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Chapter 1

Introduction

1.1 Introduction

String theory [1, 2] was first introduced as a model for explaining the exotic features of
the strong interaction such as quark confinement, Regge slope, dual resonances, and so
on. However, it was found that string theory is not successful and QCD is the correct
description for strong interactions. Therefore, string theory seemed to die. However, after
many turns and twists, string theory is now thought to be a strong candidate for unifying
all four interactions. The main reasons are its self-consistency, existence of gravity, no UV
divergences, and no free parameters. There are five string theories which have space-time
supersymmetries, type I, type IIA, type IIB, heterotic string with SO(32) gauge group,
and heterotic string with E8×E8 gauge group and they all live in ten dimensions. At the
perturbative level, they are totally different from each other. Therefore, in the past, it was
conjectured that one of five theories was the truely unified theory and others were not so
interesting. And that one was the E8×E8 heterotic string. The reason was the similarity
to the gauge group of GUT. And, as we will explain in the next section, heterotic string
on Calabi-Yau manifolds provides us with N = 1 supersymmetry in four dimensions.
Therefore, heterotic strings on Calabi-Yau manifolds lead to N = 1 supersymmetric
theories with realistic gauge groups and correct dimension. For these reasons, they have
been studied vigorously. However, this point of view was changed dramatically by the
emergence of D-branes. D-branes are the solitons of the string theory and inform us
of non-perturbative aspects of string theory. And it was found that there is an unique
eleven dimensional theory called “M-theory” which is the truly unified theory. From this
perspective, string theories are thought to describe the physics around some particular
vacuum. Under these circumstances, manifolds with G2 holonomy have received much
attention. The main reason for this is that if we compactify M-theory on such a manifold,
we can get a four dimensional theory with 4 supercharges, which is of phenomenological
importance. They also play fundamental roles in realizing the N = 1 supersymmetric
gauge theories. In fact, Atiyah, Maldacena and Vafa proposed a new duality by using the
M theory on G2 manifolds [43]. This work is based on the previous work by Vafa and his
coraborators [40, 41, 42]. These are the origin of the recent work by Dijkgraaf and Vafa
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[56] and their work is the realization of the possibility that the non-perturbative physics
can be understood by the perturbative calculations, which was first pointed out in [27].
Therefore, manifolds with G2 holonomy are important from both phenomenological and
theoretical point of view. With this in mind, we review the fundamental properties of
superstring and M-theory on G2 manifolds.

The organization is as follows. We will first recall some of the basic facts about
string theory and geometry in chapter 1. Then, we will discuss the Witten’s index in
chapter 2. And we will go to the main chapter, M-theory on G2 manifolds. In this
chapter, we will review the work of Atiyah, Maldacena and Vafa and the fundamentals
for understanding their work. Or more concretely, we will review conifold transitions,
N = 2 superconformal field theories, open and closed topological strings, relations to
superstring, and their duality properties. In chapter 4, we will discuss CFT description
of G2 manifolds. Chapter 5 is conclusion and summary.

1.2 Basic facts

1.2.1 Why superstings require 10 dimensions?

Let us first review briefly what determines the dimensions. This chapter only contains
basic facts which we assume the reader to be familiar with. To avoid technical difficulties,
we first consider bosonic string. The action is

S = − 1

4πα′

∫
M

dσdτ(−γ) 1
2γab∂aX

µ∂bXµ (1.1)

where γab is a world sheet metric (Lorentz signature(−,+)) and γ is determinant of it. µ
runs 0 to D − 1. (D is the dimension of spacetime.)
This action has the following symmetries.
1. D-dimensional Poincaré invariance

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ (1.2)

γ′ab(τ, σ) = γab(τ, σ) (1.3)

2. Two dimensional diff invariance

X ′µ(τ ′, σ′) = Xµ(τ, σ) (1.4)

∂σ′c

∂σa
∂σ′d

∂σb
γ′cd(τ

′, σ′) = γab(τ, σ) (1.5)

3. Two dimensional Weyl invariance

X ′µ(τ, σ) = Xµ(τ, σ) (1.6)

γ′ab(τ, σ) = exp(2ω(τ, σ))γab(τ, σ) (1.7)
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This action of course describes a string propagating in D dimensional spacetime. But, we
can also regard this as a two dimensional field theory. If we see from this point of view,
Xµ are two dimensional bosons, interacting with two dimensional gravitons γab. And this
theory has a large gauge symmetry which we must fix; i.e. local diff×Weyl symmetry.
Let us fix this gauge symmetry.

We first replace the world sheet metric with a Euclidean one and denote this new
metric as gab. If we forget the global structures of the world sheet, it is easy to show that
we can make this metric δab by combining the diff and Weyl gauge symmetry. Therefore,
we can fix the gauge by restricting to the flat metric. By using a well-known Fadeev-
Popov method, the action becomes

S =
1

2πα′

∫
dzdz̄

(
∂Xµ∂̄Xµ + b∂̄c+ b̄∂c̄

)
(1.8)

after the gauge fixing. Here we change the world sheet coordinates to z = σ1 + iσ2 =
σ+ i(iτ) and its complex cojugate z̄. If we change coordinates in such a way that z′ is a
holomorphic function of z

z′ = f(z) (1.9)

and combine this with a Weyl transformation, the metric becomes

ds′2 = exp(2ω)|∂zf |−2dz′dz̄′. (1.10)

If we take ω = ln |∂zf | here, we have the same metric as before. This means that locally,
we have an extra gauge symmetry (this is a local conformal symmetry) even after fixing
the metric. Therefore, after fixing the gauge, we have two dimensional conformal field
theories which consist of matter CFT (D free bonsons Xµ) and ghost CFT. As we know,
a free bonson has central charge 1 and the ghost has central charge −26. For the theory
to be consistent, the diff×Weyl invariance must not be amomalous. It can be shown that
the theory can be regularized in a diff invariant way. So, we can concentrate only on
the Weyl anomaly. Recall that the Weyl invariance makes the energy-momentum tensor
traceless; i.e. T aa = 0. The only possible form of the anomaly is known to be T aa = a1R,
where a1 is some constant and R is a scalar curvature of the world sheet. This can be
rewritten in complex coordinates of the form

