Ψ̄(f)

L Φc)N
(f)
R

)
.

(1.2)
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For the gauge �elds, the covariant derivativeDµ = ∂µ + igwW
a
µ t

a + igB
2 BµY and the

�eld strength F a
µν = ∂µW

a
ν −∂νW

a
µ −gwf

abcW b
µW

c
ν ,Bµν = ∂µBν−∂νBµ . gw and gB are

the coupling constants. The weak bosons W±, Z0 and photon A are de�ned as the linear

combinations of W a
µ and Bµ, such that W± = W 1,2, Z0

µ = 1√
g2

w+g2
B

(gwW
3
µ − gBBµ),

Aµ = 1√
g2

w+g2
B

(gwW
3
µ + gBBµ).

The matter �elds are de�ned as Ψ(f)
L = (νeL, eL), (νµL, µL), (ντL, τL), (uL, dL),

(cL, sL), (tL, bL), E(f)
R = eR, µR, τR, dR, sR, bR, N

(f)
R = νeR, νµR, ντR, uR, cR, tR.

The index L /R means `left- / right-handed,' e.g. eL,R = 1±γ5

2 e for the electron �eld e.

Let us note that the potential term for Higgs �eld Φ (the 7th term) gives a non-zero

VEV (Vacuum Expectation Value) to Higgs �eld. When one expand Φ around the VEV, the

Higgs kinetic term (the 6th term) give masses to the weak boson �elds W± and Z0, and

the Higgs interaction term (the last two terms) give masses to the matter �elds. The index c

there means `charge-conjugated.'

This is well-knownHiggs mechanism. In general, the symmetry breaking occurs in such

kinds of mechanism, that is, only a part of the original symmetry is kept after the mechanism

works. In fact, the SU(2) × U(1) symmetry of GWS theory are broken to U(1) symmetry

after Higgs mechanism.

QCD (Quantum Chromo-Dynamics)

It describes the strong interaction. The gauge symmetry is de�ned by SU(3) algebra

[ta, tb] = ifab
ct

c , 〈ta, tb〉 =
1
2
δab , (1.3)

where fab
c is the SU(3) structure constant, so a, b, c = 1, · · · , 8. The Lagrangian is

LQCD = − 1
4g2

s

(F a
µν)

2 + Ψ̄(f)
a (iΓµDµ −m(f))Ψ(f)

a , (1.4)

where the covariant derivative DµΨa = ∂µΨa − if bc
aGbΨc and the �eld strength F a

µν =

∂µG
a
ν − ∂νG

a
µ + fabcGb

µG
c
ν . G

a
µ are gluon �elds and Ψ(f)

a is a quark �eld of a particular

�avor. gs is the coupling constant of strong interaction. m(f) is the mass of quarks, which

is determined from Higgs interaction in GWS theory.

1.1 Beyond standard model

Towards the deeper truth �We search more fundamental existence in the Nature!

At this moment, the standard model agrees with all the experimental results with marvelous

preciseness.1 In spite of such great success, however, most of researchers don't regard the

standard model as ultimate theory, since there are serious problems:

1Only the exception is the neutrino vibration, which requires that the mass of neutrinos νe, νµ, ντ should be

non-zero, while they are set to zero in the standard model: fνe , fνµ , fντ = 0.
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• It has too many arbitrary constants.

There are gw, gB , gs, λ, µ
2, fe, fµ, fτ , fu, fd, fc, fs, ft, fb and four parameters of

CKM matrix. Is there anyone who can believe that God carefully adjusted so many

parameters simultaneously at the birth of universe...?

• The uni�cation of gravity is impossible.

The gravity interaction cannot be included in the standard model. So the uni�cation

is never possible.

In order to overcome these dif�culties, it is nice and natural to follow our fundamental

thought that all the existence in our Nature consists of one or few kinds of fundamental

elements. It is because if all phenomena can be explained from one or few kinds of elements,

the number of parameters (or arbitrary constants) must also be very small. Therefore, what

we must consider here is what are the fundamental elements, in other words, how to unify

all the �elds including not only the �elds in the standard model but also gravity �eld.

Let us now consider the theory of only one or a few kinds of elementary �elds which

contains the degrees of freedom of all the standard model �elds and gravity �eld, and which

are described as the representations of the single symmetry group. This symmetry group

must contain the SU(3)×SU(2)×U(1) group of the standard model and also the Poincaré

symmetry group of general relativity as its subgroup.

Then we assume that this single symmetry group is broken into these two subgroups af-

ter symmetry breaking. After the breaking, elementary �elds are classi�ed to many kinds of

�elds, i.e. standard model �elds and gravity �eld, which are described as the representations

of the subgroups.

Supersymmetry may be the only way that we can choose.

Now we want to know whether or not such a single symmetry group exists. On this dis-

cussion, it is useful to note the Coleman-Mandula's theorem [16] and Haag-�opuszánski-

Sohnius' theorem [17].

Coleman-Mandula's theorem

The symmetry G of the S-matrix in quantum theory is restricted to the direct product of

Poincaré group and internal symmetries. In terms of algebra, this says that only the direct

sum are allowed:

(algebra of G) = (Poincaré algebra) ⊕ (Lie algebra of internal symmetries) . (1.5)

This means that there is no nontrivial single symmetry group which we are looking for.

However, if we allow a graded algebra which includes anti-commutation relations, e.g. su-

persymmetry, the situation changes desirably.
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Haag-�opuszánski-Sohnius' theorem

Now we set the generators of the symmetry algebra as Poincaré generators Pµ, Mµν , in-

ternal (gauge) symmetry generators T l, and supersymmetry generators Qi
α where µ =

0, · · · , D − 1 (D is a spacetime dimension), i = 1, · · · ,N (number of supersymmetry).

Then the nontrivial algebra can be de�ned as

[Mµν ,Mρσ] = i(ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ) ,

{Qi, Q̄j} = δijγµP
µ + 1Sij + iγ5V

ij ,

[Qi, T l] = (T l)ijQj ,

[T l, Tm] = if lm
nT

n ,

[Qi
α,Mµν ] =

1
2
(σµν)αβQ

i
β , (1.6)

and otherwise equal 0. Here, σµν := i
2 [γµ, γν ], and Sij , V ij are central charges.

Therefore, now we must choose only the one way, i.e. we consider the symmetry group

including the supersymmetry.

Supersymmetry brings `higher dimensional spacetime' naturally.

For simplicity, we consider here the supersymmetric theory of massless �elds. Since the

supersymmetry generators change the helicity of �elds by 1/2, various �elds with different
helicity (or spin) can be contained in the same multiplet in supersymmetric theories. The

following table shows the multiplicity of each helicity �elds in a single multiplet, when we

set the maximum and minimum helicity λmax = 2, λmin = −2:

λ\N 1 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1 1
3/2 1 2 3 4 5 6 7 + 1 8
1 1 3 6 10 15 + 1 21 + 7 28

1/2 1 4 10 + 1 20 + 6 35 + 21 56
0 1 + 1 5 + 5 15 + 15 35 + 35 70

−1/2 1 4 1 + 10 6 + 20 21 + 35 56
−1 1 3 6 10 1 + 15 7 + 21 28
−3/2 1 2 3 4 5 6 1 + 7 8
−2 1 1 1 1 1 1 1 1

where N is the number of supersymmetry and + appears from the requirement of CPT

invariance. Here we set the maximum limit of spin as 2, since it is widely believed that the

existence of �elds whose spin is higher than 2 is forbidden by the equivalence principle in

general relativity.
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Therefore, we can conclude that the single symmetry group which we are looking for

must contain the 4-dim 4 ≤ N ≤ 8 supersymmetry group. In these groups, a single

multiplet contains all �elds, such as gravity �eld (spin 2), gauge �elds (spin 1), matter �elds

(spin 1/2) and Higgs �elds (spin 0). In the following, we concentrate on the 4-dim maximal

supersymmetry group N = 8, since the N < 8 supersymmetry groups are only subgroups

of N = 8 group.

The supersymmetry generators are described as the smallest representations of spinors

in each spacetime dimension, so we see here the degree of freedom of all kinds of spinors

in various dimensional spacetime (i.e. spinor representations of SO(D − 1, 1)) :

rep.\dim. 2 3 4 5 6 7 8 9 10 11 12

Dirac 4 4 8 8 16 16 32 32 64 64 128

Majorana 2 2 4 � � � 16 16 32 32 64

Weyl 2 � 4 � 8 � 16 � 32 � 64

Majorana-Weyl 1 � � � � � � � 16 � �

So the supersymmetry generators of 4-dim N = 8 supergravity (i.e. the supersymmetric

theory which contains a gravity �eld) have 4 × 8 = 32 degrees of freedom. By the way,

one can easily see that those of 11-dim N = 1 supergravity also have the same degrees of

freedom. This is an important fact for studying 4-dimN = 8 supergravity, because it is hard
to deal with this theory, but its concrete form can be easily obtained by the compacti�cation

of 11-dim N = 1 supergravity on the 7-dim torus T 7.

Now we naturally introduce higher dimensional spacetime as a convenient tool. The

discussion on the real existence of extra dimensions should be left to the future research.

1.2 11-dim supergravity as low energy limit

In the previous section, we see that 4-dim N = 8 supergravity may be a candidate of

uni�ed theory beyond the standard model, and that it is useful to consider 11-dim N = 1
supergravity for studying this theory. In this section, we brie�y review 11-dim N = 1
supergravity and its problematic points.

Fields and their degrees of freedom

In 11-dimN = 1 supergravity, the following (only) three kinds of �elds exist and compose

the single multiplet.

Graviton g

It is described by the rank-2 symmetric tensor gµν where µ = 0, · · · , D − 1(= 10). So the
number of the degrees of freedom is

1
2
D(D + 1) −D −D =

1
2
D(D − 3) D=11= 44 , (1.7)
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where the second term is arisen from the invariance under the general coordinate transfor-

mation, and the third term is from the gauge �xing for this invariance.

Gravitino ψ

It is described by the representation ψµα with one vector index µ and one spinor index

α = 1, · · · , 32. So the number of the degrees of freedom is

1
2
· 32 · (11 − 1 − 1 − 1) = 128 . (1.8)

The factor 1
2 is arisen from the fact that the degree of freedom of fermions is a half of that

of bosons, since Dirac equation is the �rst order differential equation. 32 is the number

of spinor elements, 11 is the number of vector elements, the �rst −1 is arisen from gauge

invariance, the second −1 is from ∂µψ
µ = 0, and the last −1 is from γµψ

µ = 0.

3-form �eld C(3)

It is described by the rank-3 antisymmetric tensor. So the degree of freedom is

D−2C3 =
(D − 2)!

3!(D − 5)!
D=11= 84 . (1.9)

Thus the total degree of freedom of bosonic �elds g, C(3) is 128, which is the same as

that of fermionic �elds ψ. It is the common property for all supersymmetric theories that

the bosonic and fermionic �elds have the same degrees of freedom.

Let us note the degree of freedom of the �elds in 4-dim N = 8 supergravity multiplet,

which we mentioned in the previous section. That of bosonic �elds is 1+28+70+28+1 =
128 and that of fermionic �elds is (8 + 56) × 2 = 128. This means that the �elds of 4-dim

N = 8 supergravity and 11-dim N = 1 supergravity have the same degrees of freedom,

and that each degree of freedom must be in one-to-one correspondence.

Supergravity action and its problems

The Lagrangian is obtained by Cremmer and Julia [18, 19] as

L = − 1
2κ2

eR− 1
2
eψ̄µγ

µνρDν

(
ω + ω̂

2

)
ψρ −

1
48
e(Fµνρσ)2

+
√

2κ
384

e(ψ̄µγ
µνρσλτψτ + 12ψ̄νγρσλψλ)(F + F̂ )νρσλ −

√
2κ

3456
C(3) ∧ F(4) ∧ F(4)

(1.10)

where F(4) is a �eld strength of C(3), and F̂(4) is a super-covariantized F(4). 2κ2 = (2π)8l9p
and lp is 11-dim Planck length. e is a vielbein, ω is a spin connection and ω̂µab = ωµab +
1
8 ψ̄

ργρµabσψ
σ, where a, b, · · · are indices of a tangent �at spacetime.
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The various lower dimensional supergravities, including 4-dim N = 8 supergravity,

can be obtained by the dimensional reduction of this action on appropriate manifolds. So it

seems a promising theory for the ultimate uni�ed one. However, this 11-dim supergravity

has the following serious problems:

• This theory may not be renormalizable, i.e. the quantum theory cannot be de�ned.

• If one compacti�es this theory on a manifold, the chiral fermions cannot appear.

Therefore, the standard model never be reproduced, where left- and right-handed

fermions act differently.

• If one compacti�es this theory on 7-dim manifold, one can obtain 4-dim theory with

only SO(8) gauge symmetry. Again, the standard model cannot be reproduced, since

SU(3) × SU(2) × U(1) gauge symmetry never be contained in SO(8) symmetry.

The existence of M-branes as the solution of 11-dim supergravity's problems

In fact, these problems can be solved, if we consider the new theory which contains 11-dim

supergravity as its low-energy limit.

Let us note that the �eldC(3) exists in 11-dim supergravity. Then it is natural to consider

that there must be the source of electric and magnetic charge for this �eld C(3). In 4-dim

Maxwell theory, the electric-magnetic �eld A(1) exists. It is well known that the electric

interaction between the point charge and �eld is described as∫
d4xL ⊃

∫
d4x jµAµ , jµ(x) =

∫
dτ δ(4)(xµ −Xµ(τ)) ∂τX

µ(τ) , (1.11)

where Xµ(τ) is a position of the point charge in 4-dim spacetime, and τ is coordinates on

its worldline. Then the analogy goes straightforwardly. In this present case, the electric

interaction between the source and �eld must be described as∫
d11xL ⊃

∫
d11x jµνρCµνρ ,

jµνρ(x) =
∫
d3σ δ(xµ −Xµ(σi)) εijk∂iX

µ∂jX
ν∂kX

ρ , (1.12)

where Xµ(σ) is a position of the source in 11-dim spacetime, and σi (i = 0, 1, 2) are
coordinates on its worldvolume. This means that the sources of electric charge must be the

objects which spread for 3-dim spacetime (i.e. 2-dim space).

On the other hand, the magnetic interaction for C(3) can be also described easily. In 4-

dim Maxwell theory, the source of magnetic charge is calledmonopole, which couples with

the dual �eld A′
(1) satisfying dA

′
(1) = ∗4dA(1). In this case, since the magnetic dual of C(3)

is C ′
(6) which satis�es dC ′

(6) = ∗11dC(3), the magnetic interaction between the source and

�eld must be described as L ⊃ jµνρσλτC ′
µνρσλτ . From similar discussion, we can conclude

that the sources of magnetic charge must be the objects which spread for 6-dim spacetime

(i.e. 5-dim space).
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Therefore, it is natural to consider that there must be these electric and magnetic sources

for C(3) �eld in the new theory, which are called M2-branes and M5-branes. When a suf-

�ciently large number of coincident M2- and M5-branes' charges are put in 11-dim space-

time, this system must be the solution of 11-dim supergravity, of course. In fact, it is well

known that its near-horizon limit is AdS4 × S7 and AdS7 × S4 spacetime, respectively.

These M-branes are non-perturbative objects, since their masses are l−3
p and l−6

p which

go to in�nity if lp → 0 (in the low-energy limit).2 Moreover, they are 1/2 BPS states which

keep a half of supersymmetry if one puts an M-brane (i.e. M2- or M5-brane) in 11-dim

spacetime, so these M-branes are stable even in quantum theory because of supersymmetry.

Therefore, this quantum theory, which contains 11-dim supergravity as its low-energy limit

and M-branes as non-perturbative objects, is calledM-theory.

Then it is widely believed that M-theory has no problems, since such non-perturbative

corrections solve the problems which 11-dim supergravity has. For example,

• Renormalizability : M-theory action must have the higher order terms of curvature

tensor, and they can make the theory �nite.

• Chirality : One can compactify M-theory on a non-manifold space, e.g. a segment,

then the chiral fermion appears in this case.

• Gauge symmetry : As we saw in �g. 1, for example, when one compacti�es M-theory

on a circle or segment, it becomes type IIA or Het E8 × E8 superstring theories.

There, we can obtain a suf�ciently large gauge group, such as U(N � 1) group in

the former case or E8 × E8 group in the latter case.

1.3 M2-brane and M5-brane

From the discussion in the previous section, it must be sure that M-theory can be the most

pro�table uni�ed theory for particle physics, and that in order to understand M-theory, it is

indispensable to research the behavior of M-branes in detail.

According to Dirac's discussion on monopoles, M-brane's charge is quantized. It means

that the number of charges, i.e. the number of M-branes, can be counted. Then, in this

section, we �rst show the action of a single M-brane's system. The discussion on multiple

M-brane's system is put off until §1.5.

A single M2-brane's action

The action of an M2-brane's system is de�ned on its 3-dim worldvolume, and is invariant

under the general coordinate transformation on the worldvolume. It means that the scalar

2As we will see in §1.4, M-theory is also the strong interaction limit of superstring theories. In this view of

point, M-theory must have no adjustable parameters. It means that only parameter is 11-dim Planck length, so

all the physical quantity are determined by its dimension.



1.4. RELATION TO SUPERSTRING THEORIES 19

�elds Xµ which denote the position of an M2-brane in 11-dim spacetime have 8 physical

degrees of freedom.

As we mentioned, M2-brane keeps (a half of) supersymmetry, so its action must be also

supersymmetric. This requires that there should be the spinor �eld Ψ as a superpartner

of Xµ in M2-brane's action. So this �eld Ψ is regarded as the fermionic coordinates. Its

degrees of freedom is 1
2 · 1

2 · 32 = 8, where the �rst 1
2 comes from the broken half of

supersymmetry (or local κ symmetry) and the last 1
2 comes from equation of motion. This

is the same as that of scalars.

Therefore, the supersymmetric action of a single M2-brane can be written in terms of

only scalars Xµ and fermions Ψ. The covariant Lagrangian is obtained by Bergshoeff,

Sezgin and Townsend [20, 21] as

L = −
√

−detΠi · Πj

− i

2
(εijkΨ̄Γµν∂iΨ)

[
Πµ

j Πν
k + iΠµ

j Ψ̄Γν∂kΨ − 1
3
(Ψ̄Γµ∂jΨ)(Ψ̄Γν∂kΨ)

]
,(1.13)

where Πµ
i = ∂iX

µ− iΨ̄Γµ∂iΨ. The indices µ, ν, · · · = 0, · · · , 10 denote 11-dim spacetime

coordinates, while i, j, · · · = 0, 1, 2 denote M2-brane's worldvolume coordinates.

A single M5-brane's action

From the similar discussion, in the case of M5-brane's system, the scalar �elds Xµ have

only 5 degrees of freedom. On the other hand, the spinor �eld on M5-brane's theory has 8

degrees of freedom, just as in M2-brane's case. It means that we need more bosonic �elds

with 3 degrees of freedom, in order to construct the single M5-brane's supersymmetric

action. It is well known that this bosonic �eld must be the self-dual 2-form �eld A(2).

Although it is very hard to write down the covariant action including a self-dual �eld,

the covariant Lagrangian for an M5-brane was obtained by Pasti, Sorokin and Tonin [22].

The bosonic part is

L =
√

−det(gmn + iF̃mn) +
1
4

√
−g

(∂ra)2
F ∗mnlFnlp∂

pa , (1.14)

where the indicesm,n, · · · = 0, · · · , 5 denote M5-brane's worldvolume coordinates.

Flmn is a �eld strength of self-dual 2-form �eld A(2), and its dual is de�ned as F ∗lmn =
1

6
√
−g
εlmnpqrFpqr. a is an auxiliary scalar �eld which can be eliminated by gauge-�xing,

and F̃mn = 1√
(∂pa)2

F ∗
mnl∂

la.

1.4 Relation to superstring theories

In the previous section, we see M-theory as the re�ned theory of 11-dimN = 1 supergrav-

ity, which closely relates to 4-dim N = 8 supergravity. In this section, we see M-theory as

the string coupling limit of superstring theories.
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Figure 1.1: Relation among M-branes and D-branes

We already showed the relation among M-theory and superstring theories in �g. 1 in

Introduction. It is well known that while the superstring theory is not unique, M-theory

can be regarded as the uni�cation of all types of superstring theory. In the following, we

especially discuss the relation among M-theory and type IIA and IIB superstring theory.

1.4.1 Type IIA superstring theory

Field contents and D-branes

As we saw in �g. 1, type IIA superstring theory is obtained by compacti�cation of M-theory

on a circle S1. In this case, the graviton (or metric) ĝ and 3-form �eld Ĉ(3) in M-theory are

rewritten in terms of the bosonic �elds in type IIA superstring theory as

ds211 = e−
2
3
φgµνdx

µdxν + e
4
3
φ(dy + Cµdx

µ)2 ,

Ĉ(3) =
1
6
Cµνρdx

µ ∧ dxν ∧ dxρ +
1
2
Bµνdx

µ ∧ dxν , (1.15)

where µ, ν, · · · = 0, · · · , 9 and y is a coordinate of the compacti�ed circle. That is, the

�elds of type IIA superstring theory are

• graviton Gµν =
√
ĝyy

(
ĝµν − ĝµy ĝνy

ĝyy

)
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• NS-NS B-�eld Bµν = 3
2 Ĉµνy : F1-string / NS5-brane

• dilaton φ = 3
4 log ĝyy

• R-R 3-form �eld Cµνρ = Ĉµνρ : D2-brane / D4-brane

• R-R 1-form �eld Cµ =
ĝµy

ĝyy
: D0-brane / D6-brane

Here we also write the objects, called F1-string (or fundamental string), NS5-brane and

various dimensional Dp-branes, which couple to each �eld electrically / magnetically. This

can be understood from similar discussion nearby eq. (1.12). The relation to M-branes are

showed in �g. 1.1. It is also interesting to compare this �gure with �g. 2 in Introduction.

The correspondence between them is an important topic in Part III of this thesis.

Compacti�cation radius and string coupling constant

From eq. (1.15), the compacti�cation radius for y-direction is

R11 = e
2
3
φ
√
α′ , (1.16)

where
√
α′ is the string scale which are usually set to 1. When we rewrite 11-dim super-

gravity Lagrangian (1.10) as 10-dim type IIA supergravity Lagrangian using the relation

(1.15), we can obtain the Kaluza-Klein mass on this circle as

e−
1
3
φ

R11
∼ 1
eφ
√
α′
. (1.17)

This means that the compacti�cation radius is R̃11 = eφ
√
α′ when we measure it with 10-

dim metric gµν , and that the relation between 11-dim gravity constant κ and 10-dim gravity

constant κ10 is
2πR̃11

κ2
=

1
κ2

10

. On the other hand, from the ratio of tension of F1-string and

D-brane in string theory, we can obtain κ10 as

κ10 = 8π
7
2α′2g , (1.18)

where g is the string coupling constant, and is determined by the VEV of dilaton �eld as

g = e〈φ〉. Then the 11-dim gravity constant is

κ2
11 = 2πR̃11κ

2 =
1
2
(2π)8g3α′ 9

2 . (1.19)

As we saw in eq. (1.10), the relation between κ and 11-dim Planck length lp is 2κ2 =
(2π)8l9p , so we obtain lp = g

1
3

√
α′.

To summarize above discussion, we �nd the relations such that

g =
(
R11

lp

)3

=

(
R̃11

lp

) 3
2

, α′ =
l4p
R2

11

=
l3p

R̃11

. (1.20)

This means that the strong coupling limit g → ∞ corresponds to R11, R̃11 → ∞, i.e. M-

theory can be regarded as the strong coupling limit of type IIA string theory.
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A single F1-string's action

The bosonic action of an F1-string's system is known as Nambu-Goto action

S = − 1
2πα′

∫
d2σ (− det [∂iX

µ∂jX
νGµν ])

1
2 =: − 1

2πα′

∫
d2σ

√
−detGij , (1.21)

where the scalar �elds Xµ denote the position of an F1-string in 10-dim spacetime. The

indices i, j = 0, 1 denote F1-string's worldvolume coordinates σi. We note that the world-

volume
√

−detGij is apparently invariant under the general coordinate transformation.

This action is equivalent to Polyakov action

S = − 1
4πα′

∫
d2σ

√
−hhij∂iX

µ∂jX
νGµν , (1.22)

where h = dethij . In fact, this action reduces to Nambu-Goto action, when we use the

equation of motion for the auxiliary �eld hij , which is a metric on the worldsheet (world-

volume) of an F1-string. One can quantize this action, and all kinds of �elds in superstring

theory are described as vibrations of an F1-string in the massless spectrum.

The supersymmetric action of an F1-string's system is known as Green-Schwarz action

S = − 1
4πα′

∫
d2σ

[√
−hhijΠi · Πj + 2iεij∂iX

µ(Ψ̄1Γµ∂jΨ1 − Ψ̄2Γµ∂jΨ2)

−2εij(Ψ̄1Γµ∂iΨ1)(Ψ̄2Γµ∂jΨ2)
]
, (1.23)

where Πµ
i = ∂iX

µ − iΨ̄αΓµ∂iΨα (α = 1, 2).

A single Dp-brane's action

Now let us consider the action of a Dp-brane's system. The discussion goes similarly as

M-brane's case in §1.3.
This action is de�ned on its (p + 1)-dim worldvolume which are invariant under the

general coordinate transformation, so the scalar �eldsXµ which denote the position of Dp-

brane in 10-dim spacetime have (9−p) physical degrees of freedom. On the other hand, the

Dp-brane's system in type IIA and IIB superstring theory have 16 supersymmetries, which

means that the superpartner Ψ of the scalar �elds must have 8 degrees of freedom, in terms

of bosonic degrees of freedom. Therefore, there must be an additional bosonic �eld with

(p − 1) degrees of freedom, in order to obtain a supersymmetric theory. It is well known

that this �eld is nothing but the massless vector �eld Ai on (p+ 1)-dim worldvolume.

The bosonic action of a Dp-brane' system is known as DBI (Dirac-Born-Infeld) action

Sp = −Tp

∫
dp+1σ e−φ

(
−det [Gij +Bij + 2πα′Fij ]

) 1
2 , (1.24)

where the indices i, j = 0, · · · , p denote Dp-string's worldvolume coordinates σi. Gij , Bij

are the pull-back of Gµν , Bµν such that Gij := ∂iX
µ∂jX

νGµν , just as in the F1-string's
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case. Fij is a �eld strength of vector �eldAi on Dp-brane's worldvolume. We note that this

action reduces U(1) Yang-Mills gauge theory in the low-energy limit (where Gµν = ηµν

and Bµν = 0).
Moreover, when the background R-R �elds C(q) exist, we have the additional bosonic

terms in the action such that

SCS = iTp

∫
exp

[
B(2) + 2πα′F(2)

]
∧
∑

q

C(q) , (1.25)

where integrated functions must be (p+ 1)-form.

1.4.2 Type IIB superstring theory

T-duality

As we saw in �g. 1, type IIA and IIB superstring theory can be related by T-duality. In order

to take T-dual for z-direction, we �rst compactify this direction with the radius R as

z ∼ z + 2πR. (1.26)

In this case, the center-of-mass momentum of an F1-string for z-direction is quantized as

pz =
n

R
, n ∈ Z. (1.27)

in quantum theory, because the translation operator exp[2πiRpz] should be 1 under the

identi�cation (1.26). On the other hand, one of the scalar �eldXz which denote the position

of a closed string in z-direction satis�es

Xz(σ + 2π) = Xz(σ) + 2πRw , w ∈ Z. (1.28)

where σ ∈ [0, 2π] is worldsheet spatial coordinates, and w is the winding number. It only

says that a closed string must be closed in the compacti�ed space (1.26). Without this

compacti�cation, this condition becomes the stronger one such thatXz(σ+ 2π) = Xz(σ).
In this case, it can be showed that the mass spectrum of a quantized closed string is

invariant under the T-duality transformation

R → R′ =
α′

R
, n ↔ w , (1.29)

which means that the theory is invariant, when one interchanges long length and short

length, and momentum and winding number, simultaneously.

Field contents and D-branes

All the bosonic �elds in type IIA superstring theory (in the previous subsection) are various

vibration modes of a closed string. These vibration modes, of course, change under the

T-duality. Then it is known that if we take T-dual for z-direction, the �elds of type IIA

superstring theory are transformed to those of type IIB superstring theory:
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• graviton Ḡµν :

Ḡµν = Gµν − GzµGzν −BzµBzν

Gzz
, Ḡzµ =

Bzµ

Gzz
, Ḡzz =

1
Gzz

. (1.30)

• NS-NS B-�eld B̄µν : F1-string / NS5-brane

B̄µν = Bµν +
2Gz[µBν]z

Gzz
, B̄zµ =

Gzµ

Gzz
. (1.31)

• dilaton φ̄ = φ− 1
2 logGzz

• R-R 4-form �eld C̄µνρσ : D3-brane

C̄zµνρ =
3
8

(
Cµνρ − C[µBνρ] +

Gz[µBνρ]Cz

Gzz
− 3

2
Gz[µCνρ]z

Gzz

)
. (1.32)

• R-R 2-form �eld C̄µν : D1-brane / D5-brane

C̄µν =
3
2
Cµνz − 2C[µBν]z +

2Gz[µBν]zCz

Gzz
, C̄zµ = −Cµ +

CzGzµ

Gzz
. (1.33)

• R-R 0-form �eld C̄ = Cz : D(-1)-brane / D7-brane

where µ, ν, · · · = 0, · · · , 8. Similarly, we write the objects which couple to each �eld

electrically / magnetically. The relation to D-branes in type IIA superstring are showed in

�g. 1.1. It is important that T-duality changes the dimension p of D-brane one by one, i.e. if

we take T-dual for a transverse direction, the worldvolume of Dp-brane is extended for this

direction, and Dp-brane becomes D(p + 1)-brane, while if we take it for a longitudinal

direction, the worldvolume is reduced for this direction, and Dp-brane becomes D(p − 1)-
brane.

SL(2,Z) symmetry and S-duality

It is well known that type IIB superstring theory is invariant under the SL(2,Z) transfor-
mation such that

τ → aτ + b

cτ + d
,

(
H̄(3)

F̄(3)

)
→

(
d c

b a

)(
H̄(3)

F̄(3)

)
, e−

φ̄
2 Ḡµν , F̄(5) : invariant, (1.34)

where ad− bc ∈ Z , τ := C̄ + ie−φ̄, and

H̄(3) = dB̄(2) , F̄(3) = dC̄(2) , F̄(5) = dC̄(4) −
1
2
C̄(2) ∧ H̄(3) +

1
2
B̄(2) ∧ F̄(3) . (1.35)

While type IIB supergravity is invariant under the SL(2,R) transformation where ad−bc ∈
R, type IIB string theory is only under SL(2,Z) one, since the all kinds of charge are

quantized from the Dirac's monopole discussion which we also mentioned in §1.3.
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In particular, in the case of (a, b, c, d) = (0,−1, 1, 0) and C̄ = 0, we �nd

φ̄→ −φ̄ , B̄(2) → C̄(2) , C̄(2) → −B̄(2) . (1.36)

Since the string coupling constant is ḡ = eφ̄, this transformation means the inversion of ḡ,

and it is called S-duality as we showed in �g 1.1. In another case of (a, b, c, d) = (1, n, 0, 1),
we �nd

C̄(0) → C̄(0) + n , C̄(2) → C̄(2) + nB̄(2) , (1.37)

which means the shift of R-R �elds. This is also the symmetry of type IIB superstring

theory.

U-duality � the uni�ed group of S- and T-duality

As we mentioned, U-duality is the minimal uni�ed group including S- and T-duality as its

subgroups. We note that S- and T-duality do not commute each other, as we can easily see

in �g. 1 and 1.1. Therefore, U-duality also includes a generator like the commutator [S, T ].
As we saw in the above SL(2,Z) duality, S-duality means the interchange of two com-

pacti�ed directions (y and z in this case), and is always included in SL(2,Z) group. The
remaining T- and U-duality group are shown in the following table:

dim. T-duality group U-duality group

10 (IIA) 1 1
10 (IIB) 1 SL(2,Z)

9 Z2 SL(2,Z) × Z2

8 O(2, 2;Z) SL(3,Z) × SL(2,Z)
7 O(3, 3;Z) SL(5,Z)
6 O(4, 4;Z) O(5, 5;Z)
5 O(5, 5;Z) E6(6)(Z)
4 O(6, 6;Z) E7(7)(Z)
3 O(7, 7;Z) E8(8)(Z)
2 O(8, 8;Z) E9(9)(Z)
1 O(9, 9;Z) E10(10)(Z)
0 O(10, 10;Z) ? E11(11)(Z) ?

It shows that when we compactify and take T-dual for more directions, T- and U-duality

group is larger. We will discuss U-duality in detail in the context of BLG model in §7.4.

1.4.3 Multiple D-branes and U(N) symmetry

As we discussed in the previous subsection, there is a U(1) vector �eld on a single D-brane.
It is known that this �eld is the massless vibration mode of open F1-string which ends on

the D-brane and vibrates for its worldvolume direction.
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Here we consider the multiple D-branes' system. In this system, there are more than

one kinds of the massless vector �elds, since the open F1-strings which end on different

D-branes from each other cause the different kinds of massless vector �elds. That is, the

vector �elds in this system can be labeled as two indices (i, j), where i, j = 1, · · · , N (N

is the number of D-branes).

If the D-branes are separated, only the vector �elds on the strings with i = j are mass-

less, and the massive �elds on the i 6= j strings are neglected (or integrated out) in low-

energy effective theory. On the other hand, if the D-branes are coincident, all the vector

�elds with (i, j) are massless. As a result, the gauge symmetry is enhanced in this case,

and the U(N) Yang-Mills gauge theory are realized on multiple D-branes' worldvolume in

low-energy limit, which we mentioned in the end of §1.2.

1.5 M-branes revisited : placement of this research

Towards multiple M-branes' action

Since we know that the U(N) gauge theory is realized on the multiple D-branes' system,

it is natural to consider what kinds of theory is realized on the multiple M-branes' system.

However, this subject has been a very challenging one for a long time.

One dif�culty comes from the fact that M-theory is the strong coupling limit of type IIA

string theory and hence M2-branes are the strong coupling limit of D2-branes. This implies

that the worldvolume theory for N M2-branes is the infra-red �xed point of a maximally

supersymmetric 3-dim U(N) super Yang-Mills theory.

However, there is no known Lagrangian description of this system. The only interact-

ing 3-dim Lagrangian with 16 supersymmetries is maximally supersymmetric Yang-Mills,

which contains one vector plus seven scalars with an SO(7) symmetry. This is a well-

known Lagrangian for multiple D2-branes in low energy. In fact, simple counting suggests

that the M2-branes' theory should contain eight scalar �elds and an SO(8) symmetry. In

the abelian case, corresponding to a single M2-brane, such a theory can be obtained directly

from the D2-branes' worldvolume theory by dualizing the vector �eld into a scalar. In the

non-abelian case, however, there is no straightforward way to do this.

Preceding research

Bagger, Lambert [1�3] and Gustavsson [4] have broken through (a part of) this dif�culty,

by considering Lie 3-algebra as the gauge symmetry of multiple M2-branes' theory. This

algebra is de�ned with a 3-commutator [∗, ∗, ∗] and trace 〈∗, ∗〉, such that

[T a, T b, T c] = fabc
dT

d , 〈T a, T b〉 = hab , (1.38)

where fabc
d are structure constants and hab is metric. In particular, they found that one

can write down the consistent action (called BLG action) for multiple M2-branes' system,
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when one adopts an concrete example of Lie 3-algebra which satis�es the conditions of

fundamental identity and invariant metric (Chapter 2).

Then, after that, many researchers studied on the structure of Lie 3-algebra, in order to

obtain and analyze the concrete form of BLG action.

Analysis on Lie 3-algebra : Ho, Hou and Matsuo [12] studied widely on the examples of

Lie 3-algebra, and conjectured that the �nite-dimensional representations of Lie 3-algebra

with positive-de�nite metric are only trivial algebra (fabc
d = 0),A4 algebra (fabc

d = εabcd,

hab = δab) and their direct sums. Soon after, this conjecture was proved by Papadopou-

los [11], Gauntlett and Gutowski [24] (Chapter 3).

Many researchers were disappointed at this result, since it seems to mean that we can

only obtain the concrete forms of BLG action for the in�nite number of M2-branes or with

non-physical (e.g. ghost) �elds, except the A4 case.

M5-brane's system : Ho and Matsuo [13] suggested that when one use the Nambu-Poisson

bracket as an in�nite-dimensional representation of Lie 3-algebra, BLG action for the in�-

nite number of M2-branes describes a single M5-brane's system. They showed it by deriv-

ing the M5-brane's action from BLG action to the quadratic order (Chapter 4).

D2-branes' system : Mukhi and Papageorgakis [25], and Ho, Imamura and Matsuo [15]

showed that when one use the central extension of ordinary Lie algebra with one negative-

norm generator, BLG action describes the multiple D2-branes' system (Chapter 6).

This is a nice result especially in that the ghost �eld from the negative-norm generator

can be completely removed without breaking any gauge symmetry nor supersymmetry, by

a new kind of Higgs mechanism.

Towards Dp-branes' system : As a rather mathematical study on Lie 3-algebra, deMedeiros,

Figueroa-O'Farrill and Méndez-Escobar [26] classi�ed the Lie 3-algebra with more than

one negative-norm generators (Chapter 7).

Placement of our research

Our research have been done based on these preceding researches. We improved them, and

make clear the deeper physical meaning of BLG model as multiple M2-branes' system.

M5-brane's system : We improved the discussion of [13], and showed that one can obtain

the single M5-brane's action from BLG action in all orders of the �elds, when one adopts

the Nambu-Poisson bracket as an example of Lie 3-algebra (Chapter 4).

Moreover, we showed that the truncation of Nambu-Poisson bracket can be also an

example of Lie 3-algebra which can be used in BLG model. Since this example is �nite-

dimensional, one can discuss the relation between the number of M2-branes and entropy

(degrees of freedom) of the system. Then we showed that we can obtain the consistent
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result with the celebrated N
3
2 law from AdS/CFT correspondence (Chapter 5).

Dp-branes' system : We discussed the possibility of obtaining physically meaningful theo-

ries from BLG action, based on the discussion of [26] where one considers the Lie 3-algebra

with more than one negative-norm generators.

Then we found that when one uses the central extension of Kac-Moody algebra and

loop algebra, one can �nd the physical meaning in the context of M/string theory from

BLG model in this case. That is, we can obtain the multiple Dp-branes' system which are

compacti�ed on (p− 2)-dim torus T p−2. As nontrivial checks, we showed that one obtains

the proper Kaluza-Klein mass on the torus and reproduce properly the relation of (a part of)

U-duality between Dp-branes and M2-branes (Chapter 7).

Related research

ABJM model : Soon after the proposition of BLG model, Aharony, Bergman, Jafferis and

Maldacena [27] proposed another (2+1)-dim Chern-Simons matter system with SU(N)×
SU(N) gauge symmetry. While it lacks the manifest N = 8 supersymmetry, it has many

attractive features such as the brane construction, AdS/CFT correspondence, and relation

with the integrable spin chain. In particular, it gives a good description of M2-branes when

the coupling constant N/k (k is the level of Chern-Simons term) becomes small.

InN = 2 case, ABJM model is equivalent to BLG model withA4 algebra. However, in

other cases, the connection of both models is not still clear. For example, while the U-duality

relation in ABJM model is also discussed [28], the correspondence with our discussion in

BLG model is unknown.

BFSS/BMN matrix model : As we mentioned in Introduction, BFSS [29] and BMN [30]

matrix model are also proposed as the M2-branes' theories. Then it is natural that one

wants to discuss the correspondence between these models and BLG model.

These matrix models describe M2-branes in a following state. First, we compactify one

of the light-cone directions, and consider the system where all M2-branes have momentum

almost only for this compact direction. The momentum for the compact direction is quan-

tized and can be regarded as a number of D0-branes in type IIA superstring theory. When

there are more than one D0-branes, the positions of branes become uncertain and seems to

spread over 2-dim space. Then these spread D0-branes can be considered as M2-branes.

Since BFSS matrix model describes M2-branes in �at spacetime, it must directly relate

to BLG model. However, the analysis of this matrix model is dif�cult, so it may also be

dif�cult to �nd the correspondence to BLG model.

On the other hand, BMN matrix model describes M2-branes on 2-dim sphere S2 in

pp-wave background, but the analysis is relatively easy and already studied widely. Fortu-

nately, BLG model on S2 [31] and in background �eld [32] have also already studied, the

discussion the correspondence with BLG model can be done in the near future.



Chapter 2

BLG model for multiple M2-branes

As we saw in Chapter 1, M-branes are very important but still mysterious objects. While the

dynamics of a single M-brane is understood (at least in classical level) as in §1.3, very little
is known about that of multiple M-branes. In fact, the construction of theory for multiple

M-branes is very challenging for a long time. (See, for example, [33].)

In such circumstances, Bagger, Lambert [1�3] and Gustavsson [4] proposed a model of

multiple M2-branes based on Lie 3-algebra which is de�ned using a totally antisymmetric

triple product (or 3-commutator). The examination of the supersymmetry algebra suggested

that the theory has a local gauge symmetry that arises from the 3-commutators.

Although their construction with Lie 3-algebra might not be the only solution, BLG

model is of great value in that it is the �rst (and only, at least at this moment,) example which

can describe the multiple M2-branes' system. In this chapter, we review their discussion.

2.1 Clue to construction of theory

2.1.1 Indispensable conditions

The M2-branes' worldvolume theory must have the following continuous symmetries:

1. 16 supersymmetries (N = 8 in 3-dim spacetime)

M-theory has N = 1 supersymmetry in 11-dim spacetime, i.e. 32 supersymmetries.

M2-brane is the 1/2 BPS object in M-theory, so must have 16 supersymmetries.

2. SO(8) R-symmetry (which acts on the eight transverse scalars)

The scalar �elds describe the position of M2-branes. If we �x the gauge for world-

volume coordinate, the number of transverse scalarsXI is eight (i.e. I = 3, · · · , 10).
When we consider M2-branes in �at spacetime background, there must be SO(8)
rotational symmetry for transverse 8-dim space. So the transverse scalars XI must

have SO(8) symmetry.

29
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3. nontrivial gauge symmetry

For multipleM2-branes' case, there must be gauge (internal) degrees of freedom and

the nontrivial symmetry for them. Because of supersymmetry, i.e. from the simi-

lar discussion in §1.3, the gauge �eld on M2-branes has no degrees of freedom like

Chern-Simons �eld. (As we will see, this is the case.)