Tzz̄ =
a1

2
gzz̄R. (1.11)

Let us calculate the constant a1. Taking the covariant derivative of both sides, we have

∇z̄Tzz̄ =
a1

2
∂zR. (1.12)

By using the conservation of Tab, this can be written as

∇zTzz = −∇z̄Tzz̄ = −a1

2
∂zR. (1.13)
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The Weyl transformation of the right hand side is

a1∂z∇2δω ≈ 4a1∂
2
z∂z̄δω (1.14)

where we expand around a flat world sheet. We next calculate the Weyl transformation
of the left hand side. The conformal transformation of the Tzz is

δTzz(z) = − c

12
∂3
zv

z(z) − 2∂zv
z(z)Tzz − vz(z)∂zTzz(z) (1.15)

where c is the central charge of the theory. As we saw, conformal transformation consists
of two pieces; a coodinate transformation δz = v and a Wely transformation 2δω =
∂v+(∂v)∗. The last two terms are the coordinate transformation of the tensor. Therefore
the Weyl transformation of Tzz can, to leading order around the flat metric, be read as

δWTzz = −c
6
∂2
z δω. (1.16)

We have the result that a1 is proportional to the central charge. Therefore, the total
central charge of the theory must vanish. In our case, we must have D+(−26) = 0. This
result give the answer to our question; the central charge of the ghost CFT determines the
dimensions. If we consider the superstring theory, we have the superconformal symmetry.
And we have D bosons, D fermions, and conformal and superconformal ghosts. A free
fermion has central charge 1/2 and superconformal ghost has central charge 11. As
above, we have (1 + 1

2
)D + (−26 + 11) = 0. This shows that the superstring must be in

10 dimensions.

1.2.2 Emergence of the eleventh dimension

As a low energy effective field theory of the string theory we have a supergravity theory.
Supergravity theories are constructed in dimensions less than 11. But superstring theory
is in 10 dimensions. What does this mean? Why is there 11 dimensional theory? Is
the supergravity in eleven dimensions only a theoretical possibility which is not relevant
to the actual world? Today’s our knowledge is that we have an eleven dimensional M-
theory as a truely unified theory and the elevendimensional supergravity is the low energy
effective field theory of it. Superstring theory is thought to describe a particular point of
M-theory moduli space. (description around some particular vacuum of the M-theory).
Let us explain this with one example. Recall that type IIA supergravity can be obtained
by dimensional reduction of the 11-dimensional supergravity on S1. So, it is natural to
consider the type IIA superstring theory. Type IIA theory has 1-form Aµ, 3-form Aµνλ
in the ground state of RR sector. So, there are D0-brane, D2-brane, D4-brane, D6-brane
and D8-brane in the type IIA. Let us concentrate on D0-branes. A D0-brane is a BPS
state and it has a following mass

τ0 =
1

gα′1
2

. (1.17)
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The D0 brane is very heavy at weak coupling but becomes light in the strong coupling
limit. We also know that for any number n, there is an ultrashort multiplet of bound
sates of n D0 branes with mass

nτ0 =
n

gα′1
2

. (1.18)

Because of the BPS property, this is exact and valid even if the coupling is strong. The
spectrum becomes continuous as g → ∞. Such a continuous spectrum is a characteris-
tic of a system that is becoming noncompact. The above spectrum coincides with the
spectrum of Kaluza-Klein states for a circle of radius

R10 = gα′1
2 (1.19)

As g → ∞, the eleventh dimension appears. The reason that perturbative string theory
can not detect the eleventh dimension is evident. A perturbation theory is an expansion
around g = 0. But, this is the limit in which the eleventh dimension disappears.

1.2.3 The condition for N = 1 spacetime supersymmetry

So far, we have seen that superstrings require 10 dimensions and M-theory 11 dimensions.
But we all know we live in 4 dimensions. Therefore it is natural to think that the other 6 or
7 dimensions are extremely small compared with our 4 dimensional world. Therefore, the
problem of compactification down to 4 dimensions should be taken seriously. Then, what
should we require for compactification? Compactification on general manifolds leads to a
theory without supersymmetry. This causes the serious problems. One is a technical one.
A theory without supersymmetry has too complicated quantum corrections and we want
to avoid them. The other is a phenomenological one. There is a problem of “naturalness”
or “gauge hierarchy” problem. We know we can avoid this problem by introducing
supersymmetry. It was in fact one of the motivation of studying supersymmetry. So, we
require that there be unbroken supersymmetries. However too much supersymmetry is
also troublesome. For example, N = 2 supersymmetry in 4-dimensions have no chiral
fermions. Therefore, it is reasonable to require N = 1 spacetime supersymmetry. Then,
how can we have such models? In other words, what determines the number of unbroken
supercharges when we compactify the superstring theory or M-theory? The answer turns
out to be related to the holonomy group of the manifold. Let us explain this in the
heterotic string case. We assume the four-dimensional Poincaré invariance in the following
discussion. Then, the metric must be of the form(

f(y)ηµν 0
0 Gmn(y)

)
. (1.20)

We denote the noncompact coordinates by xµ with µ, ν = 0, 1, 2, 3 and the compact
coordinates by ym with m,n = 4, 5, ..., 9. The other potential nonvanishing fields are
Φ(y)(dilaton), Hmnp(y)(three form field-strength) and Fmn(y)(field-strength). The con-
dition for the unbroken supersymmetry is that the variations of the fermi fields are zero.
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(This comes from 〈Ω|{Q, ...}|Ω〉 = 0) For the 10-dimensional N = 1 supergravity of the
heterotic string these variations are