4. conformal symmetry

M-theory has no adjustable parameters, so no free parameters depending on the en-

ergy scale exist, of course. This also suggests that there is no weakly coupled limit

that might be described by perturbative quantization of a classical Lagrangian.

Despite the dif�culties, it is still interesting to try to construct a classical theory that can

capture at least some of the features of multiple M2-branes. In the following, we will show

that in fact we can identify the �eld contents and supersymmetry transformations, and give

a geometrical interpretation to the �elds.

2.1.2 N
3
2 law from AdS/CFT correspondence

The algebra of gauge symmetry cannot be a Lie algebra.

There are some peculiar features of the multiple M2-branes' system. Especially, from the

discussion of AdS/CFT correspondence, it can be shown that the near horizon limit of N

M2-branes is dual to a 3-dim CFT with N
3
2 degrees of freedom [14]. It is well known

that the near horizon limit of the suf�cient large number of M2-branes is AdS4 × S7, so

we can think the AdS/CFT correspondence is satis�ed. On the AdS side, we can derive

the blackhole entropy made by multiple M2-branes using Bekenstein-Hawking's entropy

formula. The relation between this entropy and the number of branes can be regarded as

that of the degrees of freedom and the number of branes in CFT side.

When the gauge symmetry is de�ned by Lie algebra, the degree of freedom is necessar-

ily proportional to N . This is the case for the multiple D-branes, whose gauge symmetry

is U(N). This means that the gauge symmetry for multiple M2-branes' system cannot be

written by Lie algebra. Actually, there were attempts [34, 35] where the scalar �elds were

taken to be U(N)-valued, transforming under a standard gauge symmetry. The gauge �eld

kinetic term was taken to be of Chern-Simons type, so the vector �eld did not introduce any

propagating degrees of freedom. Under these assumptions, no theory was found with 16

supersymmetries.

2.1.3 Basu-Harvey equation for M2-M5 system

The multiple M2-branes' system is included in well-known Basu-Harvey's M2-M5 sys-

tem [36]. This system is the BPS state of N coincident M2-branes ending on an M5-brane,

such that
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0 1 2 3 4 5 6 · · · 10

M5 � � · � � � � · ·
M2 � � � · · · · · ·

where `�' means that the brane expands to this direction, while `·' that it doesn't expand and
is pointlike. We note that M2-brane and M5-brane must share one direction (the direction

1 in this case) in order to keep some supersymmetry of M2-M5 system. It is known as the

intersection rule.

On the M5-brane's worldvolume, this con�guration appears as a self-dual string soliton

[37]. Basu and Harvey, however, examined this con�guration from the M2-brane point

of view. They exploited an analogy with the type IIB string con�guration built from N

coincident D1-branes ending on a D3-brane. In that case, the end point of the D1-branes

appears as a BPS monopole on the D3-brane's worldvolume.

0 1 2 3 4 5 /6 · · · 10

D3 � · · � � � /− · ·
D1 � · � · · · /· · ·

where we compactify the direction 6, and take T-duality for the direction 1, then we obtain

the system in type IIB superstring theory. On the D1-branes' worldvolume, the con�gura-

tion gives rise to a fuzzy funnel soliton [38] which is a fuzzy 2-sphere whose radius grows

in�nitely as the D3-brane is reached. These two descriptions of the same physical state

provide a stringy realization of the Nahm construction [39�41].

∂Xa

∂x2
+

1
2
εabc[Xb, Xc] = 0 , (2.1)

where a, b, c = 3, 4, 5. By analogy, we naturally hope that the M2-brane theory might

provide a generalized Nahm construction for self-dual string solitons.

The queer commutator appears � the hint for M2-branes' theory?

Then Basu and Harvey proposed that the M2-branes' worldvolume admits a fuzzy funnel

solution that satis�es a generalized Nahm equation [36, 42]

dXa

d(x2)
+
K

4!
εabcd[G,Xb, Xc, Xd] = 0, (2.2)

where a, b, c = 3, 4, 5, 6,K = M3/8π
√

2N is a constant,

[A,B,C,D] = ABCD −BACD −ACBD +ACDB + · · · , (2.3)

and G is a �xed matrix such that G2 = 1.
Here we use the 4-commutator with one �xed entry, so we can effectively regard it as

the 3-commutator. However the 4-commutator is chosen here, because in fact it is known
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that we cannot quantize the n-commutator (n : odd) without losing trace property and by

part integration property [43]. The problem of quantization is very important, but also very

dif�cult. We will mention it a little in Chapter 5, but we avoid this problem in this thesis

by considering only the classical theory, so we use odd commutators without any caution

in the following.

The solution of this equation (2.2) describes a fuzzy 3-sphere [44] whose radius grows

in�nitely as one approaches the M5-brane. Unfortunately, however, it is not known how

to derive the Basu-Harvey equation from �rst principles. In [36] a bosonic theory was

constructed, essentially by reversing the Bogomol'nyi procedure of writing the action as a

perfect square plus boundary terms. Now what we would like to do is to understand the

origin of this theory considering only the geometric and supersymmetric features of M2-

branes.

2.1.4 Supersymmetry transformations

The Basu-Harvey equation becomes an important hint for considering the supersymmetry

transformations for multiple M2-branes. Now we show this.

For D2-branes' case

We start by considering the supersymmetry transformations of N coincident D2-branes,

written so the spacetime symmetries are manifest:

δXi = iε̄ΓiΨ

δAµ = iε̄ΓµΓ10Ψ

δΨ = ∂µX
iΓµΓiε+

1
2
FµνΓµνΓ10ε+

i

2
[Xi, Xj ]ΓijΓ10ε. (2.4)

where µ, ν = 0, 1, 2 denote the worldvolume coordinates, and i, j = 3, · · · , 9 denote the

transverse directions of the D2-branes. There is an SO(1, 2) symmetry of the worldvolume,

as well as a manifest SO(7) symmetry of the transverse R7 that acts on the scalars and on

the Γ matrices.

Notice the explicit appearance of Γ10. This matrix ensures that the unbroken supersym-

metries satisfy Γ012ε = ε, while the broken supersymmetries satisfy Γ012ε = −ε. All the
fermions are Goldstinos, and obey the corresponding parity condition Γ012Ψ = −Ψ.

Toward M2-branes' case

We now attempt to generalize these transformations to the case of multiple M2-branes. The

presence of the explicit Γ10 forbids a straightforward lift to eleven dimensions. Therefore

we simply assume that there is some extension of the D2-brane transformations such that,

if all the vector �elds are set to zero, the D2-brane transformations lift in such a way that

the SO(7) symmetry is trivially extended to SO(8). Our transformations capture the fact
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that the M2-brane theory almost certainly contains eight scalar �elds, corresponding to the

eight transverse dimensions. Since we have ignored all gauge �elds, we cannot expect the

corresponding Lagrangian to be invariant under the supersymmetry transformations. Nor

can we expect the transformations to close. We will discuss the gauge symmetrization and

supersymmetrization later in §2.3.
Thus in what follows we put aside all vector �elds and study the scalar-spinor super-

symmetry transformations of the multiple M2-branes' theory. As the �rst step, we propose

the lowest order supersymmetry transformations of the following form:

δXI = iε̄ΓIΨ

δΨ = ∂µX
IΓµΓIε+ iκ[XI , XJ , XK ]ΓIJKε, (2.5)

where I, J,K = 3, 4, 5, · · · , 10. In these expressions, κ is a dimensionless constant and

[XI , XJ , XK ] is antisymmetric and linear in each of the �elds. These transformations

imply that (XI ,Ψ) have dimension (1
2 , 1), as required for conformal invariance. We note

that there could be other cubic terms that are not totally antisymmetric in I, J,K and that

vanish in the D2-brane limit [45], or that correspond to higher-order terms in the Dirac-

Born-Infeld effective theory of the D2-branes. Quite a few studies on these possibilities has

done, but we do not consider here. Instead, we just stipulate the presence of a ΓIJK term,

and we focus on it alone.

Basu-Harvey-like equation appears as BPS equation.

There is another argument for such a ΓIJK term in the supersymmetry transformations.

The preserved supersymmetries ofN M2-branes in the presence of an M5-brane (i.e. Basu-

Harvey's M2-M5 system) satisfy Γ2ε = Γ3456ε, or equivalently

Γabcε = εabcdΓ2Γdε, (2.6)

where a, b, c, d = 3, 4, 5, 6. From this, one obtains the BPS equation

dXa

d(x2)
= iκεabcd[Xb, Xc, Xd]. (2.7)

The solutions to this equation behave as Xa ∼ 1/
√
x2 as Xa → ∞. Turning this around,

we see that x2 ∼ 1/R2 at small R, where R2 = (X3)2 + (X4)2 + (X5)2 + (X6)2. This
is the correct divergence to reproduce the pro�le of the self-dual string soliton on the M5-

brane [37]. So we can say that the cubic term and the appearance of the ΓIJK are crucial to

obtaining a Bogomol'nyi equation (2.2) with the correct features.

2.2 Lie 3-algebra as gauge symmetry

In the proposed supersymmetry transformation (2.5), we use a 3-commutator which is to-

tally antisymmetric and multilinear. In general, for aD-dim linear space V = {
∑D

a=1 vaT
a;
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va ∈ C}, such a multilinear map [∗, · · · , ∗] : V⊗n → V can de�ne the algebra which

is known as Lie n-algebra or Filippov n-algebra [46]. This can be regarded as a natu-

ral generalization of Lie algebra. Here, we usually require that the multilinear map (or

n-commutator) should satisfy the following two conditions:

Skew-symmetry

[T aσ(1) , · · · , T aσ(n) ] = (−1)|σ|[T a1 , · · · , T an ] . (2.8)

Fundamental identity

[T a1 , · · · , T an−1 , [T b1 , · · · , T bn ]]

=
n∑

k=1

[T b1 , · · · , T bk−1 , [T a1 , · · · , T an−1 , T bk ], T bk+1 , · · · , T bn ] , (2.9)

The latter can be regarded as the generalized Jacobi identity. It means that the commutator

[T a1 , · · · , T an−1 , ∗] acts as a derivative on V , and it will be used to represent a symmetry

transformation. In particular, in n = 3 case, the fundamental identity becomes

[T a, T b, [T c, T d, T e]]

= [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] + [T c, T d, [T a, T b, T e]] . (2.10)

Non-associative algebra can make a non-vanishing 3-commutator.

In the following, we concentrate our attention on the n = 3 case. Here one may think that

T a can be valued in the Lie algebra u(N), as in the D2-brane theory. If so, the [T a, T b, T c]
would be given by a double commutator

[T a, T b, T c] =
1
3!

[[T a, T b], T c] ± cyclic , (2.11)

but it vanishes because of the Jacobi identity. Therefore we must take T a to be valued in a

non-associative algebra A, with a product · : A×A → A. We require the algebra to have

a 1-dim center generated by I , and de�ne the associator(
T a, T b, T c

)
= (T a · T b) · T c − T a · (T b · T c) . (2.12)

which vanishes in an associative algebra. We then de�ne

[T a, T b, T c] =
1

2 · 3!

(
T [a, T b, T c]

)
, (2.13)

which is linear and fully antisymmetric, as required. The right hand side is what one �nds

by expanding out the Jacobi identity [[T a, T b], T c] + [[T b, T c], T a] + [[T c, T a], T b]. In a

non-associative algebra, the antisymmetrized associator leads to a natural 3-commutator

structure. With this construction, we have de�ned the supersymmetry transformations (2.5)

for the scalar-spinor sector of the M2-brane theory.
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The trace must satisfy the invariant metric condition.

To de�ne an action, we require a trace form on the algebra A. This is a bilinear map

〈 , 〉 : A×A → C that is symmetric and invariant:

〈T a, T b〉 = 〈T b, T a〉 , 〈T a · T b, T c〉 = 〈T a, T b · T c〉 . (2.14)

We also assume Hermitian conjugation † and positivity, which implies 〈T a†, T a〉 ≥ 0 for

any A ∈ A (with equality if and only if T a = 0). The invariance property implies that

〈(T a, T b, T c), T d〉 = 〈(T a · T b) · T c, T d〉 − 〈T a · (T b · T c), T d〉
= 〈T a · T b, T c · T d〉 − 〈T a, (T b · T c) · T d〉
= −〈T a, (T b, T c, T d)〉 . (2.15)

It also follows that

〈[T a, T b, T c], T d〉 = −〈T a, [T b, T c, T d]〉 , (2.16)

which is called the invariant metric condition.

The metric and structure constants of Lie 3-algebra

Until now, we consider particularly the case of non-associative algebra. More generally,

however, we only require that the algebra admit a totally antisymmetric trilinear product

[∗, ∗, ∗]. This means that the antisymmetric product need not arise from a non-associative

product on the algebra. We call such an algebra a Lie 3-algebra.

To represent this algebra, we introduce the structure constants

[T a, T b, T c] = fabc
dT

d, (2.17)

from which is it is clear that fabc
d = f [abc]

d. The trace form (2.14) provides a metric

hab = 〈T a, T b〉 (2.18)

that we can use to raise indices: fabcd = hdefabc
e. On physical grounds, we assume that

hab is positive de�nite. The condition (2.16) on the trace form implies that

fabcd = −fdbca , (2.19)

and this further implies that fabcd = f [abcd], in analogy with the familiar result in Lie

algebras. In terms of the structure constants, the fundamental identity (2.10) becomes

f efg
df

abc
g = f efa

gf
bcg

d + f efb
gf

cag
d + fefc

gf
abg

d . (2.20)
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Hermitian conjugation

On physical grounds, we assume that all the generators are Hermitian, in the sense that

T a† = T a. Thus we should make some comments on Hermitian conjugation. A natural

de�nition of the Hermitian conjugate of a 3-commutator is

[T a, T b, T c]† = [T c†, T b†, T a†] . (2.21)

This relation determines the reality of structure constants. For the usual Lie algebra, if we

choose the generators to be Hermitian, the structure constants fab
c are real numbers, and if

the generators are anti-Hermitian, the structure constants are imaginary. This is not the case

for 3-commutators. The structure constants are always imaginary when the generators are

all Hermitian or all anti-Hermitian.

Fundamental identity is also required by local symmetry.

On physical grounds again, we expand the �elds, for example,XI = XI
aT

a (a = 1, · · · ,D),

where D is the dimension of A (and not the number of M2-branes).

When we study on the closure of supersymmetry transformation (2.5), we get the con-

dition that the gauge variation should be [1]

δXI ∝ iε̄2ΓJKε1[XJ , XK , XI ] , (2.22)

which can be viewed as a local version of the global symmetry transformation

δX = [α, β,X] , (2.23)

where α, β ∈ A. For (2.23) to be a symmetry, it must act as a derivation

δ([X,Y, Z]) = [δX, Y, Z] + [X, δY, Z] + [X,Y, δZ] , (2.24)

which leads to the fundamental identity (see, for example, [47])

[α, β, [X,Y, Z]] = [[α, β,X], Y, Z] + [X, [α, β, Y ], Z] + [X,Y, [α, β, Z]] . (2.25)

In the gauge theory with ordinary Lie algebra, Jacobi identity arises from demanding that

the transformation δX = [α,X] acts as a derivation. Here the analogous things happen.
In terms of the structure constants, the symmetry transformation (2.23) can be written

as

δXd = fabc
dαaβbXc . (2.26)

However, the notation allows for the more general transformation

δXd = fabc
dΛabXc , (2.27)

which we assume from now on. In particular, the transformation (2.22) corresponds to the

choice

Λab ∝ iε̄1ΓJKε2X
J
aX

K
b . (2.28)
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Note that the generator Λab cannot in general be written as α[aβb] for a single pair of vectors

(αa, βb). However, Λab can always be written as a sum over D such pairs.

With the Lie 3-algebra, various �elds in BLG model which are symbolically written as

φ =
∑

a φaT
a transform in�nitesimally as

δΛφ =
∑
a,b

Λab [T a, T b, φ] or δΛφa = Λcdf
cdb

aφb (2.29)

for the gauge parameter Λab. The fundamental identity (2.10) implies that this transforma-

tion closes in the following sense,

[δΛ1 , δΛ2 ]φ = δ[Λ1,Λ2]φ, [Λ1,Λ2]ab := Λ1deΛ2cbf
dec

a + Λ1deΛ2acf
dec

b . (2.30)

As a result of (2.16), the metric (2.18) must also be invariant under the symmetry (2.29),

〈δΛφ1, φ2〉 + 〈φ1, δΛφ2〉 = 0 . (2.31)

The BLG model, whose action is constructed with the structure constants and the invariant

metric, must be a gauge theory associated with this symmetry.

2.3 Gauge and super symmetrization

The minimal Lagrangian

To see that the action is invariant under global symmetries of this form, we observe that for

any Y ,

1
2
δ〈Y, Y 〉 = 〈δY, Y 〉 = hdeδYdYe = hdeΛabf

abc
dYcYe = fabceΛabYcYe

= 0 , (2.32)

by the antisymmetry of fabce. In addition, the fundamental identity ensures that

(δ[XI , XJ , XK ])a = f cdb
aΛcd[XI , XJ , XK ]b . (2.33)

Thus the Lagrangian

L = −1
2
〈∂µX

I , ∂µXI〉 − 3κ2〈[XI , XJ , XK ], [XI , XJ , XK ]〉 , (2.34)

is invariant under the symmetry δXI
a = f cdb

aΛcdX
I
b .

To obtain the full Lagrangian with Ψ and Aµ terms, we need to discuss the gauge sym-

metry and supersymmetry. More concretely, in this section, we show how to gauge the local

symmetry and obtain a conformal and gauge-invariant action with all 16 supersymmetries.

2.3.1 Gauge symmetry

We gauge a symmetry that arises from the 3-commutators.
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Covariant derivative

Now we wish to promote the global symmetry (2.23) to a local one. To this end, we intro-

duce a covariant derivativeDµX such that δ(DµX) = Dµ(δX) + (δDµ)X . If we let

δΛXa = Λcdf
cdb

aXb =: Λ̃b
aXb , (2.35)

then the natural choice is to take

(DµX)a = ∂µXa − Ãµ
b
aXb , (2.36)

where Ãµ
b
a ≡ f cdb

aAµcd is a gauge �eld with two gauge indices. We can therefore think

of Ãµ
b
a as living in the space of linear maps from A to itself, in analogy with the adjoint

representation of a Lie algebra. Then the �eld X is, in some sense, in the fundamental

representation.

Field strength

A little calculation shows that the covariant derivative is obtained by taking

δΛÃµ
b
a = ∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃c

a =: DµΛ̃b
a . (2.37)

Indeed, this is the usual form of a gauge transformation. The �eld strength is de�ned as

([Dµ, Dν ]X)a = F̃µν
b
aXb, (2.38)

which leads to

F̃µν
b
a = ∂νÃµ

b
a − ∂µÃν

b
a − Ãµ

b
cÃν

c
a + Ãν

b
cÃµ

c
a . (2.39)

The resulting Bianchi identity isD[µF̃νλ]
b
a = 0. One also �nds that

δΛF̃µν
b
a = −Λ̃b

cF̃µν
c
a + F̃µν

b
cΛ̃c

a . (2.40)

These expressions are identical to what one �nds in an ordinary gauge theory based on a

Lie algebra, where the gauge �eld is in the adjoint representation. Here the gauge �eld

takes values in the space of linear maps of A into itself. The 3-commutator allows one to

construct linear maps on A from two elements of A.

2.3.2 Supersymmetry

Now we show how to supersymmetrize the gauged multiple M2-branes' model. In §2.1.4,
we argued that the general form is

δεX
I = iε̄ΓIΨ

δεΨ = ∂µX
IΓµΓIε+ κ[XI , XJ , XK ]ΓIJKε, (2.41)
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where κ is a constant. However, as we mentioned, this algebra doesn't close, and the closure

on the scalarsXI requires the local symmetry δXI ∝ iε̄2ΓJKε1[XJ , XK , XI ].
So let us apply the ideas of the previous subsection to gauge this symmetry. We �rst

introduce the gauge �eld Ãµ
b
a with its associated covariant derivative. Then the supersym-

metry transformations take the form

δεX
I
a = iε̄ΓIΨa

δεΨa = DµX
I
aΓµΓIε+ κXI

bX
J
c X

K
d f

bcd
aΓIJKε (2.42)

δεÃµ
b
a = iε̄ΓµΓIX

I
c Ψdf

cdb
a.

where the form of δεÃ comes from the dimension counting and conformal symmetry (i.e.

no free dimensionful parameters). In fact, this algebra can be made to close on shell.

Closure of supersymmetry transformations

In order to check the closure of supersymmetry, we use the Fierz identity for arbitrary

spinors ε1, ε2 and χ, all of which are real spinors of 11-dim Clifford algebra and have the

same chirality with respect to Γ012 :

(ε̄2χ)ε1 − (ε̄1χ)ε2

= − 1
16

[
2(ε̄2Γµε1)Γµχ− (ε̄2ΓIJε1)ΓIJχ+

1
4!

(ε̄2ΓµΓIJKLε1)ΓµΓIJKLχ

]
,(2.43)

wherem,n, · · · = 0, · · · , 10, µ, ν, · · · = 0, 1, 2 and I, J, · · · = 3, 4, · · · , 10.

Scalar �elds

We �rst consider the scalars. We �nd that the transformations close into a translation and a

gauge transformation

[δ1, δ2]XI
a = vµDµX

I
a + Λ̃b

aX
I
b , (2.44)

where vµ = −2iε̄2Γµε1 and Λ̃b
a = 6iκε̄2ΓJKε1X

J
c X

K
d f

cdb
a.

Fermion �elds

Next, we consider the fermions. When we evaluate [δ1, δ2]Ψa using eq. (2.43), we �nd two

separate terms involving ε̄2ΓµΓIJKLε1 that must cancel for closure. This implies

κ = −1/6, (2.45)

so there is no free parameter, as required from the nature of M-theory. Then we �nd

[δ1, δ2]Ψa = vµDµΨa + Λ̃b
aΨb

+ i(ε̄2Γνε1)Γν

(
ΓµDµΨa +

1
2
ΓIJX

I
cX

J
d Ψbf

cdb
a

)
− i

4
(ε̄2ΓKLε1)ΓKL

(
ΓµDµΨa +

1
2
ΓIJX

I
cX

J
d Ψbf

cdb
a

)
. (2.46)
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Closure requires that the second and third lines vanish. This determines the fermionic equa-

tion of motion

ΓµDµΨa +
1
2
ΓIJX

I
cX

J
d Ψbf

cdb
a = 0 . (2.47)

Thus, as required, we obtain the on-shell equation such that

[δ1, δ2]Ψa = vµDµΨa + Λ̃b
aΨb . (2.48)

Gauge �eld

We �nally consider [δ1, δ2]Ãµ
b
a. Again we �nd a term involving ε̄2ΓµΓIJKLε1, but fortu-

nately, this term vanishes by the fundamental identity. Then we �nd

[δ1, δ2]Ãµ
b
a = 2i(ε̄2Γνε1)εµνλ(XI

cD
λXI

d +
i

2
Ψ̄cΓλΨd)f cdb

a

− 2i(ε2ΓIJε1)XI
cDµX

J
d f

cdb
a. (2.49)

To close the algebra, the equation of motion for Ãµ
b
a must be

F̃µν
b
a + εµνλ(XJ

c D
λXJ

d +
i

2
Ψ̄cΓλΨd)f cdb

a = 0 , (2.50)

so that on shell

[δ1, δ2]Ãµ
b
a = vνF̃µν

b
a +DµΛ̃b

a. (2.51)

is satis�ed. Note that Ã c
µ d contains no local degrees of freedom, as required.

From the above discussion, we see that the 16 supersymmetries close on shell.

Equations of motion

The equations of motion for Ψ and Aµ are already obtained as eq. (2.47), (2.50). To �nd

the remaining bosonic equation of motion, we take the supervariation of the fermion's one.

This gives

0 = ΓI

(
D2XI

a − i

2
Ψ̄cΓIJXJ

d Ψbf
cdb

a +
1
2
f bcd

af
efg

dX
J
b X

K
c X

I
eX

J
f X

K
g

)
ε

+ ΓIΓλX
I
b

(
1
2
εµνλF̃µν

b
a −XJ

c D
λXJ

d f
cdb

a −
i

2
Ψ̄cΓλΨdf

cdb
a

)
ε . (2.52)

The second term vanishes as a consequence of the vector equation of motion (2.50). So the

�rst term determines the scalar equations of motion

D2XI
a − i

2
Ψ̄cΓIJXJ

d Ψbf
cdb

a −
∂V

∂XIa
= 0 , (2.53)

where V = 1
12f

abcdf efg
dX

I
aX

J
b X

K
c X

I
eX

J
f X

K
g = 1

2·3!〈[X
I , XJ , XK ], [XI , XJ , XK ]〉.
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2.4 BLG action and Summary

Let us summarize the results.

Gauge symmetry transformations

δΛX
I
a = Λ̃b

aX
I
b , δΛΨa = Λ̃b

aΨb , δΛÃµ
b
a = DµΛ̃b

a , (2.54)

where Ãµ
b
a = Aµcdf

cdb
a, Λ̃b

a = Λcdf
cdb

a, and

DµΛab = ∂µΛab − f cde
aAµcdΛeb + f cde

bAµcdΛea. (2.55)

Supersymmetry transformations

δXI
a = iε̄ΓIΨa

δΨa = DµX
I
aΓµΓIε− 1

6
XI

bX
J
c X

K
d f

bcd
aΓIJKε

δÃµ
b
a = iε̄ΓµΓIX

I
c Ψdf

cdb
a . (2.56)

Equations of motion

ΓµDµΨa +
1
2
ΓIJX

I
cX

J
d Ψbf

cdb
a = 0

D2XI
a − i

2
Ψ̄cΓI

JX
J
d Ψbf

cdb
a −

∂V

∂XIa
= 0

F̃µν
b
a + εµνλ(XJ

c D
λXJ

d +
i

2
Ψ̄cΓλΨd)f cdb

a = 0 , (2.57)

where V = 1
12〈[X

I , XJ , XK ], [XI , XJ , XK ]〉, and

DµX
I
a = ∂µX

I
a − f bcd

aAµbcX
I
d , DµΨa = ∂µΨI

a − f bcd
aAµbcΨd . (2.58)

Closure of supersymmetry

After using the equations of motion, the supersymmetry closes into translations and gauge

transformations

[δ1, δ2]XI
a = vµ∂µX

I
a + (Λ̃b

a − vνÃν
b
aX

I
b )

[δ1, δ2]Ψa = vµ∂µΨa + (Λ̃b
a − vνÃν

b
aΨb)

[δ1, δ2]Ãµ
b
a = vν∂νÃµ

b
a + D̃µ(Λ̃b

a − vνÃν
b
a), (2.59)

We have explicitly demonstrated that the supersymmetry variation of the fermion equa-

tion of motion vanishes, and that the algebra closes on shell. It follows that all the equations

of motion are invariant under supersymmetry. Furthermore, one can check using the funda-

mental identity that the Bianchi identity εµνλDµF̃νλ
b
a = 0 is satis�ed.
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BLG action

Finally we obtain the action for this system. The equations of motion (2.57) can be obtained

from the Lagrangian

L = LX + LΨ + Lint + Lpot + LCS

LX = −1
2
〈DµX

I , DµXI〉

LΨ =
i

2
〈Ψ̄,ΓµDµΨ〉

Lint =
i

4
〈Ψ̄,ΓIJ [XI , XJ ,Ψ]〉

Lpot = − 1
12

〈[XI , XJ , XK ], [XI , XJ , XK ]〉

LCS =
1
2
εµνλ(fabcdAµab∂νAλcd +

2
3
f cda

gf
efgbAµabAνcdAλef ) . (2.60)

This theory provides an example of the multiple M2-branes' model. It is invariant under

16 supersymmetries and an SO(8) R-symmetry, and conformal invariant at the classical

level. These are all the continuous symmetries that are expected of multiple M2-branes.

Moreover, it contains no free parameters, up to a rescaling of the structure constants. This

is also appropriate nature for M2-branes' theory.

Notes on Chern-Simons term

It is important to note that the structure constants fabc
d enter into the Chern-Simons term in

a non-standard way. This `twisted' Chern-Simons term

Ω = (fabcdAµab∂νAλcd +
2
3
f cda

gf
efgbAµabAνcdAλef ) dxµ ∧ dxν ∧ dxλ (2.61)

satis�es

dΩ = Fab ∧ F̃ ab, (2.62)

where F̃µν
b
a = Fµνcdf

cdb
a. Ω is written in terms of Aµab and not the physical �eld

Ãµ
b
a = Aµcdf

cdb
a that appears in the supersymmetry transformations and equations of

motion. However, one can check that Ω is invariant under shifts of Aµab that leave Ãµ
b
a

invariant. Thus it is locally well de�ned as a function of Ãµ
b
a.

This Chern-Simons term naively breaks the parity that is expected to be a symmetry of

the M2-branes' worldvolume. However, we can make the Lagrangian parity invariant, if we

assign an odd parity to fabcd. In particular, if we invert x2 → −x2, we must then require

that XI
a and Ãµ

b
a be parity even for µ = 0, 1, while Ã2

b
a and fabcd be parity odd, and that

Ψa → Γ2Ψa. Note that this assignment implies that Aµab is parity odd for µ = 0, 1, while
A2ab is parity even.

Finally, one may consider that since the Chern-Simons term exists, it is natural to expect

the fabcd to be quantized. However, up to now, the way of quantization is not revealed.



Chapter 3

Examples of Lie 3-algebra and no-go

theorem

In the previous chapter, we successfully obtain the action for multiple M2-branes' world-

volume theory. This theory is called as BLG model, which is de�ned with an abstract Lie

3-algebra as gauge symmetry, at this stage. In fact, the concrete examples of BLG model

are given by the concrete examples of Lie 3-algebra. So what we have to do next is nothing

but the construction and classi�cation of Lie 3-algebra, satisfying all required conditions in

§2.2. The trivial solution is to put all structure constants zero fabc
d = 0. In this chapter, we

discuss the various examples except it.

3.1 A4 algebra and its direct sum

3.1.1 A4 algebra

The simplest nontrivial solution which satisfy the fundamental identity (2.10) of Lie 3-

algebra starts from the number of generators D = 4 such that

[T a, T b, T c] = iεabcdT d (a, b, c, d = 1, 2, 3, 4) (3.1)

and the metric is �xed by the requirement of invariance (2.16) to be

〈T a, T b〉 = δab. (3.2)

Here we normalize the generators by an overall constant factor, and we have a factor of i on

the right hand side of (3.1) due to our convention of the 3-commutator's Hermiticity (2.21).

In this case, the space G generated by all matrices Λ̃c
d = Λabf

abc
d is the space of all

4 × 4 antisymmetric matrices and hence G = so(4) with the invariant 4-form εabcd. This

algebra is invariant under SO(4) and will be denoted as A4 [48]. The structure constant is

given by the totally antisymmetrized epsilon tensor fabc
d = iεabcd.

43
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3.1.2 Direct sum of A4 algebra

From the A4 algebra, one may obtain higher rank algebras by direct sum as usual. For

n = 3 case, the algebra A4 ⊕ · · · ⊕ A4 (p-times) with D = 4p is written as,

[T a
(α), T

b
(β), T

c
(γ)] = iεabcdδαβγδT

d
(δ) , (3.3)

where a, b, c, d = 1, · · · , 4, α, β, γ, δ = 1, · · · , p and δαβγδ = 1 (if α = β = γ = δ) or 0
(otherwise).

A nontrivial question here is whether there exists any Lie 3-algebra which cannot be

reduced to the direct sums of the algebra A4, up to a direct sum with a trivial algebra. For

n = 3, one may directly solve the fundamental identity by computer for lower dimensions

D. Ho, Hou and Matsuo [12] examined the cases D = 5, 6, 7, 8 with the assumption that

the metric hab is invertible and can be set to δab after the change of basis. In this case, the

structure constants fabc
d can be identi�ed with totally anti-symmetric four tensor fabcd.

ForD = 5, 6, one can solve directly the fundamental identity algebraically by computer.

For D = 7, 8, they assumed the coef�cients fabcd are integer and |fabcd| ≤ 3 and scanned

all possible combinations. After all, the solutions can always be reduced toA4 up to a direct

sum with a trivial algebra, or A4 ⊕A4 (D = 8) after a change of basis.
This observation suggests that the Lie n-algebra for n ≥ 3 is very limited.

3.2 No-go theorem

Unfortunately, the examples of Lie 3-algebra are actually so rare. This means that we can

obtain only a few concrete examples of BLG model for multiple M2-branes' system.

On this regrettable fact, Ho, Hou and Matsuo [12] proposed �rst1 the conjecture that all

�nite-dimensional Lie 3-algebras with positive-de�nite metrics are direct products of A4

with trivial algebras, and give a little intuitive proof by noting the resemblance between the

fundamental identity and the Plücker relation when a positive-de�nite metric is assumed.

Soon after, the rigid proof for this conjecture is given by Papadopoulos [11], Gauntlett

and Gutowski [24]. In this section, we review the former proof for this no-go theorem.

Summary of the proof

In the following, we prove the conjecture that the structure constants fABCD of a Lie 3-

algebra a[3] with a positive-de�nite metric can be written as

f(4) := fABCD eA ∧ eB ∧ eC ∧ eD =
∑

r

µr dvol(Vr) , Vr ⊂ a[3] (3.4)

where the 4-dim planes Vr and Vr′ are orthogonal for r 6= r′ and µr are constants. The

indices A,B,C, · · · = 0, · · · ,D − 1, where D is the dimension of a[3]. {e0, · · · , eD−1}
1Comment: Gustavsson [49] studied a weaker form of the conjecture.
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is the basis of a[3]. Since we assume the invariant metric condition fABCD != f [ABCD]

should be satis�ed, we will use the differential form for the structure constants. In addition,

of course, we require that the fundamental identity

fH[ABCfD]EM
H = 0 . (3.5)

To prove this conjecture, we �rst observe that if a vector X ∈ a[3] is given, one can

associate a metric Lie algebra a[2](X) to a[3] de�ned as the orthogonal complement ofX ∈
a[3] with structure constants iXf(4). It is easy to verify that iXf(4) satisfy the fundamental

identity. Then we will demonstrate the following three statements:

• If a[3] admits an associated Lie algebra a[2](X) and a[2](X) doesn't have a bi-invariant
4-form,2 then f(4) is volume form of a 4-dim plane.

• If all the associated metric Lie algebras of a[3] are a[2](X) = ⊕`u(1) ⊕ ss, for some

` ≥ 0, where ss is a semi-simple Lie algebra which commutes with⊕`u(1), then f(4)

is as in (3.4).

• all metric Lie algebras are isomorphic to ⊕`u(1) ⊕ ss .

Step 1 : Lie 3-algebras and invariant 4-forms

Now we prove the �rst statement. Without loss of generality, we can take the vector �eld

X to be along the 0 direction. Then we split the indices as A = (0, i), B = (0, j) where
i, j, · · · = 1, · · · ,D − 1, and so on.

First, if we set A = M = 0 and the rest of the free indices in the range 1, · · · ,D − 1 in

(3.5), it is easy to see that

f ijk := f0ijk , F ijkl := f ijkl (3.6)

satisfy the Jacobi identity of ordinary Lie algebras and f ijk are the structure constants of

a[2](X). In terms of the differential form, we can rewrite the structure constants (3.6) as

f(4) =
1
3!
f ijk e0 ∧ ei ∧ ej ∧ ek +

1
4!
F ijkl ei ∧ ej ∧ ek ∧ el (3.7)

where (e0, ei) is an orthonormal basis.

2Here we see the assumption that a[2](X) doesn't have a bi-invariant 4-form. It is known that bi-invariant

forms on the Lie algebra of a group give rise to parallel forms with respect to the Levi-Civita connection on

the associated simply connected group manifold. So if a[2](X) admits a bi-invariant 4-form, the associated

group manifold G admits a parallel 4-form which is necessarily harmonic. For compact Lie groups, parallel

4-forms represent nontrivial classes in the 4th de Rham cohomology of G. Thus if a compact Lie group admits

a parallel 4-form, then H4
dR(G) 6= 0. However, for a large class of Lie groups, which includes all semi-simple

ones, H4
dR(G) = 0.

Therefore, this assumption is always satis�ed, as long as an associated Lie algebra a[2](X) to a[3] is semi-

simple, which is also the assumption in the second statement for ` ≥ 1 case.
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Next, we setM = 0 and the rest of the free indices in the range 1, · · · ,D − 1 in (3.5).

Using the skew-symmetry of f(4), one �nds that

F h[ijkfd]e
h = 0 . (3.8)

This implies that the 4-form F(4) is bi-invariant with respect to a[2](X). Since such a form
cannot exist by assumption, we conclude that F(4) = 0. Thus, we �nd that

f(4) =
1
3!
f ijke0 ∧ ei ∧ ej ∧ ek . (3.9)

Finally, if we take all free indices in (3.5) in the range 1, · · · ,D − 1, we �nd that

f [ijkfh]de = 0 . (3.10)

This is the classical Plücker relation which implies that f ijk is a simple 3-form, i.e. the

wedge product of three 1-forms. Thus one concludes that the only solution to (3.5) is

f(4) = µ e0 ∧ e1 ∧ e2 ∧ e3 , (3.11)

for some constant µ, where we have chosen the four 1-forms, without loss of generality, to

lie in the �rst four directions. This proves the �rst statement.

Step 2 : Lie 3-algebras and Lie algebras

In fact, we have already proved the second statement in the ` = 0 case at the end of Step

1. So next, let us consider the ` = 1 case, where for some X , the associated Lie algebra

is a[2](X) = u(1) ⊕ ss. In this case, H4
dR(G) 6= 0 and there are bi-invariant 4-forms on

a[2](X). Such bi-invariant 4-forms can be written as

F(4) = eD−1 ∧ ϕ(3) =
1
3!
ϕαβγ eD−1 ∧ eα ∧ eβ ∧ eγ , (3.12)

where ϕ is a bi-invariant form on the semi-simple part ss of a[2](X). We choose the u(1)
direction along eD−1, without loss of generality. So the indices α, β, γ = 1, · · · ,D − 2.
Thus we have

f(4) =
1
3!
fαβγ e0 ∧ eα ∧ eβ ∧ eγ +

1
3!
ϕαβγ eD−1 ∧ eα ∧ eβ ∧ eγ . (3.13)

Since ϕ is a bi-invariant 3-form on a semi-simple Lie algebra, it is a linear combination

of the structure constants fr of the simple Lie algebras in ss = ⊕rsr. Thus f(4) can be

rewritten as

f(4) =
∑

r

(µre0 + νreD−1) ∧ fr , (3.14)

where µr 6= 0 and νr are some constants.
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Next, since fr and fr′ (r 6= r′) are orthogonal, the fundamental identity (3.5) with

A,B,C ∈ sr andD,E,M ∈ sr′ implies that µre0 + νreD−1 and µ
r′e0 + νr′eD−1 are also

orthogonal. Moreover, the fundamental identity (3.5) with A,B,C,D,E,M ∈ sr implies

that fr satis�es the Plücker relation, as in (3.10), and so fr must be a simple 3-form.

In conclusion, f(4) is the sum of volume forms of at most two orthogonal 4-dim planes,

i.e. without loss of generality, it can be written as

f(4) = µ e0 ∧ e1 ∧ e2 ∧ e3 + ν e4 ∧ e5 ∧ e6 ∧ e7 , (3.15)

where µ and ν are constants.

This discussion can be extended to the ` > 1 case, where all associated Lie algebras

with Lie 3-algebras are a[2](X) = ⊕`u(1) ⊕ ss for ` > 1.
First, we write f(4) = e0 ∧ f(3) + F(4) as in (3.7), where f(3) are the structure constants

of ss and F(4) satis�es (3.8). Since semi-simple Lie algebras do not admit bi-invariant 1-,

2- and 4-forms, and ⊕`u(1) commutes with ss, the most general invariant 4-form F(4) is

F(4) =
∑

I

ρI ∧ ϕI + ξ(4) , (3.16)

where ρI are the 1-forms along the⊕`u(1) directions, ϕI are bi-invariant 3-forms of ss and

ξ(4) is a 4-form along the ⊕`u(1) directions.
Since the bi-invariant 3-forms of semi-simple Lie algebras are linear combinations of

those associated with the structure constants of the simple components sr, we have ϕI =
νI

rfr. Then f(4) can be rewritten as

f(4) =
∑

r

σr ∧ fr + ξ(4) , (3.17)

for some constants µr 6= 0 and νI
r, where σr = µre0+

∑
I νI

rρI . Since fr and fr′ (r 6= r′)

are orthogonal, the fundamental identity (3.5) implies that σr and σr′ are also orthogonal.

Thus there is an orthogonal transformation in ⊕`u(1) such that f(4) can be written, without

loss of generality, as

f(4) =
∑

r

λr er ∧ fr + ξ(4) , (3.18)

for some constants λr, where er belong to an orthonormal basis in the ⊕`u(1) directions,
i.e. in particular er ⊥ er′ for r 6= r′ and ierfs = 0 for all r and s. As in the previous

cases, the fundamental identity (3.5) with A,B,C,D,E,M ∈ sr implies that fr satis�es

the Plücker relation (3.10), and so fr must be a simple 3-form. Thus the component of f(4)

orthogonal to ξ(4) is as in (3.4).

Furthermore, from the orthogonality of fr and ξ(4) and the fundamental identity (3.5)

with A,B,C ∈ sr and D,E,M ∈ ⊕`u(1), one �nds that

ierξ(4) = 0 . (3.19)
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This means that the 4-form ξ(4) on ⊕`u(1) satis�es (3.5), i.e. ⊕`u(1) is also a metric Lie

3-algebra b[3] with structure constants ξ(4). Since the dimension of b[3] ⊂ a[3] is strictly less

than that of the original metric Lie 3-algebra a[3], the analysis can be repeated and it will

terminate after a �nite number of steps.

To summarize, we have demonstrated (3.4) under the assumption that all the associated

Lie algebras a[2](X) of a[3] are isomorphic to ⊕`u(1) ⊕ ss.

Step 3 : Metric Lie algebras

Finally, we show that all metric Lie algebras are isomorphic to ⊕`u(1) ⊕ ss.

It is known that any Lie algebra g, which is not semi-simple, contains the radical r, such

that g/r is semi-simple. This follows from the de�nition of semi-simple Lie algebras.

Now we assume that g admits a Euclidean invariant metric 〈∗, ∗〉. In such a case, one

can de�ne the semi-simple algebra ss as the orthogonal complement of r in g. From this

and the invariant metric condition 〈[g, g], g〉 + 〈g, [g, g]〉 = 0, one �nds that

[ss, ss] ⊆ ss , [ss, r] ⊆ r , [r, r] ⊆ r . (3.20)

So in order to prove the statement, we have �rst to show that for metric Lie algebras g, r is

abelian. From the de�nition of radical, there is a k such that rk is an abelian Lie algebra,

where ri+1 = [ri, ri] and r0 = r. The metric restricted on r and rk is non-degenerate. Since

rk is abelian, it is easy to see that

〈[rk, rk], rk−1〉 + 〈rk, [rk, rk−1]〉 = 〈rk, [rk, rk−1]〉 = 0 . (3.21)

So if [rk−1, rk] 6= {0}, it is orthogonal to the whole of rk. However, since [rk−1, rk] ⊆ rk

and the metric is non-degenerate, one concludes that [rk−1, rk] = 0. Similarly, we �nd

〈[rk−1, rk], rk−1〉 + 〈rk, [rk−1, rk−1]〉 = 〈rk, [rk−1, rk−1]〉 = 0 . (3.22)

Since [rk−1, rk−1] = rk 6= {0} and the metric is non-degenerate, one concludes that

[rk−1, rk−1] = 0. Therefore, rk−1 is also abelian and rk−1 = rk. Continuing in this way,

one can show that r = rk is abelian. As a result, without loss of generality, we can write

r = ⊕`u(1).
It remains to show that [ss, r] = 0. This follows again from the invariant metric condi-

tion. Indeed,

〈[r, ss], r〉 + 〈ss, [r, r]〉 = 〈[r, ss], r〉 = 0 , (3.23)

using that r is abelian. Thus if [r, ss] 6= {0}, the subspace [r, ss] of r is orthogonal to the

whole r. Since the metric is non-degenerate, one again concludes that [r, ss] = 0. Thus all
metric Lie algebras can be written as ⊕`u(1) ⊕ ss with ss to commute with ⊕`u(1).

Then we �nally �nish the proof.
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3.3 Nambu-Poisson bracket and its truncation

As we saw in the previous section, when both of the following conditions are satis�ed,

1. the number of generators D is �nite

2. the metric hab = 〈T a, T b〉 (a = 1, · · · ,D) is positive-de�nite

it is shown that all the examples of Lie 3-algebra are only (1) trivial algebra fabc
d = 0,

(2) the so-called A4 with D = 4 and the structure constants fabc
d = iεabcd, and (3) their

direct sums. Therefore, it means conversely that when the constraints (1)D is �nite and / or

(2) hab is positive-de�nite are replaced by milder ones, there may be many varieties of Lie

3-algebras which satisfy the fundamental identity (see, for example, [12, 50]).

In particular, in this section, we discuss the D = ∞ positive-de�nite Lie 3-algebra

which can be de�ned on any manifolds with Nambu-Poisson structure [51�57]. In Chapter

4, we will show that one can obtain an M5-brane's system from BLG model, when one

adopt this example of Lie 3-algebra as the gauge symmetry algebra.

3.3.1 Nambu-Poisson Brackets

Let Md be a d-dim manifold, and C(Md) an algebra of functions on Md. A Nambu-

Poisson bracket is a multilinear map from C(Md)⊗3 to C(Md) that satis�es the following
conditions [58]:

1. Skew-symmetry

{fσ(1), fσ(2), fσ(3)} = (−1)|σ|{f1, f2, f3}. (3.24)

2. Leibniz rule

{f1, f2, gh} = {f1, f2, g}h+ g{f1, f2, h}. (3.25)

3. Fundamental identity

{g, h, {f1, f2, f3}}
= {{g, h, f1}, f2, f3} + {f1, {g, h, f2}, f3} + {f1, f2, {g, h, f3}}. (3.26)

The prototype of a Nambu-Poisson bracket is the Jacobian determinant for three vari-

ables xi (i = 1, 2, 3)

{f1, f2, f3} = εijk∂if1 ∂jf2 ∂kf3. (3.27)

where i, j, k = 1, 2, 3. This is the classical Nambu bracket. More general Nambu-Poisson

bracket can be written in terms of the local coordinates as

{f1, f2, f3} =
∑

i1<i2<i3

∑
σ∈S3

(−1)σP i1i2i3(x) ∂iσ(1)
f1 ∂iσ(2)

f2 ∂iσ(3)
f3. (3.28)
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It is proved that one can always choose coordinates such that any Nambu-Poisson

bracket is locally just a Jacobian determinant [52�56]. Locally we can choose coordinates

such that

{f, g, h} = εijk∂if ∂jg ∂kh, (3.29)

where i, j, k = 1, 2, 3, and dx1dx2dx3 de�nes a local expression of the volume form. As a

result, it is straightforward to check that the Nambu-Poisson bracket can be used to generate

volume-preserving diffeomorphisms on a function f

δf = {g1, g2, f} (3.30)

speci�ed by two functions g1 and g2.

Nambu-Poisson algebra can also be regarded as an in�nite-dimensional Lie 3-algebra.

For a 3-manifold on which the Nambu-Poisson bracket is everywhere non-vanishing, it is

natural to use the volume form picked by the bracket to de�ne an integral
∫
M, and then the

metric can be de�ned by

〈f, g〉 =
∫
M
f g. (3.31)

Symmetries of the algebra are then automatically preserved by the metric.

Nambu-Poisson bracket with general order

The notion of Nambu-Poisson brackets can be naturally generalized to brackets of order

n, as a map from C(Md)⊗n to C(Md). The fundamental identity for Nambu-Poisson

brackets of order n is

{f1, · · · , fn−1, {g1, · · · , gn}}

=
n∑

k=1

{g1, · · · , gk−1, {f1, · · · , fn−1, gk}, gk+1, · · · , gn}. (3.32)

Both the Leibniz rule and the fundamental identity indicate that it is natural to think of

{f1, · · · , fn−1, ∗ } : C(Md) → C(Md) (3.33)

as a derivative on functions.

Each Nambu-Poisson bracket of order n corresponds to a Nambu-Poisson tensor �eld

P through the relation

{f1, · · · , fn} = P (df1, · · · , dfn), (3.34)

where

P =
∑

i1<···<in

P i1···in(x) ∂i1 ∧ · · · ∧ ∂in . (3.35)
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The theorem mentioned above can also be generalized to brackets of order n, which means

that any Nambu-Poisson tensor �eld P is decomposable, i.e. one can express P as

P = V1 ∧ · · · ∧ Vn (3.36)

for n-vector �elds Vi. For a review of Nambu-Poisson brackets see, e.g. [57].

Let us now focus on the case n = 3. When all the coef�cients of the Nambu-Poisson

tensor �eld are linear in x, that is, P i1i2i3(x) =
∑

j f
i1i2i3

jx
j for constant f i1i2i3

j , we call

the bracket a linear Nambu-Poisson bracket, and it takes the form of a Lie 3-algebra on the
coordinates

{xi, xj , xk} =
∑

l

f ijk
lx

l. (3.37)

Apparently, a linear Nambu-Poisson bracket is also a Lie 3-algebra when we restrict our-

selves to linear functions of the coordinates xi. We have to be careful, however, in that the

reverse is not true, as they also have some differences. For the Nambu-Poisson bracket, one

may change the coordinates by a general coordinate transformation. On the other hand, for

Lie 3-algebra, we only allow linear transformations of the basis. Since the requirement of

Leibniz rule for the Nambu-Poisson bracket is not imposed on a Lie 3-algebra, we expect

that only a small fraction of Lie 3-algebras are also linear Nambu-Poisson algebras. In par-

ticular, we don't expect that the Nambu bracket of a generic Lie 3-algebra be decomposable.

It has been shown that any linear Nambu-Poisson tensor of order n on a linear space Vd

can be put in one of the following forms by choosing a suitable basis of Vd [59].

Here the choice of coordinates is made such that the Nambu-Poisson tensor �eld is

linear, instead of trying to make its decomposability manifest. When we interpret these

brackets as Nambu brackets on the linear space generated by {xi}, we are no longer allowed
to make general coordinate transformations on the generators xi, and the decomposability

of the Nambu-Poisson tensor �eld is no longer relevant.

Linear Nambu-Poisson bracket: type I

The Nambu-Poisson tensor �eld (3.35) for this type of bracket is labeled by a pair of integers

(r, s) such that

P(r,s) =
r+1∑
j=1

±xj∂1 ∧ · · · ∧ ∂j−1 ∧ ∂j+1 ∧ · · · ∧ ∂n+1

+
s∑

j=1

±xn+j+1∂1 ∧ · · · ∧ ∂r+j ∧ ∂r+j+2 ∧ · · · ∧ ∂n+1, (3.38)

where −1 ≤ r ≤ n, 0 ≤ s ≤ min(d− n− 1, n− r). Explicitly, we have

{x1, · · · , xj−1, xj , · · · , xn+1} =


±xj , 1 ≤ j ≤ r + 1,
±xj−r+3, r + 2 ≤ j ≤ r + s+ 1,
0, r + s+ 2 ≤ j ≤ d.

(3.39)
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P(3,0) in (3.38) with plus signs for n = 3 gives A4 algebra. For other values of (r, s),
P(r,s) gives a new algebra.

Linear Nambu-Poisson Bracket: Type II

P = ∂1 ∧ · · · ∧ ∂n−1 ∧

 d∑
i,j=n

aijx
i∂j

 . (3.40)

In other words,

{x1, · · · , xn−1, xj} =
d∑

i=n

aijx
i, j = n, · · · , d. (3.41)

The linear Nambu-Poisson algebra of type II (3.40), (3.41) for arbitrary constant matrix

aij has the 3-commutator

[T 1, T 2, T j ] =
d∑

i=3

aijT
i (j = 3, · · · , d) . (3.42)

The invariance of the metric implies that

hi1 = hi2 =
d∑

i=3

hjiaik = 0 (3.43)

for i, j, k = 3, · · · , d. Thus a = 0 if h is invertible. Conversely, if a is invertible then

hij = 0 for i, j = 3, · · · , d. As T 1 and T 2 don't appear on the right hand side of the

3-commutator, there is no constraint on h11, h12 or h22.

As Nambu-Poisson brackets, we can extend the Lie 3-algebra on the space of linear

functions V = {
∑d

i=1 aiT
i} to all polynomials of T i's. The product of T i's de�nes a

commutative algebra.

3.3.2 Truncation of Nambu-Poisson bracket

In this subsection, we make examples of D < ∞ Lie 3-algebra by truncating Nambu-

Poisson bracket. From the no-go theorem in §3.2, these examples must not have positive-

de�nite metrics, but have zero-norm generators.

We start from a Nambu-Poisson bracket on d-dimmanifold, de�ned by local coordinates

xµ (µ = 1, · · · , d) by

{f1, f2, f3} := P (f1, f2, f3)

:=
d∑

µ1,µ2,µ3=1

Pµ1µ2µ3(x)∂µ1f1∂µ2f2∂µ3f3 (3.44)
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where Pµ1µ2µ3(x) is an antisymmetric tensor. In order to apply to the BLG model, it is

essential to assume here that the Nambu-Poisson bracket satis�es fundamental identity

{f1, f2, {f3, f4, f5}}
= {{f1, f2, f3}, f4, f5} + {f3, {f1, f2, f4}, f5} + {f3, f4, {f1, f2, f5}} . (3.45)

The Leibniz rule

{f0f1, f2, f3} = f0{f1, f2, f3} + {f0, f2, f3}f1 (3.46)

is usually required in the literature. In the context of BLG model, however, the role of

this condition is not very clear at this moment. The fundamental identity imposes a severe

constraint on Pµ1µ2µ3(x). As we mentioned in the previous subsection, it is known that

the fundamental identity implies the decomposability of P , in mathematical literature [57].

Namely it should be rewritten as

P = Pµ1µ2µ3(x)∂µ1 ∧ ∂µ2 ∧ ∂µ3 = V1 ∧ V2 ∧ V3 ,

Vi(x) = V µ
i (x)∂µ . (3.47)

It implies that the Nambu-Poisson bracket is essentially de�ned on 3-dim subspaceN spec-

i�ed by the tangent vectors Vi (i = 1, 2, 3). As we will discuss in Chapter 4, this can be

used to obtain the M5-brane's system from BLG model whose worldvolume is the product

M×N (M is the original M2-branes' worldvolume).

In the following, since we need to restrict Pµ1µ2µ3(x) to be polynomials of a �xed

degree for the consistency of the cut-off, we will not use this decomposability. When

Pµ1µ2µ3(x) is a homogeneous polynomial of degree p, we call the 3-commutator as the

homogeneous Nambu-Poisson bracket. Ho, Hou and Matsuo [12] proposed a truncation of

the Nambu-Poisson bracket (3.44) which satis�es the fundamental identity. The idea was

to truncate the Hilbert space C(X) (functions on X) to polynomials of xµ of degree ≤ N .

We will write this truncated Hilbert space as C(X)N . For such truncation to work properly,

we need to restrict the antisymmetric tensor Pµ1µ2µ3(x) to be a homogeneous polynomial

of degree p > 0.
On C(X)N , we rede�ne the Nambu-Poisson bracket to project out all the monomials

of order > N . We denote such projector as πN which acts on the polynomials of xµ as

πN

 ∞∑
n1,··· ,nd=0

c(n1, · · · , nd)(x1)n1 · · · (xd)nd


=

|~n|≤N∑
n1,··· ,nd=0

c(n1, · · · , nd)(x1)n1 · · · (xd)nd , (3.48)

where |~n| :=
∑d

i=1 ni. The Nambu-Poisson bracket on the truncated Hilbert space C(X)N

is then de�ned as

{f1, f2, f3}N := πN (P (f1, f2, f3)) . (3.49)
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It satis�es the fundamental identity

{f1, f2, {f3, f4, f5}N}N

= {{f1, f2, f3}N , f4, f5}N + {f3, {f1, f2, f4}N , f5}N + {f3, f4, {f1, f2, f5}N}N ,

(3.50)

because of the following reason. For simplicity, we assume fi to be a monomial of degree

pi. Since (3.50) is satis�ed trivially if fi =const, one may assume pi > 0. The fundamental

identity becomes nontrivial if the outer bracket is non-vanishing, namely,

p1 + p2 + p3 + p4 + p5 − 6 + 2p ≤ N . (3.51)

The fundamental identity is broken if the inner bracket vanishes due to the projection, but

this doesn't happen. For example, for the left hand side of (3.50), the above inequality

together with pi ≥ 1 implies

p3 + p4 + p5 ≤ N + 6 − 2p− p1 − p2 ≤ N + 4 − 2p ≤ N + 3 − p . (3.52)

In the last inequality, we used p ≥ 1. Therefore whenever the outer bracket doesn't vanish,
the value for the outer bracket is identical with the original bracket. So the fundamental

identity on the truncated Hilbert space comes from the fundamental identity on the original

space.

C(X)N is generated by �nite number of monomials, (x1)n1 · · · (xd)nd := T (~n) =
T (n1, · · · , nd) where ni ≥ 0 and |~n| ≤ N . Therefore, the truncated Nambu-Poisson

bracket de�nes a Lie 3-algebra such that

{T (~n1), T (~n2), T (~n3)}N =
∑
~n4

f~n1~n2~n3
~n4
T (~n4) , (3.53)

which satis�es the fundamental identity

f~n3~n4~n5
~n6
f~n1~n2~n6

~n7

= f~n1~n2~n3
~n6
f~n6~n4~n5

~n7
+ f~n1~n2~n4

~n6
f~n3~n6~n5

~n7
+ f~n1~n2~n5

~n6
f~n3~n4~n6

~n7
. (3.54)

We remark that the geometrical meaning of the algebra becomes clear when one takes the

largeN limit where the algebra of polynomials can be completed in different ways and this

corresponds to different topological spaces.

We note that because of the constraint p ≥ 1, we cannot de�ne the truncated Lie 3-

algebra from the Jacobian

P = ∂1 ∧ ∂2 ∧ ∂3 . (3.55)

As for the Leibniz rule (3.46), we have to be careful how to de�ne the product of func-

tions in the truncated Hilbert space. We de�ne

f •N g = πN (f g) , (3.56)
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which gives a commutative and associative product on the truncated space. We replace the

Leibniz rule by using this product rule

{f0 •N f1, f2, f3}N = f0 •N {f1, f2, f3}N + {f0, f2, f3}N •N f1 . (3.57)

We show that this condition is also satis�ed for p ≥ 1.
Let us assume that fi are monomials of x with degree pi ≥ 1, since the Leibniz rule is

trivially satis�ed when p0 = 0 or p1 = 0. The condition that the left hand side of (3.57) is

non-vanishing is

p0 + p1 ≤ N , p0 + p1 + p2 + p3 + p− 3 ≤ N . (3.58)

Since the second condition gives a stronger condition than the �rst for p ≥ 1, we take the
second condition. The �rst term on the right hand side is non-vanishing if

p1 + p2 + p3 + p− 3 ≤ N , p0 + p1 + p2 + p3 + p− 3 ≤ N . (3.59)

Again the second condition gives a stronger constraint. The second term on the left hand

side is non-vanishing with the same condition. To summarize, the conditions for the both

sides of equation are the same. So the truncation is compatible with the Leibniz rule (3.57)

for p ≥ 1.
From the discussion above, we show that the truncated Nambu-Poisson bracket {∗, ∗, ∗}N

with the truncated product •N can make consistent examples of Lie 3-algebra. We will show

the concrete examples i.e. the truncation version of eq. (3.38) and (3.40) in §5.1.

3.4 Lorentzian Lie 3-algebra

In the previous sections, we avoided considering the examples of Lie 3-algebra which con-

tain negative-norm generators. Now let us consider these cases, which provide other con-

crete examples of BLG model.

3.4.1 Central extension of a Lie algebra

We �rst consider the one-generator extension.

For a given Lie algebra G with generators T i and structure constants f ij
k:

[T i, T j ] = f ij
kT

k, (3.60)

we can introduce a new element u and de�ne a Lie 3-algebra as

[u, T i, T j ] = f ij
kT

k,

[T i, T j , T k] = 0 , (3.61)
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for i, j, k = 1, · · · , dimG. For a simple Lie algebra G, the invariant metric condition (2.16)

demands that

〈[u, T i, T j ], T k〉 + 〈T j , [u, T i, T k]〉 = 0 ⇒ f ij
lh

lk + f ik
lh

lj = 0 . (3.62)

This suggests that hij should be proportional to the Killing form of G. However, the invari-
ant metric conditions also include

〈[T i, T j , T k], u〉 + 〈T k, [T i, T j , u]〉 = 0 ⇒ f ij
lh

lk = 0,

〈[T i, T j , u], u〉 + 〈u, [T i, T j , u]〉 = 0 ⇒ hku = 0. (3.63)

Therefore, we cannot use the Killing form of the Lie algebra G as hij , but instead the metric

should be taken as

hij = 〈T i, T j〉 = 0 , hui = 〈u, T i〉 = 0 , huu = 〈u, u〉 = K , (3.64)

whereK is an arbitrary constant. This is a new example, but too simple to use as the gauge

symmetry algebra in BLG model.

Lorentzian Lie 3-algebra as a central extension of Lie algebra

Then we consider a more nontrivial example [15, 60, 61] by adding extra generator v such

that the 3-commutator is de�ned as

[v, TA, TB] = 0 ,

[u, T i, T j ] = if ij
kT

k ,

[T i, T j , T k] = −if ijkv , (3.65)

where i, j, k = 1, · · · , dimG, TA = {T i, u, v}, and f ijk := f ij
lh

lk is totally antisym-

metrized. One can check that all these 3-commutators satisfy the fundamental identity

[T a, T b, [T c, T d, T e]]

= [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] + [T c, T d, [T a, T b, T e]]. (3.66)

for all a, b, c, d, e. The requirement of invariance of the metric

〈[T a, T b, T c], T d〉 + 〈[T c, [T a, T b, T d]〉 = 0 (3.67)

implies that the metric has to be de�ned as

〈v, v〉 = 0, 〈v, u〉 = 1, 〈v, T i〉 = 0,

〈u, u〉 = K, 〈u, T i〉 = 0, 〈T i, T j〉 = hij , (3.68)

where K is an arbitrary constant. In this case, as compared with the previous case, hij can

be non-zero, so we can obtain some nontrivial form of BLG model by using this algebra.

This discussion will be done in Chapter 6.
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Note that there is an algebra homomorphism

u→ u+ αv, (3.69)

that preserves the Lie 3-algebra, but changes the metric by a shift ofK:

K = 〈u, u〉 → K − 2α . (3.70)

Thus one can always choose u such thatK = 0.

3.4.2 Lie 3-algebra with two or more negative-norm generators

In this subsection, we consider some generalizations of the Lorentzian 3-algebra in the

previous subsection by adding pairs of generators with Lorentzian metric. The positive-

norm generators are denoted as ei (i = 1, · · · , N ), and the Lorentzian pairs which cause

the negative-norm generators as ua, va (a = 1, · · · ,M ). If we setM = 1, it is reduced to

the previous case (3.68).

We assume that the invariant metric for them is given by the following simple form

〈ei, ej〉 = δij , 〈ua, vb〉 = δab . (3.71)

In terms of the four-tensor de�ned by

fABCD := fABC
Eh

ED , (3.72)

the invariance of the metric and the skew-symmetry of the structure constants implies that

the condition that this 4-tensor is antisymmetric with respect to all indices.

We also assume that the generators va are in the center of the Lie 3-algebra. This

condition is necessary to obtain the physically meaningful Lagrangian from BLG model

(i.e. a kind of Higgs mechanism to get rid of the ghost �elds arising from negative-norm

generators works well). We will discuss it in detail in Chapter 6. In terms of the 4-tensor

this condition is written as

fvaBCD = 0 (3.73)

for arbitrary B,C,D. Therefore, the index in the 4-tensor is limited to ei and ua. For the

simplicity of the notation, we write i for ei and a for ua for indices of the 4-tensor, for

example f ijab := feiejuaub and so on.

Fundamental identities

In the following, we introduce some notation for the 4-tensor

f ijkl = F ijkl, faijk = f ijk
a , fabij = J ij

ab, f
abci = Ki

abc, f
abcd = Labcd . (3.74)
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Now we rewrite the fundamental identity in terms of this notation (3.74):

F ijknFnlmp + F ijlnF knmp + F ijmnF klnp − F klmnF ijnp = 0, (3.75)

F ijknfnlm
a + F ijlnfknm

a + F ijmnfkln
a − F klmnf ijn

a = 0, (3.76)

f ijn
a Fnklm + f ikn

a F jnlm + f iln
a F jknm − f inm

a F jkln = 0, (3.77)

(f ijn
a fnkl

b + f ikn
a f jnl

b + f iln
a f jkn

b ) + F jklnJ in
ab = 0, (3.78)

J im
ab F

mjkl + J jm
ab F

imkl + Jkm
ab F

ijml + J lm
ab F

ijkm = 0, (3.79)

(J im
ab f

mjk
c + J jm

ab f
imk
c + Jkm

ab f
ijm
c ) − F ijkmKm

abc = 0, (3.80)

F ijknJnl
ab − F ijlnJnk

ab − f ijn
a fnkl

b + f ijn
b fnkl

a = 0, (3.81)

(J im
ab f

mjk
c − J im

ac f
mjk
b ) + (f ijm

a Jmk
bc − f ikm

a Jmj
bc ) = 0, (3.82)

−K l
abcf

lij
d +K l

abdf
lij
c + J il

abJ
lj
cd − J il

cdJ
lj
ab = 0, (3.83)

(f ikm
a Jmi

bc + f jkm
b Jmi

ca + f jkm
c Jmi

ab ) +Km
abcF

jkim = 0, (3.84)

(J jl
abJ

li
cd + J jl

adJ
li
bc − J jl

acJ
li
bd) − f jil

c K l
abd = 0, (3.85)

−Jki
abK

k
cde − Jki

beK
k
acd + Jki

aeK
k
bcd + Jki

cdK
k
abe = 0, (3.86)

f ijl
a K l

bcd − f ijl
b K l

acd + f ijl
c K l

abd − f ijl
d K l

abc = 0, (3.87)

Ki
abcK

i
def −Ki

adeK
i
bcf +Ki

acfK
i
bde −Ki

abfK
i
cde = 0. (3.88)

There are a few comments which can be made without detailed analysis:

Case of lowerM

For lower M (i.e. smaller number of Lorentzian pairs (ua, va)), some components of the

structure constants (3.74) vanish identically due to the antisymmetry of indices. For exam-

ple, for M = 1, we need to put J ij
ab = Ki

abc = Labcd = 0. For M = 2, one may put J ij
ab

nonvanishing but we have to keepKi
abc = Labcd = 0 and so on.

On F ijkl

A constraint for F ijkl (3.75) is identical to the fundamental identity of a Lie 3-algebra with

the structure constants F ijkl. So if we assume positive de�nite metric for ei, it automatically

implies that F ijkl is proportional to εijkl or its direct sums, from the discussion in §3.2.

On Labcd

In the fundamental identity (3.75)�(3.88), there is no constraint on Labcd. It comes from

the fact that the contraction with respect to Lorentzian indices automatically vanishes due

to the restriction of the structure constants (3.73). So it can take arbitrary value forM ≥ 4.
This term, however, is not physically relevant in BLG model, since they appear only in the

interaction terms of the ghost �elds which will be erased after Higgs mechanism.
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On the change of basis

We note that there is some freedom in the choice of basis when keeping the metric (3.71)

and the form of 4-tensor (3.73) invariant:

ẽi = Oi
je

j + P i
av

a, ũa = Qa
i e

i +Ra
bu

b + Sa
b v

b, ṽa = ((Rt)−1)a
bv

b, (3.89)

where

OtO = 1, Q = −RP tO, R−1S + (R−1S)t = −P tP . (3.90)

The matrices O and R describe the usual rotations of the basis. The matrix P describes the

mixing of the Lorentzian generators ua, va with ei.

By a change of basis (3.89), various components of the structure constants (3.74) mix.

For example, if we put O = R = 1 for simplicity and keep only the matrix P nontrivial

(which implies S = −1
2P

tP ), the structure constants in terms of the new basis {ẽi, ũa, ṽa}
are given as

F̃ ijkl = F ijkl, (3.91)

f̃ jkl
a = f jkl

a + P i
aF

ijkl, (3.92)

J̃ ij
ab = J ij

ab + P k
a f

ijk
b − P k

b f
ijk
a + F ijklP k

a P
l
b , (3.93)

K̃i
abc = Ki

abc + P j
aJ

ij
bc − P j

b J
ij
ac + P j

c J
ij
ab,

+f ikl
c P k

a P
l
b − f ikl

b P k
a P

l
c + f ikl

a P k
b P

l
c + P j

aP
k
b P

l
cF

ijkl . (3.94)

We will �nd that many solutions of the fundamental identities can indeed be identi�ed with

well-known Lie 3-algebra after such rede�nition of basis. In this sense, the classi�cation of

the Lorentzian Lie 3-algebra has a character of cohomology, namely only solutions which

can not reduce to known examples after all changes of basis give rise to physically new

system.

In the following, we give a somewhat technical analysis of the fundamental identity

(3.75)�(3.88). Solutions which we found are summarized in the end of this subsection.

We don't claim that our analysis exhausts all the possible solutions. But as we will see in

Chapter 7, they play an important physical role in string/M theory compacti�cation.

Case 1 : Lorentzian extension of Nambu-Poisson bracket

Let us examine the case with F ijkl 6= 0 �rst. As we already mentioned, eq. (3.75) implies

that F ijkl ∝ εijkl and its direct sum. So without loss of generality, one may assumeN = 4
and F ijkl = εijkl for the terms which include nontrivial contraction with F ijkl.

Suppose f ijk
a 6= 0 for some a. Then by the skew-symmetry of indices they can be

written as f ijk
a = εijklP a

l for some P a
l . This expression actually solves (3.76) and (3.77).

However, this form of f ijk
a is exactly the same as the right hand side of (3.92). It implies

that such f ijk
a can be set to zero by a rede�nition of basis.
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Therefore, at least when Lie 3-algebra is �nite-dimensional, it is impossible to construct

Lorentzian algebra with nontrivial F ijkl 6= 0. The situation is totally different if Lie 3-

algebra is in�nite-dimensional which we discussed in §3.3.1. The realization of Lie 3-

algebra was given as follows. We take N as a compact 3-dim manifold where Nambu-

Poisson bracket [51],

{f1, f2, f3} =
∑
a,b,c

εabc ∂af1∂bf2∂cf3 (3.95)

is well de�ned. Namely N is covered by the local coordinate patches where the coordinate

transformation between the two patches keeps the 3-commutator (3.95) invariant. If we take

χi(y) as the basis of H: the Hilbert space which consists of functions which are globally

well-de�ned on N , and one can choose a basis mutually orthonormal with respect to the

inner product

〈χi, χj〉 :=
∫
N
d3y χi(y)χj(y) = δij . (3.96)

It is known that the structure constants

F ijkl = 〈
{
χi, χj , χk

}
, χl〉 (3.97)

satisfy the fundamental identity (3.75).

We are going to show that it is possible to extend this Lie 3-algebra with the additional

generators with the Lorentzian signature. For simplicity, we consider the caseN = T 3. The

Hilbert spaceH is spanned by the periodic functions on T 3. If we write the �at coordinates

on T 3 as ya (a = 1, 2, 3), where the periodicity is imposed as ya ∼ ya + pa, and pa ∈ Z.
The basis ofH is then given by

χ~n(y) := e2πinaya
, ~n ∈ Z3 , (3.98)

with the invariant metric and the structure constants:

〈χ~n, χ~m〉 = δ(~n+ ~m) , (3.99)

F ~n~m~l~p = (2πi)3εabcnamblcδ(~n+ ~m+~l + ~p) . (3.100)

The idea to extend the Lie 3-algebra is to introduce the functions which are not well-

de�ned on T 3 but the 3-commutators among H and these generators remains in H. For

T 3, such generators are given by the functions ua = ya. The fundamental identity comes

from the de�nition of derivative and it doesn't matter whether or not the functions in the

3-commutators is well-de�ned globally. Therefore, even if we include extra generators

the analog of fundamental identity holds. More explicitly, we de�ne the extra structure

constants as

f~n~m~l
a := 〈

{
ua, χ~n, χ~m

}
, χ

~l〉 = (2πi)2εabcn
bmcδ(~n+ ~m+~l),

J~n~m
ab := 〈

{
ua, ub, χ~n

}
, χ~m〉 = (2πi)εabcn

cδ(~n+ ~m),

K~n
abc := 〈

{
ua, ub, uc

}
, χ~n〉 = εabcδ(~n). (3.101)
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It is not dif�cult to demonstrate explicitly that they satisfy all the fundamental identities

(3.75)�(3.88).

We have to be careful in the treatment of the new generators. For example, the inner

product (3.96) is not well-de�ned if the function is not globally well-de�ned onN . The fact

that the structure constants (3.100)�(3.101) satis�es the fundamental identities (3.75)�(3.88)

implies that we can de�ne the inner product abstractly as (3.71). Namely we introduce extra

generators va (a = 1, 2, 3) and de�ne

〈ua, vb〉 = δab, 〈ua, χ
~n〉 = 〈va, χ

~n〉 = 〈ua, ub〉 = 〈va, vb〉 = 0 (3.102)

while keeping (3.99).

We also need to be careful in the de�nition of the 3-commutator itself. The naive 3-

commutator needs to be modi�ed to make the structure constants FABCD totally antisym-

metric in all four indices. This condition is broken in the original 3-commutator after the

introduction of the extra generators ua. We have to come back to our original de�nition of

Lie 3-algebra where this symmetry is manifest. This implies the following rede�nition of

Lie 3-algebra:

[
χ~n, χ~m, χ

~l
]

= F ~n~m~l
~pχ

~p − f~n~m~l
a va,[

ua, χ~n, χ~m
]

= f~n~m
a ~l

χ
~l + J~n~m

ab vb,[
ua, ub, χ~n

]
= J~n

ab ~mχ
~m −K~n

abcv
c,[

ua, ub, uc
]

= Kabc~nχ
~n. (3.103)

This Lie 3-algebra may be regarded as the �central extension� of the Nambu-Poisson bracket.

The additional factors which are proportional to va on the right hand side is necessary to

make the metric invariant. One might worry if the fundamental identity may be violated by

the rede�nition of the algebra. In this example, fortunately this turns out not to be true. So

we have a consistent Lie 3-algebra with Lorentzian signature. It may be useful to repeat our

emphasis that, although ua was originally de�ned through ill-de�ned function ya, we have

to neglect this fact to de�ne the metric and Lie 3-algebra.

While the Lie 3-algebra (3.103) is new, the BLG model based on it turns out to be the

same as that on the original Nambu-Poisson bracket (i.e. the single M5-brane's models)

which we will see in Chapter 4, although it was not noticed explicitly [7].

It is straightforward to obtain similar Lorentzian extensions of Nambu-Poisson type Lie

3-algebras de�ned on different manifolds N such as S3 and S2 × S1. So far, the only

nontrivial Lie 3-algebra with positive-de�nite metric are A4 and the Nambu-Poisson type

Lie 3-algebras. The examples we consider here would exhaust the Lorentzian extensions

which can be obtained from them.
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Case 2 : Constraints from the fundamental identities for F ijkl = 0

In the following, we restrict ourselves to the case F ijkl = 0. The fundamental identities

(3.75)�(3.88) are now simpli�ed to be the following:

fni[j
a f

kl]n
b = 0 , (3.104)

f ijm
[a fmkl

b] = 0 , (3.105)

f ijm
a fmkl

b + fkim
a fmjl

b + f jkm
b fmil

a = 0 , (3.106)

J
l[i
abf

jk]l
c = 0 , (3.107)

f ijk
[a Jkl

bc] = 0 , (3.108)

J il
a[bf

ljk
c] + J

l[j
bc f

k]il
a = 0 , (3.109)

2Kk
ab[cf

kij
d] = J ik

abJ
kj
cd − J ik

cdJ
kj
ab , (3.110)

f ijk
a Kk

bcd = 3J ik
a[bJ

kj
cd] , (3.111)

3Ki
ab[cJ

ij
de] = Ki

cdeJ
ij
ab , (3.112)

J ij
a[bK

j
cde] = 0 , (3.113)

f ijk
[a Kk

bcd] = 0 , (3.114)

3Ki
ab[cK

i
de]f = Ki

cdeK
i
abf . (3.115)

In the above, we used the notation that all indices in parentheses are fully antisymmetrized.

For instance,

Aa[bBcd]e :=
1
6

(AabBcde +AacBdbe +AadBbce −AabBdce −AacBbde −AadBcbe) .(3.116)

The constraints above are not all independent. We can use (3.106) alone to derive

(3.104) and (3.105) as follows. Taking (3.106) and replacing the indices as (ijk) → (jki)
and (ab) → (ba) and subtracting the derived equation from (3.106), we get (3.105). It is

also obvious that (3.105) and (3.106) implies (3.104).

Similarly, (3.109) can be easily derived from (3.107) and (3.108).

Detailed analysis

Now we try to solve the fundamental identities displayed above and �nd a class of solutions.

First, a solution for (3.104) is to use a direct sum of Lie algebras g = g1 ⊕ · · · ⊕ gn. We

divide the values of indices into n blocks I = I1 ∪ · · · ∪ In and let

f ijk
a = γα

a f
ijk
α , (3.117)

where f ijk
α is de�ned by

f ijk
α =

{
f ijk

gα i, j, k ∈ Iα,

0 otherwise.
(3.118)
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Here f ijk
gα are the structure constants for gα while γα

a is a real number.

Note that the number n doesn't have to equalM . It is possible to have some of the sets

Ia empty. An example has g = g1 and all Ia 6=1 empty. In this case, for γα
a = δα

a , we have

f ijk
1 = f ijk

g1 and f ijk
a = 0 for all a 6= 1.

If all the other components of Lie 3-algebra structure constants vanish, one obtains from

(3.117) a set of solutions to the fundamental identity. The BLG model for this Lie 3-algebra

is not new, however. For each range of index, say Iα, we have

[ei, ej , ek] = −
∑

a

γα
a v

a , [ua, ei, ej ] =
∑

k

γα
a f

ijk
α ek . (3.119)

By a suitable rotation (3.89) with

v′1 =
∑

a

γα
a v

a, (3.120)

we always have

[ei, ej , ek] = −v′a , [u′a, ei, ej ] = δa1

∑
k

f ijk
α ek . (3.121)

Therefore it is reduced to the standard Lorentzian Lie 3-algebra forM = 1 after the restric-

tion of indices to Iα.

In order to obtain something new, we have to allow other coef�cients to be nonzero.

The simplest class of solutions can be found when f ijk
a = 0 for i, j, k ∈ Ia. In this

case, for this range Ia, arbitrary antisymmetric matrix J ij (i, j ∈ Ia) solves the constraints

It demonstrates the essential feature that the supersymmetric system acquires mass propor-

tional to eigenvalues of J [7]. However, since we put f ijk
a = 0, there is no interaction. In

order to have the interacting system, we need nonvanishing f ijk
a .

For simplicity, let us assume that there is a suitable basis of generators such that the

solution (3.117) is simpli�ed as

f ijk
a =

{
f ijk

a i, j, k ∈ Ia,

0 otherwise,
(3.122)

where the indices are divided into n disjoint sets I = I1∪· · ·∪In, and f ijk
a are the structure

constants for a Lie algebra ga.

Starting with (3.122), we can solve all the constraints (3.104)�(3.115) as follows, while

(3.122) already solves (3.104)�(3.106).

Eq. (3.108) is trivial if two of the indices a, b, c are identical. Assuming (3.122), eq.

(3.108) imposes no constraint on J ij
ab if i ∈ Ia or i ∈ Ib. In general, if f ijk

c 6= 0 for c 6= a

and c 6= b, then J ij
ab = 0 if i ∈ Ic. Hence we consider the case

J ij
ab 6= 0 only if i, j ∈ Ia or i, j ∈ Ib. (3.123)
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Eq. (3.109) is now trivial if all indices a, b, c are different. If two of the indices are the same,

it is equivalent to (3.107).

According to (3.107), Jab is a derivation for both Lie algebras ga and gb. A derivation

D is a map from g to g such that

D([ei, ej ]) = [D(ei), ej ] + [ei,D(ej)]. (3.124)

As a result of (3.107), one can de�ne a derivations Dab by

Dab(ei) = J ij
abe

j . (3.125)

The simplest case is when Jab corresponds to an inner automorphism, so

J ij
ab = Λk

abf
ij
a k − Λk

baf
ij
b k, (3.126)

whereΛk
ab = 0 unless k ∈ Ia. (Note that the indices a, b are not summed over in (3.126).) In

this caseDab(∗) = [(Λk
ab−Λk

ba)ek, ∗ ]. It will be more interesting ifDab instead corresponds

to an in�nitesimal outer automorphism (an outer derivation). 3

If all indices a, b, c, d are all different, (3.110) is trivial due to (3.123). If a = d 6= b 6= c,

(3.110) says that the Lie bracket [Jab, Jac] is an inner automorphism. The solution of (3.110)

is in general given by

Kabc := Ki
abce

i = [Dac,Dbc] + [Dba,Dca] + [Dcb,Dab] + Cabc, (3.127)

where the antisymmetric tensor Cabc = Ci
abc is a central element in g. Since all derivations

of a Lie algebra is always a Lie algebra, the Lie bracket [Dab,Dcd] satis�es the Jacobi

identity.

For Jab given by an inner automorphism (3.126),Ki
abc can be solved from (3.110) to be

Ki
abc = Λj

abΛ
k
acf

ijk
a + Λj

bcΛ
k
baf

ijk
b + Λj

caΛ
k
cbf

ijk
c + Ci

abc. (3.128)

(Indices a, b, c are not summed over in this equation.) The term Λj
abΛ

k
acf

ijk
a corresponds to

the Lie bracket of the two automorphisms generated by Λab and Λac on ga. However, the

case of Jab generating an inner automorphism is not interesting because Jab and K
i
abc can

be both set to zero after a change of basis (3.92) and (3.93),

e′i = ei −
∑

b

Λi
abv

b for i ∈ Ia, (3.129)

u′a = ua −
∑

b

Λi
bae

i. (3.130)

Therefore, in the following we will focus on the case when Jab is an outer automorphism.

3We have to keep in mind that the existence of such automorphisms is quite nontrivial. We will come back

to this issue below.
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When all indices a, b, c, d, e are different, (3.112) can be easily satis�ed if

Ci
abc = 0 unless i ∈ Ia ∪ Ib ∪ Ic. (3.131)

Together with (3.123), this implies thatKi
abc (3.127) vanishes unless i ∈ Ia ∪ Ib ∪ Ic.

Due to (3.123) and (3.131), eq. (3.112) is trivial if all indices a, b, c, d, e are different. If

e = a, it is

Ki
abcJ

ij
ad +Ki

acdJ
ij
ab +Ki

adbJ
ij
ac = 0. (3.132)

One can then check that this follows from (3.127) and the constraint

Dab(Cacd) + Dac(Cadb) + Dad(Cabc) = 0 (3.133)

as a result of the Jacobi identity of the Lie bracket ofDab's. The same discussion applies to

(3.111), (3.113), (3.114) and (3.115).

Before closing this analysis, let us comment on in�nitesimal outer automorphisms. For

�nite-dimensional Lie algebra, we have two examples. The �rst example is when the Lie

algebra is abelian, and any nontrivial linear map of the generators is an outer automorphism.

The 2nd example is when the Lie algebra is that of matrices composed of upper triangular

blocks (
A B

0 C

)
, (3.134)

whereA,B,C arem×m,m×n and n×nmatrices, respectively. An arbitrary scaling of the

off-diagonal block B is an outer automorphism. In both of these examples, the coef�cients

of ei in the expansion ofX
I or Ψ don't participate in interactions in the BLG model, unless

ei is inert to the outer derivation. Hence the appearance of outer derivation in these cases is

irrelevant to physics. A nontrivial example is found when g is an in�nite-dimensional Lie

algebra. This example will be studied in §7.2.