δψµ = ∇µε (1.21)

δψm =

(
∂m +

1

4
Ω−
mnpΓ

np

)
ε (1.22)

δχ =

(
Γm∂mΦ − 1

12
ΓmnpHmnp

)
ε (1.23)

δλ = FmnΓ
mnε (1.24)

where

Ω±
MNP = ωMNP ± 1

2
HMNP (1.25)

and ω is the spin connection. These are the variations of the gravitino, dilatino, and
gaugino respectively. Under the decomposition SO(9, 1) → SO(3, 1) × SO(6), the 16
decomposes as

16 → (2, 4) + (2̄, 4̄) (1.26)

Thus, a Majorana-Weyl supersymmetry parameter can be written as

ε(y) → εαβ + ε∗αβ(y) (1.27)

The indices on εαβ transform respectively as (2, 4). If there is any unbroken supersymme-
try, we can generate further supersymmetry by SO(3, 1) rotations and reach the following
form

εαβ = uαζβ(y) (1.28)

for an arbitrary Weyl spinor u. Therefore each internal spinor ζβ(y) for which δ(fermions) =
0 gives one copy of the minimal four-dimensional supersymmetry algebra. Let us look
for the solutions. We make an additional assumption that the antisymmetric tensor field
strength vanishes

Hmnp = 0. (1.29)

In this case, from the vanishing of δχ we can deduce that the dilaton must be constant

∂mΦ = 0. (1.30)

Then the vanishing of δψµ forbids a y-dependent scale factor of the metric; i.e. f(y) = 1.
And finally the vanishing of δψm gives

∇mζ = 0. (1.31)
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This shows that the internal space must admit the existence of a covariantly constant
spinor. This is a strong condition and restricts a holonomy group of the internal space.
When the internal space is given a metric and oriented, the holonomy group is generally
SO(d) where d is the dimension of the internal space. Covariant constant spinors are
invariant under the action of the holonomy group. So, having a covariant constant spinor
means that the holonomy group is the subgroup G of SO(d) and under G ⊂ SO(d), the
spinor of the SO(d) must decompose like

spinor of SO(d) → (something) + 1 (1.32)

For example, if we want to compactify the heterotic string down to four dimensions with
N = 1 supersymmetry, the holonomy of the internal six dimensional mainifold must
be SU(3) ⊂ SO(6). This is because under SO(6) → SU(3), the spinor decomposes
4 → 3 + 1 and we can use 1 to define the supersymmetry. The number of remaining
supercharges are 16 × 1

4
= 4, the correct number for N = 1 SUSY in 4 dimensions. The

other possibilities are listed in the table.

Holonomy group Dimension Name Remaining supercharges
SU(2) 4 K3 surface 1

2

SU(3) 6 Calabi-Yau 1
4

G2 7 G2
1
8

Spin(7) 8 Spin(7) 1
16

From this table, we see that superstrings on Calabi-Yau manifolds and M-theory on G2

are the most interesting cases. Understanding the physics of superstring and M-theory
on G2 is the aim of this review. But also, studying the K3 surface is interesting and
teaches us a lot about the non-perturbative aspects of the string theories [9].

1.2.4 Calabi-Yau manifolds

Let us recall some of the basic facts about complex geometry. We say thatM is a complex
manifold if and only if the following conditions are satisfied.

1. M is a topological space.

2. M is provided with a family of pairs {(Ui, ϕi)}
3. {Ui} is a family of open sets which covers M . And ϕi is a homeomorphism from
Ui to an open subset U ′

i of Cm. In particular, M is even dimensional.

4. For given Ui and Uj such that Ui ∩ Uj 	= ∅, the map ψji = ϕjϕ
−1
i from ϕi(Ui ∩ Uj)

to ϕ(Ui ∩ Uj) is holomorphic.

The term “analytic” is meaningful only on complex manifolds. Let zi, z̄ be a local
coordinate on some complex manifold. We can define the following form

K = −igīdzi ∧ dz̄, (1.33)
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which is called a Kähler form. A Kähler form is not generally a closed form. But in
some cases, it is closed. A complex manifold with closed Kähler form has many good
properties. Therefore let us introduce a new term for such objects. A complex manifold
is called a Kähler manifold if and only if the Kähler form is closed; dK = 0. Therefore,
in Kähler manifolds, a Kähler form is in H1,1(M). Let us call the class to which Kähler
form belongs a Kähler class. A Kähler class is related to the volume of the manifold.
Some properties of the Kähler manifold are listed below.

1. Existence of the Kähler potential
A Kähler metric can be expressed locally as gµν̄ = ∂µ∂ν̄K. Where K is a function
called Kähler potential.

2. Torsionless
A Kähler metric is torsionless.

3. Special Holonomy
The nonvanishing connection coefficients are of the form Γijk or Γı̄

̄k̄
This implies

that if we parallel transport the vectors of the form ∂
∂zi along some closed path, the

vectors are rotated only among holomorphic part. This means that the holonomy
group is at most U(n), where n is a complex dimension of the manifold.

4. Equvalence of various Laplacians
In general complex manifolds, we can define three Laplacians based on d, ∂, and ∂̄.
For example, we can define the Laplacian from d as dd∗ + d∗d. Let us denote these
Laplacians by ∆d, ∆∂, and ∆∂̄ respectively. In a general complex manifold, these
objects are not related at all. But in a Kähler manifold, the following relations are
satisfied

∆d = 2∆∂ = 2∆∂̄ . (1.34)

In particular, Hn
DR(M) = ⊕p+q=nH

p,q(M).

Some famous examples of Kähler manifolds are complex Euclid space Cn, complex pro-
jective space CPn, Riemann surfaces, and so on.