Summary of solutions

To summarize the result of our construction of a new Lie 3-algebra, the general solution of

the fundamental identity for our ansatz

[ua, ub, uc] = Ki
abcei + Labcdv

d,

[ua, ub, e
i] = J ij

abej −Ki
abcv

c,

[ua, e
i, ej ] = J ij

abv
b + f ijk

a ek ,

[ei, ej , ek] = −f ijk
a va, (3.135)
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is given by (3.122), (3.125) and (3.127), which are repeated here for the convenience of the

reader,

f ijk
a =

{
f ijk

a i, j, k ∈ Ia,

0 otherwise,

J ij
abe

j = Dab(ei) for a derivation Dab,

Kabc := Ki
abce

i = [Dac,Dbc] + [Dba,Dca] + [Dcb,Dab] + Cabc, (3.136)

where Cabc are central elements in g satisfying (3.131) and (3.133)

Ci
abc = 0 unless i ∈ Ia ∪ Ib ∪ Ic,

Dab(Cacd) + Dac(Cadb) + Dad(Cabc) = 0. (3.137)

The nontrivial part of the metric is given by

〈ei, ej〉 = gij , 〈ua, v
b〉 = δb

a , (3.138)

where gij is the Killing form of the Lie algebra g. Although we have assumed that gij is

positive de�nite in the derivation above, it is obvious that the Lie 3-algebra can be directly

generalized to a generic Killing form which is not necessarily positive-de�nite.

Compared with the Lie 3-algebra in the previous subsections, the Lie 3-algebra con-

structed above contains more information. While ei's are generators of a Lie algebra

g = g1 ⊕ · · · ⊕ gn, Jab's correspond to in�nitesimal outer automorphisms (outer deriva-

tions), andKabc encodes both the commutation relations among Jab's and choices of central

elements in g.

The concrete form of examples is showed in Chapter 7.

3.5 Summary

In this chapter, we show the various examples of Lie 3-algebra. Then, in the reminder of

this thesis (Part II and III), we discuss the BLG model with gauge symmetry of these Lie

3-algebra. While the BLG model is originally proposed as the superconformal N = 8
Chern-Simons theory for multiple M2-branes' system, we will see that this model can also

describe a single M5-brane's or multiple Dp-branes' system.

Chapter � A4 algebra (§3.1.1)

[T a, T b, T c] = iεabcdT d, 〈T a, T b〉 = δab. (3.139)

BLG model with this algebra describes two M2-branes' system.

Chapter 4 Nambu-Poisson bracket (§3.3.1)

[fa, f b, f c] = εµνρ∂f
a

∂yµ

∂f b

∂yν

∂f c

∂yρ
, 〈fa, f b〉 =

∫
N
d3y faf b, (3.140)
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where N is a 3-dim manifold where the Nambu-Poisson bracket is equipped. BLG

model with this algebra describes a single M5-brane's system.

Chapter 5 Truncation version of Nambu-Poisson bracket (§3.3.2)

[fa, f b, f c] = πN

(
Pµνρ(y)

∂fa

∂yµ

∂f b

∂yν

∂f c

∂yρ

)
, 〈fa, f b〉 =

∫
N
ddy πN

(
faf b

)
,(3.141)

where πN is the projector which neglect the order > N terms. BLG model with this

algebra is useful to see the N
3
2 law.

Chapter 6 Lorentzian Lie 3-algebra (§3.4.1)

[u, T i, T j ] = if ij
kT

k, [T i, T j , T k] = −if ijkv , [v, ∗, ∗] = 0 ,

〈T i, T j〉 = hij , 〈u, v〉 = 1 , otherwise = 0 . (3.142)

BLG model with this algebra describes multiple D2-branes' system.

Chapter 7 General Lorentzian Lie 3-algebra (§3.4.2)

[ua, ub, uc] = Ki
abcei + Labcdv

d, [ua, ub, e
i] = J ij

abej −Ki
abcv

c,

[ua, e
i, ej ] = J ij

abv
b + f ijk

a ek , [ei, ej , ek] = −f ijk
a va,

〈ei, ej〉 = gij , 〈ua, v
b〉 = δb

a, otherwise = 0 , (3.143)

where the structure constants f ijk
a , J ij

ab and Ki
abc are constrained by the conditions

(3.136) and (3.137). BLG model with this algebra describes multiple Dp-branes'

system on (p− 2)-dim torus T p−2 (for p ≥ 3).
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Part II : M5-brane and applications





Chapter 4

M5-brane as in�nite number of

M2-branes

As we saw in §3.3.1, Nambu-Poisson bracket is an example of in�nite-dimensional positive-

de�nite Lie 3-algebra. Then, in this chapter, we discuss the BLG model with the Lie 3-

algebra de�ned by Nambu-Poisson bracket, and show that it describes a single M5-brane's

system whose worldvolume spreads over the original M2-branes' worldvolume M and a

3-dim manifold N where Nambu-Poisson bracket is equipped.

It is known that the M5-brane's worldvolume theory contains a self-dual 2-form gauge

�eld, in addition to the scalars corresponding to �uctuations of the M5-brane in the trans-

verse directions, as well as their fermionic superpartners. Especially, we will show that one

can nontrivially obtain the self-dual 2-form �eld in our setup.

4.1 Nambu-Poisson bracket as Lie 3-algebra

Now we examine the BLG model with in�nite-dimensional Lie 3-algebras based on 3-dim

manifolds N with Nambu-Poisson structures. We will show that the �eld theory on the

M2-branes' worldvolumeM can be rewritten as �eld theory on a 6-dim manifoldM×N
whose bosonic components consist of the self-dual gauge �eld onM×N and scalar �elds

which de�ne the embedding. As this is the �eld content of an M5-brane [22, 62, 63], we

interpret it as a model of M5-brane constructed out of in�nitely many M2-branes.

We use the simplest example of Nambu-Poisson bracket.

For the construction of M5-brane, we introduce an �internal� 3-dim manifold N equipped

with the Nambu-Poisson brackets. The Nambu-Poisson bracket is a multilinear map from

C(N )⊗3 to C(N ) de�ned as

{f1, f2, f3} =
∑
µ̇,ν̇,λ̇

Pµ̇ν̇λ̇(y)∂µ̇f1∂ν̇f2∂λ̇f3 , (4.1)

71
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wherePµ̇ν̇λ̇ is an anti-symmetric tensor. We use the coordinate yµ̇ (µ̇ = 1, 2, 3) to parametrize

N . As a realization of Lie 3-algebra, the Nambu-Poisson bracket needs to satisfy the fun-

damental identity

{g, h, {f1, f2, f3}}
= {{g, h, f1}, f2, f3} + {f1, {g, h, f2}, f3} + {f1, f2, {g, h, f3}} , (4.2)

which gives severe constraints on Pµ̇ν̇λ̇(y) (see, for example, [57]).

The simplest possible Nambu-Poisson bracket is the Jacobian determinant for 3 vari-

ables yµ̇

{f1, f2, f3} =
∑
µ̇,ν̇,λ̇

εµ̇ν̇λ̇∂µ̇f1∂ν̇f2∂λ̇f3. (4.3)

This is the classical Nambu bracket. In general, it is known that a consistent Nambu bracket

reduces to this Jacobian form locally by the suitable change of local coordinates. This prop-

erty is referred to as the �decomposability� in the literature [52�56]. So we can use (4.3)

in the following for simplicity and also without loss of generality. We also note that the

dimension of the internal manifold N is essentially restricted to 3, because of the decom-

posability.

Nambu-Poisson bracket may be regarded as the de�nition of Lie 3-algebra in the in�-

nite dimensional space C(N ). We write the basis of functions on C(N ) as χa(y) (a =
1, 2, · · · ,∞). So we de�ne the Lie 3-algebra structure constant by Nambu-Poisson bracket

as {
χa, χb, χc

}
=
∑
µ̇,ν̇,λ̇

εµ̇ν̇λ̇∂µ̇χ
a∂ν̇χ

b∂λ̇χ
c =:

∑
d

fabc
dχ

d(y). (4.4)

Then eq. (4.2) implies that the structure constant fabc
d here satis�es the fundamental iden-

tity.

Inner product can be de�ned as integration.

As we mentioned in §3.3.1, we write the inner product as integration on the manifoldN

〈f1, f2〉 =
∫
N
dpy µ(y)f1(y)f2(y) . (4.5)

The measure factor µ(y) is chosen such that the inner product is invariant under the Nambu-

Poisson bracket as (2.16), namely

〈{∗, ∗, f1} , f2〉 + 〈f1, {∗, ∗, f2}〉 = 0 . (4.6)

Here we simply choose µ(y) as

〈f1, f2〉 =
1
g2

∫
N
d3yf1(y)f2(y) , (4.7)
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where g is a constant. Then we can the invariant metric as

hab = 〈χa, χb〉, hab = (h−1)ab . (4.8)

Here we choose the dual set of basis χa(Y ) in C(N ) such that 〈χa, χ
b〉 = δa

b . As we

see, the indices of the structure constant can be changed by contraction of the metric. In

particular,
∑

e h
aef bcd

e = f bcda de�nes a totally anti-symmetric 4-tensor. In order to have

�nite metric, we need to restrict N to a compact manifold. One may, of course, discuss

noncompact manifolds by appropriate limits of the compact spaces.

Because we have already �xed the scale of yµ̇ at (4.3), we cannot in general remove the

coef�cient g from the metric (4.8). As we will show later, however, if the internal space is

N = R3, it is possible to set this coupling at an arbitrary value by an appropriate rescaling

of variables.

Except for the trivial case (N = R3), we have to cover N by local patches and the

coordinates yµ̇ are the local coordinates on each patch. If we need to go to the different

patch where the local coordinates are y′, the coordinate transformation between y and y′

(say y′µ̇ = f µ̇(y)) should keep the Nambu-Poisson bracket (4.3). It implies that

{f 1̇, f 2̇, f 3̇} = 1 . (4.9)

Namely f µ̇(y) should be the volume-preserving diffeomorphism. As we will see, the gauge

symmetry of the BLG model for this choice of Lie 3-algebra is the volume-preserving dif-

feomorphism of N which is very natural in this set-up.

We note that we don't need the metric in yµ̇ space. For the de�nition of the theory

we only need to specify a volume form in N . The gauge symmetry associated with the

volume-preserving diffeomorphism is kept not by the metric but the various components of

the self-dual 2-form �eld which comes out from Aµab andX
µ̇ (longitudinal components of

X) as we will see.

Concrete examples of Nambu-Poisson bracket

It is of some interest to see the algebra itself explicitly, so we present a few examples where

explicit computation is possible.

Case of T 3 and R3

The simplest example of in�nite-dimensional Lie 3-algebra is given by T 3 with radius R.

The basis of functions are parametrized by ~n ∈ Z3 as (if we take µ = (2πR)−3)

χ~n(~y) = exp(2πi~n · ~y/R) , χ~n(~y) = exp(−2πi~n · ~y/R) . (4.10)

The metric and the structure constants are given by

h~n1~n2 = δ(~n1 + ~n2),

f~n1~n2~n3
~n4

= (2πi/R)3~n1 · (~n2 × ~n3)δ(~n1 + ~n2 + ~n3 − ~n4) ,

f~n1~n2~n3,~n4 = (2πi/R)3~n1 · (~n2 × ~n3)δ(~n1 + ~n2 + ~n3 + ~n4) . (4.11)
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If we take R → ∞, we obtain the Lie 3-algebra associated with R3. The label for the

basis becomes continuous and the metric becomes the delta function.

Case of S3

We introduce four variables y1, · · · , y4 and the Nambu-Poisson bracket de�ned by

P = −y1∂2 ∧ ∂3 ∧ ∂4 + y2∂1 ∧ ∂3 ∧ ∂4 − y3∂1 ∧ ∂2 ∧ ∂4 + y4∂1 ∧ ∂2 ∧ ∂3 . (4.12)

If we restrict C(N ) to the linear functions of yi, it agrees with A4. We impose a constraint

φ(y) := y2
1 + y2

2 + y2
3 + y2

4 − 1 = 0 in R4 which de�nes S3. This restriction is compatible

with the Nambu-Poisson bracket in a sense {φ(y)f1(y), f2(y), f3(y)} |φ(y)=0 = 0 for any

fi(y).
Square integrable functions on S3 are given by combinations of yn1

1 yn2
3 yn3

3 yn4
4 . By the

constraint φ(y) = 0, whenever powers of y4 higher than 2 appears, we can reduce it to zero

and one. Therefore the basis of functions are given as

T~n = yn1
1 yn2

2 yn3
3 , S~n = yn1

1 yn2
2 yn3

3 y4 , (ni ≥ 0) . (4.13)

The Lie 3-algebra becomes

{
T~n, T~m, T~̀

}
= ~n · (~m× ~̀)S

~n+~m+~̀−~ρ
,

{
T~n, T~m, S~̀

}
= ~n · (~m× ~̀)

(
T

~n+~m+~̀−~ρ
−

3∑
i=1

T
~n+~m+~̀−~ρ+2~ei

)

−
3∑

i=1

~ei(~n× ~m)T
~n+~m+~̀−~ρ+2~ei

,

{
T~n, S~m, S~̀

}
= ~n · (~m× ~̀)

(
S

~n+~m+~̀−~ρ
−

3∑
i=1

S
~n+~m+~̀−~ρ+2~ei

)

−
3∑

i=1

~ei(~n× (~m− ~̀))S
~n+~m+~̀−~ρ+2~ei

,

{
S~n, S~m, S~̀

}
= ~n · (~m× ~̀)

T
~n+~m+~̀−~ρ

− 2
3∑

i=1

T
~n+~m+~̀−~ρ+2~ei

+
∑
i,j

T
~n+~m+~̀−~ρ+2~ei+2~ej


−
∑

i

~ei(~n× ~m+ ~m× ~̀+ ~̀× ~n)(T
~n+~m+~̀−~ρ+2~ei

− T
~n+~m+~̀−~ρ+4~ei

)

+
∑
i<j

(~ei + ~ej)(~n× ~m+ ~m× ~̀+ ~̀× ~n)T
~n+~m+~̀−~ρ+2~ei+2~ej

, (4.14)

where ~ρ = ~e1 + ~e2 + ~e3.
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4.2 Construction of �elds on M5-brane

In this section, we rede�ne the �elds of BLG model, in order to obtain an M5-brane's

worldvolume theory. Let us �rst comment on the indices. We consistently use

• I, J,K, · · · = 1, · · · , 8 : label the transverse directions of the M2-branesM.

In the following, we decompose this 8-dim space as a direct product of a 3-manifoldN and

remaining 5-dim space. Then we will use

• µ̇, ν̇, λ̇, · · · = 1̇, 2̇, 3̇ : label the directions ofN

• i, j, k, · · · = 1, · · · , 5 : label the transverse directions of the M5-braneM×N .

De�nition of 6-dim �elds

By combining the basis of C(N ), we can treatXI
a(x) and Ψa(x) as 6-dim local �elds

XI(x, y) =
∑

a

XI
a(x)χa(y) , Ψ(x, y) =

∑
a

Ψa(x)χa(y) . (4.15)

Similarly, the gauge �eld Aab
λ can be regarded as a bi-local �eld:

Aλ(x, y, y′) =
∑
a,b

Aab
λ (x)χa(y)χb(y′) . (4.16)

The existence of such a bi-local �eld doesn't mean the theory is non-local. Let us expand it

with respect to ∆yµ̇ := y′µ̇ − yµ̇ as

Aλ(x, y, y′) = aλ(x, y) + bλµ̇(x, y)∆yµ̇ +
1
2
cλµ̇ν̇(x, y)∆yµ̇∆yν̇ + · · · . (4.17)

Because Aλab always appears in the action in the form f bcd
aAλbc, the �eld Aλ(y, y′) is

highly redundant, and only the component

bλµ̇(x, y) =
∂

∂y′µ̇
Aλ(x, y, y′)

∣∣∣∣
y′=y

(4.18)

contributes to the action. For example, the covariant derivative (2.58) of BLG model is

rewritten for our case as,

DλX
I(x, y) := (∂λX

Ia(x) − gf bcd
aAλbcX

I
d (x))χa(y)

= ∂λX
I(x, y) − gεµ̇ν̇ρ̇ ∂

2Aλ(x, y, y′)
∂yµ̇∂y′ν̇

∣∣∣∣
y=y′

∂XI(x, y)
∂yρ̇

= ∂λX
I(x, y) − gεµ̇ν̇ρ̇(∂µ̇bλν̇(x, y))(∂ρ̇X

I(x, y))

= ∂λX
I − g{bλν̇ , y

ν̇ , XI} . (4.19)

The covariant derivative for the fermion �eld is similarly,

DλΨ(x, y) = ∂λΨ(x, y) − gεµ̇ν̇ρ̇(∂µ̇bλν̇(x, y))(∂ρ̇Ψ(x, y))

= ∂λΨ − g{bλν̇ , y
ν̇ ,Ψ} . (4.20)
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Longitudinal �elds

This theory written in terms of �elds on 6-dim spacetime is identi�ed with the theory de-

scribing a single M5-brane. At this point, only the xµ part of the metric gµν = ηµν is

de�ned, and we still have SO(8) global symmetry, which is different from the SO(5) sym-

metry expected in the M5-brane theory.

This is quite similar to the situation in which we consider the D-brane Born-Infeld

action. The Born-Infeld Dp-brane action of 10-dim superstring theory possesses SO(1, 9)
Lorentz symmetry regardless of the worldvolume dimension p+1. The rotational symmetry

is reduced to SO(9−p) for the transverse directions only after �xing the general coordinate
transformation symmetry on the worldvolume with the static gauge condition 1

Xµ(σ) = σµ. (4.21)

This gauge �xing breaks the global symmetry from SO(1, 9) to SO(9−p), and at the same

time the worldvolume metric is induced from the target space metric through (4.21).

We can interpret the 6-dim theory we are considering here as a theory obtained from

an SO(1, 10) symmetric covariant theory by taking a partial static gauge for three among

six worldvolume coordinates. As we mentioned above, however, we don't have full diffeo-

morphism in the yµ̇ space. The action is invariant only under volume-preserving diffeomor-

phism. This implies that we cannot completely �x the �elds X µ̇, and there are remaining

physical degrees of freedom. For this reason, we should loosen the static gauge condition

as

X µ̇(x, y) = yµ̇ + bµ̇(x, y), bµ̇ν̇ = εµ̇ν̇ρ̇b
ρ̇ . (4.22)

The tensor �eld bµ̇ν̇ will be identi�ed with a part of the 2-form gauge �eld on a M5-brane.

Comments on the coupling constant

In the case of ordinary Yang-Mills theories, there are two widely-used conventions for cou-

pling constants and normalization of gauge �elds. One way is to normalize a gauge �eld by

the canonical kinetic term−(1/4)F 2
µν and put the coupling constant in the covariant deriva-

tiveD = d−igA. The other choice is to de�ne the covariant derivativeD = d−iAwithout

using the coupling constant and instead put 1/g2 in front of the kinetic term of the gauge

�eld. Similarly, there are different conventions for coupling constant in the case of the BLG

model, too. In the above, we put the coupling constant g in the de�nition of the metric (4.8).

This corresponds to the second convention we mentioned above. We can move the coupling

dependence from the overall factor to the interaction terms by rescaling the �elds

XI → cXI , Ψ → cΨ, bµµ̇ → cbµµ̇, (4.23)

1Turning on a background �eld such as the B-�eld will of course also break the global symmetry. For the

discussion here we are treating the background �elds as covariant dynamical �elds.
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with c = g. In general, as ordinary Yang-Mills theories, we cannot remove the coupling

constant completely from the action.

If the internal spaceN isR3, however, we have an extra degree of freedom for rescaling,

and it is in fact possible to the coupling constant from the action. Let us consider the

following rescaling of variables.

XI → c′3XI , Ψ → c′3Ψ, bµµ̇ → c′4bµµ̇, yµ̇ → c′2yµ̇ . (4.24)

This variable change is associated with an outer automorphism of the algebra, and doesn't

change the relative coef�cients in the action. The only change in the action is the overall

factor. We can thus absorb the coupling constant by (4.24), and this implies that the 6-dim

theory doesn't have any coupling constant.

We can adopt an elegant convention in which no coupling constant appears. However,

we adopt a different convention below. Because we interpret the 6-dim theory as a theory

of an M5-brane, we would like to regard the scalar �eldXI as the coordinates of the target

space with mass dimension −1. We also give the meaning to the variables yµ̇ as the world-

volume coordinates, which also have mass dimension −1. We choose the parametrization

in the yµ̇ space so that the linear part of the 6-dim action is invariant under Lorentz trans-

formations in the (xµ, yµ̇) space. After �xing the scale ofXI and yµ̇ in this way, we can no

longer use the two rescalings (4.23) and (4.24) to change the coupling constant and overall

coef�cient of the action. These two parameters have physical meaning now.

In the following, in order to express the coupling constant dependence of each term in

the action clearly, we separate the coupling constant g from the structure constant. We also

introduce an overall coef�cient T6, which is regarded as an effective tension of the M5-

brane. This plays an important role in the parameter matching in §4.6, but we will omit this

factor in §4.3 � 4.5 for simplicity because it is irrelevant to the analysis in these sections.

Comments on the degrees of freedom

In this section we will show that the BLGmodel with a Nambu-Poisson structure on a 3-dim

manifold contains the low-energy degrees of freedom on an M5-brane. Before going on,

let us count the number of degrees of freedom in the bosonic and fermionic sectors in our

model.

The fermion Ψ is a Majorana spinor in (10 + 1)-dimensions with a chirality condition,

and thus it has 16 real fermionic components, equivalent to 8 bosonic degrees of freedom.

For a M5-brane, there are 5 transverse directions corresponding to 5 scalars Xi. For an

ordinary 2-form gauge �eld in 6-dim spacetime, there are 6 propagating modes. But since

we don't have the usual kinetic term for Aµ, but rather a Chern-Simons term, there are only

3 propagating modes. The low-energy effective theory of an M5-brane contains the same

number of bosonic and fermionic degrees of freedom. But a salient feature of the M5-brane

is that the 2-form gauge �eld is self-dual. Hence our major challenge is to show that the

gauge �eld of the BLG model is equivalent to a self-dual 2-form gauge �eld.
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4.3 Gauge symmetry of M5-brane from Lie 3-algebra

Gauge symmetry transformation

The gauge transformations of the scalar �eldsXI and fermion �elds Ψ are given by

δΛX
I(x, y) = gΛab(x)fabc

dX
I
c (x)χd(y) = gΛab(x){χa, χb, XI}

= g(δΛyρ̇)∂ρ̇X
I(x, y),

δΛΨ(x, y) = gΛab(x){χa, χb,Ψ} = g(δΛyρ̇)∂ρ̇Ψ(x, y), (4.25)

where we used

fabc
d = 〈{χa, χb, χc}, χd〉 ,

∑
a

χa(y)χa(y′) = δ(3)(y − y′) , (4.26)

and δΛy
µ̇ is de�ned as

δΛy
λ̇ = ελ̇µ̇ν̇∂µ̇Λν̇(x, y) ,

Λµ̇(x, y) = ∂′µ̇Λ̃(x, y, y′)|y′=y , Λ̃(x, y, y′) := Λab(x)χa(y)χb(y′) . (4.27)

We note that although the parameter of a gauge transformation may be expressed as a bi-

local function Λ̃(x, y, y′), the gauge transformation induced by it depends only on its com-

ponent Λµ̇(x, y) which is local in N . It comes from the fact that the gauge transformation

by Λab is always de�ned through the combination fabc
dΛab .

The same argument can be applied to the gauge �eld Aµ(x, y, y′). As we already men-

tioned, since it appears only through the combination Aµabf
abc

d, the local �eld bµλ̇(x, y)
de�ned as (4.18) shows up in the action.

The transformation (4.25) may be regarded as the in�nitesimal reparametrization

y′λ̇ = yλ̇ − gδyλ̇ . (4.28)

Since ∂µ̇δy
µ̇ = 0, it represents the volume-preserving diffeomorphism. Since the symmetry

is local onM, the gauge parameter is an arbitrary function of x. So what we have obtained

is a gauge theory onMwhose gauge group is the volume-preserving diffeomorphism ofN .

In this sense, the worldvolume of M5-brane may be regarded as the vector bundleN → M
but the gauge transformation on each �ber is not merely the linear transformation but the

diffeomorphism on the �ber which preserves the volume form

ω = dy1̇ ∧ dy2̇ ∧ dy3̇ . (4.29)

As we mentioned in the previous section, among 8 scalar �elds XI , the last 5 compo-

nentsXi are treated as scalar �elds representing the transverse �uctuations of the M5-brane.

The other 3X µ̇ (longitudinal �eld) are rewritten as as

X µ̇(y) =
yµ̇

g
+

1
2
εµ̇κ̇λ̇bκ̇λ̇(y) . (4.30)
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We chose the coef�cients so that we obtain Lorentz invariant kinetic terms in the 6-dim

action. The gauge transformation of bµ̇ν̇ can be derived from (4.25) and (4.30) as

δΛbκ̇λ̇(y) = ∂κ̇Λλ̇ − ∂λ̇Λκ̇ + g(δΛyρ̇)∂ρ̇bκ̇λ̇(y) . (4.31)

The gauge transformation of the gauge �eld Aλ(x, y, y′) is given by δΛAλ(x, y, y′) =
DλΛ̃(x, y, y′). The covariant derivative of a bi-local �eld is de�ned by tensoring the covari-
ant derivative (4.19) for a local �eld, and we obtain

DλΛ(y, y′) = ∂λΛ(y, y′) − gεµ̇ν̇ρ̇[∂µ̇bλν̇(y)∂ρ̇Λ(y, y′) + ∂′µ̇bλν̇(y′)∂′ρ̇Λ(y, y′)] . (4.32)

From this we can extract the transformation law of the component �eld bλσ̇

δΛbλσ̇ = ∂′µ̇δΛAλ(y, y′)|y′=y = ∂λΛσ̇ − g∂σ̇ξΛ − gδgcbλσ̇ , (4.33)

where δgcbλσ̇ is the coordinate transformation in y-space

δgcbλσ̇ = −δΛyτ̇∂τ̇ bλσ̇ − (∂σ̇δΛy
τ̇ )bλτ̇ , (4.34)

and ξΛ is de�ned by

ξΛ = εµ̇ν̇ρ̇(∂µ̇bλν̇Λρ̇ + bλµ̇∂ν̇Λρ̇) . (4.35)

In addition to these gauge transformations derived from (2.58) and (2.55), there is an

additional gauge transformation which acts only on the �eld bλµ̇. As we can see in (4.19),

bλµ̇ appears in the covariant derivative in the form of the rotation in the yµ̇ space. This

means thatDµΦ is invariant under

δbλµ̇ = −∂µ̇Λλ. (4.36)

We can easily check that the Chern-Simons term is also invariant under this transformation,

and thus (4.36) is also a gauge symmetry of the theory.

Now we summarize the gauge transformation of the 6-dim theory.

δΛX
i = g(δΛyρ̇)∂ρ̇X

i,

δΛΨ = g(δΛyρ̇)∂ρ̇Ψ,

δΛbκ̇λ̇ = ∂κ̇Λλ̇ − ∂λ̇Λκ̇ + g(δΛyρ̇)∂ρ̇bκ̇λ̇ ,

δΛbλσ̇ = ∂λΛσ̇ − ∂σ̇Λλ − gδgcbλσ̇ . (4.37)

We absorbed ξΛ in (4.33) into the de�nition of the parameterΛλ. In the weak coupling limit

g → 0, we obtain the standard gauge transformation on an M5-brane.
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Covariant derivatives in 6-dim theory

An intriguing feature of our 6-dim model is that one may de�ne the covariant derivative in

the �ber direction.

By using the fundamental identity, it is easy to show that ifΦ1, Φ2, and Φ3 are covariant

�elds (such asXI or Ψ), not onlyDµΦ1 but {Φ1,Φ2,Φ3} are also covariant because of the
fundamental identity,

δΛ{Φ1,Φ2,Φ3} = {δΛΦ1,Φ2,Φ3} + {Φ1, δΛΦ2,Φ3} + {Φ1,Φ2, δΛΦ3} . (4.38)

It implies that the following combination de�nes the �covariant� derivative along the �ber

direction,

Dµ̇Φ :=
g2

2
εµ̇ν̇ρ̇{X ν̇ , X ρ̇,Φ}

= ∂µ̇Φ + g(∂λ̇b
λ̇∂µ̇Φ − ∂µ̇b

λ̇∂λ̇Φ) +
g2

2
εµ̇ν̇ρ̇{bν̇ , bρ̇,Φ} . (4.39)

Together with (4.19), which we repeat here again,

DµΦ := DµΦ = ∂µΦ − g{bµν̇ , y
ν̇ ,Φ} , (4.40)

we have a set of covariant derivatives on M5-brane's worldvolume.

These covariant derivatives possess the following important properties.

• Leibniz rule:

Dµ{Φ1,Φ2,Φ3} = {DµΦ1,Φ2,Φ3}+{Φ1,DµΦ2,Φ3}+{Φ1,Φ2,DµΦ3} . (4.41)

• Integration by parts:∫
d3xd3yΦ1DµΦ2 = −

∫
d3xd3y (DµΦ1)Φ2 . (4.42)

Here Dµ (µ = 0, 1, · · · , 5) represents both Dµ and Dµ̇.

Field strength

As special cases of these covariant derivatives, we de�ne the following �eld strengths of the

tensor �eld:

Hλµ̇ν̇ = εµ̇ν̇λ̇DλX
λ̇

= Hλµ̇ν̇ − gεσ̇τ̇ ρ̇(∂σ̇bλτ̇ )∂ρ̇bµ̇ν̇ , (4.43)

H1̇2̇3̇ = g2{X 1̇, X 2̇, X 3̇} − 1
g

=
1
g
(V − 1)

= H1̇2̇3̇ +
g

2
(∂µ̇b

µ̇∂ν̇b
ν̇ − ∂µ̇b

ν̇∂ν̇b
µ̇) + g2{b1̇, b2̇, b3̇} , (4.44)
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where V is the �induced volume�

V = g3{X 1̇, X 2̇, X 3̇} , (4.45)

andH is the linear part of the �eld strength

Hλµ̇ν̇ = ∂λbµ̇ν̇ − ∂µ̇bλν̇ + ∂ν̇bλµ̇ ,

Hλ̇µ̇ν̇ = ∂λ̇bµ̇ν̇ + ∂µ̇bν̇λ̇ + ∂ν̇bλ̇µ̇ . (4.46)

H are covariantly transformed under the gauge transformation.

Just like the case of ordinary gauge theories, the �eld strength H arises in the commu-

tator of the covariant derivatives de�ned above:

[Dµ̇,Dν̇ ]Φ = g2εν̇µ̇σ̇{H1̇2̇3̇, X
σ̇,Φ} , (4.47)

[Dλ,Dλ̇]Φ = g2{Hλν̇λ̇, X
ν̇ ,Φ} , (4.48)

[Dµ,Dν ]Φ = − g

V
εµνλDρH̃ρλκ̇Dκ̇Φ , (4.49)

where the dual �eld strength H̃ is de�ned by

H̃λρκ̇ =
1
2
ελρκ̇σµ̇ν̇Hσµ̇ν̇ , H̃µνρ =

1
6
εµνρµ̇ν̇ρ̇Hµ̇ν̇ρ̇ . (4.50)

By using the explicit form of the covariant derivative in (4.40), we obtain

[Dµ,Dν ]Φ = −gF κ̇
µν∂κ̇Φ , (4.51)

where the explicit form of F κ̇
µν in terms of the potential is

F κ̇
µν = εκ̇µ̇ν̇∂µ∂µ̇bνν̇ − gεµ̇ν̇ρ̇∂µ̇bµν̇ε

κ̇λ̇τ̇∂ρ̇∂λ̇bντ̇ − (µ↔ ν) . (4.52)

Because the (non-covariant) derivative appears on the right hand side, F κ̇
µν de�ned by (4.51)

is not covariant. We can de�ne the covariantized F by

[Dµ,Dν ]Φ = −gF κ̇
µνDκ̇Φ. (4.53)

These two �elds are related by F κ̇
µν∂κ̇Φ = F κ̇

µνDκ̇Φ, and by substituting Φ = X µ̇ into this

relation and using

gDµ̇X
σ̇ = V δσ̇

µ̇ , (4.54)

we obtain

V F κ̇
µν = gF λ̇

µν∂λ̇X
κ̇ . (4.55)

F can be expressed as the covariant derivative of the �eld strengthH.

V F κ̇
µν = gF λ̇

µνDλ̇X
κ̇ = εµνλε

λρσDρDσX
κ̇ = εµνλDρH̃ρλκ̇ . (4.56)

In the �rst step, we used the relation (4.54). Substituting this into (4.53), we obtain (4.49).
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4.4 M5-brane's action and equation of motion

M5-brane's worldvolume action as a �nal result

We rewrite the various parts of the BLG action in terms of the 6-dim �elds and their covari-

ant derivatives, then obtain

SX + Spot =
∫
d3x

〈
−1

2
(DµX

i)2 − 1
2
(Dλ̇X

i)2 − 1
4
H2

λµ̇ν̇ − 1
12

H2
µ̇ν̇ρ̇

− 1
2g2

− g4

4
{X µ̇, Xi, Xj}2 − g4

12
{Xi, Xj , Xk}2

〉
, (4.57)

SΨ + Sint =
∫
d3x

〈
i

2
Ψ̄ΓµDµΨ +

i

2
Ψ̄Γρ̇Γ1̇2̇3̇Dρ̇Ψ

+
ig2

2
Ψ̄Γµ̇i{X µ̇, Xi,Ψ} +

ig2

4
Ψ̄Γij{Xi, Xj ,Ψ}

〉
. (4.58)

The scalar kinetic term is manifestly Lorentz symmetric up to the different structure in-

side the covariant derivatives Dµ and Dµ̇. The Chern-Simons term cannot be rewritten in

manifestly gauge-covariant form.

SCS =
∫
d3xεµνλ

〈
−1

2
εµ̇ν̇λ̇∂µ̇bµν̇∂νbλλ̇

+
g

6
εµ̇ν̇λ̇∂µ̇bνν̇ε

ρ̇σ̇τ̇∂σ̇bλρ̇(∂λ̇bµτ̇ − ∂τ̇ bµλ̇)
〉

=
∫
d3x

∫
y
εµνλ

(
−1

2
dbµ ∧ ∂νbλ − g

6
(∗dbµ) ∧ (∗dbν) ∧ (∗dbλ)

)
. (4.59)

In the second expression we treat bµµ̇ as a one-form �eld bµ = bµµ̇dy
µ̇ in the y-space. How-

ever, the equation of motion which is derived from these actions turns out to be manifestly

gauge-covariant.

Comments on fermion action

In the fermion kinetic terms in (4.58), only the SO(1, 2) × SO(3) subgroup of the Lorentz
symmetry is manifest due to the existence of Γ1̇2̇3̇ in one of two terms. We can remove this

unwanted factor from the kinetic term by the unitary transformation

Ψ̄ = Ψ̄′U, Ψ = UΨ′, (4.60)

where U is the matrix

U = exp
(
−π

4
Γ1̇2̇3̇

)
=

1√
2
(1 − Γ1̇2̇3̇) . (4.61)

The supersymmetry parameter ε is also transformed in the same way. Note that both Ψ and

Ψ̄ are transformed by U . This is consistent with the Dirac conjugation. As the result of the
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unitary transformation, the fermion terms in the action become

SΨ + Sint =
∫
d3x

〈
i

2
Ψ̄′ΓµDµΨ′ +

i

2
Ψ̄′Γρ̇Dρ̇Ψ′

+
ig2

2
Ψ̄′Γµ̇i{X µ̇, Xi,Ψ′} − ig2

4
Ψ̄′ΓijΓ1̇2̇3̇{X

i, Xj ,Ψ′}
〉
. (4.62)

After the unitary transformation, the condition Γ012ε = ε012ε, Γ012Ψ = −ε012Ψ becomes

the chirality condition in 6-dim spacetime,

Γ7ε′ = ε′, Γ7Ψ′ = −Ψ′, (4.63)

where the chirality matrix Γ7 is de�ned by

ΓµνρΓ1̇2̇3̇ = εµνρΓ7. (4.64)

This means that the supersymmetry realized in this theory is the chiral N = (2, 0) super-
symmetry, which is the same as the supersymmetry on an M5-brane.

Equations of motion

It is easy to obtain the equations of motion for the scalar �elds and fermion �elds. We also

derive the gauge-covariant equations of motion for the gauge �elds, as we mentioned.

Scalar �elds

0 = D2
µX

i + D2
µ̇X

i

+g4{X µ̇, Xj , {X µ̇, Xj , Xi}} +
g4

2
{Xj , Xk, {Xj , Xk, X i}}

+
ig2

2
{Ψ̄′Γµ̇i, X

µ̇,Ψ′} +
ig2

2
{Ψ̄′ΓijΓ1̇2̇3̇, X

j ,Ψ′} . (4.65)

Fermion �elds

0 = ΓµDµΨ′ + Γρ̇Dρ̇Ψ′ + g2Γµ̇i{X µ̇, Xi,Ψ′} − g2

2
ΓijΓ1̇2̇3̇{X

i, Xj ,Ψ′} . (4.66)

Gauge �eld bµ̇ν̇

For a variation of bµ̇ν̇ , we have the following variations of the action.

δSX =
∫
d3x〈δbµ̇DµDµX

µ̇〉 =
1
2

∫
d3x〈δbµ̇εµ̇ρ̇σ̇DµHµρ̇σ̇〉,

δSpot =
g4

2

∫
d3x〈δbµ̇{XI , XJ , {XI , XJ , X µ̇}}〉,

δSint =
ig2

2

∫
d3x〈Ψ̄,Γµ̇J{δbµ̇, XJ ,Ψ}〉 = − ig

2

2

∫
d3x〈δbµ̇{Ψ̄Γµ̇J , X

J ,Ψ}〉,(4.67)
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and the equation of motion is

0 =
1
2
εµ̇ρ̇σ̇DµHµρ̇σ̇ +

g4

2
{XI , XJ , {XI , XJ , X µ̇}} − ig2

2
〈δbµ̇{Ψ̄Γµ̇J , X

J ,Ψ}〉

=
1
2
εµ̇ρ̇σ̇DµHµρ̇σ̇ + Dµ̇H1̇2̇3̇ + g2ερ̇µ̇τ̇{Xi, X ρ̇,Dτ̇X

i}

+
g4

2
{Xi, Xj , {Xi, Xj , X µ̇}} − ig2

2
{Ψ̄Γµ̇J , X

J ,Ψ} , (4.68)

or, equivalently,

DµHµρ̇σ̇ + Dµ̇Hµ̇ρ̇σ̇ = gJ ρ̇σ̇, (4.69)

where the current is given by

J ρ̇σ̇ = g({Xi,Dσ̇X
i, X ρ̇} − (ρ̇↔ σ̇)) − g3

2
ερ̇σ̇µ̇{Xi, Xj , {Xi, Xj , X µ̇}}

+
ig

2
({Ψ̄′Γσ̇, X ρ̇,Ψ′} − (ρ̇↔ σ̇)) +

ig

2
ερ̇σ̇µ̇{Ψ̄′Γµ̇i, X

i,Ψ′} . (4.70)

Gauge �eld bλµ̇

For the variation of the gauge �eld bλµ̇, we obtain

δSX = −g
∫
d3x〈δbλµ̇{XI ,DλX

I , yµ̇}〉,

δSΨ = − ig
2

∫
d3x〈Ψ̄Γλ{δbλµ̇, y

µ̇,Ψ}〉 = − ig
2

∫
d3x〈δbλµ̇{Ψ̄Γλ,Ψ, yµ̇}〉,

δSCS = −1
2

∫
d3x〈ελµνδbλµ̇F

µ̇
µν〉. (4.71)

The equation of motion for bλµ̇ is

1
2
ελµνF µ̇

µν + g{XI ,DλX
I , yµ̇} +

ig

2
{Ψ̄Γλ,Ψ, yµ̇} = 0 . (4.72)

This is not covariant, but we can covariantize this by multiplying g∂µ̇X
ν̇ .

V

2
ελµνF µ̇

µν + g2{XI ,DλX
I , X µ̇} +

ig2

2
{Ψ̄Γλ,Ψ, X µ̇} = 0 . (4.73)

By using (4.43) and (4.56), we can rewrite this equation of motion as follows:

D̃ρHρλµ̇ + Dκ̇Hκ̇λµ̇ = gJλµ̇, (4.74)

where the current is given by

Jµν̇ = g{Xi,DµX
i, X ν̇} +

ig

2
{Ψ̄′Γµ,Ψ′, X ν̇} . (4.75)
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Bianchi identity and self-duality ofH

The Bianchi identity (4.81) is obtained by substitutingΦ = X µ̇ to the commutation relation

(4.48). By using the de�nition of the �eld strengthH, we can rewrite the left hand side as

[Dλ,Dλ̇]X µ̇ = δµ̇

λ̇
DλH1̇2̇3̇ −

1
2
εµ̇ρ̇σ̇Dλ̇Hλρ̇σ̇ , (4.76)

and the right hand side becomes

g2{Hλν̇λ̇, X
ν̇ , X µ̇} = εν̇µ̇κ̇Dκ̇Hλν̇λ̇ . (4.77)

Combining these, we obtain the Bianchi identity

DλHλ̇ρ̇σ̇ −Dλ̇Hλρ̇σ̇ −Dρ̇Hλσ̇λ̇ −Dσ̇Hλλ̇ρ̇ = 0 . (4.78)

This is equivalent to (4.81).

The equations of motion of gauge �elds bµµ̇ and bµ̇µ̇, and the Bianchi identity are com-

bined into the self-dual form:

DλHλµ̇ν̇ + Dλ̇H
λ̇µ̇ν̇ = gJ µ̇ν̇ , (4.79)

DλH̃λµν̇ + Dλ̇H
λ̇µν̇ = gJµν̇ , (4.80)

DλH̃λµν + Dλ̇H̃
λ̇µν = 0 . (4.81)

The �rst two are equations of motion obtained from the action, while the last one is a

Bianchi identity derived from the commutation relation (4.49).

The self-dual tensor �eldH, chiral fermion �eld Ψ′, and the �ve scalar �eldsXi form a

tensor multiplet of N = (2, 0) supersymmetry [64], which is the same as the �eld contents

on an M5-brane.

4.5 Supersymmetry of M5-brane

Supersymmetry transformation

In this section, we rewrite the supersymmetry transformations (2.56) in terms of the 6-dim

covariant derivatives and �eld strength. The transformation law (2.56) of the gauge �eld

Aµab with coupling constant inserted is

Ãµ
b
a = igε̄ΓµΓIX

I
c Ψdf

cdb
a. (4.82)

We cannot determine uniquely the transformation law of the component �eld bµν̇ from this

equation because of the existence of the gauge transformation (4.36), which acts only on

bµµ̇. In fact, the transformation (4.82) only gives

δ
(
εµ̇ν̇ρ̇∂µ̇bλν̇∂ρ̇f(y)

)
= igε̄ΓλΓI{XI ,Ψ, f(y)}, (4.83)
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where f(y) is an arbitrary function of yµ̇. One possible choice for δbµµ̇ is

δbµν̇ = ig(ε̄ΓIΓµΨ)∂ν̇X
I . (4.84)

We can easily check that this transformation law reproduces (4.83).

In some situations an explicit appearance of bµµ̇ is not necessary, but all we need is

Bµ
µ̇ := εµ̇ν̇ρ̇∂ν̇bµρ̇, which satis�es the constraint ∂µ̇Bµ

µ̇ = 0. The supersymmetry trans-

formation for Bµ
µ̇ is uniquely determined from (4.83) as

δBµ
µ̇ = igε̄ΓµΓIε

µ̇ν̇λ̇∂ν̇X
I∂λ̇Ψ, (4.85)

and it is obvious that the constraint is supersymmetry invariant, i.e.

δ(∂µ̇Bµ
µ̇) = 0. (4.86)

The transformation laws rewritten in terms of the 6-dim notation are

δXi = iε̄′ΓiΨ′, (4.87)

δΨ′ = DµX
iΓµΓiε′ + Dµ̇X

iΓµ̇Γiε′

−1
2
Hµν̇ρ̇ΓµΓν̇ρ̇ε′ −

(
1
g

+ H1̇2̇3̇

)
Γ1̇2̇3̇ε

′

−g
2

2
{X µ̇, Xi, Xj}Γµ̇Γijε′ +

g2

6
{Xi, Xj , Xk}ΓijkΓ1̇2̇3̇ε′, (4.88)

δbµ̇ν̇ = −i(ε̄′Γµ̇ν̇Ψ′), (4.89)

δbµν̇ = −iV (ε̄′ΓµΓν̇Ψ′) + ig(ε̄ΓµΓiΓ1̇2̇3̇Ψ
′)∂ν̇X

i. (4.90)

The M5-brane in our theory is in a constant C-�eld background.

A peculiar property of this supersymmetry transformation is that the perturbative vacuum

(the con�guration with all �elds vanishing) is not invariant under this transformation due to

the term in δΨ′ proportional to 1/g. We can naturally interpret this term as a contribution of

the background C-�eld. In the M5-brane action coupled to background �elds, the self-dual

�eld strength is de�ned byH = db+C (up to coef�cients depending on conventions). The

inclusion of C-�eld in the �eld strength is required by the invariance of the action under

C-�eld gauge transformations. The shift of the �eld strengthH1̇2̇3̇ by (1/g) in the action as
well as in the supersymmetry transformation suggests that the relationC ∝ g−1 between the

Nambu-Poisson structure and the C-�eld background. This statement of course depends on

the normalization of the gauge �eld C. For more detail about this relation, see §4.6, where
we derive the precise form of this relation including the numerical coef�cients.

In fact, M5-brane in a constant C-�eld background is still a 1/2 BPS state. The effect

of the C-�eld is changing which half of 32 supersymmetries remain unbroken. We can

�nd this phenomenon in our 6-dim theory. In addition to 16 supersymmetries we described
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above, the theory has 16 non-linear fermionic symmetries δ(nl), which shift the fermion by

a constant spinor

δ(nl)Ψ′ = χ, δ(nl)Xi = δ(nl)bµ̇ν̇ = δ(nl)bµν̇ = 0. (4.91)

The action is invariant under this transformation because constant functions in yµ̇ space are

in the center of the Lie 3-algebra. The perturbative vacuum is invariant under the combina-

tion of two fermionic symmetries

δε′ −
1
g
δ
(nl)
ε′ . (4.92)

In the weak coupling limit g → 0, the transformation laws for this combined symmetry

agree with those of anN = (2, 0) tensor multiplet [65].

δXi = iε̄′ΓiΨ′, (4.93)

δΨ′ = ∂µX
iΓµΓiε′ − 1

12
HµνρΓµνρε′, (4.94)

δbµν = −i(ε̄′ΓµνΨ′). (4.95)

We obtained the transformation (4.95) only for µν = µ̇ν̇ and µν̇. To obtain the transforma-

tion law of the bµν components, we �rst compute the transformation ofHµ̇ν̇ρ̇ and Hµν̇ρ̇ by

using the transformation law of bµ̇ν̇ and bµν̇ . Because the �eld strength is self-dual, it also

gives δH̃µνρ̇ and δH̃µνρ. The equations of motion (4.79) and (4.80) are the Bianchi identi-

ties as well for these components of �eld strength. If we can solve these Bianchi identities

on shell and express them by using bµν , we can extract the transformation law of bµν from

δH̃µνρ̇ and δH̃µνρ. In the free �eld limit g = 0, we can easily carry out this procedure and
obtain (4.95) for bµν .

4.6 D4-brane's action from M5-brane

In this section, we demonstrate that the double dimensional reduction of the 6-dim theory

correctly reproduces the action of noncommutative U(1) gauge theory, which is realized on
a D4-brane in a B-�eld background.

We here recover the overall factor T6 in the front of the action. This has mass dimension

6 and can be regarded as the tension of the �ve-brane, while the coupling constant g is a

dimensionless parameter. We should note that this tension T6 is not necessarily the same as

the usual M5-brane tension TM5, because it may be corrected by the background C-�eld.

We will later determine the parameters g and T6 by comparing the 5-dim action obtained by

the double dimensional reduction of the 6-dim theory to the noncommutative U(1) action
realized on a D4-brane in a B-�eld background in type IIA theory. Once we obtain the

expression for g and T6 in terms of type IIA parameters, it will be easy to rewrite them in

terms of the M-theory Planck scale and the magnitude of the C-�eld.
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Double dimensional reduction : M5-brane to D4-brane

The double dimensional reduction means that we wrap one leg of the M5-brane on a com-

pacti�ed dimension, so that through Kaluza-Klein reduction we get one fewer dimension

for both the target space and the worldvolume. Let us choose the compacti�ed dimension to

beX 3̇. In the double dimensional reduction, we suppress y3̇-dependence of all �elds except

X 3̇. We have

X 3̇ =
1
g
y3̇, b3̇ = 0. (4.96)

We used a gauge symmetry generated byΛ1̇ andΛ2̇ to set b
3̇ = 0. We impose the periodicity

condition

X 3̇ ∼ X 3̇ + L11 . (4.97)

The relation (4.96) and (4.97) implies that the compacti�cation period of the coordinate y3̇

is gL11, and thus, the overall factor of the 5-dim theory becomes gL11T6.

Let us now �rst carry out the dimensional reduction for the bosonic terms in the action.

Since all the �elds except X 3̇ have no dependence on y3̇, we set ∂3̇ = 0 unless it acts on

X 3̇. We will use the notation that indices α̇, β̇, · · · take values in {1̇, 2̇}, and a, b, · · · take
values in {0, 1, 2, 1̇, 2̇}. The antisymmetrized tensor εα̇β̇ is de�ned as εα̇β̇ = εα̇β̇3̇.

Expecting that we will obtain a gauge �eld theory on a D4-brane, let us de�ne the gauge

potentials

âµ = bµ3̇ âα̇ = bα̇3̇. (4.98)

The covariant derivatives become

DµX
α̇ = −εα̇β̇F̂µβ̇, DµX

3̇ = −ãµ, DµX
i = D̂µX

i, (4.99)

where F̂ab, ãµ, and D̂a are de�ned by

F̂ab = ∂aâb − ∂bâa + g{âa, âb}, (4.100)

ãµ = εα̇β̇∂α̇bµβ̇, (4.101)

D̂µΦ = ∂µΦ + g{âµ,Φ}. (4.102)

The Poisson bracket {·, ·} is de�ned as the reduction of the Nambu-Poisson bracket

{f, g} = {y3̇, f, g}. (4.103)

We note that the components bµβ̇ only show up through the form ãµ in D4-brane's action.

Thus we �nd that, after double dimensional reduction, the scalar kinetic term in the BLG

Lagrangian become

−T6

2

∫
d3x〈(DµX

I)2〉 = −gL11T6

2

∫
d3xd2y

(
ã2

µ + F̂ 2
µα̇ + (D̂µX

i)2
)
. (4.104)
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The Nambu-Poisson brackets which appear in the potential terms of the BLG action are

{X 1̇, X 2̇, X 3̇} =
1
g2
F̂1̇2̇ +

1
g3
,

{X 3̇, X α̇, Xi} =
1
g2
εα̇β̇D̂β̇X

i,

{X 3̇, Xi, Xj} =
1
g
{Xi, Xj}. (4.105)

The potential term becomes

−T6

12

∫
d3x〈g4{XI , XJ , XK}2〉

= gL11T6

∫
d3xd2y

[
−1

2

(
F̂1̇2̇ +

1
g

)2

− 1
2
(Dα̇X

i)2 − g2

4
{Xi, Xj}2

]
. (4.106)

Upon integration over the base space and removing total derivatives, we can replace (F̂1̇2̇ +
1/g)2 by F̂ 2

1̇2̇
+ 1/g2.

It is also straightforward to show that the Chern-Simons term (4.59) gets simpli�ed

considerably as

−gL11T6

2

∫
d3xd2y εµνλF̂µν ãλ. (4.107)

Here again the action depends on bµβ̇ only through ãµ. As the action depends on the �eld

ãµ only algebraically (namely without derivative), we can integrate it out. There are only

two terms involving ãµ and by completing square, we �nd that the effect of integrating out

ãµ is to replace all terms involving ãµ by

−gL11T6

4

∫
d3xd2y F̂ 2

µν . (4.108)

The fermion part can be evaluated similarly. The covariant derivatives and bracket are

ΓµDµΨ′ = Γµ(∂µΨ′ + g
{
aµ,Ψ′}) := ΓµD̂µΨ′ , (4.109)

1
2
ΓIJ{XI , XJ ,Ψ′} = Γα̇Γ1̇2̇3̇D̂β̇Ψ′ + Γ3̇Γi

{
Xi,Ψ′} , (4.110)

D̂β̇Ψ′ := ∂β̇Ψ′ + g{aβ̇,Ψ
′}. (4.111)

It is quite remarkable that, after collecting all the kinetic, potential and Chern-Simons

terms, the (4+1)-dim Lorentz invariance is restored (up to the breaking by the noncommu-

tativity). The sum of all these terms is simply

gL11T6

∫
d3xd2y

[
−1

2
(D̂aX

i)2 − 1
4
F̂ 2

ab −
g2

4
{Xi, Xj}2 − 1

2g2

+
i

2

(
Ψ̄′′ΓaD̂aΨ′′ + gΨ̄′′Γi{Xi,Ψ′′}

)]
. (4.112)

We performed the unitary transformation Ψ′ = (1/
√

2)(Γ3̇ + Γ7)Ψ′′ to obtain the correct

chirality condition Γ3̇Ψ
′′ = −Ψ′′ for the gaugino on the D4-brane. (Note that 3̇ is now the

�eleventh� direction and Γ3̇ is the chirality matrix in IIA theory.)
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Comparison with the D4-brane's action in the B-�eld background

Let us compare the action (4.112) with the known result [66,67] for a D4-brane in aB-�eld

background, and match the parameters in this theory and those in type IIA string theory. The

noncommutative gauge theory on D4-brane in a B-�eld background is described with the

Moyal product ∗, and the corresponding commutator, the so-called Moyal bracket [·, ·]Moyal,

de�ned by

f(x) ∗ g(x) = e
i
2
θij ∂

∂ξi
∂

∂ζj f(x+ ξ)g(x+ ζ)|ξ=ζ=0, (4.113)

[f, g]Moyal = f ∗ g − g ∗ f = θij∂if∂jg + O(θ3). (4.114)

The noncommutativity parameter θij has the dimension of (length)2. Because the action

(4.112) includes only �nite powers of derivatives, it should be compared to the weak cou-

pling limit θ → 0 of the noncommutative gauge theory. These two match if we truncate the

Moyal bracket into the Poisson bracket by

[f, g]Moyal →
θ

Tstr
{f, g}, (4.115)

where we turn on the noncommutativity in the 1̇-2̇ directions by setting

θ1̇2̇ =
θ

Tstr
, θµα̇ = θµν = 0. (4.116)

Note that θ is de�ned as a dimensionless parameter. In the small θ limit, the bosonic part of

the action of the noncommutative U(1) gauge theory on a D4-brane is given by [66, 67]

S =
TD4

θ

∫
d3xd2y

[
−1

2
(DaX

i)2 − 1
4Tstr

F 2
ab −

θ2

4
{Xi, Xj}2 − 1

2θ2

]
, (4.117)

in the open string frame. The worldvolume coordinate yα̇ in the open string frame is related

to the target space coordinatesX α̇ by

X α̇ =
1
θ
yα̇. (4.118)

The covariant derivative and the �eld strength are

DaX
i = ∂µX

i +
θ

Tstr
{Aa, X

i}, Fab = ∂aAb − ∂bAa +
θ

Tstr
{Aa, Ab}. (4.119)

We normalize the gauge �eld Aa so that it couples to the string endpoints by charge 1
through the boundary coupling S =

∫
∂F1A of the fundamental string worldsheet, and

this gauge �eld has mass dimension 1. In the weak coupling limit, the noncommutativity

parameter θ is related to the background B-�eld by

B = TstrθdX
1̇ ∧ dX 2̇ =

Tstr

θ
dy1̇ ∧ dy2̇. (4.120)
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By comparing two actions (4.112) and (4.117), we obtain the following relations among

parameters:

T6 =
TM5

θ2
, (4.121)

g = θ. (4.122)

To relate quantities in IIA and M-theory, we use the following relations among tensions of

M-branes and IIA-branes.

TD4 = L11TM5, Tstr = L11TD2 = L11TM2. (4.123)

The relation T 2
M2 = 2πTM5 is also useful.

In addition to the agreement of the action through the relations (4.121) and (4.122), we

can check the consistency in some places.

Firstly, the relation (4.118) between the worldvolume coordinates and the target space

coordinates can naturally be lifted to the relation (4.30).

Secondly, the overall factor T6 agrees with the effective tension of M2-branes induced

by the background C-�eld. The background B-�eld (4.120) is lifted to the background

three-form �eld

C3 = θTM2dX
1̇ ∧ dX 2̇ ∧ dX 3̇ =

TM2

θ2
dy1̇ ∧ dy2̇ ∧ dy3̇. (4.124)

(We use the convention in which the gauge �elds B and C couple to the worldvolume

of corresponding branes by charge 1 through the couplings
∫
F1B and

∫
M2C.) Each �ux

quantum of this background �eld induces the charge of a single M2-brane on the M5-brane,

and effective M2-brane density in the y-space is θ−2TM2/(2π). Thus, if we assume that the

tension of M5-brane is dominated by the induced M2-branes, the effective tension becomes

TM2 × θ−2TM2/(2π) = θ−2TM5. This agrees with the overall coef�cients T6 given in the

relation (4.121).

Finally, the charge of the self-dual strings is consistent with the Dirac's quantization

condition. From the comparison of the actions we obtain the relation of gauge �elds

âa =
1
Tstr

Aa. (4.125)

As we mentioned above, the gauge �eld A couples to string endpoints by charge 1. By

the correspondence (4.125) we can determine the strength of the coupling of â and b to

boundaries of the corresponding branes. The boundary interactions are given by

S = Tstr

∫
∂F1

â =
TM2

θ

∫
∂M2

b. (4.126)

To obtain the second equality in (4.126), we used the fact that a string endpoint is lifted to

an M2-brane boundary wrapped on the S1 along y3̇ with period gL11. The coupling (4.126)

shows that the charge of self-dual strings (boundary of M2-branes ending on the M5-brane)
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is Q = θ−1TM2. Because the gauge �eld b is a self-dual �eld, Q is the electric charge as

well as the magnetic charge of a self-dual string, and it must satisfy the Dirac's quantization

condition
Q2

T6
= 2π. (4.127)

We can easily check that this relation certainly holds.

We can now explain the constant shift in the �eld strength as follows. The M2-brane

action includes the following coupling to the bulk 3-form �eld C and the self-dual 2-form
�eld b:

SM2 =
∫

M2
C3 +

TM2

θ

∫
∂M2

b. (4.128)

The gauge invariance of this action requires that under the gauge transformation δC3 = dα2,

the self-dual �eld on the M5-brane must transform as δb2 = −α2/(θ−1TM2). Thus, the

gauge invariant �eld strengthH of the tensor �eld b should be de�ned by

H = db+
θ

TM2
C. (4.129)

Therefore, the background gauge �eld (4.124) shifts the �eld strength as

H = db+
1
θ
dy1̇ ∧ dy2̇ ∧ dy3̇. (4.130)

This is the same as the constant shift in the de�nition (4.44) ofH1̇2̇3̇.

Now we have relations between parameters in the BLG model and those in M-theory.

The D4-brane action obtained by the double dimensional reduction is the weak coupling

(g = θ → 0) limit of noncommutative U(1) theory because the Moyal bracket is replaced

by the Poisson bracket. The coupling constant is determined by the background C-�eld,

and the weak coupling means strong C-�eld background through the relation (4.124). Our

M5-brane theory is expected to apply better to the limit of large C-�eld background. This

is also con�rmed in the comparison of the �ve-brane tension. As we mentioned above, the

effective tension T6 is dominated by the tension of M2-branes induced by the background

C-�eld. This is the case when the background C-�eld is very large.

For a �nite C-�eld background, we expect that the Nambu-Poisson bracket should be

replaced by a quantum Nambu bracket.

4.7 Summary and remarks

In this chapter, we discuss a model of the M5-brane's worldvolume �eld theory which

is constructed as a system of in�nitely many M2-branes [5, 13]. In the BLG model, a

background con�guration of the M2-brane system corresponds to the choice of a Lie 3-

algebra [46], and the Lie 3-algebra used for theM5-brane is the Nambu-Poisson algebra [51]

on a 3-manifold N which appears as the internal space from the M2-branes' point of view,

but it constitutes the M5-brane's worldvolume together with the M2-branes' worldvolume.
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We show that the gauge transformation de�ned by this Lie 3-algebra can be identi�ed as

the diffeomorphism ofN which preserve its volume 3-form. The gauge potential associated

with this symmetry can be identi�ed with the self-dual 2-form gauge �eld bµν̇ (an index µ

for the worldvolume and another ν̇ for the internal spaceN ) which is a particular combina-

tion of the BLG gauge �eld Aµab. We show that only a particular combination of Aµab is

relevant to de�ne the gauge symmetry, the action and the supersymmetry. We note that the

internal spaceN may be regarded as the �ber on the 3-dim M2-branes' worldvolumeM in

a sense.

Another characteristic feature of the system is that not only the covariant derivative

de�ned by the gauge potential bµν̇ is covariant, the triplet commutator {X µ̇, X ν̇ ,Φ} is also
covariant. This follows from the fundamental identity of the Nambu-Poisson structure.

From this combination, we obtain the second 2-form �eld bµ̇ν̇ by which we can de�ne the

covariant derivative in the �ber direction N . By combining two covariant derivatives, one

obtains various 6-dim �eld strengths associated with bµν̇ , bµ̇ν̇ .

The BLG action and the equations of motion are rewritten in terms of these �elds. The

equations of motion for the tensor �eld are written in a manifestly gauge-covariant form

and combined with the Bianchi identity into a self-dual form.

4.7.1 Seiberg-Witten map

In §4.5, we discuss that the obtained theory describes the M5-brane in large C-�eld back-

ground. Then in our paper [5], we also argue the Seiberg-Witten map [67], which relates

the gauge symmetry on a noncommutative space with the gauge symmetry on a classical

space:

δ̂λ̂Φ̂(Φ) = Φ̂(Φ + δλΦ) − Φ̂(Φ), (4.131)

where Φ̂ and δ̂λ̂ are the �eld and the gauge transformation in the noncommutative gauge

theory, while Φ and δλ are the correspondence living on the classical space.

Therefore, it is a nontrivial check that we see the Seiberg-Witten map between the gauge

theories on spacetimes with and without the Nambu-Poisson structure, corresponding to

M5-brane theories in trivial or constant C-�eld background.

In §4.3, we �nd the gauge transformations in M5-brane's theory with C-�eld back-

ground as

δX̂i = gκ̂µ̇∂µ̇X̂
i, δΨ̂ = gκ̂µ̇∂µ̇Ψ̂ ,

δ̂Λ̂b̂µ̇ν̇ = ∂µ̇Λ̂ν̇ − ∂ν̇Λ̂µ̇ + gκ̂λ̇∂λ̇b̂µ̇ν̇ ,

δ̂Λ̂b̂µµ̇ = ∂µΛ̂µ̇ − ∂µ̇Λ̂µ + gκ̂ν̇∂ν̇ b̂µµ̇ + g(∂µ̇κ̂
ν̇)b̂µν̇ , (4.132)

where κ̂µ̇ := εµ̇ν̇λ̇∂ν̇Λ̂λ̇. On the other hand, in the trivial background, the gauge transfor-

mations are

δXi = δΨ = 0 , δΛbµ̇ν̇ = ∂µ̇Λν̇ − ∂ν̇Λµ̇ , δΛbµµ̇ = ∂µΛµ̇ − ∂µ̇Λµ . (4.133)
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In this subsection only, we denote all variables in our M5-brane theory by symbols with

hats, and those in trivial backgrounds by symbols without hats. As a result, we make sure

that the both of gauge transformations are related by the Seiberg-Witten map, up to order

O(g1). It should be possible to prove it for higher order terms order by order.

4.7.2 Other dimensional Mp-branes from BLG model

One may wonder the possibility of constructing other Mp-branes (which should not exist)

in M-theory from multiple M2-branes. However, even if we had considered a higher di-

mensional manifold N with Nambu-Poisson structure, due to the decomposability of the

Nambu-Poisson bracket, locally one can always choose 3 coordinates {y1, y2, y3} in terms

of which the bracket is simply

{f, g, h} = εµ̇ν̇λ̇∂µ̇f ∂ν̇g ∂λ̇h. (4.134)

Hence the rest of the coordinates (ya for a > 3) of N will not induce derivatives or gauge

�eld components. There can never be more than 3 of theXI 's turning into covariant deriva-

tives. The decomposability of the Nambu-Poisson bracket is thus the mathematical basis of

why there are no other Mp-branes with p 6= 5.
In order to understand this statement, it may be instructive to consider a straightforward

extension

P = ∂1 ∧ ∂2 ∧ ∂3 + ∂4 ∧ ∂5 ∧ ∂6 (4.135)

which would give us a theory on M8-brane. This doesn't work, however, since this bracket

does not satisfy the fundamental identity. One may easily con�rm this by examining

{y1y4, y2, {y3, y5, y6}} = 0 , but

{{y1y4, y2, y3} , y5, y6} + {y3, {y1y4, y2, y5} , y6} + {y3, y5, {y1y4, y2, y6}} = 1 .

The fact that the fundamental identity is so restrictive is helpful here to restrict the branes

of M-theory to M2-brane and M5-brane.

4.7.3 Toward multiple M5-branes' theory

In this chapter, we construct a single M5-brane's action from the BLG model. One of

the most challenging issue is how to construct the action of multiple M5-branes. For that

purpose, we need to construct a set of generators TAχa(y), where TA (A = 1, · · · , d) are
the generators of an internal algebra and χa(y) is the basis of functions on N . However,

as far as we try, it seems dif�cult to �nd Lie 3-algebras of this form which satis�es the

fundamental identity.
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Vortex string and volume-preserving diffeomorphism

As we commented, in our construction of M5-brane's action, we do not need the metric on

N but only its volume form, or in other words, the 3-form �ux C on it. Our computation

further implied that it is natural to assume that there is a very large 3-form �ux C on the

M5-brane's worldvolume. This set-up reminds us of the open M2-branes in large C-�ux.

Since we can neglect the Nambu-Goto part (which contains the metric), the action becomes

that of the topological M2-branes [68, 69]

S ∼
∫
CµνρdX

µ ∧ dXν ∧ dXρ . (4.136)

When this M2-branes has the boundary on M5-brane, this topological action gives

S ∼
∫
CµνρX

µdXν ∧ dXρ . (4.137)

It gives an action for the string which describes the boundary of the open M2-branes. When

the target space has 3 dimensions and C ∼ εµ̇ν̇λ̇, this action is identical to the kinetic term

of the vortex string [70], which was found long ago. In the M2-branes' context, it was

studied in [47, 71�76]. In particular, it was found that it can be equipped with the Poisson

structure with the constraint associated with the diffeomorphism which de�nes the volume-

preserving diffeomorphism naturally [75]

δX µ̇ = {X µ̇, ω(f, g)}D = vµ̇(X) + · · · ,
vµ̇ = εµ̇ν̇λ̇∂ν̇f∂λ̇g , ∂µ̇v

µ̇ = 0 ,

ω(f, g) :=
∫
dσ f(X)dg(X) . (4.138)

Here { , }D is the Dirac bracket associated with the kinetic term and · · · in the �rst line de-
scribe the extra variation along the worldsheet which can be absorbed by the reparametriza-

tion of the worldsheet. In BLG model, the gauge parameter has an unusual feature that it

has two index Λab. In this picture, this structure is naturally interpreted as a result of the

fact that for the string we can introduce two functions f, g to de�ne the generators on the

worldsheet. We hope that this connection with the vortex string would give a new insight

into the BLG model.
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Chapter 5

Truncation version for �nite number

of M2-branes

As we saw in §3.3.2, there exists a cut-off version of Nambu-Poisson bracket which de�nes

a �nite-dimensional Lie 3-algebra. The algebra still satis�es the fundamental identity and

thus produces N = 8 supersymmetric BLG-type equation of motion for multiple M2-

branes. Unfortunately, as we will see, this algebra contains a lot of zero-norm generators

which make all the terms of BLG Lagrangian vanishing. Thus we can analyze only the

equation of motion in BLG model with this truncated algebra.

In this chapter, we discuss the concrete examples of this kind of algebra, and the BLG

model with this algebra. As a result, we will derive an entropy formula which scales asN
3
2

as expected for the multiple (N ) M2-branes, by counting the number of the moduli and the

degree of freedom.

To see the N
3
2 law, we need to derive a �nite number of M2-brane's system.

As we mentioned in §2.1.2, one of the crucial test of multiple M2-brane theory is whether

one can reproduce the celebratedN
3
2 scaling law for entropy [14] as is predicted by AdS/CFT

correspondence. For any theory based on Lie algebra, however, this seems to be dif�cult.

The number of moduli is related to the rank of the Lie algebra and the number of the gener-

ators is given by the dimension. It will produce N
3
2 scaling only if one consider delicately

chosen tensor products of Lie groups [77] or so far hidden mechanism changes the degrees

of freedom.

In this chapter, we take a different approach to this issue. In the previous chapter, it was

proved that BLG model based on in�nite-dimensional Lie 3-algebra de�ned by Nambu-

Poisson bracket is equivalent to a single M5-brane's worldvolume theory. What we are

going to do is to cut-off this Lie 3-algebra to �nite dimensions. It is actually very natural to

expect to have N
3
2 law from the following geometrical reason.

97
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We note that the Nambu-Poisson bracket can be de�ned on a 3-dim manifold as

{f, g, h} =
3∑

µ,ν,ρ=1

εµνρ ∂µf ∂νg ∂ρh , (5.1)

where f, g, h are arbitrary functions of three variables x1, x2, x3. Suppose we can truncate

this in�nite-dimensional Hilbert space into a �nite-dimensional one, let us assume that we

have N degrees of freedom for each dimension, by truncating all functions to polynomials

xµ of degree ≤ N . Then the number of independent generators behaves as #G ∼ N3. On

the other hand, the number of M2-branes is, roughly speaking, identi�ed with the number

of the moduli which are related to mutually commuting degree of freedom. In this case,

due to the structure of the Nambu-Poisson bracket, mutually commuting generators may be

taken as functions which depend only on two variables, say x1 and x2. The number of such

generators can be estimated as #M ∼ N2. By combining it, we have the desired scaling

#G ∼ (#M)
3
2 !

In §3.3.2, we ascertained that one can obtain a �nite-dimensional Lie 3-algebra from a

truncation of the Hilbert space where Nambu-Poisson bracket is de�ned. The fundamental

identity of the Lie 3-algebra is preserved by the cut-off, but, as we will see, it becomes

generally dif�cult to keep a non-trivial invariant metric. Therefore, although it is dif�cult

to write BLG action, we can de�ne the N = 8 supersymmetric equation of motion as

considered in [78]. The counting of the moduli is given as above and we obtain the N
3
2

scaling law of entropy rather robustly.

By de�nition, our truncated algebra becomes the in�nite-dimensional Lie 3-algebra

from Nambu-Poisson bracket in the large N limit. In this sense, it gives an intermediate

geometrical structure between M2-brane and M5-brane. This is somewhat analogous to the

fact that D(p + 2)-brane is obtained by collecting large N limit of Dp-brane. Therefore, it

may serve as a candidate of multiple M2-branes, although it requires many improvements

to de�ne a realistic theory.1

Quantization of Nambu-Poisson bracket is a dif�cult problem.

Before proceeding to concrete discussion, let us brie�y mention the previous studies on the

quantum Nambu bracket, since our truncated Nambu-Poisson bracket must be understood

as nothing but a candidate for quantum Nambu bracket.

One of the most natural direction is to seek an analog of theMoyal product as a deforma-

tion of Poisson bracket. It was studied most extensively by Takhtajan [58] and his collabo-

rators. Despite much efforts, however, the natural analog of the Moyal product has not been

1We note that a derivation of N
3
2 law for M2-branes was considered previously in [42] (see also [33, 79])

in the context of Basu-Harvey equation [36] which describes a �ridge� con�guration of M2-M5 system. Their

analysis is based on the fuzzy S3 de�ned in [80, 81]. Since it appeared before [2], the essential ingredients of

the BLG model such as Lie 3-algebra and the fundamental identity were not taken into account.
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found so far. At some point, they changed the strategy and found a deformation of Nambu-

Poisson bracket which was called �Zariski quantization� [82]. This construction, however,

needs to use an analog of the second quantized operators and is in�nite-dimensional by its

nature.

Another approach is to use a generalization of the matrix commutator (see, for exam-

ple, [83]). Although it gives rise to a very simple �nite-dimensional system, the triple com-

mutator satis�es so called generalized Jacobi identity instead of the fundamental identity.

In this sense, it is not obvious how to apply their algebraic structure to the BLG model.

The third approach is to use the cubic matrix (three index object like �Aijk�) to represent

the 3-algebra (see for example [50,84]). Although there were some success, for example in

the construction of �representations� ofA4 algebra [48], the cubic matrix in general doesn't

satisfy the fundamental identity. So it is still mysterious how to apply it to BLG model.

To summarize, although there are some attractive proposals in the quantum Nambu

bracket, our simple cut-off procedure of the Nambu-Poisson bracket seems to be the �rst

example which can be readily applicable to BLG model. We do not, of course, mean that

other approaches which we mentioned are meaningless in the BLG model. On the contrary,

we are trying to �nd applications of these constructions.

5.1 Homogeneous Nambu-Poisson brackets

In §3.3.2, we saw that one can de�ne a truncated algebra for eachN , for any homogeneous

Nambu-Poisson brackets, i.e.

{f, g, h}N = πN

 d∑
µ,ν,ρ=1

Pµνρ(x) ∂µf ∂νg ∂ρh

 , (5.2)

where Pµνρ(x) is a homogeneous polynomial of degree p, and πN is a projector which acts

on the polynomials of xµ as

πN

 ∞∑
n1,··· ,nd=0

cn1,··· ,nd
(x1)n1 · · · (xd)nd


=

n1+···+nd≤N∑
n1,··· ,nd=0

cn1,··· ,nd
(x1)n1 · · · (xd)nd , (5.3)

where cn1,··· ,nd
are coef�cients. We also de�ne the product •N of functions in the truncated

Hilbert space as

f •N g = πN (f g) . (5.4)

In the following, we give some examples of homogeneous algebra which satis�es the

fundamental identity and associate each algebra with a 3-dim manifold. In general, we
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have descriptions of the homogeneous Nambu-Poisson bracket in terms of d variables, as

eq. (5.2). The fact that Nambu-Poisson bracket is de�ned in 3-dim space can be derived

by observing that there are d − 3 elements fa(x) which commute with any functions of x,

namely,

{fa, g, h} = 0 for any g, h . (5.5)

So one may use the hyper-surface de�ned by fa(x) = ca (a = 1, · · · , d−3) as the de�nition
of 3-dim submanifold in Rd. If we introduce the cut-off, one may call the corresponding

geometry as �fuzzy spaces� by employing the terminology of the noncommutative geometry

although our de�nition of the deformation is very different.

5.1.1 p = 1 case

We start from the p = 1 case. In this case, we call the bracket as linear Nambu-Poisson

bracket [59] in the following. We note that the coordinates xµ de�ne a Lie 3-subalgebra,

{xµ1 , xµ2 , xµ3} =
∑
µ4

fµ1µ2µ3
µ4
xµ4 , Pµ1µ2µ3(x) =

∑
µ4

fµ1µ2µ3
µ4
xµ4 . (5.6)

As we saw in §3.3.1, the mathematical classi�cation of the linear Nambu-Poisson bracket

was already made. It is classi�ed into two groups:

Type I: For each−1 ≤ r ≤ 3 and 0 ≤ s ≤ min(3−r, d−4), one may de�ne the bracket

as

P I
(r,s) =

r+1∑
j=1

±xj∂1 ∧ · · · \∂j · · · ∧ ∂4 +
s∑

j=1

±xn+j+1∂1 ∧ · · · \∂r+j+1 · · · ∧ ∂4 , (5.7)

where \∂ means that we delete that element in the wedge product, and we can choose the

plus/minus sign freely for each term in the summation.

Type II:

P II
a = ∂1 ∧ ∂2 ∧ (

d∑
i,j=3

aijx
i∂j) . (5.8)

In the following, we pick up interesting examples that come from this classi�cation

theorem for each d, the number of coordinates.

d = 3 case

The only possibility comes from the type II algebra

P = ∂1 ∧ ∂2 ∧ x3∂3 . (5.9)
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In this case, the x3 may be taken as a real number or a phase eiθ3 . When x3 is taken as real,

and with an appropriate completion, the truncated algebra can be thought as a deformation

of R3.2 Due to the extra factor of x3, the Poisson structure (5.9) breaks O(3) symmetry.

In the correspondence with M5-brane's case [5, 13], P represents the 3-form �ux on M5-

brane's worldvolume. The breakdown of rotational symmetry comes from the fact that the

3-form background doesn't respect the symmetry. When x3 is a phase, one can think of

the truncated algebra as a deformation of R2 × S1
+, where S

1
+ is dual to the algebra of

functions with only non-negative Fourier modes. In this case, P ∼ ∂1 ∧ ∂2 ∧ ∂θ3 de�nes a

Nambu-Poisson bracket on R2 × S1
+.

d = 4 case

In this case, a variety of examples comes from type I algebra.

r = 3, s = 0 case

For this case, a well-known example is

P(3,0) = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 + x3∂1 ∧ ∂2 ∧ ∂4 − x4∂1 ∧ ∂2 ∧ ∂3 . (5.10)

In this case, the Lie 3-algebra generated by the coordinates is A4. It de�nes a Nambu-

Poisson bracket on S3, since r2 = (x1)2 +(x2)2 +(x3)2 +(x4)2 becomes the center of the

Lie 3-algebra. Namely,

P (r2f1, f2, f3) = r2P (f1, f2, f3) , (5.11)

for any f1, f2, f3. So one may put r2 = const. This means that the truncated algebra de�nes

a fuzzy S3 in R4.

From this example, by taking Wick rotation, we obtain other examples. For example,

the bracket after x4 → ix4

P = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 + x3∂1 ∧ ∂2 ∧ ∂4 + x4∂1 ∧ ∂2 ∧ ∂3 , (5.12)

de�nes a bracket on 3-dim de Sitter space dS3, since (x1)2+(x2)2+(x3)2−(x4)2 becomes

the center of the algebra and can be set to a constant.

Similarly after taking the Wick rotation for x3 and x4, we obtain

P = x1∂2 ∧ ∂3 ∧ ∂4 − x2∂1 ∧ ∂3 ∧ ∂4 − x3∂1 ∧ ∂2 ∧ ∂4 + x4∂1 ∧ ∂2 ∧ ∂3 . (5.13)

In this case, (x1)2 + (x2)2 − (x3)2 − (x4)2 becomes the center of 3-algebra and can be set

to a constant, which de�nes 3-dim anti-de Sitter space AdS3.

2To avoid possible confusion, we emphasis that this is not the standard R3 as a Poisson manifold. There the

Poisson structure is SO(3) and translationally invariant.
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r = 2, s = 0 case

For this case, we have

P(2,0) = x1∂2 ∧ ∂3 ∧ ∂4 + x2∂1 ∧ ∂3 ∧ ∂4 ± x3∂1 ∧ ∂2 ∧ ∂4

= (x1∂2 ∧ ∂3 + x2∂1 ∧ ∂3 ± x3∂1 ∧ ∂2) ∧ ∂4 . (5.14)

The center takes the form (x1)2 + (x2)2 ± (x3)2 and 3-dim manifold associated with it is

S2 × R or (A)dS2 × R, where R is described by x4. For �nite N , we have a deformation

of these manifolds.

d > 4 case

From the de�nition of type I algebra, in order to have s > 0, we need to take d > 4.

d = 5, r ≤ 2, s = 1 case

For example for s = 1, we need d = 5 and

P(2,1) = P(2,0) ± x5∂1 ∧ ∂2 ∧ ∂3 . (5.15)

In this case, since x5 doesn't appear in the derivative, it is the center of Lie 3-algebra.

Actually, the algebra for the linear functions is identical with the Lorentzian algebra (in

§3.4.1) for g = SU(2) or SL(2) where x4, x5 play the role of u, v, respectively. In general,

the parameter s represents the number of pairs of the Lorentzian generators. For smaller r,

we can add more pairs (3 − r) of Lorentzian generators. For r = 2, s = 1, the center of the
algebra becomes

(x1)2 + (x2)2 ± (x3)2 ± 2x4x5 and x5 , (5.16)

to which we can assign arbitrary value.

For r = 1, we obtain S1 × R2 or R3 and its generalizations with pairs of Lorentzian

generators. We note that here we obtain S1 or R1 from a constraint (x1)2 ± (x2)2 = const.

For r = 0, we obtain R3 with the bracket

P = x1∂2 ∧ ∂3 ∧ ∂4 , (5.17)

where x1 becomes the center of 3-bracket and can be set to a constant.

For r = −1, we have only the Lorentzian pairs.

5.1.2 p > 1 case

For p > 1, we don't have the classi�cation theorem. We have, however, a few interesting

examples of Nambu-Poisson bracket where fundamental identity is satis�ed.
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For p = 2, we have, for example,

P = ∂1 ∧ x2∂2 ∧ x3∂3. (5.18)

If we take x2, x3 real, the we have a deformed R3 with linear �ux introduced in these two

directions. By taking x2 or/and x3 to be a phase, we can also have deformed R2 × S1
+ or

R × T 2
+ (where T 2

+ represents S1
+ × S1

+). Another example is

P = (εµνλx
µ∂ν ∧ ∂λ) ∧ x4∂4 (5.19)

which can describe the deformation of S2 × R1 or S2 × S1
+.

For p = 3, we have an example

P = x1∂1 ∧ x2∂2 ∧ x3∂3 (5.20)

which can describe the deformed R3, R2 × S1
+, R × T 2

+ or T 3
+ depending on the interpre-

tation of xµ.

The last example of deformed T 3
+ will be used in the following, since it has the simplest

structure. In particular, the algebra (3.53) takes the following form (after minor change of

the normalization factors)

{T (~n1), T (~n2), T (~n3)} = ~n1 · (~n2 × ~n3)T (~n1 + ~n2 + ~n3) . (5.21)

Its truncated version becomes

{T (~n1), T (~n2), T (~n3)}N = ~n1 · (~n2 × ~n3) θ

(
N − |

∑
i

~ni|

)
T (~n1 + ~n2 + ~n3) , (5.22)

where all the elements of ~ni ≥ 0 and

θ(n) =

{
1 n ≥ 0
0 n < 0

. (5.23)

The explicit forms of the algebra for other cases are straightforward to write down. For

example, S3 case (5.10) is given as

{T (~n1), T (~n2), T (~n3)} = εµνλρ(n1)ν(n2)λ(n3)ρT (~n1 + ~n2 + ~n3 − ~σ + 2~eµ) , (5.24)

where (eµ)ν = δµν and ~σ =
∑4

i=1 ~eµ. The truncated Lie 3-algebra can be obtained by

restricting the generators to |~n| ≤ N and including a truncation factor θ(N + 2 −
∑

i |~ni|)
on the right hand side.

5.2 Truncated Nambu-Poisson bracket algebra

Before analyzing the BLG model with these truncated Nambu-Poisson algebras, we discuss

some details on these kinds of Lie 3-algebra in this section.
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5.2.1 Structure of algebra

We note that the truncated 3-algebra, especially the deformed T 3
+ case (5.20), can be de-

composed into three subspaces:

A0 : A subspace spanned by generators T (~k) where one or two components of ~k is zero.

In the de�nition of Nambu-Poisson bracket (5.20), we always multiply x1x2x3 after

taking the derivation. So the generators which belong toA0 never appear on the right

hand side of the 3-commutator. We will denote a generic generator which belongs to

A0 as TX .

A−1 : A subspace spanned by generators T (~k) where |~k| = N −1, N . These generators are

the center of the algebra, namely

{TY , T (~p), T (~q)}N = 0 for ∀ ~p, ~q. (5.25)

where TY is a generic generator which belong toA−1. It comes the fact that we need

|~p|, |~q| ≥ 1 to have a nonvanishing 3-commutator. These generators can show up on

the right hand side of the 3-commutator .

Â : A subspace spanned by the generators which belong to neitherA0 nor A−1. We will

write generic elements of Â as TZ .

We note that there are some elements which belong toN = A0∩A−1. Since every ele-

ment in this subspace has vanishing 3-commutator with anybody else and never appears on

the right hand side of the 3-commutator, they decouple from the algebra as T (~0). Therefore,
we have to remove them from the algebra. Then we will write

A′
0 = A0/N , A′

−1 = A−1/N , (5.26)

to represent the relevant part of the algebra. The number of generators which belong to each

subspace is

#(Â) ∼ N3

6
, #(A0) ∼

3N2

2
, #(A−1) ∼ N2, #(N ) ∼ 6N . (5.27)

In the large N limit, the number of the elements which belong to A0,A−1 increase as

O(N2), but it is still much smaller than that of Â.