A Calabi-Yau manifold is a Kähler manifold with vanishing first Chern class. Long
ago, Calabi conjectured that the Kähler manifold with vanishing Chern class has an
unique Ricci flat metric for fixed Kähler class. Later, Yau showed that the Calabi’s
conjecture is true. Therefore, the vanishing first Chern class asserts the existence of the
Ricci flat metric. Some important properties of Calabi-Yau manifolds are

1. Special holonomy
Calabi-Yau manifolds have smaller holonomy SU(n).

2. Holomorphic n-form
The condition that Kähler manifolds with vanishing first Chern class is equivalent
to the existence of a nowhere vanishing holomorphic (n, 0) form Ω. This (n, 0) form
is covariant constant in the Ricci-flat metric.
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3. Simple Hodge diamond
We consider the case in which the Calabi-Yau manifold is 6-dimensional. By using
the above holomorphic form, it can be shown that

hp,0 = h3−p,0. (1.35)

Also, it can be shown that for a Calabi-Yau whose holonomy is exactly SU(3)

h1,0 = h0,1 = 0. (1.36)

Combining these facts with the property of the Kähler manifold

hp,q = hq,p, hn−p,n−q = hp,q (1.37)

and usual

h0,0 = 1, (1.38)

we have the following Hodge diamond

h3,3 1
h3,2 h2,3 0 0

h3,1 h2,2 h1,3 0 h1,1 0
h3,0 h2,1 h1,2 h0,3 = 1 h2,1 h2,1 1

h2,0 h1,1 h0,2 0 h1,1 0
h1,0 h0,1 0 0

h0,0 1

. (1.39)

From this diamond, we see that the Euler number is given by

χ = 2(h1,1 − h2,1). (1.40)

4. Mirror symmetry
To describe the string theory on Calabi-Yau manifolds, we use (2, 2) superconformal
field theories with c = 9. There are two types of marginal operatiors in such theories.
These correspond to the two geometrical ways of deforming Calabi-Yau manifolds,
one is Kähler moduli and the other is complex moduli. It is evident that the number
of Kähler moduli is given by h1,1. On the other hand, the complex moduli are given
by the fields gij. This is because a coordinate change is needed to bring the metric
back to the Hermitian form. However, this is not a form. Even so, we can make
the following form

gil̄m̄ = gijG
jk̄Ωk̄l̄m̄. (1.41)

where G is the metric. Then, this shows that the the number of complex structure
moduli is h2,1. These two kinds of moduli are totally different objects from a
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geometrical point of view. However, there is an asymmetry between the abstract
conformal field theory description and the geometrical realization. From the CFT
viewpoint, the two kinds of operators differ only in the conventional sign of a U(1)
charge. This suggests that the Calabi-Yau manifolds exist with pairs and the Hodge
number of each pair is mirror to each other. In other words, if we have a Calabi-Yau
manifoldM with the Hodge number (h1,1, h2,1), then there is an another Calabi-Yau
manifold W satisfying

(h1,1, h2,1)M = (h2,1, h1,1)W . (1.42)

There are now vast evidences for this conjecture.

1.2.5 Manifolds with G2 holonomy

We saw above that the holonomy group of the internal space determines the remaining
supercharges. And we noted that the M theory on a manifold having G2 holonomy is
one of the interesting cases. Then, how can we characterize the G2 manifolds? Let us
explain this. As we know, the group G2 is one of the exceptional Lie groups. But we
give another definition here. We can define the group G2 as a subgroup of SO(7) whose
action on R7 preserves the following form

ϕ = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ dx4 ∧ dx5 + dx1 ∧ dx6 ∧ dx7 + dx2 ∧ dx4 ∧ dx6

− dx2 ∧ dx5 ∧ dx7 − dx3 ∧ dx4 ∧ dx7 − dx3 ∧ dx5 ∧ dx6.
(1.43)

SO(7) has rank 3 and dimension 21. The important representations are the vector 7, the
spinor 8, and the adjoint 21. On the other hand, G2 has rank 2 and dimension 14. Its
important representations are the fundamental 7 and the adjoint 14. Under G2 ⊂ SO(7)
the branching rules of these representations are

21 = 14 ⊕ 7

7 = 7

8 = 7 ⊕ 1

(1.44)

The decomposition 8 = 7 ⊕ 1 means that G2 holonomy manifolds admit precisely one
covariant constant spinor, and remaining supercharges become 1

8
. Note that when we

consider the superstring on G2 holonomy manifolds, the above differential form that is
invariant under the G2 action becomes one of the generators of the G2 CFT.

We mainly interested in M theory on G2 manifolds. However, we still do not under-
stand what M theory is. So, we must use indirect approaches and there are two main
tools. One is based on supergravity and the other is based on CFT. We review from both
point of view.
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Chapter 2

Witten index

Consider any supersymmetric theory. If we want to know whether supersymmetry is
spontaneously broken or not, we have only to check the energy of the vacuum. However,
it is not easy to determine the energy of the vacuum. Even if the vacuum energy appears
to be zero in some approximation, tiny corrections which have been neglected may cause
the energy to be small but non-zero. Witten partially solved this problem by introducing
Witten’s index. In this chapter, we will review his work following [13].

2.1 Witten index

2.1.1 Definitions and physical implications

It is useful to consider the supersymmetric theories formulated in a finite spacial volume.
In a finite volume, the spectrum is discrete and can be counted in a well-defined way.
Since translations are part of the supersymmetry algebra, we must impose the boundary
conditions that preserve translational invariance. This leads us to use periodic boundary
conditions both for bosons and fermions. In general, it is not meaningful to ask whether
an internal symmetry is spontaneously broken in finite volume because usually an internal
symmetry is unbroken in a finite volume. However, supersymmetry can be spontaneously
broken in a finite volume. This is because supersymmetry breaking just means that the
ground state energy is positive, which is possible in a finite volume or even in a finite
number of degrees of freedom.

Given a theory defined in a volume V with a Hilbert space H, our main concern is
the existence of zero-energy states in H. In supersymmetric theories, the energy E is
equal to or greater than the momentum |P|. Therefore, the zero-energy states must have
P = 0 and we can restrict our attention to P = 0 without losing any information. In the
subspace of zero momentum, the supersymmetry algebra takes the following simple form

Q2
1 = Q2

2 = ... = Q2
K = H (2.1)

QiQj +QjQi = 0, for i 	= j. (2.2)

Let us first work with any one of the Qi’s that we denote as Q.
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Let |b〉 be a bosonic state satisfying exp(2πiJz)|b〉 = |b〉. And let |f〉 be a fermionic
state with exp(2πiJz)|f〉 = −|f〉. We define the following operator

(−1)F = exp(2πiJz). (2.3)

As we know, the states of non-zero energy are paired by the action of Q. If |b〉 is state of
non-zero energy E, we can define a normalized fermionic state |f〉 = (1/

√
E)Q|b〉. Then,

we have

Q|b〉 =
√
E|f〉, Q|f〉 =

√
E|b〉, (2.4)

where the second equation is chosen to satisfy Q2 = H . All states of non-zero energy
are paired in two dimensional supermultiplets with this structure. On the other hand,
the zero-energy states are not paired in this way. By using Q2 = H and the hermitian
property of Q, each state annihilated by H is also annihilated by Q. Therefore, they form
trivial one dimensional supersymmetry multiplets. Therefore, in the general situations,
there are paired states of positive energy and states of zero energy which are not neces-
sarily paired. From this simple observation, we can deduce the following important facts.
Suppose we vary the parameters of the theory. Then, the states of non-zero enegy move
around in energy in Bose-Fermi pairs. They can move down to E = 0. If this happens,
the number of bosonic states of zero energy nE=0

B and the number of fermionic states of
zero energy nE=0

F increase in the same way. On the other hand, some states of zero energy
may gain non-zero energy. Of course it is not possible for a single zero-energy state to
acquire a non-zero energy. What can occur is that pairs of states can move from E = 0 to
some non-zero energy state. In this case, nE=0

B and nE=0
F decrease by the same number.

In either case, the difference nE=0
B − nE=0

F is invariant under the change of parameters.
Therefore, this quantity can be calculated reliably. It can be calculated in a convenient
limit such as small volume, large mass, and weak coupling. And when such calculation
is done, following two cases are possible.
(1) nE=0

B − nE=0
F 	= 0

In this case, supersymmetry is not broken. This is because we have either nE=0
B 	= 0 or

nE=0
F 	= 0 and there are some states of zero energy.

(2) nE=0
B − nE=0

F = 0
In this case, there are two possibility.
(A) nE=0

B = nE=0
F = 0. Supersymmetry is broken and there is a massless Goldstone

fermion in the infinite volume theory.
(B) nE=0

B = nE=0
F 	= 0. Supersymmetry is not broken. There is no Goldstone fermion but

there are zero-energy fermionic states which are interpreted as evidence that the infinite
volume theory has a massless fermion. In either case, we conclude that if nE=0

B −nE=0
F = 0,

the infinite volume theory has a massless fermion.
The quantity nE=0

B − nE=0
F can be regarded as the trace of the operator (−1)F since

states of non-zero energy do not contribute to the trace of (−1)F because of the pairing.
Thus, we have

Tr(−1)F = nE=0
B − nE=0

F , (2.5)
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which is called the Witten’s index. This formula should be regarded as merely a useful
definition because the infinite sum over all states in Hilbert space required to define
Tr(−1)F is ill-defined. We could regularize Tr(−1)F by writing Tr(−1)F exp(−βH) for
arbitrary positive β.
The name “index” comes from the fact that the quantity Tr(−1)F is an example of a
standard mathematical concept; the index of an operator. Since the supercharge Q maps
bosons into fermions and vice versa, it takes the following form(

0 M †

M 0

)
(2.6)

if the states are arranged in the form (
B
F

)
. (2.7)

Note that because Q is Hermitian, M † is the adjoint of M . Since H = Q2, the zero-energy
states are precisely those annihilated by Q. Bosonic states annihilated by Q are states
ψ which satisfy Mψ = 0. In the same manner, fermionic states annihilated by Q are
states ψ that satisfy M †ψ = 0. Therefore, the quantity Tr(−1)F is equal to the number
of solutions of Mψ = 0 minus the number of solutions of M †ψ = 0. By definition, the
latter quantity is the index of the operator M . Then, the fact that the Witten’s index is
independent of the parameters of the theory is a special case of the fact that the index
of some operator is invariant under small deformations.

2.1.2 Forbidden changes in parameters

We have seen that the Witten’s index is invariant under the change of parameters. How-
ever, there are a few subtleties. The most serious problem comes from the behavior of the
potential energy for large field strenghs. For instance, consider the following potential

V (φ) = (mφ− gφ2)2. (2.8)

At g = 0, low energy states correspond to φ ∼ 0 but for g 	= 0, low energy states
may correspond to φ ∼ m/g. Therefore, an arbitrarily small but non-zero g causes the
existence of extra low energy states at φ ∼ m/g that have no counterpart in the g = 0
case. In such a case, the Witten’s index at g = 0 has a different value from that at g 	= 0.
This is related to the change in asymptotic behavior of V . At g = 0, V ∼ φ2 for large φ,
but for non-zero g, V ∼ φ4. In this way, the change in asymptotic behavior can change
the Witten’s index discontinuously. The general rule is that Tr(−1)F is invariant under
any change in parameters in which the Hamiltonian changes by terms no bigger than the
terms already present in the large field limit. This is the crucial ingredient in showing
the constancy of Tr(−1)F .
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2.2 Some generalizations

In the last section, we have seen that the difference nE=0
B − nE=0

F is invariant under
reasonable changes in the parameters of the theory. In this section, we will see that the
two numbers nE=0