5.2.2 Invariant metric

By de�nition, any element T a
Y ∈ A′

−1 must appear only on the right hand side of the 3-

commutator. It implies

〈T a
Y , T

b
Y 〉 = 〈[TP , TQ, TR], T b

Y 〉 = −〈TR, [TP , TQ, T b
Y ]〉 = 0

〈T a
Z , T

b
Y 〉 = 〈[TP , TQ, TR], T b

Y 〉 = −〈TR, [TP , TQ, T b
Y ]〉 = 0
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for some TP , TQ, TR and T a
Z ∈ Â. So all the elements in A′

−1 must be orthogonal to any

elements in A′
−1 and Â.

Similarly, for two elements T a
X , T

b
X ∈ A′

0 , since they don't show up in the 3-commutator,

there are no constraints for their inner product from the symmetry:

〈T a
X , T

b
X〉 = Kab (arbitrary) . (5.28)

We can also deduce that any elements in A′
−1 and Â are orthogonal with the elements

of A′
0 :

〈T a
X , T

b
Y 〉 = 〈T a

X , T
b
Z〉 = 0. (5.29)

A proof is as follows. For the generic elements Tk1k2k3 ∈ A′
−1∪Â, we have k1, k2, k3 6= 0.

So one may write it as a 3-commutator

Tk1k2k3 =
1

k1k2k3
[Tk100, T0k20, T00k3 ] , (5.30)

where Tk1k2k3 := T (k1~e1+k2~e2+k3~e3). On the other hand, for any element Tp1p2p3 ∈ A′
0,

one of pi must be zero. Let us take it p1 = 0, without loss of generality. Then we have

〈T0p2p3 , Tk1k2k3〉 ∝ 〈T0p2p3 , [Tk100, T0k20, T00k3 ]〉
= −〈[T0p2p3 , T0k20, T00k3 ], Tk100〉 = 0 . (5.31)

Finally, for any two elements Tp1p2p3 , Tq1q2q3 ∈ Â, one can derive similarly

〈Tp1p2p3 , Tq1q2q3〉 ∝ 〈Tp1p2p3 , [Tq100, T0q20, T00q3 ]〉
= −〈[Tp1p2p3 , T0q20, T00q3 ], Tq100〉 . (5.32)

On the right hand side, [Tp1p2p3 , T0q20, T00q3 ] is zero or belong to either Â or A′
−1. Since

the inner product between Â or A′
−1 with any element in A′

0 is already shown to be zero,

we arrive at

〈T a
Z , T

b
Z〉 = 0 for ∀ T a

Z , T
b
Z ∈ Â . (5.33)

As we can easily see, the requirement of invariance of metric

〈T a, [T b, T c, T d]〉 + 〈[T a, T b, T c], T d〉 = 0 (5.34)

imposes very severe constraints on the form of the metric. At the end, the metric has lots

of null directions, making it not useful for physical applications. For example, the potential

term of the BLG model 〈[XI , XJ , XK ], [XI , XJ , XK ]〉 is identically zero, because non-

trivial metric components only exist for elements inA′
0, while elements inA′

0 never appear

as the right hand side of a 3-commutator.
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5.3 Application to BLG model and entropy counting

As we saw in the previous section, the metric of the truncated Nambu-Poisson bracket has

a trivial structure and is useless in the construction of the invariant Lagrangian.3 Never-

theless, we can write down an N = 8 supersymmetric equation of motion (2.57) in terms

of the structure constants of this kind of Lie 3-algebra, which satis�es the fundamental

identity [78],

D2XI
a − i

2
Ψ̄cΓIJXJ

d ΨBf
cdb

a +
1
2
f bcd

af
efg

dX
J
b X

K
c X

I
eX

J
f X

K
g = 0 ,

ΓµDµΨa +
1
2
ΓIJX

I
cX

J
d Ψbf

cdb
a = 0 ,

(F̃µν)b
a + εµνλ(XJ

c D
λXJ

d +
i

2
Ψ̄cΓλΨd)f cdb

a = 0 . (5.35)

The supersymmetry transformation (2.42) is

δXI
a = iε̄ΓIΨa ,

δΨa = DµX
I
aΓµΓIε−

1
6
XI

bX
J
c X

K
d f

bcd
aΓIJKε ,

δ(Ãµ)b
a = iε̄ΓµΓIX

I
c Ψdf

cdb
a . (5.36)

The gauge symmetry transformation (2.54) is

δΛX
I
a = Λ̃b

aX
I
b , δΛΨa = Λ̃b

aΨb , δΛÃµ
b
a = DµΛ̃b

a . (5.37)

An essential point here is that the structure constant contracted with metric fabcd =
fabc

eh
ed doesn't appear at all. It enables us to discuss important issues such as the BPS

equation or the moduli without knowing the Lagrangian.

The classi�cation of �eld components : Are they moduli or not?

Let us pick the algebra (5.20) and study the moduli. From the equation of motion, the

moduli would be described by solutions of the equation

fefg
dX

I
eX

J
f X

K
g = 0 . (5.38)

We have to be careful in the structure of the truncated algebra. In the previous section,

we show that the algebra (5.20) has a structure which is similar to the Lorentzian algebra.

Namely, after removing generators which decouple from the algebra, the set of generators

is classi�ed into the following three subsets:

A′
0 : The generators which don't appear on the right hand side of 3-commutators, i.e. the

generator T d where fabc
d = 0 for any a, b, c. Such generators have the form T (~k)

where one or two components of ~k are zero.

3Of course, there may be a chance to add extra generators to obtain a nontrivial and useful metric as in

[15, 60, 61].
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A′
−1 : The generators which are in the center of Lie 3-algebra, i.e. the generator T a where

fabc
d = 0 for any b, c, d. Such generators take the form T (~k) where

∑
i ki = N −

1, N .

Â : The generators which don't belong toA′
0 nor A′

−1.

Then we study the roles of �elds in each subgroup. Let us denote the generic �elds

which belong to A′
0, A′

−1, Â as X , Y , Z, respectively. Then the equation of motion is

written schematically as

∂2X = 0, ∂2Y = F1(X,Z), ∂2Z = F2(X,Z) , (5.39)

and supersymmetry and gauge symmetry transformations are written similarly as

δX = 0, δY = G1(X,Z), δZ = G2(X,Z) , (5.40)

where F1,2, G1,2 represent some nonlinear functions. To �nd moduli, we can put the left

hand side of equation of motion (5.39) to be zero.

First, we note that there is no constraint for Y from (5.38). Besides, the �elds Y never

appear in the nonlinear terms in the equations of motion. We can take any solutions of Y

of their equations of motion, and it will not have any effect on the rest of the �elds. In this

sense, the �elds Y should be viewed as non-physical �elds, and we will not treat them as

part of the moduli.4

Secondly, if we assign VEV to the �elds X , the �eld equation and the symmetry trans-

formations do depend on the VEV. On the other hand, the supersymmetry and gauge sym-

metry transformation (5.40) for the �eldsX implies that these symmetries are not violated.

This behavior is what one expects for a vacuum state. In the Lorentzian BLG model which

we will discuss in Chapter 6, however, the VEV for XI
u was interpreted as the coupling

constant of the super Yang-Mills theory on D2-branes and hence is not counted as part of

the moduli space. So further analysis is needed to decide whether these �elds X are to be

counted as part of the moduli space or not. However, we don't care of it here, since, as we

will see, whether one includes them or not doesn't affect our entropy counting below.

Finally, the assignment of VEV for Z doesn't seem to have such strange behavior.

Therefore, this is the degree of freedom which should be identi�ed with the moduli of

M2-brane in ordinary sense.

Counting of moduli and entropy �We can `derive' the N
3
2 law!

It turns out that the equation (5.38) can give rise to various solutions. For the Lie 3-

algebra (5.20), three polynomials f1, f2, f3 which depend only on two polynomials of x,

4On the other hand, if we treat them as part of the moduli, the number of solutions of (5.38) can be of order

N3. We can take 6 of the scalars XI to be �elds Y , and the rest 2 of the XI 's can be arbitrary. For large N ,

the number of free parameters in these 2 arbitrary �elds XI dominates and it is proportional to N3.
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say g1(x), g2(x), in general commute with each other

{f1(g1, g2), f2(g1, g2), f3(g1, g2)}N = 0 . (5.41)

Therefore, the moduli space is described by (truncated) polynomials of g1(x) and g2(x).
Depending on the choice of g1,2, we have different type of �Higgs� branches.

If we take both g1,2 as function of single variables, say g1 = x1, g2 = (x2)m, all the

functions of g1,2 belong to the group A′
0. The number of such functions is of the order of

N2. As we explained above, these may or may not be counted as part of the moduli space.

On the other hand, suppose we take g1,2 such that their polynomials depend on all the

coordinates nontrivially, for example g1 = x1 + x2 and g2 = (x3)2, the set of polynomials

of them contains elements belonging to Â. In this case, the VEV's are assigned to the �elds

Z and should be interpreted as the moduli of M2-branes. We can count the number of the

M2-branes for given set of g1,2. Suppose we choose them such that all the VEV's of �elds

can be interpreted as the moduli of M2-branes. If the degree of g1,2 is n1,2 respectively, the

number of independent generators are approximately N2

2n1n2
∼ N2, as long as n1,2 are much

smaller than N . We have the estimate for the number of M2-branes as

#M ∼ N2. (5.42)

This permits us to calculate the behavior of the entropy. The number of �elds is given as

the number of generators (#G). It can be estimated as

#G =
(N + 1)(N + 2)(N + 3)

6
∼ N3/6 ∼ (#M)

3
2 . (5.43)

This is nothing but the celebratedN
3
2 law for M2-branes!

One may do essentially the same counting for other d = 3 algebras associated with R3

(5.9,5.18) which give the same behavior. So one may guess the behavior of N
3
2 law as a

generic feature of the d = 3 truncated Nambu-Poisson 3-algebras.

This excellent result can be obtained only in d = 3 case.

We note that there are some subtlety if one continues to do the similar analysis for d > 3
cases. In these cases, as we have seen, there are d− 3 generators φs(x) which satisfy

{φsf1, f2, f3} = φs{f1, f2, f3} (5.44)

for any f1, f2, f3. One may set such generators as constant φs(x) = cs and this constraint

gives 3-dim algebra.

For the truncated algebras, since such φs has nontrivial degree as the polynomial of x.

For example, φ = (x1)2 + (x2)2 + (x3)2 + (x4)2 which appear for S3 case has degree two.

So the above relation should be modi�ed as

{φs •N f1, f2, f3}N = φs •N {f1, f2, f3}N−|φs| (5.45)
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where |φs| is the degree of φs. It implies that we cannot put φs to a c-number if we want

to keep the fundamental identity. If we treat them as the independent generators, we would

have different scaling. For example, for any d = 4 cases, we have a simple estimate that

#M ∼ O(N3), #G ∼ O(N4) . (5.46)

Therefore, we obtain N4/3 relation between the number of M2-branes and the number of

degrees of freedom. This strange behavior for d > 3 signals the breakdown of the truncation
process which doesn't properly respect the local factorization of the space into 3-dim and

(d− 3)-dim spaces. Therefore, this anomalous scaling law should be understood as coming

from an incorrect regularization of the system.

5.4 Summary

In this chapter, we analyze the BLG model with truncated Nambu-Poisson brackets as ex-

amples of Lie 3-algebra. This model has the following two remarkable properties:

• It naturally shows the N
3
2 scaling of M2-branes with clear geometrical meaning.

• In the large N limit, it can reproduce the M5-brane's theory which we discuss in

Chapter 4.

On the other hand, it has obvious shortcomings at this moment, namely we cannot de�ne

nontrivial Lagrangian with the current form of the algebra. A hope is that one may cure it

by adding some extra generators, just as in [15, 60, 61].

Of course, the truncated algebra which we considered here is rather exotic algebra which

was not considered seriously in the literature. For example, it would be much more desirable

to do similar truncation by some generalization of the Moyal product or by some general-

ization of the concept of matrices. We note that, however, our derivation ofN
3
2 law is quite

robust and the derivation of the scaling law will be similar even for these cases.
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Part III : Multiple Dp-branes and U-duality





Chapter 6

D2-branes from Lorentzian BLG

model

As we saw in §3.4.1, we can construct an example of Lie 3-algebra as an extension of an

arbitrary Lie algebra by adding zero-norm generators. Then, in this chapter, we analyze

the BLG model based on this example of Lie 3-algebra. Since a linear combination of

zero-norm generators becomes negative-norm one, the ghost �eld exists in this case.

Fortunately, however, we show that one can treat the �eld components corresponding to

zero-norm generators as non-dynamical parameters without breaking supersymmetry nor

gauge symmetry. This interpretation, called a new kind of `Higgs mechanism,' completely

removes the ghost �eld for our example of Lie 3-algebra.

This is a very unusual procedure for removing the ghost �eld, so one may doubt if this

is a justi�able one from the viewpoint of quantum �eld theory. The detailed justi�cation

must be done in the future research. At this moment, we should regard it as the way to

�nd a special aspect of BLG model for convenience. In fact, this kind of Higgs mechanism

also compacti�es one transverse spatial dimension for M2-branes, and as a result, we obtain

multiple D2-branes' theory from BLG model for multiple M2-branes.

Moreover, we also present another derivation of D2-branes' theory from M2-branes. It

is based on the construction of a D4-brane fromM2-branes through an M5-brane, which we

discussed in Chapter 4. There, we �rst obtain anM5-brane by using the in�nite-dimensional

Lie 3-algebra with the Nambu-Poisson bracket on 3-dim manifold. Then we compactify one

dimension in the internal 3-dim manifold, and wind one direction of an M5-brane along

this direction. In this way, we obtain the noncommutative D4-brane's action where the

noncommutativity is in�nitesimal.

In this chapter, we show that when the internal 2-dim space of this D4-brane is T 2, by

suitably choosing the noncommutativity parameter, one may obtain U(N) symmetry on the

D2-branes' worldvolume. As a result, we again obtain multiple D2-branes' theory from

BLG model by passing another way.

113
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6.1 Notation

BLG action

In Part III, we write the original BLG action as

S =
∫
M
d3xL =

∫
M
d3x (LX + LΨ + Lint + Lpot + LCS), (6.1)

LX = −1
2
〈DµX

I , DµXI〉, (6.2)

LΨ =
i

2
〈Ψ̄,ΓµDµΨ〉, (6.3)

Lint =
i

4
〈Ψ̄,ΓIJ [XI , XJ ,Ψ]〉, (6.4)

Lpot = − 1
12

〈[XI , XJ , XK ], [XI , XJ , XK ]〉, (6.5)

LCS =
1
2
fABCDAAB ∧ dACD +

i

3
fCDA

Gf
EFGBAAB ∧ACD ∧AEF , (6.6)

where the indices µ = 0, 1, 2 specify the longitudinal directions of M2-branes, I, J,K =
3, · · · , 10 indicate the transverse directions, and the indicesA,B,C, · · · denote components

of Lie 3-algebra generators. M is the M2-branes' worldvolume.

The covariant derivative is

(DµΦ(x))A = ∂µΦA + fCDB
AAµCD(x)ΦB (6.7)

for Φ = XI ,Ψ. The 3-commutator for the Lie 3-algebra in BLG model

[TA, TB, TC ] = ifABC
DT

D (6.8)

must satisfy the fundamental identity and the invariant metric condition. Note that the

notation is slightly different from that in Part I and II, in order to make the �eld AµAB

Hermite.

Symmetry transformations

The supersymmetry transformations are

δεX
I
A = iε̄ΓIΨA ,

δεΨA = DµX
I
AΓµΓIε− 1

6
XI

BX
J
CX

K
D f

BCD
AΓIJKε ,

δεÃµ
B

A = iε̄ΓµΓIX
I
CΨDf

CDB
A , Ãµ

B
A := AµCDf

CDB
A . (6.9)

The gauge symmetry for the bosonic �elds are written as

δΛX
I
A = ΛCDf

CDB
AX

I
B , δΛÃµ

B
A = ∂µΛ̃B

A − Λ̃B
CÃµ

C
A + Ãµ

B
CΛ̃C

A . (6.10)

(The gauge transformation of Ψ is the same asXI .)
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6.2 Lorentzian Lie 3-algebra

As we saw in §3.4.1, for any given Lie algebra G

[T i, T j ] = f ij
kT

k (6.11)

with structure constants f ij
k and Killing form hij , we can de�ne a corresponding Lie 3-

algebra as follows. Let the generators of the Lie 3-algebra be denoted {TA} = {T i, u, v}
(i = 1, · · · , dimG), where T i's are one-to-one corresponding to the generators of the Lie

algebra G. The 3-commutator is de�ned by

[v, TA, TB] = 0 ,

[u, T i, T j ] = if ij
kT

k,

[T i, T j , T k] = −if ijkv , (6.12)

where f ijk := f ij
lh

lk is totally antisymmetrized. The invariant metric can be de�ned as

〈v, v〉 = 0 , 〈v, u〉 = 1 , 〈v, T i〉 = 0 ,

〈u, u〉 = 0 , 〈u, T i〉 = 0 , 〈T i, T j〉 = hij . (6.13)

Note that the norm of u+αv is −2α, which is negative for α > 0. That is why this algebra
is called Lorentzian Lie 3-algebra.

Mode expansions of BLG �elds

The mode expansions of the �elds are

XI := XI
AT

A = XI
uu+XI

vv + X̂I ,

Ψ := ΨAT
A = Ψuu+ Ψvv + Ψ̂ ,

Aµ := AµABT
A ⊗ TB

= v ⊗Aµv −Aµv ⊗ v + u⊗ Âµ − Âµ ⊗ u+AµijT
i ⊗ T j , (6.14)

where

X̂ := XiT
i, Ψ̂ := ΨiT

i, Aµv := AµvAT
A, Âµ := 2AµuiT

i. (6.15)

We also de�ne

A′
µ := Aµijf

ij
kT

k, (6.16)

for the last term of (6.14). We will see below thatAµv are completely decoupled in the BLG

model, andXI
v and Ψv are Lagrange multipliers.
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Mode expansions of symmetry transformations

The BLG action has N = 8 maximal supersymmetry in d = 3. In terms of the modes, the

supersymmetry transformation (6.9) can be written as

δXI
u = iε̄ΓIΨu , δXI

v = iε̄ΓIΨv , δX̂I = iε̄ΓIΨ̂ ,

δΨu = ∂µX
I
uΓµΓIε ,

δΨv = (∂µX
I
v − 〈A′

µX̂
I〉)ΓµΓIε− 1

3
〈X̂IX̂JX̂K〉ΓIJKε ,

δΨ̂ = D̂µX̂
IΓµΓIε− 1

2
XI

u[X̂J , X̂K ]ΓIJKε ,

δÂµ = iε̄ΓµΓI(XI
uΨ̂ − X̂IΨu) , δA′

µ = iε̄ΓµΓI [X̂I , Ψ̂] . (6.17)

The gauge transformation (6.10) can be written in terms of the modes as

δXI
u = 0 , δXI

v = 〈Λ′, X̂I〉 , δX̂I = [Λ̂, X̂I ] ,

δÂµ = ∂µΛ̂ − [Âµ, Λ̂] , δA′
µ = ∂µΛ′ − [Âµ,Λ′] − [A′

µ, Λ̂] , (6.18)

where

Λ̂ = 2ΛuiT
i, Λ′ = Λijf

ij
kT

k. (6.19)

Lagrangian in terms of modes and its symmetry

Plugging the mode expansions (6.14) into the Lagrangian (6.1)�(6.6), we get, up to total

derivatives,

L =
〈
−1

2
(D̂µX̂

I −A′
µX

I
u)2 +

i

2
¯̂ΨΓµD̂µΨ̂ +

i

2
Ψ̄uΓµA′

µΨ̂

+
i

2
¯̂ΨΓIJX

I
u[X̂J , Ψ̂] − i

2
Ψ̄uΓIJΨ[X̂I , X̂J ]

+
1
4
(XK

u )2[X̂I , X̂J ]2 − 1
2
(XI

u[X̂I , X̂J ])2 +
1
2
εµνλF̂µνA

′
λ

〉
+ Lgh , (6.20)

Lgh = −
〈
∂µX

I
uA

′
µX̂

I + (∂µX
I
u)(∂µX

I
v ) − i

2
Ψ̄vΓµ∂µΨu

〉
, (6.21)

where

D̂µX
I := ∂µX̂

I − [Âµ, X̂
I ] , D̂µΨ := ∂µΨ̂ − [Âµ, Ψ̂] ,

F̂µν := ∂µÂν − ∂νÂµ − [Âµ, Âν ] . (6.22)

This Lagrangian is invariant under the parity transformation:

xµ → −xµ, Γµ → −Γµ,

(X̂I , XI
u, X

I
v ) → (X̂I ,−XI

u,−XI
v ),

(Ψ̂,Ψu,Ψv) → (Ψ̂,−Ψu,−Ψv),

(Âµ, A
′
µ) → (−Âµ, A

′
µ). (6.23)
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Another symmetry of this model is the scaling transformation of the overall coef�cient

of the Lagrangian. Usually a scaling of the structure constants is equivalent to a scaling of

the overall constant factor of the action through a scaling of all �elds. This overall factor

is then an un�xed coupling, which is undesirable in M-theory. However, the situation is

different for Lorentzian Lie 3-algebra. In fact, a scaling of the structure constants

fABC
D → g2fABC

D (6.24)

can be absorbed by the scaling

u→ g2 u , v → g−2 v , T i → T i, (6.25)

which does not change the metric at all. This means that the scaling of the overall coef�cient

of the Lagrangian is a symmetry. Explicitly, scaling the Lagrangian (6.20) by an overall

coef�cient 1/g2 can be absorbed by the �eld rede�nition

(X̂I , XI
u, X

I
v ) → (gX̂I , g−1XI

u, g
3XI

v ),

(Ψ̂,Ψu,Ψv) → (gΨ̂, g−1Ψu, g
3Ψv),

(Âµ, A
′
µ) → (Âµ, g

2A′
µ). (6.26)

Hence this Lagrangian has no free parameter at all, which is desirable property for M2-

branes' theory.

Ghost �elds fromXu,v and Ψu,v can be eliminated by putting a VEV.

Note also thatXI
v and Ψv appear only linearly in Lgh, and thus they are Lagrange multipli-

ers. Their equations of motion are

∂2XI
u = 0 , Γµ∂µΨu = 0 . (6.27)

Hence we treat XI
u and Ψu as classical �elds, in the sense that off-shell �uctuations are

excluded from the path integral. Actually, we can set

XI
u = const., Ψu = 0 , (6.28)

without breaking the supersymmetry (6.17) nor gauge symmetry (6.18).

After we set (6.28), the Lagrangian is given by (6.20) without the last term Lgh. It

is remarkable that the ghost degrees of freedom associated with XI
v and Ψv have totally

disappeared for this background. The resulting theory is clearly a well-de�ned �eld theory

without ghost �elds.

The fact that the background (6.28) does not break any symmetry suggests an alternative

viewpoint towards the BLG model. That is, we can change the de�nition of the BLG model

by de�ning XI
u, Ψu as non-dynamical constant parameters �xed by (6.28). The resulting

model has as large symmetry as the original de�nition of the BLG model, but has no ghost

�elds. In this interpretation, the parameterXI
u plays the role of coupling constant.
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As we pointed out in the beginning of this chapter, this procedure for removing ghost

�elds is extraordinary. In particular, we must study further whether the process of regarding

�elds XI
u, Ψu as mere parameters is justi�ed from the viewpoint of quantum �eld theory.

Comments on why the symmetries are unbroken

Since the assignments (6.28) for a special type of generators preserve all supersymmetry

and gauge symmetry, one can take the viewpoint that these variables are non-dynamical by

de�nition. We have seen earlier that this interpretation removes the ghost �eld from the

BLG model for Lorentzian Lie 3-algebra.

The origin of the decoupling of the ghost �eld comes from the speci�c way that Lorentzian

generators appear in the Lie 3-algebra. Namely, the generator v is the center of the Lie 3-

algebra and u is not produced in any 3-commutators. This property ensures that the system

is invariant under the translation of the scalar �eldsXI
u.

The decoupling of the ghost �eld can be made more rigorous [85, 86] by gauging this

global symmetry. Namely, by adding extra gauge �elds Cµ and χ through

Lnew = −Ψ̄uχ+ ∂µXI
uC

I
µ , (6.29)

we have an extra gauge symmetry:

δXI
v = ΛI , δCI

µ = ∂µΛI , δΨv = η, δχ = iΓµ∂µη . (6.30)

It enable us to put XI
v = Ψv = 0. The equations of motion by variation of CI

µ and χ give

the assignment (6.28) correctly.

6.3 D2-branes' action from M2-branes

In the previous section, we saw that the ghost �eld in BLG model can be completely re-

moved. Now we derive this physical theory, which can be interpreted as D2-branes' theory.

D2-branes' action : M2-branes to D2-branes

Let us now consider the theory de�ned by Lagrangian (6.20) for the particular background

XI
u = λI , Ψu = 0 , (6.31)

where λ is a constant vector. Without loss of generality, for space-like vector λ, we can

choose λ to lie on the direction ofX10

λI = λ δI
10 . (6.32)

As we mentioned above, �xing the �eldsXI
u and Ψu by (6.31) removes the ghost term Lgh

from the Lagrangian. We can now integrate over A′ and �nd

Leff = −1
2
(D̂µX̂

I)2 +
i

2
¯̂ΨΓµD̂µΨ̂ +

λ2

4
[X̂I , X̂J ]2 +

iλ

2
¯̂ΨΓI [XI , Ψ̂] − 1

4λ2
F̂ 2

µν , (6.33)
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where I, J = 3, · · · , 9. This is nothing but supersymmetric Yang-Mills Lagrangian in 3-

dim spacetime.

It is very interesting to note that all degrees of freedom in the spatial coordinate X10

have totally disappeared from both the kinetic term and the potential term of the action. It

is fully decoupled from the Lagrangian for the particular background under consideration.

This vanishingX10's degree of freedom is eaten by the gauge �eld, which are changed from

Chern-Simons to Yang-Mills gauge �eld.

The VEV λ corresponds to the compacti�cation radius.

Let us now recall that when M-theory is compacti�ed on a circle, it is equivalent to type

IIA superstring theory and M2-branes are matched with D2-branes. The background (6.31)

considered above is reminiscent of the novel `Higgs mechanism' in [25]. It was originally

proposed to describe the effect of compacti�cation ofX10, and later found to correspond to

a large k limit of a Z2k M-fold [87, 88].

The M-theory parameters can be converted to those of type IIA superstring theory via

R = gsls and lp = gsl
3
s , (6.34)

where R is a radius of the compacti�ed circle, lp is 11-dim Planck length, gs is the string

coupling and ls is the string length. It is natural to consider that one set 11-dim Planck

length lp and M2-brane's tension T2 = l−3
p to 1 in the original BLG Lagrangian. Thus

we see that the Lagrangian (6.33) is exactly the same as the low-energy effective action of

multiple D2-branes, if λ is given by the radius of the compacti�ed dimension

λ = R l−3/2
p . (6.35)

Furthermore, in our setup, the translation symmetry of the center-of-mass coordinates

corresponding to the u(1) factor of Lie algebra G is manifest. This can be regarded as a

strong signature of the reduction of M2-branes to D2-branes due to a compacti�cation of

the M-theory on S1.

6.4 D2-branes' action from an M5-brane

In this section, we present a very different derivation of D2-branes from M2-branes. It is

based on the derivation of M5-brane from BLG model in Chapter 4.

Step 1 : M2-branes to M5-brane

We consider a 3-dim manifoldN equipped with the Nambu-Poisson structure. By choosing

the appropriate local coordinates yµ̇ (µ̇ = 1̇, 2̇, 3̇), one may construct an in�nite-dimensional

Lie 3-algebra from the basis χa (a = 1, 2, 3, · · · ,∞) of functions onN as{
χa, χb, χc

}
=
∑

d

fabc
d χ

d , {f1, f2, f3} =
∑
µ̇,ν̇,λ̇

εµ̇ν̇λ̇

∂f1

∂yµ̇

∂f2

∂yν̇

∂f3

∂yλ̇
. (6.36)
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From the property of the Nambu-Poisson structure, this Lie 3-algebra satis�es the funda-

mental identity with positive de�nite and invariant metric for the generators

〈χa, χb〉 =
∫
N
d3y χa(y)χb(y) . (6.37)

By the summation of these generators with the BLG �elds

XI(x, y) =
∑

a

XI
a(x)χa(y) ,

Ψ(x, y) =
∑

a

Ψa(x)χa(y) ,

Aµ(x, y, y′) =
∑
a,b

Aµab(x)χa(y)χb(y′), (6.38)

we obtain the �elds on the 6-dim manifold M × N where M is the worldvolume of the

original M2-branes. We note that the gauge �eld Aµ(x, y, y′) appears to depend on two

points on N . However, if we examine the action carefully, one can show that it depends on

Aµ(x, y, y′) only through

bµν̇(x, y) =
∂

∂y′ν̇
Aµ(x, y, y′)

∣∣∣∣
y′=y

. (6.39)

Therefore, the action can be written in terms of the local �elds. It was shown that the BLG

Lagrangian, after suitable �eld rede�nitions, describes the �eld theory on a single M5-brane

which properly includes the self-dual 2-form �eld.

Step 2 : M5-brane to D4-brane

As we discuss in §4.6, in order to obtain a D4-brane from M2-branes, we have to wind

X 3̇ around the compact y3̇ direction and impose the constraints that the other �elds do not

depend on y3̇. Other than that, we use the same �eld con�guration:

X 3̇ = y3̇ , X α̇ = yα̇ + εα̇β̇aβ̇(x, y) ,

aµ(x, y) = bµ3̇(x, y) , ãλ(x, y) = εα̇β̇∂α̇bλβ̇ ,

∂3̇X
i = ∂3̇Ψ = ∂3̇aβ̇ = ∂3̇aµ = ∂3̇ãλ = 0 , (6.40)

where we use the indices α̇, β̇, · · · to denote 1̇, 2̇ such that the worldvolume index of a D4-

brane is µ and α̇. We use the notation i = 1, · · · , 5 for the transverse directions. Note that

bµν̇ appears only through aµ and ãµ.

Various terms of the D4-brane's action can be computed straightforwardly. After inte-

grating out the auxiliary �eld ãµ, and neglecting the constant and total derivative terms, we

obtain the D4-brane's action as

S = 2πR
∫
d5x

[
−1

4
F 2

µν − 1
2
(DµX

i)2 +
i

2
Ψ̄ΓµDµΨ − 1

4
{Xi, Xj}2 +

i

2
Ψ̄Γi{Xi,Ψ}

]
,(6.41)
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where µ, ν, · · · are the integrated indices for µ, ν and α̇, β̇ running from 0 to 4. R is the

radius of the compacti�ed direction. Since the integrand does not depend on y3̇, we ob-

tain overall factor of
∫
dy3̇ = 2πR. The de�nition of the �eld strength and the covariant

derivatives are

Fµν = ∂µAν − ∂νAµ + {Aµ, Aν} ,
DµX

i = ∂µX
i + {Aµ, X

i} , DµΨ = ∂µX
i + {Aµ,Ψ} . (6.42)

While we expect to have the abelian U(1) gauge �eld on the D4-brane's worldvolume, we

have everywhere the Poisson bracket

{f, g} =
∑

α̇,β̇=1̇,2̇

εα̇β̇ ∂α̇f ∂β̇g . (6.43)

We note that Aµ = aµ, aα̇ is not exactly the commutative U(1) gauge �eld, but it includes

noncommutativity in µ = 3, 4 directions (originally α̇ directions).

We also note that in the computation, there are no ambiguities associated with the inner

product. The origin of the noncommutativity is obvious. It comes from the Nambu-Poisson

bracket where the space of the function is truncated to{
y3
}
∪ C(N ′) , (6.44)

where we decompose N into y3̇ direction and N ′ described by y1̇,2̇. For fi(y1̇, y2̇) ∈
C(N ′), the Nambu-Poisson bracket becomes

{y3̇, f1, f2}NP = {f1, f2} , {f1, f2, f3}NP = 0 , otherwise = 0 . (6.45)

The commutator terms in the Lagrangian come from this algebra. This algebra turns out to

be identical to Lie 3-algebra (6.12) if we put λ to zero. The generator that corresponds to u

is y3̇, which describes the winding of M5-brane's worldvolume around S1. This discussion

is closely related to Lie 3-algebra with the �central extension� of Nambu-Poisson bracket

(3.103).

Step 3 : D4-brane to D2-branes

The Poisson bracket {f, g} can be obtained from the matrix algebra, when the matrix size

N is in�nite. By using the standard argument (see, for example, [89�92]), it is easy to claim

that the D4-brane's action which we just obtained can be regarded as describing an in�nite

number of D2-branes.

However, in order to obtain the �nite N theory on D2-brane, this is not suf�cient. We

need to quantize the Nambu bracket. In general, the quantumNambu bracket is very dif�cult

to de�ne, as we discussed in the beginning of Chapter 5. However, for the truncated Hilbert

space (6.44), this is actually possible. We deform the Nambu-Poisson bracket by

[f1, f2, f3]QN =
3∑

i,j,k=1

εijk(fi ? fj) ∂3fk , (6.46)
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where ? is the Moyal product

(f ? g)(y1̇, y2̇) = exp(iεα̇β̇θ∂yα̇∂zβ̇ )f(y1̇, y2̇)g(z1̇, z2̇)
∣∣∣
z=y

. (6.47)

It does not satisfy the fundamental identity, when we consider C(N ) as a whole. However,
if we restrict the generators to (6.44), we can recover the fundamental identity. If we take

N ′ as T 2 and quantize θ suitably, the quantum T 2 reduces to the U(N) algebra

UV = V Uω, ωN = 1 , UN = V N = 1 . (6.48)

In this case, the quantumNambu-Poisson bracket reduces to the one-generator extension

of U(N) algebra

[u, T i, T j ] = f ij
kT

k [T i, T j , T k] = 0 . (6.49)

Thus �nally, the multiple D2-branes' action can be obtained by expanding the functions in

y1̇,2̇ directions by U, V and replacing the covariant derivative Dα̇ by the commutators

Dα̇Φ → [Xα̇,Φ] (6.50)

for general Φ.

6.5 Summary

In this chapter, we study two approaches to obtain multiple D2-branes' action from the

BLG theory. In the �rst approach, one de�nes Lie 3-algebra which contains generators of

a given Lie algebra. Such an extension inevitably contains a generator with negative norm.

We argued that by suitably choosing such extension, one might restrict the �eld associated

with it to constant or zero, while keeping almost all of the symmetry of BLG theory. Such

truncation leads to a new kind of `Higgs mechanism' [25] and generates the standard kinetic

term for the Yang-Mills gauge �elds on the multiple D2-branes' worldvolume.

In the second derivation of multiple D2-branes, we found that the extra generator has a

simple physical origin, i.e. the winding of M5-brane around S1 which de�nes the reduction

from M-theory to type IIA superstring theory.

However, in these approaches, the physical meaning of the extra generators are still not

very clear. In particular, our understanding is hindered by the fact that the limit λ → ∞
doesn't mean the expansion of 11th direction. We hope that this point will be revealed by

future works.



Chapter 7

Dp-branes from General Lorentzian

BLG model

In the previous chapter, we discuss the BLGmodel with Lorentzian Lie 3-algebra, which has

a ghost �eld but it can be completely decoupled by `Higgs mechanism.' It was realized that

the inclusion of the Lorentzian generators is associated with the compacti�cation of a spatial

dimension, and this Lorentzian model reproduces the multiple D2-branes' worldvolume

theory in type IIA string theory.

In this chapter, we study some generalizations of such Lorentzian Lie 3-algebra for

which ghost �elds can still be decoupled. We analyze the BLG model with these kinds of

Lie 3-algebra, and show that we obtain the multiple Dp-branes' theory on (p− 2)-dim torus

T p−2 (p ≥ 3), when we choose a suitable example of Lie 3-algebra. The general argument

about these kinds of algebra has already done in §3.4.2. According to that discussion, we

�nd that there are the following concrete examples.

Here we denote the generators of the general Lorentzian Lie 3-algebra as ei (i =
1, · · · ,M ) and ua, v

a (a = 1, · · · , N ). When we require that the algebra should satisfy the

fundamental identity and invariant metric condition, the form of 3-commutators becomes

[ua, ub, uc] = Ki
abcei + Labcdv

d,

[ua, ub, e
i] = J ij

abej −Ki
abcv

c,

[ua, e
i, ej ] = J ij

abv
b + f ijk

a ek ,

[ei, ej , ek] = −f ijk
a va, (7.1)

and, after the suitable change of basis, the nontrivial part of the metric is given by

〈ei, ej〉 = gij , 〈ua, v
b〉 = δb

a , (7.2)

where gij is the Killing form of the (direct sum of) Lie algebras g = g1 ⊕ · · · ⊕ gn, which

is not necessarily positive-de�nite.

123
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Based on the analysis in §3.4.2, which gives the conditions for the structure constants

f ijk
a , J ij

ab and K
i
abc, we can obtain the following concrete examples of general Lorentzian

Lie 3-algebras:

1. M = 2, J ij
ab = εabJ

ij (i, j = 1, · · · , n), others = 0 : This is the simplest �nite-

dimensional example where some character of the Lorentzian symmetry is displayed.

Namely, the BLG model de�nes the massive N = 8 supersymmetric vector multi-

plets [7].

2. M = 2, J ij
ab = εabJ

ij , f ijk
1 6= 0, others = 0 (§7.1) : This is the simplest nontrivial

example which contains the interaction. We will present our result by studying the

Yang-Mills system where the gauge symmetry is de�ned by Lorentzian Lie algebra.

This is possible since the Lie 3-algebra can be written in the form (7.4). In such case,

one can skip the discussion of eliminating one pair of ghost �elds. It also illuminate

the structure of the Yang-Mills system with Lorentzian Lie algebra.

3. Lie 3-algebra associated with af�ne Kac-Moody Lie algebra (§7.2) : This is the spe-
cial case of the previous example, where the Lorentzian Lie algebra is given by the

af�ne Lie algebra. In this case, BLG action describes the multiple D3-branes on a

circle. It illuminates how Kaluza-Klein mass (on the circle) is generated by the ghost

�elds.

4. Lie 3-algebra associated with general loop algebras (§7.3) : This is the generalization
of the previous example, and BLG action with this algebra describes the multiple

Dp-branes on the (p− 2)-dim torus with constant B-�eld �ux.

5. Lorentzian Lie 3-algebra with F ijkl 6= 0 : We have already presented the concrete

form of this algebra in eq. (3.103). BLG action in this case describes the single M5-

brane's system, just as in Chapter 4 [7].

7.1 Massive super Yang-Mills theory

In this section, we consider the simplest nontrivial (i.e. interaction terms exist) example of

general Lie 3-algebra, such that

f ijk
1 6= 0 , f ijk

2 = 0 , J ij 6= 0 . (7.3)

In this case, we can rewrite the 3-commutator as

[u1, T
A, TB] = fAB

CT
C ,

[v1, TA, TB] = 0 ,

[TA, TB, TC ] = −hCDfAB
Dv1 , (7.4)
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where A,B, · · · = {ei, u2, v2}, f ijk := f ijk
1 and fu2ij := J ij . This algebra is similar to

that of Lorentzian Lie 3-algebra, that is, a (u1, v1)-extension of Lie 3-algebra (6.12). A

different point is that this Lie 3-algebra {TA} = {ei, u2, v2} has Lorentzian generators,

while eq. (6.12) is a standard (positive-de�nite) Lie algebra.

In the following, we denote generators of this algebra as {ei, u, v}, instead of {ei, u2, v2}.
Then the metric (or Killing form) and structure constants are

〈ei, ej〉 = δij , 〈u, v〉 = 1 ;

f ijk, fuij = J ij , otherwise = 0 , (7.5)

where i = 1, · · · , N . The Jacobi identity is written as

f ijlf lkm + f jklf lim + fkilf ljm = 0 ,

f ijlJ lk + f jklJ li + fkilJ lj = 0 , (7.6)

which are consistent with the fundamental identity for the Lie 3-algebra {T i, u1,2, v1,2}.
This is the simplest �Lorentzian extension� of Lie algebra

[ei, ej ] = f ij
ke

j + J ijv , [u, ei] = J ijej . (7.7)

This extension is trivial, if J ij is an inner automorphism

J ij = f ij
kα

k , (7.8)

for some parameter αk. One may then rede�ne the basis

e′i = ei + αiv , u′ = u− αie
i , v′ = v , (7.9)

such that the algebra becomes the direct sum of the original Lie algebra and Lorentzian

pairs:

[e′i, e′j ] = f ij
ke

′k , other commutators = 0 ;

〈e′i, e′j〉 = δij , 〈u′, v′〉 = 1 , other inner products = 0 . (7.10)

In the following, we will focus on the nontrivial case where J gives an in�nitesimal outer

automorphism.

As we discussed in the previous chapter, the BLG model with Lorentzian Lie 3-algebra

results in super Yang-Mills theory with Lie algebra. So, let us consider the Yang-Mills

theory coupled with scalar �elds XI (I = 1, · · · , n) and spinor �elds Ψ based on this

extended algebra:

L = −1
2
〈DµX

I , DµXI〉 +
λ2

1

4
〈[XI , XJ ], [XI , XJ ]〉

+
i

2
〈Ψ̄,ΓµDµΨ〉 +

iλ1

2
〈Ψ̄,ΓI [XI ,Ψ]〉 − 1

4λ2
1

〈FµνF
µν〉

=: LX + Lpot + LΨ + Lint + LA , (7.11)
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where XI takes the adjoint representation

XI = XI
i e

i +XI
uu+XI

vv ,

(DµX
I)i = ∂µX

I
i − f jk

iAµjX
I
k − J jiCµX

I
j + J jiAµjX

I
u

=: (D̂µX
I)i + J jiAµjX

I
u ,

(DµX
I)u = ∂µX

I
u ,

(DµX
I)v = ∂µX

I
v + J ijAµiX

I
j ,

Aµu =: Cµ , Aµv =: Bµ , (7.12)

and similar expressions for Ψ. The covariant derivative corresponding to the gauge symme-

try generated by ei should thus be de�ned as

D̂µ = ∂µ − CµDu −Aµie
i, (7.13)

where Du is the derivation de�ned by J :

Du(ei) = J ijej . (7.14)

On the right hand side of (7.13), ei is used to imply the adjoint action of ei, namely ei(x) =
[ei, x]. The gauge transformation is written as

δΦi = f jk
iεjΦk + JkiγΦk − J jiεjΦu ,

δΦu = 0 ,

δAµi = ∂µεi + f jk
iεjAµk + JkiγAµk − J jiεjCµ

=: (D̂µε)j + J jiγAµj (7.15)

for Φ = XI ,Ψ.