B and nE=0
F are separately invariant under a smaller but still interesting

class of changes in parameters. Though we worked with a single supersymmetry charge,
we must make use of two supercharges in this section. We denote these two supercharges

by Q1 and Q2. If we define Q± =
√

1
2
(Q1 ± iQ2), the supersymmetry algebra in the zero

momentum sector takes the following simple form

Q2
+ = Q2

− = 0, Q+Q− +Q−Q+ = H. (2.9)

Any operator Q+ with Q2
+ = 0 can be put in Jordan canonical form by a linear transfor-

mation. The Jordan canonical form of Q+ would be of the form


0 1
0 0

0 1
0 0

0 1
0 0

0
0

0



. (2.10)

The structure
(

0 1
0 0

)
corresponds to the two dimensional supermultiplets. In addition,

there are an arbitrary number of unpaired zeros. They are the supersymmetric zero-
energy states.
It is evident that Q+χ = 0 if χ can be written as χ = Q+ψ. Then, let us ask the converse
question. Given any state χ with Q+χ = 0, when can we write χ = Q+ψ for some ψ?
The answer turns out to be that we can write χ in the form χ = Q+ψ if and only if
E 	= 0. The proof is as follows.
(1) The case E 	= 0
Define ψ = (1/E)Q−χ. Then, Q+ψ = (1/E)(Q+Q− + Q−Q+)χ = χ. In this way, we
have explicitly found a state ψ.
(2) The case E = 0
Suppose there exists some ψ such that χ = Q+ψ. Since Q+ commutes with the Hamil-
tonian, the equation Q+ψ = χ implies that ψ has the same energy as χ. By assumption,
Eχ = 0. Therefore, ψ must have zero energy. However, since the Qi annihilate all states
of zero energy, it follows Q+ψ = 0, which is a contradiction.

Therefore, if we define N = nE=0
B + nE=0

F , we have

N = dim(Ker(Q+)/Im(Q+)). (2.11)
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We would like to find the conditions under which N is invariant under changes in parame-
ters of the theory. Of course, the invarinace of N doesn’t follow from the supersymmetry
alone. To see this, let us consider the following representation of the supersymmetry
algebra.

Q+ =

(
0 λ
0 0

)
, Q− =

(
0 0
λ 0

)
, H =

(
λ2 0
0 λ2

)
. (2.12)

For λ 	= 0, no state has zero energy N = 0. But for λ = 0, there are two zero-energy states
N = 2. In this way, the number of zero-energy states can change when the parameters
are changed. However, there is a restricted class of changes in parameters which does not
change the total number of zero-energy states N . Consider the following new operators

Q̃+ = M−1Q+M (2.13)

Q̃− = M †Q−M †−1
(2.14)

H̃ = Q̃+Q̃− + Q̃−Q̃+ (2.15)

where M is an arbitrary invertible linear opertor. If M is unitary, M † = M−1, the
new operators differ from the original ones only a change of basis of the Hilbert space.
Therefore, the theory described by the new operators is inequivalent to the original one
if and only if M is not unitary. The important thing is that the number of zero-energy
states for H̃ is always equal to the number of zero-energy states of H . This can be seen
as follows. Let χ ∈ H be the state which satisfies Q+χ = 0 but not χ = Q+ψ for some
ψ. Then let us define χ̃ = M−1χ, which satisfies Q̃+χ̃ = 0 by definition. If we suppose
χ̃ = Q̃+ψ̃, then this leads to the contradiction because in this case χ = Q+(Mψ̃). This
completes the proof.

Then, which parameters correspond to such desirable changes? There are mainly
following parameters.
(1) The usual mass terms, self-coupling of scalars, and Yukawa couplings. These can be
written in the form of superpotentials.
(2) Gauge couplings
(3) The θ term.
(4) The Fayet-Iliopoulos D term.
We first show that parameters in the group (1) can be changed by the above method.
Here, we work with γ0 eigenstates rather than a Majorana basis. As γ0 is imaginary in
the Majorana basis, the γ0 = +1 supercharges are a complex doublet Qα and the γ0 = −1
charges are complex conjugates Q∗

β .
Consider the simplest Wess-Zumino model. It has a single complex scalar field φ and

a single spinor field ψ. The parameters of this theory are mass m and the coupling g.
Qα for parameters (m1, g1) is related to Q̃α for parameters (m2, g2) by the following way

Q̃α(m2, g2) = M−1Qα(m1, g1)M (2.16)

where

M = exp

(
2Re

∫
d3x((m2 −m1)

1

2
φ2 + (g2 − g1)

1

3
φ3)

)
. (2.17)
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Standard definition of Qα shows that the terms in Qα which do not commute with M
are those involving the time derivative φ̇ or φ̇∗. These terms are

QN.C
α =

∫
d3x(φ̇∗ψα + φ̇εαβψ

∗β) (2.18)

where ψα are the spinor components with γ0 = +1. Then, under conjugation by M , the
Qα becomes

Qα → Qα +

∫
d3x[{(m2 −m1)φ

∗ + (g2 − g1)φ
∗2}ψα

+ {(m2 −m1)φ+ (g2 − g1)φ
2}εαβψ∗β].

(2.19)

Then, the comparison with the standard formula for Qα shows that the last term is
precisely the change in Qα under (m1, g1) → (m2, g2). This can be extended to arbitrary
renormalizable theories with spin 0 and spin 1

2
fields only. The superpotential W1 can be

changed to another potential W2 by Qα → M−1QαM where

M = exp

(
2Re

∫
d3x(W2(φi(x)) −W1(φi(x)))

)
. (2.20)

Note that we must be careful in two points. One is again the behavior for large field limit.
For M to be a well-defined operator in the Hilbert space of our theory it is necessary that
when M acts on an energy eigenstate, it must give a normalizable finite energy state. If
∆W = W2 −W1 increases too rapidly for large φ, M produces an unnormalizable state
that diverges expontentially for large φ. The necessary requirement is that the change in
W under conjugation must grow no more rapidly than W itself for large φ.

The other is the ultraviolet divergences. When we compute Tr(−1)F , we do not have
to worry the effects of UV divergences. This is because introducing cut-off affects only
the highly excited states while Tr(−1)F involves only the low-lying states. On the other
hand, the arguments in this section must be checked if they are consistent with the reno-
malization because each ground states are sensitive to the tiny changes of the theory.
If we consider the theory with spin 0 and spin 1

2
fields only, there is a simple way to

avoid the problem. We can regularize the theory in a supersymmetrically invariant way
while preserving the fact that changing the parameters by conjugation is possible. In the
interaction terms, we replace all superfields Φi(x) by Φ̃i(x, t) =

∫
d3yG(x, y)Φi(y, t),

where G(x, t) is some kernel. The superspace interaction terms are now written as∫
d4xd2θW (Φ̃i(x, t)). This eleminates the UV divergences and W can be still be changed

by conjugation in the same way as before. Then, after ending all the calculations, we take
G(x, y) → δ3(x − y). However, when we introduce the gauge fields, this procedure con-
flicts with the gauge invariances. Though there is no proof in this case, the conjugation
process is believed to be possible.

Similar analysis leads us to the following results [13].

1. Superpotential can be changed by conjugation.
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2. Abelian gauge counpling can be changed.

3. Non-abelian counpling can be changed if the theory has no θ dependece.

4. θ cannot be changed unless physics is independent of θ.

5. The D term cannot be changed.

2.3 A simple example

Consider the supersymmetric version of a particle moving in a line in one dimension. The
supercharges are given by

Q1 =
1

2
(σ1p + σ2W (x)) (2.21)

Q2 =
1

2
(σ2p− σ1W (x)) (2.22)

where σi are Pauli matices and p = −i d
dx

. Then, the Hamiltonian is

H =
1

2

(
p2 +W 2 + σ3

dW

dx

)
. (2.23)

From these definitions, we have

Q+ =
1√
2
(Q1 + iQ2) = − i

2
√

2
(σ1 + iσ2)

(
d

dx
+W (x)

)
. (2.24)

Let us consider the change of superpotential by conjugation. The relation betweenQ+(W )
and Q̃+(W̃ ) is given by

Q̃+(W̃ ) = exp(−F (x))Q+(W ) exp(F (x)) (2.25)

where F (x) is a function which satisfies

dF

dx
= W̃ (x) −W (x). (2.26)

Let us study the special case W (x) = x2 + a2, where a is some constant. For a2 >
0, supersymmetry is spontaneously broken at the tree level because of the potential
energy V (x) = W 2(x). For a2 < 0, supersymmetry is not broken in perturbation theory.
However, it turns out that the dynamical supersymmetry breaking occurs in this case.
To see this, note the fact that the sign of a2 can be changed by the following conjugation

Q+(−a2) = exp(2a2x)Q+(a2) exp(−2a2x). (2.27)

Therefore, the total number of zero-energy must be independent of the sign of a2. We saw
that for a2 > 0 there are no zero-energy states. Combining these facts, we can conclude
that the supersymmetry is also broken for negative a2 even if the there appear to be two
zero-energy states in perturbation theory. This is consistent with the usual analysis [12].
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2.4 Non-linear sigma models

In this section, we will calculate Tr(−1)F for supersymmetric non-linear sigma models in
two dimensions. We denote the target space as X. The non-linear sigma model is defined
by the action

S =

∫
d2x

(
1

2
gij∂µφ

i∂µφ
j +

1

2
ψ̄jiγ

kDkψj +
1

8
Rijkl(φ)ψ̄iψkψ̄jψl

)
(2.28)

where gij is the metric of the manifold X, Rijkl is a curvature tensor of X and Dk is a
covariant derivative. From this definition we find it difficult to calculate Tr(−1)F because
the classical vacuum possesses a continuous degeneracy. Any configuration of the form
φ = const has zero-energy at the classical level. However, we can add following terms to
the action to lift the degeneracy

∆S =
1

2

∫
d2xd2θh(Φ) (2.29)

or in terms of components

∆S =

∫
d2x

(
−1

2
gij

∂h

∂φi
∂h

∂φj
− 1

2

∂2h

∂φi∂φj
ψ̄iψj

)
(2.30)

where h(φi) is an arbitrary function defined on X. Then, the scalar potential and the
fermion mass matrix become

V (φi) =
1

2
|∇h|2, m2

ij =
∂2h

∂φi∂φj
. (2.31)

It is evident that the potential energy lift the vacuum degeneracy. The classical vacua
are now those satisfying

∂h

∂φi
= 0. (2.32)

We assume that there are only isolated points in X at which ∂h/∂φi = 0 is satisfied. Let
us denote such points as pa, a = 1, 2, ..., k. We also impose the following condition on
h. The condition is that the matrix ∂2h/∂φi∂φj has no zero eigenvalue. This condition
means that there are no massless particles at the level of perturbation theory. Therefore,
if we expand around any one of the points pa, we have only one zero-energy state. Then
the calculation of Witten index is reduced to the problem of determining the statistics
of each vacuum. In order to do so, we must define (−1)F in two dimensions. In four
dimensions we defined it by using the angular momentum. However, we have now only
one spacial dimension. Therefore the term “angular momentum” has no meaning here.
We adopt the following definition. The operator (−1)F is defined to be the operator
which satisfies

(−1)Fφ = φ(−1)F , (−1)Fψ = −ψ(−1)F . (2.33)

20



where φ and ψ are any elementary Bose and Fermi fields. Note that the overall sign
cannot be fixed. This means that we must define any one of the k vacua to be bosonic (or
fermionic) and determine whether others are bosonic or fermionic. This seems difficult.
However, Witten found that this problem is related to the Morse theory and we can
compute Tr(−1)F in a simple way. To explain this, let us first consider the easy example.
Our example is a free Majorana fermion with mass m. The action is given by

S =
1

2

∫
d2x(ψ̄i/∂ψ −mψ̄ψ). (2.34)