Lagrangian : massive super Yang-Mills theory with interaction

The kinetic term forXI becomes

LX =
1
2
(D̂µX

I
i + J jiAµjX

I
u)2 + ∂µXI

u(∂µX
I
v − J ijAµiX

I
j ) . (7.16)

The variation ofXI
v gives ∂2XI

u = 0. So we take it as a constant, as in the previous chapter,

XI
u = λ2δI1 . (7.17)

After imposing this VEV, this term becomes

LX = −1
2

n∑
I′=2

(D̂µX
I′
i )2 − 1

2λ2
1

F 2
µu , (7.18)

where

Fµu := [D̂µ, D̂u] , D̂u := λ1(λ2Du +X1
i e

i). (7.19)
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We are thus led to interpret Du (or J) as the derivative of a certain noncommutative

space in the direction of Xu. The situation here is reminiscent of the result of quotient

conditions in the context of Matrix Models in dealing with orbifolds and orientifolds [93].

In analogy, since we have taken the VEV of Xu to be in the direction of X1, X1
j plays

the role of a gauge potential and Jij that of a covariant derivative on a noncommutative

space, and thus D̂u mimics a covariant derivative. We will see in the next section that for

the compacti�cation on a circle, D̂u is indeed the covariant derivative in the compacti�ed

direction.

If we �x the gauge byX1
i = 0, the second term of (7.18) becomes

−λ
2
2

2
(J2)ijAµiAµj . (7.20)

This is the mass term for vector bosons.

The potential term is

Lpot =
λ2

1

4

n∑
I′,J ′=2

[XI′ , XJ ′
]2 − 1

2

n∑
J ′=2

(D̂uX
J ′

)2. (7.21)

If we gauge awayX1
i using the gauge symmetry, the last term above is simply

−λ
2
1λ

2
2

2

n∑
J ′=2

(J2)ijX
J ′
i X

J ′
j , (7.22)

which gives the mass term forXJ ′
.1

The kinetic term for the gauge �eld becomes

− 1
4λ2

1

〈Fµν , F
µν〉 = − 1

4λ2
1

{
(Fµνi)2 + FµνuF

µν
v

}
, (7.23)

where

Fµνi = ∂µAνi − ∂νAµi − f jk
iAµjAνk + J ij(CµAjν − CνAjµ) ,

Fµνu = ∂µCν − ∂νCµ ,

Fµνv = ∂µBν − ∂νBµ − J ijAµiAνj . (7.24)

Variation of gauge �eld Bµ gives a free equation of motion for Cµ,

∂µ∂[µCν] = 0 . (7.25)

If we start from the original BLG action (6.1)�(6.6), we have slightly different Lagrangian

LA′C = εµνλA
′
µ∂νCλ, (7.26)

1If J is an inner automorphism, i.e. Jki = f jk
iµj , one may shift X1

j = −µj to absorb J in X1. This is

consistent with our comment above that J can be rede�ned away if it corresponds to an inner automorphism.



128 CHAPTER 7. DP -BRANES FROM GENERAL LORENTZIAN BLG MODEL

where A′
µ is an auxiliary �eld.

From the viewpoint of the super Yang-Mills theory, although it is not presented from

the beginning, one can add this term as a way to gauge the global symmetry of translation

of Cµ, analogous to (6.29), where we gauged the translation of Xu and Ψu. By variation

of A′
µ, Cµ becomes topological and pure gauge. Hence we should set Cν to be a constant.

It can be interpreted as the projection of the �u�-direction on the D-branes' worldvolume,

while XI
u is the projection of the u-direction in the transverse directions.

On the fermionic parts, after setting the VEV to Ψu = 0 as in the previous chapter, they

become

LΨ =
i

2
〈Ψ̄,ΓµD̂µΨ〉, (7.27)

and

Lint =
n∑

I′=2

iλ1

2
〈Ψ̄i,ΓI′ [XI′

j ,Ψk]〉 +
i

2
Ψ̄iΓ1D̂uΨi. (7.28)

In the gauge X1
i = 0, the second term becomes the mass term for the fermions with their

masses given by the matrix λ1λ2J .

To summarize, in the gaugeX1 = 0,

L = LX + LΨ + Lint + LA ,

LX =
n∑

I′,J ′=2

−1
2
(D̂µX

I′
i )2 +

λ2
1λ

2
2

2
XI′

i (J2)ijX
I′
j ,

LΨ =
n∑

I′=2

i

2
Ψ̄ΓµD̂µΨ − λ1λ2

2
Ψ̄i(iΓ1)J ijΨj ,

Lint =
n∑

I′,J ′=2

λ2
1

4
[XI′ , XJ ′

]2 +
iλ1

2
〈Ψ̄,ΓI′ [XI′ ,Ψ]〉 ,

LA = − 1
4λ2

1

F 2
µν − λ2

2

2
(J2)ijA

′
µiA

′
µj , (7.29)

which is of the form of a massive super Yang-Mills theory with the mass matrix λ1λ2Jij .

7.2 Dp-branes to D(p + 1)-branes

In this section, we consider an example of the general theory studied in the previous section.

We consider the Kac-Moody algebra as an example of the Lorentzian extension of a Lie

algebra, and show that the super Yang-Mills theory with the gauge symmetry generated by

the Kac-Moody algebra is equivalent to a super Yang-Mills theory with a �nite-dimensional

gauge group on a base space of higher dimensions.
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We consider Kac-Moody algebra as an example.

Here we consider a concrete example of Lie 3-algebra which is de�ned as (7.4) where Lie

algebra G itself is a Lorentzian Lie algebra. The simplest example is when G is the af�ne

Lie algebra ĝ,

[u, T a
m] = mT a

m ,

[T a
m, T

b
n] = mvgabδm+n + ifab

cT
c
m+n ,

[v, u] = [v, T a
m] = 0 , (7.30)

where a, b, c = 1, · · · , dim g,m,n ∈ Z and gab is the Killing form of a compact Lie algebra

g. This algebra has an invariant metric

〈T a
m, T

b
n〉 = gabδm+n , 〈u, v〉 = 1 . (7.31)

We note that the generator v is the center of Kac-Moody algebra and usually taken as a

quantized c-number. Here we identify it as a nontrivial generator. On the other hand, the

generator u gives the level (or −L0 in the Virasoro algebra). While T a
n has a positive-

de�nite metric, the generators u, v have a negative-norm generator.2

We follow the method in §7.1, where we use the super Yang-Mills system on D2-branes

with gauge symmetry ĝ by using the Higgs mechanism for one Lorentzian pair.

In fact, the following analysis can be carried out for any Dp-branes' system and provides

a general mechanism of the gauge theory with af�ne gauge symmetry. What we are going

to show is that the Dp-branes' system whose gauge symmetry is ĝ can be identi�ed with

D(p+ 1)-branes' system with Lie algebra g.

We start here from (p+ 1)-dim super Yang-Mills theory.

If we start from the BLG model directly, we have a different perspective in which we will

treat more general argument given in the next section. Then we start from the ordinary super

Yang-Mills action

L = − 1
4λ2

〈Fµν , F
µν〉 − 1

2
〈DµX

I , DµXI〉 +
λ2

4
〈[XI , XJ ], [XI , XJ ]〉

+
i

2
Ψ̄ΓµDµΨ +

iλ

2
Ψ̄ΓI [XI ,Ψ] , (7.32)

where XI(x) (I = 1, · · · , D) are the scalar �elds and Ψ(x) is the spinor �eld. Both are in
the adjoint representation of g. The worldvolume index is given as µ, ν = 0, · · · , p. The
covariant derivative and the �eld strength are de�ned (only in this subsection) as

DµΦ := ∂µΦ − i[Aµ,Φ] , Fµν := ∂µAν − ∂νAµ − i[Aµ, Aν ] , (7.33)

for Φ = XI ,Ψ.

2We note that a different type of Lie 3-algebra based on Kac-Moody symmetry was obtained in [94].
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Mode expansions

We consider the following component expansion

Aµ = Aµ(a,n)T
a
n +Bµv + Cµu ,

XI = XI
(a,n)T

a
n +XI

uu+XI
vv ,

Ψ = Ψ(a,n)T
a
n + Ψuu+ Ψvv . (7.34)

Various components of the covariant derivative and the �eld strength are given as

(DµX
I)(an) = ∂µX

I
an + f bc

a

∑
m

Aµ(b,m)X
I
(c,n−m) − nCµX

I
(a,n)

+inAµ(a,n)X
I
u

=: (D̂µX
I)(a,n) + inAµ(a,n)X

I
u ,

(DµX
I)u = ∂µX

I
u ,

(DµX
I)v = ∂µX

I
v +

∑
m

imgabAµ(a,m)X
I
(b,−m) , (7.35)

(Fµν)(a,n) = ∂µAν(a,n) − ∂νAµ(a,n) + f bc
a

∑
m

Aµ(b,m)Aν(c,n−m) ,

(Fµν)u = ∂µCν − ∂νCµ ,

(Fµν)v = ∂µBν − ∂νBµ +
∑
m

imgabAµ(a,m)Aν(b,−m) , (7.36)

and similar expressions for DµΨ. From the kinetic part for u, v components, the equations

of motion forXu, Ψu and Cµ are free,

∂µ∂µX
I
u = Γµ∂µΨu = ∂µ(∂µCν − ∂νCµ) = 0 . (7.37)

We �x their values as

XI
u = const. =: λ′δID, Ψu = 0 , ∂µCν − ∂νCµ = 0 . (7.38)

For the �rst two relations, we need to use the method of `Higgs mechanism' which we

discussed in the previous chapter. We need to introduce the extra gauge symmetry as com-

mented in the paragraph after (7.25) to derive the last one. For general worldvolume dimen-

sions, the additional action is

Sadditional = − 1
4λ2

Dµν(∂µCν − ∂νCµ) , (7.39)

where Dµν is a new �eld. It gives rise to a new gauge symmetry,

δDµν = ∂µΞν − ∂νΞµ , δBµ = −Ξµ , (7.40)

by which we can gauge �x Bµ = 0. The equation of motion by the variation of Dµν

gives the �atness condition of Cµ. Since the gauge �eld Cµ is essentially �at, we can

ignore it for simplicity (namely, set Cµ = 0) in the following. After this, the ghost �elds

Cµ, Bµ, X
I
u, X

I
v ,Ψu,Ψv disappear from the action, and the system becomes unitary.
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Rede�nition of �elds

We identify the in�nite components of the scalar, spinor and gauge �elds as �elds in p+ 2
dimensions,

X̃I
a(x, y) =

∑
m

XI
(a,n)(x)e

−iny/R , Ψ̃a(x, y) =
∑
m

Ψ(a,n)(x)e
−iny/R ,

Ãµa(x, y) =
∑
m

Aµ(a,n)(x)e
−iny/R, (7.41)

where an extra coordinate y is introduced to parametrize S1 with the radius R. We also

rename

X̃D
a (x, y) → 1

λ
Ãya(x, y) . (7.42)

We �nally obtain (p+ 2)-dim super Yang-Mills theory.

The kinetic term of the scalar �eldXI can be rewritten as

−1
2

∫
dy

2πR

[
D−1∑
I=1

(∂µX̃
I
a − f bc

aÃµbX̃
I
c )2 +

1
λ2
F̃ 2

µya

]
, (7.43)

where

F̃µya := ∂µÃya − ∂yÃµa + f bc
aÃµbÃyc . (7.44)

Here the second term can be produced properly if we identify

R = 1/λλ′ . (7.45)

This relation seems strange if we compare with (6.35). It can be �xed by applying the

T-duality transformation [95].

The second term of (7.43), when combined with the kinetic term for gauge �elds, prop-

erly reproduces the kinetic term for (p+2)-dim worldvolume. The Kaluza-Klein mass from

the compacti�cation radius (7.45) is nλλ′ which is consistent with the result in the previous

section.

Similarly, we can rewrite the commutator term as

λ2

4

D∑
I,J=1

〈[XI , XJ ], [XI , XJ ]〉 =
λ2

4

D−1∑
I,J=1

∫
dy

2πR
〈[X̃I , X̃J ], [X̃I , X̃J ]〉

−1
2

D−1∑
I=1

∫
dy

2πR
(DyX̃

I)2. (7.46)

Here again the second term can be combined with the kinetic term forXI to give the kinetic

energy on (p+ 2)-dim worldvolume.
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Finally, we can rewrite the interaction term as

iλ

2

D∑
I=1

Ψ̄ΓI [XI ,Ψ] =
iλ

2

D−1∑
I=1

∫
dy

2πR
¯̃ΨΓI [X̃I , Ψ̃] +

i

2

∫
dy

2πR
¯̃ΨΓyDyΨ̃. (7.47)

Here, in this time, the second term can be combined with the kinetic term for Ψ.3

In the end, the Lagrangian thus obtained is the same as the original Lagrangian (7.32)

except that we change the dimension parameterD → D − 1 and p → p+ 1 and the gauge

symmetry G = ĝ → g :

L = LA + LX + LΨ + Lpot + Lint ,

LA = − 1
4λ2

∫
dy

2πR
(F̃ 2

µν + 2F̃ 2
µy) ,

LX = −1
2

∫
dy

2πR

D−1∑
I=1

[
(DµX̃

I)2 + (DyX̃
I)2
]
,

LΨ =
i

2

∫
dy

2πR
¯̃Ψ(ΓµDµ + ΓyDy)Ψ̃ ,

Lpot =
λ2

4

D−1∑
I,J=1

∫
dy

2πR
〈[X̃I , X̃J ], [X̃I , X̃J ]〉 ,

Lint =
iλ

2

D−1∑
I=1

∫
dy

2πR
¯̃ΨΓI [X̃I , Ψ̃] . (7.48)

7.3 Dp-branes' action from M2-branes

In this section, we consider the generalized system from the previous section's one, namely

the compacti�cation and T-dualization of D2-branes' worldvolume on torus. However, in

this time, we start from the original BLG model for multiple M2-branes corresponding to

an example of the Lie 3-algebra. The formulation here will be more general than above as

we will turn on noncommutativity and a gauge �eld background.

7.3.1 Summary of procedure

Lie 3-algebra with multiple loop algebra (Kac-Moody algebra)

We start by de�ning a Lie algebra g0 with generators T
i
~m, structure constants

f (i~l)(j ~m)(k~n) = f ijk
~l~m
δ
~l+~m+~n
~0

, (7.49)

3We should notice the de�nition of Γµ and ΓI here. We see from the kinetic term of Ψ in the Lagrangian

(7.32) that Γµ satis�es {Γµ, Γν} = diag. (+ − · · ·−). On the other hand, ΓI should satisfy {ΓI , ΓJ} = δIJ

as usual. So we choose ΓD = −iΓy and obtain (7.47).
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and metric

g(i~m)(j~n) = gij
~mδ

~m+~n
~0

, (7.50)

where ~m is a d-dim vector of integers.

The simplest example of g0 has

T i
~m = T iei~m·~x, (7.51)

where T i is the generator for U(N) and ~x is the coordinate on a d-dim torus. More gener-

ally, one can consider a twisted bundle on a noncommutative torus T d
θ . In this case

T i
~m = T iZm1

1 · · ·Zmd
d , (7.52)

where T i denotes a generator of the U(N) gauge group, and Zi are noncommutative alge-

braic elements satisfying

ZiZj = eiθ
′
ijZjZi. (7.53)

The parameter θ′ is in general not the same as the noncommutative parameter θ of the

noncommutative torus T d
θ , and it depends on the rank of the gauge group and its twisting.

Zi maps a section of the twisted bundle to another section. For the trivial bundle, Zi = eixi

and (7.52) reduces to (7.51). The case of d = 2 was studied in [96,97]. It is straightforward

to generalize it to arbitrary dimensions.

Since the structure constant (7.49) of g0 has the property

f (i~l)(j ~m)(k~n) ∝ δ
~l+~m+~n
~0

. (7.54)

g0 has derivations

J
(i~m)(j~n)
0a = maδ

(i~m)(j~n). (7.55)

Now we consider the Lie 3-algebra with the underlying Lie algebra g = g0 and Ia6=0's

empty. We take Jab = 0 if a, b 6= 0, and J0a given by (7.55). It follows that the �rst 3 terms

in (3.127) vanish, hence

K
(i~m)
abc = δi

0δ
~m
~0
Babc , (7.56)

assuming that T 0 is the identity ofU(N), so that T (0~0) is the identity of g0. In the following,

we choose

Ki~m
0ab = δi

0δ
~m
~0
Bab ,

Ki~m
abc = 0, otherwise. (7.57)

It will be shown below that the constants Bab corresponds to a nontrivial gauge �eld back-

ground.
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To summarize, the Lie 3-algebra is de�ned by the 3-commutators

[u0, ua, ub] = BabT
0
~0

+ L0abcv
c,

[u0, ua, T
i
~m] = maT

i
~m − δi

0δ
~0
~mBabv

b,

[u0, T
i
~m, T

j
~n] = mag

ij
~mδ

~0
~m+~nv

a + f ijk
~m~nT

k
~m+~n ,

[T i
~l
, T j

~m, T
k
~n ] = −f ijk

~l~m
δ
~0
~l+~m+~n

v0, (7.58)

where a, b, c = 0, 1, 2, · · · , d and i, j, k = 1, 2, · · · , N . This Lie 3-algebra is actually

precisely the Lorentzian algebra (7.4) which is constructed from the (multiple) loop algebra

de�ned by

[ua, ub] = BabT
0
~0

+ L0abcv
c,

[ua, T
i
~m] = maT

i
~m −Ki

0abv
b,

[T i
~m, T

j
~n] = mag

ijδ
~0
~m+~nv

a + f ij
~m~nkT

k
~m+~n,

[va, T i
~m] = 0 , (7.59)

where a, b = 1, · · · , d. In the sense that one can construct the Lie 3-algebra (7.58) from

a Lie algebra by adjoining two elements (u0, v
0), this Lie 3-algebra is not a good repre-

sentative of the new class of Lie 3-algebras. However, it is still a good example because

it demonstrates the roles played by the new parameters Jab and Kabc, which encode the

information about derivatives of the Lie algebra g, which is a subalgebra of the loop algebra

(7.59).

We derive D(d+ 2)-branes' theory on d-dim torus from BLG model.

It follows from the discussion in the previous chapter that the BLG model with the Lie

3-algebra (7.58) is exactly equivalent to the super Yang-Mills theory de�ned with the Lie

algebra (7.59). In §7.2, we showed explicitly that for d = 1, the resulting super Yang-

Mills theory is the low-energy theory for D3-branes. Now we brie�y sketch the derivation

for generic d to obtain the super Yang-Mills theory for D(d + 2)-branes. The concrete

calculation will be done in the next subsection.

Expanding the �elds in the BLG model, we have

XI =
d∑

a=0

XI
aua + X̂I(Z) + Y I

a va,

Ψ =
d∑

a=0

Ψaua + Ψ̂(Z) + Φava,

Aµ =
1
2

d∑
a,b=0

Aµabua ∧ ub +
d∑

a=0

ua ∧ Âµa(Z) +
d∑

a=0

va ∧ Â′
µa(Z)

+
1
2

d∑
a,b=0

A′
µabv

a ∧ vb +
1
2

∑
ij

Aµ(i~m)(j~n)T
i
~m ∧ T j

~n, (7.60)
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where we have used (7.52) and the notation

X̂I(Z) :=
∑
~m

XI
(i~m)T

iZm1 · · ·Zmd ,

Ψ̂(Z) :=
∑
~m

Ψ(i~m)T
iZm1 · · ·Zmd ,

Âµa(Z) :=
∑
~m

Aµa(i~m)T
iZm1 · · ·Zmd ,

Â′
µa(Z) :=

∑
~m

A′
µa(i~m)T

iZm1 · · ·Zmd , (7.61)

and XI
i (Z), Ψi(Z) Âµa(Z) and Â′

µa(Z) are sections of a twisted bundle on T d
θ .

As we have done it many times already, we �x the coef�cients of ua as

XI
a = const., Ψa = 0 , Aµab = 0 , where a, b = 0, 1, · · · , d, (7.62)

and the coef�cients of va can be ignored. Here Aµab is chosen to be zero for simplicity. If

Aµab's are nonzero, it corresponds to turning on a constant background �eld strength with

nonvanishing components of FµI .

To proceed, we �rst de�ne covariant derivatives Da on the noncommutative torus, such

that

[Da, Z
m1
1 · · ·Zmd

d ] = maZ
m1
1 · · ·Zmd

d , (7.63)

[Da,Db] = Bab , (7.64)

where Bab is the constant background �eld strength that determines the twisting of the

bundle on T d
θ .

The rest of the derivation is essentially the same as §7.2. Finally, after integrating out

the �eld Ã, the BLG Lagrangian turns into that of a super Yang-Mills theory

L = −1
4

9∑
A,B=0

〈FAB, F
AB〉 +

i

2
〈Ψ̄,ΓAD̂AΨ〉, (7.65)

where

Fµν := [D̂µ, D̂ν ] , FµI := [D̂µ, D̂I ] , FIJ := [D̂I , D̂J ] +BIJ , (7.66)

and

D̂µ := ∂µ − Âµ0(Z) , D̂I := XI
aDa − X̂I(Z) , CIJ := XI

aX
J
b Bab . (7.67)

Roughly speaking, only d of the D̂I 's are covariant derivatives and the rest 7 − d are scalar

�elds. To turn on the background �eld BµI , we can assign nonzero values to Aµ0a and

Aµab.



136 CHAPTER 7. DP -BRANES FROM GENERAL LORENTZIAN BLG MODEL

7.3.2 Concrete calculation

In this subsection, we pick up an example of Lie 3-algebras which produces the worldvol-

ume theory of Dp-brane (p = d+ 2) : 4

[u0, ua, ub] = 0 ,

[u0, ua, T
i
~m] = maT

i
~m ,

[u0, T
i
~m, T

i
~n] = mav

aδ~m+~nδij + if ij
kT

k
~m+~n ,

[T i
~l
, T j

~m, T
k
~n ] = −if ijkδ~l+~m+~n

v0 . (7.68)

where a, b = 1, · · · , d,~l, ~m,~n ∈ Zd and f ijk (i, j, k = 1, · · · , dimG) is a structure constant
of an arbitrary Lie algebra g which satis�es Jacobi identity. The nonvanishing part of the

metric is given as

〈uA, vB〉 = δAB, 〈T i
~m, T

j
~n〉 = δijδ~m+~n . (7.69)

where A,B = 0, 1, · · · , d.
We note that this Lie 3-algebra can be regarded as original Lorentzian metric Lie 3-

algebra (7.142) where Lie algebra is replaced by

[ua, ub] = 0, [ua, T
i
~m] = maT

i
~m,

[T i
~m, T

j
~n] = mav

aδ~m+~nδij + if ij
kT

k
~m+~n . (7.70)

For d = 1, this is the standard Kac-Moody algebra with degree operator u and the central

extension v. Therefore, this algebra is its higher loop generalization.

Since this is a generalized case of §7.1, where BLG model reduces to super Yang-

Mills theory, one might guess that BLG model based on the Lie 3-algebra (7.68) should be

equivalent to super Yang-Mills whose gauge group is the loop algebra (7.70). It turns out

that this is not the case. As we explain below, BLG Lagrangian contains extra topological

term such as θ
∫
FF̃ , which can not be reproduced from super Yang-Mills action.

Component Expansion

For the Lie 3-algebra (7.68), we expand various �elds as

XI = XI
(i~m)T

i
~m +XI

AuA +XI
AvA ,

Ψ = Ψ(i~m)T
i
~m + ΨAuA + ΨI

AvA ,

Aµ = Aµ(i~m)(j~n)T
i
~m ∧ T j

~n +
1
2
Aµ(i~m)u

0 ∧ T i
~m +

1
2
Aµa(i~m)u

a ∧ T i
~m

+
1
2
Aµau0 ∧ ua +Aµabua ∧ ub + (terms including vA) . (7.71)

4 In the previous subsection, more general Lie 3-algebra is considered with the anti-symmetric tensor Bab,

i.e. [u0, ua, ub] = BabT
0
~0
instead of eq. (7.68). This tensor is related with the noncommutativity parameter on

Dp-brane. In this subsection, we omit this factor for the simplicity of the argument.
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Now we will rewrite the BLG action (6.1) as an action for Dp-branes (p = d + 2). More

precisely, if we denote the original M2-branes' worldvolume as M, the worldvolume of

Dp-brane is given by a �at T d bundle over M. The index ~m ∈ Zd which appears in some

components represents the Kaluza-Klein momentum along the T d.

In this geometrical setup, each bosonic components plays the following roles:

• XI
(i~m) : These are split into three groups. Some are the collective coordinates which

describe the embedding into the transverse directions, others are the gauge �elds on

the worldvolume, and the other is the degree of freedom which can be absorbed when

M-direction disappears. The concrete expression is eq. (7.108).

• XI
A : Higgs �elds whose VEV's determine either the moduli of T d or the compacti-

�cation radius in M-direction.

• Aµ(i~m): gauge �elds along the M2-branes' worldvolumeM.

• Aµa : a connection which describes the �ber bundle T d → M. The equation of

motion implies that it is always �at ∂[µAν]a = 0.

The other bosonic components become Lagrange multiplier or do not show up in the action

at all. In the following, we set Aµa = Aµab = 0 for simplicity.

Solving the ghost sector

The components of ghost �elds X and Ψ appear in the action only through the following

terms:

Lgh = −(DµX
I)uA(DµX

I)vA +
i

2
(
Ψ̄uAΓµDµΨvA + Ψ̄vAΓµDµΨuA

)
(7.72)

where

(DµX
I)uA = ∂µX

I
A ,

(DµX
I)v0 = ∂µX

I
0 + ima(Aµa(i~m)X(i,−~m) +Aµ(i~m)(i,−~m)Xa)

−f ijkAµ(i~m)(j ~m)X(k,−~m−~n) ,

(DµX
I)va = ∂µX

I
a − ima(Aµ(i~m)X(i,−~m) +Aµ(i~m)(i,−~m)X0) , (7.73)

and similar for Ψ. The variation of XI
A and ΨA always give the free equations of motion

forXI
A and ΨA, namely

∂µ∂µX
I
A = 0 , Γµ∂µΨA = 0 . (7.74)

By introducing extra gauge �elds CI
µA and χ through [85, 86]

Lnew = CI
µA∂µX

I
A − χΨ̄A , (7.75)
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one may modify the equations of motion forXI
A and ΨA to

∂µX
I
A = 0 , ΨA = 0 , (7.76)

and absorb the ghosts XI
A and Ψ by gauge �xing. This is how the ghost �elds can be

removed, as we did in many times. Since the equations of motion forXI
A (7.76) imply that

they are constant vectors in R8, we �x these constants as

~XA = ~λA ∈ Rd+1 ⊂ R8 . (7.77)

In Chapter 6, there is only one ~λ = ~λ0 which speci�es the M-direction compacti�cation

radius. This time, we have extra VEV's ~λa which give the moduli of the toroidal compacti-

�cation T d.

In the following, we prepare some notations for the later discussion. We write the dual

basis to ~λA as ~πA, which satisfy

~λA · ~πB = δB
A . (7.78)

We introduce a projector into the subspace of R8 which is orthogonal to all ~λA as

P IJ = δIJ −
∑
A

λI
Aπ

AJ , (7.79)

which satis�es P 2 = P . We de�ne `metric' as

GAB = ~λA · ~λB , (7.80)

where λI
A play the role of vierbein. Using this metric, ~π0 can be written as

~π0 =
1
G00

~λ0 −
G0a

G00
~πa , (7.81)

and from now we use {~λ0, ~π
a} as the basis of Rd+1 spanned by ~λA. Note that ~λ0 ⊥ ~πa for

all a. Our claim that the Rd+1 is compacti�ed on T d+1 will be deduced from the Kaluza-

Klein mass which is generated by the Higgs mechanism. This will be demonstrated below.

Comments on Higgs potential

Since ~XA plays the role of Higgs �elds, it is natural to wonder if one may introduce a

potential for them and �x the value of VEV's. This seems to be physically relevant since

they are related to the moduli of torus. One naive guess is to add a potential−V ( ~XA) to the
action. Since the supersymmetry and gauge transformations of ~XA are trivial, this potential

breaks neither supersymmetry nor gauge symmetry. However, the kinetic term is given in

the mixed form ∂ ~XA∂ ~XA, the potential does not �x
~XA but physically irrelevant ~XA.
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Derivation of Dp-brane action

We �nally rewrite the BLG action (6.1) in terms of Lie 3-algebra components and by putting

VEV's to ghost �eldsXI
A and ΨA.

Kinetic terms forXI and Ψ

The covariant derivative becomes, after the assignment of VEV's to ghosts,

(DµX
I)(i~m) = (D̂µX

I)(i~m) +A′
µ(i~m)λ

I
0 − imaAµ(i~m)λ

I
a (7.82)

where

(D̂µX
I)(i~m) = ∂µX

I
(i~m) + f jk

iAµ(k~n)X
I
(j,~m−~n) , (7.83)

A′
µ(i~m) = −imaAµa(i~m) + f jk

iAµ(j,~m−~n)(k~n) . (7.84)

We decompose this formula into the components into the orthogonal spacesR7−d andRd+1

by using the projector P IJ as

(DµX
I)(i~m) = P IJ(D̂µX

J)(i~m) +
∑
A

λI
A(FµA)(i~m) (7.85)

where

(Fµ
0)(i~m) = ~π0 · (D̂µ

~X)(i~m) +A′
µ(i,~m)

=
1
G00

D̂µ(~λ0 · ~X)(i~m) −
G0a

G00
D̂µ(~πa · ~X)(i~m) +A′

µ(i~m) , (7.86)

(Fµ
a)(i~m) = D̂µ(~πa · ~X)(i~m) − imaAµ(i~m) . (7.87)

We will rewrite ~πa · ~X as Aa below, since they play the role of gauge �elds along the �ber

T d as we mentioned. Fµ
a will be regarded as the �eld strength with one leg in M and

the other in T d. Fµ
0 seems to be the �eld strength in a similar sense with one leg in M-

direction. However, the gauge �eld A′
µ(i~m) is an auxiliary �eld as we see below, and after

it is integrated out, Fµ
0 will completely disappear from the action. In this sense, Fµ

0 do

not have any geometrical meaning. We suspect, however, that it may give a hint to keep the

trace of the compacti�cation of M-theory to type IIA superstring theory.

Finally, using eq. (7.85), the kinetic term forXI becomes

LX = −1
2
D̂µX

I
(i~m)P

IJD̂µX
J
(i,−~m) −

1
2
GABFµ

A
(i~m)Fµ

B
(i,−~m) . (7.88)

Similarly, the kinetic term for Ψ becomes

LΨ =
i

2
Ψ̄(i~m)Γ

µD̂µΨ(i,−~m) . (7.89)
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Chern-Simons term and integration of A′

The Chern-Simons term is written as

LCS =
1
2

(
A′

(i~m) ∧ dA(i,−~m) +A(i,−~m) ∧ dA′
(i~m)

)
−if ijkA′

(i~m) ∧A(j~n) ∧A(k,−~m−~n) , (7.90)

or, up to the total derivative terms,

LCS =
1
2
A′

(i~m) ∧ F(i,−~m) + (total derivative) , (7.91)

where

Fµν(i~m) = ∂µAν(i~m) − ∂νAµ(i~m) + f jk
iAµ(j~n)Aν(k,~m−~n) . (7.92)

Since the gauge �eld A′ shows up only in LCS and LX , one may algebraically integrate

over it. Variation of A′ gives the equation of motion gives

A′
µ(i,~m) = − 1

G00
D̂µ(~λ0 · ~X)(i~m) +

G0a

G00
D̂µAa(i~m) −

G0a

G00
(Fµ

a)(i~m)

− 1
2G00

εµνλ(Fνλ)(i~m) , (7.93)

where Aa := ~πa · ~X . By putting back this value to the original action (7.90),

LX + LCS = −1
2
D̂µX

IP IJD̂µX
J − 1

4G00
(Fνλ)2 − 1

2
G̃abFµ

aFµ
b

− G0a

2G00
εµνλFµ

aFνλ + Ltd , (7.94)

where

G̃ab := Gab −
Ga0Gb0

G00
, (7.95)

Ltd = − 1
2G00

εµνλ∂µ

[(
−iD̂ν(~λ0 · ~X) +

1
2
ενρσFρσ

)
Aλ

]
. (7.96)

Here we omit the indices (i~m) for simplicity. Note that the rede�nition of the metricGab →
G̃ab is very similar to that of T-duality transformation in M-direction. The term Ltd is total

derivative which does not vanish in the limit G0a → 0. Since we know that the total

derivative terms do not play any role for the case G0a = ~λ0 · ~λa = 0, we will neglect them
in the following. In a sense, this is equivalent to rede�ne the BLG action,

SBLG =
∫
d3x (LBLG − Ltd) , (7.97)

where LBLG is the original BLG Lagrangian. On the other hand, while the fourth term

in eq. (7.94) is also total derivative, we must not neglect it. This is because this term is
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proportional to G0a and becomes essential to understand the U-duality. For d = 1 case,

it becomes the θ term of the super Yang-Mills action and it should be involved in the S-

duality transformation in the complex coupling constant τ = C0 + ie−φ. We note that this

is the term which does not show up if we analyze the Yang-Mills system with loop algebra

symmetry (7.70).

Kaluza-Klein mass by Higgs mechanism

At this point, it is easy to understand how compacti�cation occurs after the Higgs mecha-

nism. Note that in the de�nition of Fµ
a (7.87), we have a factor withma in front of Aµ(i~m).

In the language of D2-branes' worldvolume, it gives rise to the mass proportional toO(~m2)
for Aµ(i~m). Also, we will be able to see that similar mass term exists for all �elds with

index ~m. Because of the dependence of mass on ~m with the correct radius dependence, it is

natural to regard these terms as the mass terms for the winding modes on the torus T d.

In order to be more explicit, we will use the T-dual picture [95] in the following. We

identify the various �elds with index ~m with the higher (3 + d)-dim �elds by the identi�ca-

tion

Φ~m(x) → Φ̃(x, y) :=
∑
~m

Φ~m(x)ei~m~y (7.98)

where ~y ∈ [0, 2π]d are coordinates of T d. Fµ
a can be identi�ed with the �eld strength by

(F̃ a
µ )i = D̂µÃ

a
i −

∂

∂ya
Ãµi (7.99)

where Ãa
i (x, y) := ~πa · ~̃Xi(x, y). The kinetic terms of gauge �elds in eq. (7.94) imply that

we have a metric in ~y direction as

ds2 = ηµνdx
µdxν + gabdy

adyb where gab := G00G̃ab . (7.100)

When ~λA are all orthogonal, one may absorb the metric gab in the rescaling of y
a as y′a =

|~λ0||~λa| ya or y′a = (|~λ0||~λa|)−1ya (where ya = gaby
b). Since ya has the radius 1, y′a has

the radius 1

|~λ0||~λa|
. This is consistent with the analysis in §7.2. In this scaling ya → y′a, the

kinetic terms for gauge �elds in eq. (7.94) become

− 1
4G00

(
(Fνλ)2 + 2F 2

µa

)
, (7.101)

which is also consistent with our previous study for d = 1.
We note that the use of Kac-Moody algebra as the symmetry of the Kaluza-Klein mode

is not new. See, for example, [98�101]. Here the novelty is to use the Higgs mechanism to

obtain the Kaluza-Klein mass.
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Worldvolume as a �at �ber bundle

So far, since we put Aµa = 0 for the simplicity of the argument, the worldvolume of

Dp-brane is the product space M × T d. In order to see the geometrical role of Aµa, let

us keep it nonvanishing for a moment. The covariant derivative (7.82) get an extra term,

maAµa(x)XI
(i~m), which becomes onM× T d,

iAµa(x)
∂

∂ya
X̃I

i (x, y) . (7.102)

Aµa turns out to be the gauge �eld for the gauge transformation from those of BLG:

δX̃I
i (x, y) = iγa(x)

∂

∂ya
X̃I

i (x, y) . (7.103)

The existence of the gauge coupling implies that the worldvolume is not the direct product

M× T d but the �ber bundle Y :

T d // Y

��
M

where T d act as the translation of ya.

The kinetic term for the connection comes from the Chern-Simons term:

Lfiber = εµνλDµa∂νAλa , Dµa :=
∑
~n

naAµ(i~n)(i,−~n) . (7.104)

Since Dµa does not appear in other place in the action, its variation gives,

∂[µAν]a = 0 . (7.105)

Therefore Y must be a �at bundle as long as we start from BLG model.

There seem to be various possibilities to relax this constraint to the curved background.

One naive guess is to replace Lfiber to

L′
fiber = εµνλDµa(∂νAλa −

1
2
F

(0)
aνλ) , (7.106)

for an appropriate classical background F
(0)
aνλ.

Interaction terms

The compacti�cation picture works as well in the interaction terms. For the fermion inter-

action term Lint, we use

[X [I , XJ ],Ψ](i,−~m) = −maλ
[I
0 λ

J ]
a Ψ(i,−~m) + if jk

iλ
[I
0 X

J ]
(j~n)Ψ(k,−~m−~n) (7.107)
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and from eq. (7.81),

XI = P IJXJ + λI
A(~πA · ~X)

= P IJXJ + λI
0(~λ0 · ~X) +

(
−G0a

G00
λI

0 + λI
a

)
Aa . (7.108)

Then Lint can be written as

Lint =
i

4
Ψ̄(i~m)(ΓIJλ

I
0λ

J
a )
(
−maΨ(i,−~m) + if jk

iAa(j~n)Ψ(k,−~m−~n)

)
+
i

4
Ψ̄(i~m)(ΓIJλ

I
0)
(
if jk

iP
JKXK

(j~n)Ψ(k,−~m−~n)

)
=

∫
ddy

(2π)d

√
g

(
i

2
˜̄ΨΓaD̂aΨ̃ +

i
√
G00

2
˜̄ΨΓI [P IJX̃J , Ψ̃]

)
, (7.109)

where g = det gab , D̂aΨ̃ := ∂aΨ̃ − i[Ãa, Ψ̃] and

Γa :=
i

2
ΓIJλ

I
0λ

J
a , ΓJ :=

1
2
√
G00

ΓIJλ
I
0 , (7.110)

which satisfy {Γa,Γb} = gab and {ΓI ,ΓJ} = δIJ .

On the other hand, the potential term for the bosonLpot is the square of a 3-commutator:

[XI , XJ , XK ](i,~m) = maλ
[I
0 λ

J
aX

K]
(i,~m) + f ij

kλ
[I
0 X

J
(j,~n)X

K]
(i,~m). (7.111)

The square of the �rst term gives(
maλ

[I
0 λ

J
aX

K]
(i,~m)

)2
= 6gabmambX

I
~mP

IJ
~m XJ

−~m , (7.112)

where

P IJ
~m := δIJ −

|~λ0|2λI
~mλ

J
~m + |λ~m|2~λI

0
~λJ

0 − (~λ0, ~λ~m)(λI
0λ

J
~m + λJ

0λ
I
~m)

(|~λ0|2|~λ~m|2 − (~λ0, ~λ~m)2)
,

~λ~m := ma
~λa , (7.113)

which satisfy

P IJ
~m λJ

0 = P IJ
~m λJ

~m = 0 , P 2
~m = P~m . (7.114)

The mixed term vanishes and does not contribute to the action. The commutator part is

(f ij
kλ

[I
0 X

J
(j,~n)X

K]
(i,~m))

2 = 3
(
G00〈[XJ , XK ]2〉 − 2〈[(~λ0 · ~X), XI ]2〉

)
(7.115)

which is identical to the similar term in the previous chapter and it produces the standard

commutator terms. Using eq. (7.108), these terms can be summarized as

Lpot =
∫

ddy

(2π)d

√
g

(
−1

2
gabD̂aX̃

IP IJD̂bX̃
J − 1

4G00
gacgbdF̃abF̃cd

+
G00

4
[P IKX̃K , P JLX̃L]2

)
, (7.116)

where D̂aX̃
I = ∂aX̃

I − i[Ãa, X̃
I ] and F̃ab = ∂aÃb − ∂bÃa − i[Ãa, Ãb].
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Summary

By collecting all the results in this subsection, the BLG action (6.1) becomes

L = LA + LFF + LX + LΨ + Lpot + Lint + Ltd ,

LA = − 1
4G00

∫
ddy

(2π)d

√
g
(
F̃ 2

µν + 2gabF̃µaF̃µb + gacgbdF̃abF̃cd

)
,

LFF = − G0a

8G00

∫
ddy

(2π)d

√
g
(
4εµνλF̃µaF̃νλ

)
,

LX = −1
2

∫
ddy

(2π)d

√
g
(
D̂µX̃

IP IJD̂µX̃
J + gabD̂aX̃

IP IJD̂bX̃
J
)
,

LΨ =
i

2

∫
ddy

(2π)d

√
g ˜̄Ψ

(
ΓµD̂µ + ΓaD̂a

)
Ψ̃ ,

Lpot =
G00

4

∫
ddy

(2π)d

√
g [P IKX̃K , P JLX̃L]2 ,

Lint =
i
√
G00

2

∫
ddy

(2π)d

√
g ˜̄ΨΓI [P IJX̃J , Ψ̃] . (7.117)

It is easy to see that this is the standard Dp-brane action (p = d + 2) on Σ × T d with the

metric (7.100). Interpretation and implications of this action is given in the next section.

7.4 U-duality in BLG model

In the previous section, we saw that we obtain the multiple Dp-branes' system on a torus

from BLG model, when we consider a particular example of general Lorentzian Lie 3-

algebra. On the other hand, the original BLG model describes the multiple M2-branes.

Since the relation between Dp-branes and M2-branes is well known asU-duality, which

we mentioned in §1.4, we now examine how this U-duality relation [102] is realized in the

theory (7.117).

7.4.1 D3-branes case

For d = 1, if we write ~λ0 = ~e0, ~λ1 = τ1~e0 +τ2~e1 (where the basis {~e0, ~e1} is orthonormal),

the action for the gauge �eld is given as

LA + LFF = − 1
4G00

∫
dy

2π
√
g F 2 − G01

8G00

∫
dy

2π
FF̃

= − 1
8π

∫
dy
(τ1

2
FF̃ + τ2F

2
)

(7.118)

where now g = g11 and

F 2 = F̃ 2
µν + 2g11F̃µ1F̃µ1 ,

F F̃ = (4
√
g11 ε

µνλ)F̃µ1F̃νλ . (7.119)
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This shows that the action (7.117) in this case is the standard D3-brane action with the θ

term.

Under the SL(2,Z) transformation(
~λ1

~λ0

)
→

(
a b

c d

)(
~λ1

~λ0

)
, (7.120)

the moduli parameter τ is transformed as,

τ → aτ + b

cτ + d
. (7.121)

For b = −c = 1, a = d = 0, it gives rise to the standard S-duality transformation τ →
−1/τ . On the other hand, a = d = 1, b = n and c = 0 gives the translation τ → τ + n.

On S-duality

We do not claim that we have proven S-duality symmetry from our model. At the level of

Lie 3-algebra (7.68), there is obvious asymmetry between u0, v0 and u1, v1. Nevertheless,

it is illuminating that the S-duality symmetry can be interpreted in terms of Higgs VEV's
~λ0,1 in so simple manner.

On T-duality shift

On the other hand, the translation symmetry reduces to the automorphism of the Lie 3-

algebra (7.68),

u0 → u0 − nu1 , u1 → u1 ,

v0 → v0 , v1 → v1 + nv0 . (7.122)

It is easy to see that the transformation changes neither Lie 3-algebra nor their metric. It

induces the rede�nition the ghost �elds as,

XI = XI
u0
u0 +XI

u1
u1 + · · · = XI

u0
(u0 − nu1) + (XI

u1
+ nXI

u0
)u1 + · · · . (7.123)

It implies the transformation ~λ0 → ~λ0 , ~λ1 → ~λ1 + n~λ0 . Of course, at the classical level,

there is no reason that the parameter n must be quantized. It is interesting anyway that part

of the duality transformation comes from the automorphism of Lie 3-algebra.

On T-duality

The T-duality symmetry Z2 of D3-brane comes from the different identi�cation of compo-

nent �elds. Namely, we have constructed 4-dim �eld X̃I(x, y) from the component �elds

XI
(i~m)(x) by Fourier series (7.98). One may instead interpret XI

(i~m)(x) as the 3-dim �eld

and interpret ~m index as describing open string mode which interpolate mirror images of a

point in T 1 = R/Z. This is the standard T-duality argument [95].
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The relation between the coupling constant and the radius in T-duality transformation

is given as follows. Let us assume for a moment that ~λ0 ⊥ ~λ1 for simplicity. It is well

known [25] that putting a VEV ~Xu0 = ~λ0 means the compacti�cation of M-direction with

the radius

R0 = λ0 l
3/2
p , (7.124)

where lp is 11-dim Planck length. From the symmetry of Xu0 ↔ Xu1 , putting a VEV
~Xu1 = ~λ1 must imply the compacti�cation of another direction with the similar radius R̃1 =
λ1 l

3/2
p before taking T-duality along ~λ1. At this point, we have D2-branes' worldvolume

theory with string coupling

gs = g2
Y M ls = λ2

0 ls . (7.125)

where ls is the string length, satisfying l3p = gsl
3
s . In the previous section, we obtain D3-

branes since we compactify the ~λ1 direction with radius R̃1 and simultaneously take T-

duality for the same direction. Thus the D3-branes are compacti�ed on S1 with the radius

R1 =
l2s
R̃1

=
l2s

λ1

√
λ2

0l
4
s

=
1

λ0λ1
, (7.126)

and the string coupling for D3-branes' worldvolume theory is

g′s = gs
ls

R̃1

=
λ0

λ1
. (7.127)

This result is consistent with our results.

To summarize, the U-duality transformation of D3-brane action is

SL(2,Z) ./ Z2 , (7.128)

where the �rst factor is described by the rotation of Higgs VEV's and the second factor is

described by the different representation as the �eld theory.

7.4.2 U-duality for d > 1

We consider M-theory compacti�ed on T d+1 (where d = p − 2). This theory has U-

duality groupEd+1(Z) and scalars taking values inEd+1/Hd+1 whereHd+1 is the maximal

compact subgroup of Ed+1. See, for example, [103] for detail. We call the space of these

scalars `parameter space' in the following.

Parameters in U-duality group from L-BLG models

In this subsection, we compare the parameters obtained from L-BLG model with that in the

parameter space. We can extract various parameters on Dp-brane from the action obtained
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in §7.3.2 which are all determined by the Higgs VEV's ~λA. The �rst one is the Yang-Mills

coupling :

g2
Y M =

(2π)dG00√
g

, g := det(gab) . (7.129)

Secondly, the metric

gab = G00Gab −G0aG0b (7.130)

gives the moduli of the torus T d. Finally, LFF gives a generalization of θ term for d = 1
case. Since the θ term may be regarded as the axion coupling, a natural generalization for

general d is the R-R �eldB(d−1), which appears in the Dp-brane Lagrangian of string theory

like as C(d−1) ∧ F ∧ F . Such term was discussed in the literature, for example, in [103].

In our setup in the previous section, the existence of such coupling C ∧ F ∧ F can be

understood as follows. There the compacti�cation of the M-direction was determined by ~λ0

and we took T-duality on T d speci�ed by {~λa} = {~λ1, · · · , ~λd}. If G0a = ~λ0 · ~λa 6= 0, we
obtain the non-zero C(0) �eld, after the compacti�cation of M-direction and the T-duality

transformation along only ya. After taking T-duality in the remaining d − 1 directions on

T d too, we obtain the nonzero C(d−1) �eld whose nonvanishing component is C1···â···d ,

where the index with ˆ should be erased. This component of R-R �eld must interact with

gauge �elds on D-brane as εµνλ1···dC1···â···dFµνFλa. In our action (7.117), LFF describes

this coupling. It determines the components of C(d−1) as

Câ := C1···â···d =
G0a

4(2π)dG00

√
g

√
gaa

, (7.131)

where no sum is taken on a.

SL(d+ 1,Z) transformations in U-duality can be reproduced.

The number of parameters thus obtained is 1 + d(d+1)
2 + d = (d+1)(d+2)

2 which coincides

with the number of metric GAB = ~λA · ~λB . As is d = 1 case, it is natural to guess the

SL(d+ 1,Z) transformation

~λ′A = ΛAB
~λB , ΛAB ∈ SL(d+ 1,Z) , (7.132)

is related to the �rst factor of SL(d+1,Z) ./ O(d, d;Z) in U-duality transformation. Now

we derive the transformation law of these parameters explicitly.
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SL(d+ 1,Z) is generated by the following two kinds of (d+ 1) × (d+ 1) matrices:

S(i, j) :


ΛAB = δAB (for A,B 6= i, j) ,(

Λii Λij

Λji Λjj

)
=

(
0 1

−1 0

)
.

T (i, j;n) :


ΛAB = δAB (for A,B 6= i, j) ,(

Λii Λij

Λji Λjj

)
=

(
1 n

0 1

)
.

where i, j = 0, 1, · · · , d (i < j) and n ∈ Z. Obviously, S(i, j) is a generalization of

S-duality transformation and T (i, j;n) is the generalization of translation generator.

(I) Λ = S(0, i) (i 6= 0) : This transformation interchanges ~λ0 and ~λi , i.e. M-direction

and one of the torus directions. It is a generalization of S-duality transformation for d = 1
case. G0A and gab are transformed as

G′
00 = Gii , G′

0i = −G0i , G′
0a = Gia ,

g′ii = gii, g′ia = −(GiiG0a −Gi0Gia) , g′ab = GiiGab −GiaGib , (7.133)

for a, b 6= 0, i. In the simple case of G0a = G0i = Gia = 0,

g2
Y M =

√
G00

Gii

(2π)d

G
(d−1)/2
00

1√
Ĝi

→ g
′2
Y M =

√
Gii

G00

(2π)d

G
(d−1)/2
ii

1√
Ĝi

, (7.134)

where Ĝi is the minor determinant of Gab excluding the i'th row and column. On the other

hand, Câ remains zero in this simple case.

(II) Λ = T (0, i;n) (i 6= 0) : This transformation shifts the M-direction as ~λ0 → ~λ0 +n~λi

and should be a generalization of T-duality transformation. G0A and gab are transformed as

G′
00 = G00 + 2nG0i + n2Gii , G′

0a = G0a + nGia ,

g′ab = gab + n(2G0iGab −G0aGib −GiaG0b) + n2(GiiGab −GiaGib) ,(7.135)

for a, b 6= 0. In the simple case of G0a = Gab = 0 (where a 6= b),

g2
Y M → g

′2
Y M =

(
1 + n2 Gii

G00

)1− d
2

g2
Y M . (7.136)

On the other hand, R-R �eld C(d−1)is shifted as in the D3-branes case,

Cî = 0 → C ′
î
= nGii ·

√
g′

4(2π)dG′
00

√
g′ii

. (7.137)



7.4. U-DUALITY IN BLG MODEL 149

(III) Λ = S(i, j) (i, j 6= 0) : This transformation interchanges ~λi and ~λj and should make

no physical change. In fact,

G′
00 = G00 , G′

0i = G0j , G′
0j = −G0i ,

g′ii = gjj , g′ij = −gji , g′ji = −gij , g′jj = gii , (7.138)

and other G0a and gab remain the same. The coupling constant g2
Y M is invariant under this

transformation. The components of C(d−1) is shuf�ed by the interchange of the basis {~λa},
but this doesn't mean any physical changes.

(IV) Λ = T (i, j;n) (i, j 6= 0) : This transformation shifts the torus direction as ~λi →
~λi + n~λj . In this case, G0A and gab are transformed as

G′
00 = G00 , G′

0i = G0i + nG0j , G′
0a = G0a ,

g′ii = gii + 2ngij + n2gjj , g′ia = gia + ngja , g′ab = gab , (7.139)

for a, b 6= 0, i. So g2
Y M varies only by the change of

√
g (or the volume of T d) caused by

the shift of ~λi. The components of C(d−1), just as in the case of S(i, j), is effected by the

transformation of the basis {~λa}, but it is not physically meaningful.

The transformation laws are less illuminative compared with d = 1 case, since the pa-

rameters g2
Y M and Câ depend on GAB in a complicated way. However, since the number

of the parameters is the same, it is straightforward to obtain the inverse relation GAB =
GAB(g2

Y M , gab, Câ). This combination GAB = ~λA · ~λB transforms linearly under SL(d+
1,Z). In this sense, it is possible to claim that SL(d + 1,Z) is a part of the U-duality

symmetry and GAB gives the parameter which transforms covariantly under SL(d+ 1,Z).
The closure of these parameters under SL(d + 1,Z) was discussed in the literature, for

example, [103].

Towards the whole of U-duality in Dp-branes' cases

The parameters obtained from ~λA, however, do not describe the full parameter space to

implement U-duality. In the following, we compare it with the dimensions of the parameter

space. As we see, for d = 1, it correctly reproduces the moduli. The discrepancy of

the number of parameters starts from d > 1. We will explain some part of the missing

parameters is given as the deformation of Lie 3-algebra (7.68).

D3-brane (d = 1) : It corresponds to M-theory compacti�ed on T 2. The parameter space

in this case is
(
SL(2)/U(1)

)
×R which gives 3 scalars. They correspond toG00, G01 and

g, in other words, g2
Y M , C1̂ and g11, all of which appear in the D3-brane action (7.117).

D4-branes (d = 2) : It corresponds to M-theory compacti�ed on T 3. The parameter space
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in this case is
(
SL(3)/SO(3)

)
×
(
SL(2)/U(1)

)
which gives 7 parameters. They corre-

spond toGab,Bab, Φ andCâ which transform in the 3+1+1+2 representations of SL(2).
Φ and Câ is dilaton and R-R 1-form (or p − 3 form) �eld which are the same in the above

discussion.

Bab is NS-NS 2-form �eld which we have not discussed so far. As we commented in

the footnote 4, such parameters were introduced in eq. (7.58) as the deformation of the Lie

3-algebra, [u0, ua, ub] = BabT
0
~0
, · · · . It describes the noncommutativity on the torus along

the line of [93, 104]. We have not used this generalized algebra for the simplicity of the

computation but can be straightforwardly included in the L-BLG model. It is interesting

that some part of moduli are described as dynamical variable (�Higgs VEV�) while the

other part comes from the modi�cation of Lie 3-algebra which underlies the L-BLG model.

D5-branes (d = 3) : It corresponds to M-theory compacti�ed on T 4. The parameter space

in this case is SL(5)/SO(5) which gives 14 parameters. They correspond to Gab, Bab, Φ,
Câ and Câb̂ĉ which transform in the 6 + 3 + 1 + 3 + 1 representations of SL(3).

Câb̂ĉ is R-R 0-form (or p− 5 form) �eld which causes the interaction like as εµνλCâb̂ĉ

×FµνFλaFbc or εµνλCâb̂ĉFµaFνbFλc . In the context of Lie 3-algebra, there is a room to

include such coupling. It is related to the Lie 3-algebra associated with Nambu-Poisson

bracket. As shown in Part II, the worldvolume theory becomes not the super Yang-Mills

but instead described by self-dual 2-form �eld which describes the M5-brane.5 The precise

statement on the moduli becomes obscure in this sense.

To see U-duality, we must also consider the transformation ofBab and Câb̂ĉ. Especially,

the interchange Bab ↔ Câ and Câb̂ĉ ↔ Φ means S-duality.

D6-branes (d = 4) : It corresponds to M-theory compacti�ed on T 5. The parameter space

in this case is SO(5, 5)/
(
SO(5)×SO(5)

)
which gives 25 scalars. They correspond toGab,

Bab, Φ, Câ and Câb̂ĉ which transform in the 10 + 6 + 1 + 4 + 4 representation of SL(4).
To see U-duality, we must also consider the transformation of Bab and Câb̂ĉ.

D7-branes (d = 5) : It corresponds to M-theory compacti�ed on T 6. The parameter space

in this case is E6/USp(8) which gives 42 scalars. They correspond to Gab, Bab, Φ, Câ,

Câb̂ĉ and Câb̂ĉd̂ê which transform in the 15+10+1+5+10+1 representations of SL(5).
Câb̂ĉd̂ê is R-R 0-form (or p−7 form) �eld which causes the interaction like as εµνλCâb̂ĉd̂ê

×FµνFλaFbcFde and so on. Note that Câ in this case must be the self-dual 4-form �eld.

To see U-duality, we must also consider the transformation of Bab, Câb̂ĉ and Câb̂ĉd̂ê.

Especially, the interchange Bab ↔ Câb̂ĉ and Câb̂ĉd̂ê ↔ Φ means S-duality. However we

don't know the way to introduce the �eld Câb̂ĉd̂ê at this moment in time, so this discussion

may be dif�cult.

5In order to satisfy the fundamental identity, Nambu-Poisson bracket must be equipped on a 3-dim manifold.

So, in this case, we must choose the speci�c T 3 where Nambu-Poisson bracket is de�ned from the whole

compacti�ed torus T 4.



7.5. SUMMARY AND REMARKS 151

D8-branes (d = 6) : It corresponds to M-theory compacti�ed on T 7. The parameter space

in this case is E7/SU(8) which gives 70 scalars. They correspond toGab, Bab, Φ, Câ, Câb̂ĉ

and Câb̂ĉd̂ê which transform in the 21+15+1+6+20+6 representations of SL(6), plus
one additional scalar Babcdef which is the dual of NS-NS 2-form ∗B(2). To see U-duality,

we must consider the transformation of all these �elds.

D9-branes (d = 7) : It corresponds to M-theory compacti�ed on T 8. The parameter space

in this case is E8/SO(16) which gives 128 scalars. They correspond to Gab, Bab, Φ,
Câ, Câb̂ĉ, Câb̂ĉd̂ê and Câb̂ĉd̂êf̂ ĝ which transform in the 28 + 21 + 1 + 7 + 35 + 21 + 1
representations of SL(7), plus 14 additional scalars Babcdef and Cµa . This Cµa is R-R

2-form �eld which has legs belong to one of worldvolume coordinates xµ and one of torus

coordinates ya.

To see U-duality, we must consider the transformation of all these �elds. However we

don't know the way to introduce the �eld Câb̂ĉd̂ê and Câb̂ĉd̂êf̂ ĝ at this moment in time, so

this discussion may be very dif�cult.

7.5 Summary and remarks

In this chapter, we considered some general Lorentzian Lie 3-algebras and studied the BLG

models based on the symmetry. In the examples we studied, we naturally obtain theM/string

theory compacti�cation on the torus. The mass term generated by the Higgs VEV's of ghost

�elds can be identi�ed with the Kaluza-Klein mass in the toroidal compacti�cation. The

dimension of the torus can be identi�ed with the number of negative-norm generators of the

Lie 3-algebra.

We also argued that one may use our technique to consider the D-branes' system where

its gauge symmetry is described by in�nite-dimensional loop algebras. In particular, we

presented a detailed derivation of Dp-brane action on a torus T d (d = p − 2) from BLG

model. In this case, the Higgs VEV's of ghost �elds ~λA give the moduli of torus gab, the

coupling constants gY M of super Yang-Mills and the R-R (p−3)-form �eld Câ through the

`metric' GAB = ~λA · ~λB .

For D3-branes (d = 1), the parameters thus obtained are enough to realize full Montonen-

Olive duality group SL(2,Z) through the linear transformation on ~λA. Moreover, some part

of the symmetry is actually the automorphism of Lie 3-algebra. For higher dimensional case

d > 1 (Dp-branes with p > 3), these parameters are enough to implement a subgroup of

U-duality transformation, SL(d+ 1,Z), which acts linearly on ~λA. The transformations of

various parameters can be determined through the linear transformation of the metricGAB .

In order to realize the full U-duality group, however, they are not enough.

We argued that one of the missed parameters, NS-NS 2-form background, can be intro-

duced through the deformation of the Lie 3-algebra. For higher d, however, we need extra

R-R background which we could not succeed to explain in the context of BLG model so far.

To achieve this, we may have to consider more general structures of algebra.
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7.5.1 Relation with ABJM model

It is interesting to derive the U-duality symmetry from ABJM model, which we mentioned

in §1.5. While some work have been done in [28] for D3-branes, in their study, the coupling

constants of the super Yang-Mills depend on one real parameter and the proof of the S-

duality is limited. In particular, it may be interesting how to incorporate the loop algebras

in ABJM context which would help us to go beyond D3-branes' case. As we explained, the

loop algebra is suitable symmetry to describe the Kaluza-Klein modes.

7.5.2 Toward lower dimensional branes' theory

It is also interesting to see the U-duality in lower dimensional branes from BLG model. It

is rather trivial to Dp-branes' system (p ≤ 1), since we obtain it essentially by the double

dimensional reduction of D2-branes' worldvolume. Therefore, if we want to have nontrivial

discussion, we may have to derive the multiple F1-strings' system from BLG model, and

discuss the U-duality relation with M2-branes and Dp-branes.

However, to obtain the multiple F1-strings is a challenging subject, since in particular

we have no idea how to eliminate the Chern-Simons gauge �eld in BLG model without

breaking supersymmetry. On the other hand, if BLG model actually describes the multiple

M2-branes, the multiple F1-strings' system must be derived. Then this is also an important

future work.
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In this Ph.D. thesis, we discuss how BLG model can describe the various M-branes' and

D-branes' system, and U-duality between M2-branes and D-branes.

BLG model is originally proposed as the multiple M2-branes' worldvolume theory [1�

4]. This breakthrough is very meaningful, since it gave the researchers the �rst opportunity

to discuss multiple M2-branes' system. This model is the Chern-Simons matter system

which has N = 8 supersymmetry in (2 + 1)-dim spacetime. Their action is distinctive in

that the gauge symmetry is based on a new mathematical framework, Lie 3-algebra.

The Lie 3-algebra which can be used in BLG model must satisfy the fundamental iden-

tity and invariant metric condition, in order that the model properly has gauge symmetry

and supersymmetry. However, it was soon realized that these constraints are too restrictive

that the only allowed Lie 3-algebra is so-calledA4 algebra

[T a, T b, T c] = iεabcdT d, 〈T a, T b〉 = δab , (7.140)

where a, b, · · · = 1, · · · , 4, if we consider the �nite-dimensional representation of Lie 3-

algebra with positive-de�nite metric. BLG model in this case describes the two M2-branes'

system [11,12, 24].

Then, in order to obtain the description of larger number of M2-branes, many studies

have been made to generalize the BLG framework. Concretely, we consider the in�nite-

dimensional representation of Lie 3-algebra or Lie 3-algebra with negative-norm generators.

Regrettably, however, nobody �nds how to obtain the more than two (and �nite number of)

M2-branes' system, up to now. Instead of this, we could show that the BLG model offers

the broader framework, in that it can describe the other systems than M2-branes' one.

In Part II of the thesis, we discuss BLG model with Nambu-Poisson bracket [5, 6, 13]

{fa, f b, f c} = εµνρ∂f
a

∂yµ

∂f b

∂yν

∂f c

∂yρ
, 〈fa, f b〉 =

∫
N
d3y faf b , (7.141)

as an in�nite-dimensional representation of Lie 3-algebra. Here N is a 3-dim manifold on

which the Nambu-Poisson bracket is de�ned, yµ (µ = 1, 2, 3) is coordinates on N , and

fa = fa(yµ) (a = 1, · · · ,∞) is the functions on N . BLG model in this case describes

the in�nite number of M2-branes' system and realizes the worldvolume theory of a single

M5-brane in the C-�eld background on the 3-dim manifold.

153



154 CONCLUSION AND DISCUSSION

Moreover, we show that when we use the truncation version of Nambu-Poisson bracket,

we can discuss the celebratedN
3
2 law for the degrees of freedom of the multiple M2-branes'

system in BLG model.

In Part III, we discuss BLG model with Lorentzian Lie 3-algebra [15, 60, 61], which is

the Lie 3-algebra with a pair of Lorentzian metric generators u, v and arbitrary Lie algebra

generators T i, such that

[u, T i, T j ] = if ij
kT

k , [T i, T j , T k] = −if ijkv , [v, ∗, ∗] = 0 ,

〈u, v〉 = 1 , 〈T i, T j〉 = hij , otherwise = 0 , (7.142)

where f ij
k and hij are structure constants and metric (or Killing form) of the Lie algebra

G. While the components associated with the generators u, v become ghosts, they can be

removed by a new kind of Higgs mechanism proposed by [25]. This mechanism is unusual

procedure, and in the future research, we must discuss closely whether it can be justi�ed

from the viewpoint of quantum �eld theory. However, at this moment, it is regarded as the

very useful procedure for obtaining unitary theories from BLG model with Lorentzian Lie

3-algebra. In fact, surprisingly enough, this mechanism keeps all the gauge symmetry and

N = 8 supersymmetry. After the ghost is removed in such a way, when we chooseU(N) as
Lie algebra G, the Chern-Simons matter system is reduced to the ordinary super Yang-Mills

system which describes multiple D2-branes' system [7, 26, 105�113].

This framework is also generalized by including more Lorentzian metric generators [7,

26, 113]. In particular, we show that when we use the central extension of Kac-Moody

algebra or multiple loop algebra, BLG model describes the multiple Dp-branes' system on

(p − 2)-dim torus T p−2. In this framework, we can discuss U-duality by comparing BLG

model in this case and the original BLG model which describe Dp-branes and M2-branes,

respectively. As a result, we can show that BLG model can properly realize (a part of)

U-duality.

Until now, while we cannot get many pieces of information on the multiple M2-branes'

system itself, we can make sure that BLG model has nontrivial information on M-theory,

by showing that it can also describe M5-brane and D-branes and realize U-duality. Finally,

for future directions, we want to discuss the following subjects:

Whole U-duality As we mentioned in Chapter 7, in order to see whole U-duality, we need

to improve the Lie 3-algebra so that the algebra includes all the degrees of freedom

of parameter space of U-duality group.

Multiple F1-strings' system This is also mentioned in Chapter 7. It is easy to do the dou-

ble dimensional reduction of M2-branes' worldvolume in BLG model, but we have

no idea how to eliminate the Chern-Simons gauge �eld without breaking supersym-

metry. We have to �nd a good way to do it, since there must be no gauge �eld on

F1-strings' worldsheet.

Covariant formulation of multiple M2-branes As we saw in Chapter 1, the covariant ac-

tion of a single M2-brane is DBI-type action. Thus it is natural that the covariant
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action of multiple M2-branes is also of DBI-type. However, it is dif�cult to put the

Chern-Simons gauge �eld in the action of such a form.

More than two M2-branes' system This may be one of the ultimate goals for BLGmodel.

In this moment, we have no idea. One way is to improve the truncated Nambu-

Poisson bracket which we used in Chapter 5, so that we can analyze BLG model in

the Lagrangian level. Or, perhaps this cannot be done by Lie 3-algebra, and we need

to consider more general Lie n-algebra (n ≥ 3).

Relation to ABJM model and BFSS/BMN matrix model Aswementioned in Chapter 1,

these models also describe the multiple M2-branes' system. Therefore it is interesting

to study whether or not there are agreements and contradictions among BLG model

and these models.
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[17] R. Haag, J. �opuszánski and M. Sohnius, �All Possible Generators of Supersymme-

tries of the S Matrix,� Nucl. Phys. B88 (1975) 257.

[18] E. Cremmer and B. Julia, �The N = 8 Supergravity Theory � 1. The Lagrangian,�

Phys. Lett. B80 (1978) 48.

[19] E. Cremmer and B. Julia, �The SO(8) Supergravity,� Nucl. Phys. B159 (1979) 141.

[20] B. E. Bergshoeff, E. Sezgin and P. K. Townsend, �Supermembranes and Eleven-

Dimensional Supergravity,� Phys. Lett. B189 (1987) 75.

[21] B. E. Bergshoeff, E. Sezgin and P. K. Townsend, �Properties of the Eleven-

Dimensional Super Membrane Theory,� Ann. Phys. 185 (1988) 300.

[22] P. Pasti, D. P. Sorokin and M. Tonin,� �Covariant action for aD = 11 �ve-brane with
the chiral �eld,� Phys. Lett. B398 (1997) 41 [arXiv:hep-th/9701037].

[23] M. Green and J. H. Schwarz, Phys. Lett. 136B (1984) 367.

[24] J. P. Gauntlett and J. B. Gutowski, �Constraining Maximally Supersymmetric Mem-

brane Actions,� JHEP 0806 (2008) 053 [arXiv:0804.3078 [hep-th]].

[25] S. Mukhi and C. Papageorgakis, �M2 to D2,� JHEP 0805 (2008) 085

[arXiv:0803.3218 [hep-th]].

[26] P. de Medeiros, J. Figueroa-O'Farrill and E. Méndez-Escobar, �Metric Lie 3-algebras

in Bagger-Lambert theory,� JHEP 0808 (2008) 045 [arXiv:0806.3242 [hep-th]].

[27] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, �N = 6 superconfor-

mal Chern-Simons-matter theories, M2-branes and their gravity duals,� JHEP 0810

(2008) 091 [arXiv:0806.1218 [hep-th]].

[28] K. Hashimoto, T.-S. Tai and S. Terashima, �Toward a Proof of Montonen-Olive Du-

ality via Multiple M2-branes,� JHEP 0904 (2009) 025 [arXiv:0809.2137 [hep-th]].



BIBLIOGRAPHY 159

[29] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, �M Theory As A Matrix

Model: A Conjecture,� Phys. Rev. D55 (1997) 5112 [arXiv:hep-th/9610043].

[30] D. Berenstein, J. M. Maldacena and H. Nastase, �Strings in �at space and pp waves

from N = 4 Super Yang Mills,� JHEP 0204 (2002) 013 [arXiv:hep-th/0202021].

[31] M. Ali-Akbari, �3d CFT and Multi M2-brane Theory onR×S2,� JHEP 0903 (2009)

148 [arXiv:0902.2869 [hep-th]].

[32] M. Li and T. Wang, �M2-branes Coupled to Antisymmetric Fluxes,� JHEP 0807

(2008) 093 [arXiv:0805.3427 [hep-th]].

[33] D. S. Berman, �M-theory branes and their interactions,� Phys. Rept. 456 (2008) 89

[arXiv:0710.1707 [hep-th]].

[34] J. H. Schwarz, �Superconformal Chern-Simons theories¡� JHEP 0411 (2004) 078

[arXiv:hep-th/0411077].

[35] S. Lee, �Superconformal �eld theories from crystal lattices,� Phys. Rev. D75 (2007)

101901 [arXiv:hep-th/0610204].

[36] A. Basu and J. A. Harvey, �The M2-M5 brane system and a generalized Nahm's

equation,� Nucl. Phys. B713 (2005) 136 [arXiv:hep-th/0412310].

[37] P. S. Howe, N. D. Lambert and P. C. West, �The self-dual string soliton,� Nucl. Phys.

B515 (1998) 203 [arXiv:hep-th/9709014].

[38] N. R. Constable, R. C. Myers and O. Tafjord, �Non-Abelian brane intersections,�

JHEP 0106 (2001) 023 [arXiv:hep-th/0102080].

[39] D.-E. Diaconescu, �D-branes, monopoles and Nahm equations,� Nucl. Phys. B503

(1997) 220 [arXiv:hep-th/9608163].

[40] A. Kapustin and S. Sethi, �The Higgs branch of impurity theories,� Adv. Theor. Math.

Phys. 2 (1998) 571 [arXiv:hep-th/9804027].

[41] D. Tsimpis, �Nahm equations and boundary conditions,� Phys. Lett. B433 (1998)

287 [arXiv:hep-th/9804081].

[42] D. S. Berman and N. B. Copland, �A note on the M2-M5 brane system and fuzzy

spheres,� Phys. Lett. B639 (2006) 553 [arXiv:hep-th/0605086].

[43] M. M. Sheikh-Jabbari, �Tiny graviton matrix theory: DLCQ of IIB plane-wave string

theory, a conjecture,� JHEP 0409 (2004) 017 [arXiv:hep-th/0406214].

[44] Z. Guralnik and S. Ramgoolam, �On the polarization of unstable D0-branes into non-

commutative odd spheres,� JHEP 0102 (2001) 032 [arXiv:hep-th/0101001].



160 BIBLIOGRAPHY

[45] J. Bagger and N. Lambert, �Three-Algebras andN = 6 Chern-Simons Gauge Theo-

ries,� Phys. Rev. D79 (2009) 025002 [arXiv:0807.0163 [hep-th]].

[46] V. T. Filippov, �n-Lie algebras,� Sib. Mat. Zh. 26 (1985) 126.

[47] B. Pioline, �Comments on the topological open membrane,� Phys. Rev. D66 (2002)

025010 [arXiv:hep-th/0201257].

[48] Y. Kawamura, �Cubic matrix, generalized spin algebra and uncertainty relation,�

Prog. Theor. Phys. 110 (2003) 579 [arXiv:hep-th/0304149].

[49] A. Gustavsson, �Selfdual strings and loop space Nahm equations,� JHEP 0804 (2008)

083 [arXiv:0802.3456 [hep-th]].

[50] H. Awata, M. Li, D. Minic and T. Yoneya, �On the quantization of Nambu brackets,�

JHEP 0102 (2001) 013 [arXiv:hep-th/9906248].

[51] Y. Nambu, �Generalized Hamiltonian dynamics,� Phys. Rev. D 7, 2405 (1973).

[52] Ph. Gautheron, �Some remarks concerning Nambu mechanics,� Lett. in Math. Phys.

37 (1996) 103.

[53] D. Alekseevsky and P. Guha, �On Decomposability of Nambu-Poisson Tensor,� Acta.

Math. Univ. Commenianae 65 (1996) 1.

[54] R. Ibánez, M. de León, J. C. Marrero and D. M. de Diego, �Dynamics of generalized

Poisson and Nambu-Poisson brackets,� J. of Math. Physics 38 (1997) 2332.

[55] N. Nakanishi, �On Nambu-Poisson Manifolds,� Reviews in Mathematical Physics 10

(1998) 499.

[56] G. Marmo, G. Vilasi, A. M. Vinogradov, �The local structure of n-Poisson and n-

Jacobi manifolds,� J. Geom. Physics 25 (1998) 141.

[57] I. Vaisman, �A survey on Nambu-Poisson brackets,� Acta. Math. Univ. Comenianae

2 (1999) 213.

[58] L. Takhtajan, �On Foundation Of The Generalized Nambu Mechanics (Second Ver-

sion),� Commun. Math. Phys. 160 (1994) 295 [arXiv:hep-th/9301111].

[59] J. -P. Dufour, N. T. Zung, �Linearization of Nambu structures,� Compositio Mathe-

matica 117 (1999) 83.

[60] J. Gomis, G. Milanesi and J. G. Russo, �Bagger-Lambert Theory for General Lie

Algebras,� JHEP 0806 (2008) 075 [arXiv:0805.1012 [hep-th]].



BIBLIOGRAPHY 161

[61] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, �N = 8 supercon-

formal gauge theories and M2 branes,� JHEP 0901 (2009) 078 [arXiv:0805.1087

[hep-th]].

[62] I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin and M. Tonin,

�Covariant action for the super-�ve-brane of M-theory,� Phys. Rev. Lett. 78 (1997)

4332 [arXiv:hep-th/9701149].

[63] M. Aganagic, J. Park, C. Popescu and J. H. Schwarz, �World-volume action of the

M-theory �ve-brane,� Nucl. Phys. B496 (1997) 191 [arXiv:hep-th/9701166].

[64] P. S. Howe, G. Sierra, P. K. Townsend, �Supersymmetry in six dimensions,� Nucl.

Phys. B221 (1983) 331.

[65] L. J. Romans, �Self-duality for interacting �elds: Covariant �eld equations for six-

dimensional chiral supergravities,� Nucl. Phys. B276 (1986) 71.

[66] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, �Noncommu-

tative Yang-Mills in IIB matrix model,� Nucl. Phys. B565 (2000) 176 [arXiv:hep-

th/9908141].

[67] N. Seiberg and E. Witten, �String theory and noncommutative geometry,� JHEP 9909

(1999) 032 [arXiv:hep-th/9908142].

[68] J. A. Harvey and G. W. Moore, �Superpotentials and membrane instantons,�

arXiv:hep-th/9907026.

[69] J. S. Park, �Topological open p-branes,� arXiv:hep-th/0012141.

[70] F. Lund and T. Regge, �Uni�ed Approach to Strings and Vortices with Soliton Solu-

tions,� Phys. Rev. D14 (1976) 1524.

[71] E. Bergshoeff, D. S. Berman, J. P. van der Schaar and P. Sundell, �A noncommutative

M-theory �ve-brane,� Nucl. Phys. B 590(2000) 173 [arXiv:hep-th/0005026].

[72] S. Kawamoto and N. Sasakura, �Open membranes in a constant C-�eld back-

ground and noncommutative boundary strings,� JHEP 0007 (2000) 014 [arXiv:hep-

th/0005123].

[73] N. Ikeda, �Deformation of BF theories, topological open membrane and a general-

ization of the star deformation,� JHEP 0107 (2001) 037 [arXiv:hep-th/0105286].

[74] D. S. Berman and B. Pioline, �Open membranes, ribbons and deformed Schild

strings,� Phys. Rev. D70 (2004) 045007 [arXiv:hep-th/0404049].

[75] Y. Matsuo and Y. Shibusa, �Volume preserving diffeomorphism and noncommutative

branes,� JHEP 0102 (2001) 006 [arXiv:hep-th/0010040].



162 BIBLIOGRAPHY

[76] P.-M. Ho and Y. Matsuo, �A toy model of open membrane �eld theory in constant

3-form �ux,� Gen. Rel. Grav. 39 (2007) 913 [arXiv:hep-th/0701130].

[77] J. Figueroa-O'Farrill, P. de Medeiros and E. Mendez-Escobar, �Lorentzian Lie

3-algebras and their Bagger-Lambert moduli space,� JHEP 0807 (2008) 111

[arXiv:0805.4363 [hep-th]].

[78] U. Gran, B. E. W. Nilsson and C. Petersson, �On relating multiple M2 and D2-

branes,� JHEP 0810 (2008) 067 [arXiv:0804.1784 [hep-th]].

[79] N. B. Copland, �Aspects of M-Theory Brane Interactions and String Theory Symme-

tries,� arXiv:0707.1317 [hep-th].

[80] S. Ramgoolam, �On spherical harmonics for fuzzy spheres in diverse dimensions,�

Nucl. Phys. B610, 461 (2001) [arXiv:hep-th/0105006].

[81] S. Ramgoolam, �Higher dimensional geometries related to fuzzy odd-dimensional

spheres,� JHEP 0210 (2002) 064 [arXiv:hep-th/0207111].

[82] G. Dito, M. Flato, D. Sternheimer and L. Takhtajan, �Deformation quantization and

Nambu mechanics,� Commun. Math. Phys. 183 (1997) 1 [arXiv:hep-th/9602016].

[83] T. Curtright and C. K. Zachos, �Classical and quantum Nambu mechanics,� Phys.

Rev. D68 (2003) 085001 [arXiv:hep-th/0212267].

[84] Y. Kawamura, �Cubic matrix, Nambu mechanics and beyond,� Prog. Theor. Phys.

109 (2003) 153 [arXiv:hep-th/0207054].

[85] M. A. Bandres, A. E. Lipstein and J. H. Schwarz, �Ghost-Free Superconformal Ac-

tion for Multiple M2-Branes,� JHEP 0807 (2008) 117 [arXiv:0806.0054 [hep-th]].

[86] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, �Supersym-

metric Yang-Mills Theory From Lorentzian Three-Algebras,� JHEP 0808 (2008) 094

[arXiv:0806.0738 [hep-th]].

[87] N. Lambert and D. Tong, �Membranes on an Orbifold,� Phys. Rev. Lett. 101 (2008)

041602 [arXiv:0804.1114 [hep-th]].

[88] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, �M2-branes on M-

folds,� JHEP 0805 (2008) 038 [arXiv:0804.1256 [hep-th]].

[89] N. Ishibashi, �p-branes from (p-2)-branes in the bosonic string theory,� Nucl. Phys.

B539 (1999) 107 [arXiv:hep-th/9804163].

[90] N. Ishibashi, �A relation between commutative and noncommutative descriptions of

D-branes,� arXiv:hep-th/9909176.



BIBLIOGRAPHY 163

[91] L. Cornalba and R. Schiappa, �Matrix theory star products from the Born-Infeld

action,� Adv. Theor. Math. Phys. 4 (2000) 249 [arXiv:hep-th/9907211].

[92] L. Cornalba, �D-brane physics and noncommutative Yang-Mills theory,� Adv. Theor.

Math. Phys. 4 (2000) 271 [arXiv:hep-th/9909081].

[93] P.-M. Ho, Y.-Y. Wu and Y.-S. Wu, �Towards a noncommutative geometric approach

to matrix compacti�cation,� Phys. Rev. D58 (1998) 026006 [arXiv:hep-th/9712201].

[94] H. Lin, �Kac-Moody Extensions of 3-Algebras and M2-branes,� JHEP 0807 (2008)

136 [arXiv:0805.4003 [hep-th]].

[95] W. Taylor, �D-brane �eld theory on compact spaces,� Phys. Lett. B394 (1997) 283

[arXiv:hep-th/9611042].

[96] P.-M. Ho �Twisted bundle on quantum torus and BPS states in matrix theory,� Phys.

Lett. B434 (1998) 41 [arXiv:hep-th/9803166].

[97] D. Brace, B. Morariu and B. Zumino, �Dualities of the matrix model from T-duality

of the type II string,� Nucl. Phys. B545 (1999) 192 [arXiv:hep-th/9810099].

[98] L. Dolan andM. J. Duff, �Kac-Moody Symmetries Of Kaluza-Klein Theories,� Phys.

Rev. Lett. 52 (1984) 14.

[99] P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray and D. Stevenson, �Twisted

K-theory and K-theory of bundle gerbes,� Commun. Math. Phys. 228 (2002) 17

[arXiv:hep-th/0106194].

[100] A. Bergman and U. Varadarajan, �Loop groups, Kaluza-Klein reduction and M-

theory,� JHEP 0506 (2005) 043 [arXiv:hep-th/0406218].

[101] P. Bouwknegt and V. Mathai, �T-Duality as a Duality of Loop Group Bundles,� J.

Phys. A42 (2009) 162001 [arXiv:0902.4341 [hep-th]].

[102] C. M. Hull and P. K. Townsend, �Unity of superstring dualities,� Nucl. Phys. B438

(1995) 109 [arXiv:hep-th/9410167].

[103] C. M. Hull, �Matrix theory, U duality and toroidal compacti�cations of M theory,�

JHEP 9810 (1998) 011 [arXiv:hep-th/9711179].

[104] P.-M. Ho and Y.-S. Wu, �Noncommutative gauge theories in matrix theory,� Phys.

Rev. D58 (1998) 066003 [arXiv:hep-th/9801147].

[105] B. Ezhuthachan, S. Mukhi and C. Papageorgakis, �D2 to D2,� JHEP 0807 (2008) 041

[arXiv:0806.1639 [hep-th]].



164 BIBLIOGRAPHY

[106] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, �Scaling limit of N = 6 supercon-

formal Chern-Simons theories and Lorentzian Bagger-Lambert theories,� Phys. Rev.

D78 (2008) 105011 [arXiv:0806.3498 [hep-th]].

[107] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, �A Massive

Study of M2-brane Proposals,� JHEP 0809 (2008) 113 [arXiv:0807.1074 [hep-th]].

[108] H. Verlinde, �D2 or M2? A Note on Membrane Scattering,� arXiv:0807.2121 [hep-

th].

[109] S. Banerjee and A. Sen, �Interpreting the M2-brane Action,� Mod. Phys. Lett. A24

(2009) 721 [arXiv:0805.3930 [hep-th]].

[110] S. Cecotti and A. Sen, �Coulomb Branch of the Lorentzian Three Algebra Theory,�

arXiv:0806.1990 [hep-th].

[111] E. Antonyan and A. A. Tseytlin, �On 3dN = 8 Lorentzian BLG theory as a scaling

limit of 3d superconformalN = 6 ABJM theory,� arXiv:0811.1540 [hep-th].

[112] B. Ezhuthachan, S. Mukhi and C. Papageorgakis, �The Power of the Higgs Mecha-

nism: Higher-Derivative BLG Theories,� arXiv:0903.0003 [hep-th].

[113] P. de Medeiros, J. Figueroa-O'Farrill, E. Méndez-Escobar and P. Ritter, �Met-

ric 3-Lie algebras for unitary Bagger-Lambert theories,� JHEP 0904 (2009) 037

[arXiv:0902.4674 [hep-th]].