Note that by the chiral symmetry, physics is independent of the sign of m. Then, we
define the zero modes of the fermion as

σ1 =
1√
L

∫
dxψ1(x), σ2 =

1√
L

∫
dxψ2(x). (2.35)

σ1 and σ2 form the following algebra

σ2
1 = σ2

2 = 1, σ1σ2 + σ2σ1 = 0. (2.36)

Then, the Hamiltonian for these zero modes is simple because the zero modes have no
kinetic energy. The explicit form is

H = −imσ1σ2 = mσ3 (2.37)

where we defined σ3 = −iσ1σ2, which is the number operator of the zero mode. We
see from this form of Hamiltonian that the sign of m determines whether the zero mode
is filled or empty, that is, bosonic or fermionic. In this way, we can determine the
contribution to Tr(−1)F from each vacuum. The general rule is that if the number of
negative eigenvalues of the fermion mass matrix ∂2h/∂φiφj evaluated at some vacuum is
even, that vacuum is bosonic (or fermionic depending on the choice of the sign of (−1)F ).
Summing up all the contributions, we have

Tr(−1)F =
∑
a

(−1)n
a

(2.38)

where na is the number of negative eigenvalues of the fermion mass matrix evaluated at
the a-th vacuum. At first sight, this result seems to be strange. This is because the
result appears to depend on the particular choice of the function h. However, from one
of the main theorem of Morse theory, the right-hand side of the result is equal to the
Euler number of the target space X. Therefore, the result does not depend on h. In this
way, we have

Tr(−1)F = χ(X). (2.39)
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Chapter 3

M theory on G2

In this chapter, we review the duality proposed by Atiyah, Maldacena and Vafa. To
understand this duality, we need two tools; a flop and the topological string. Let us first
discuss a flop following [15].

3.1 Flop

3.1.1 Preliminaries

We use linear sigma model approach. In order to do so, we need N = 2 supersymmetric
gauge theories as a world sheet theory. We mainly consider the case in which the target
space is Calabi-Yau.

Consider the usual N = 1 supersymmetric abelian gauge theory in four dimensions.
We have two kinds of superfield. One is chiral superfield which obeys D̄α̇Φ = 0 and can
be expanded

Φ(x, θ) = φ(y) +
√

2θαψα(y) + θαθαF (y). (3.1)

And the other is a vector superfield which is real and can be expanded

V = −θασmαα̇θ̄α̇vm + iθαθαθ̄α̇λ̄
α̇ − iθ̄α̇θ̄

α̇θαλα +
1

2
θαθαθ̄α̇θ̄

α̇D (3.2)

in Wess-Zumino gauge, where ym = xm + iθασmαα̇θ̄
α̇ as usual. We have the usual gauge

symmetry Φ → exp(iQa)Φ, v → v − da. We will denote the lowest component of the
superfields as φi for the superfield Φi.

Now let us make the dimensional reduction to two dimensions. In doing so, we take
the fields to be independent of x1 and x2. The components v1 and v2 of the gauge
field in the x1 and x2 directions, along with all the other fields, are functions of x0 and
x3 only. Set σ = (v1 − iv2)/

√
2 and σ̄ = (v1 + iv2)/

√
2. And let y0 and y1 to be

x0 and x3 respectively. After dimensional reduction, we label the fermion components
as (ψ1, ψ2) = (ψ−, ψ+), (ψ1, ψ2) = (ψ−, ψ+) and similarly for dotted spinors. In two
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dimensions, in addition to chiral superfields, obeying D̄+Φ = D̄−Φ = 0, it is possible to
have twisted chiral superfields which obeys D̄+Σ = D−Σ = 0. And in two dimensions,
the basic gauge invariant field strength of the superspace gauge field is a twisted chiral
superfield. This quantity is

Σ =
1

2
√

2
{D̄+,D−} (3.3)

where D are gauge covariant derivatives. In the abelian case, we have

Σ = σ − i
√

2θ+λ̄+ − i
√

2θ+θ̄−(D − iv01)

− iθ̄−θ−(∂0 − ∂1)σ − iθ+θ̄+(∂0 + ∂1)σ +
√

2θ̄−θ+θ−(∂0 − ∂1)λ̄+

+
√

2θ+θ̄−θ̄+(∂0 + ∂1)λ− − θ+θ̄−θ−θ̄+(∂0
2 − ∂1

2)σ

(3.4)

In the presence of gauge fields, a chiral superfield in a given representation is a superfield
obeying D̄α̇Φ = 0. If we write

Φ = eV Φ0 (3.5)

then Φ0 obeys D̄α̇Φ0 = 0.
With above notations, the Lagrangian for the theory with gauge group U(1)s and s

vector superfields Va, a = 1, 2, ..., s, and k chiral superfields Φi, i = 1, 2, ..., k which are
charged under each gauge particles with charge Qi,a is of the form

L = Lkin + LW + Lgauge + LD,θ (3.6)

where

Lkin =

∫
d4θ

∑
i

Φ̄iΦi =

∫
d4θ

∑
i

Φ̄0,ie
2
�

aQi,aVaΦ0,i

=
∑
i

(−Dµφ̄iD
µφi + iψ̄−,i(D0 +D1)ψ−,i + iψ̄+,i(D0 −D1)ψ+,i + |Fi|2

− 2
∑
a

σ̄aσaQ
2
i,aφ̄iφi −

√
2
∑
a

Qi,a(σ̄aψ̄+iψ+i + σaψ̄−iψ+i) +
∑
a

DaQi,aφ̄iφi

−
∑
a

i
√

2Qi,aφ̄i(ψ−iλ+a − ψ+iλ−a) −
∑
a

i
√

2Qi,aφi(λ̄−aψ̄+i − λ̄+aψ̄−i))

(3.7)

LW = −
∫
dθ+dθ−W (Φi)|θ̄+=θ̄−=0 − h.c

= −
(
Fi
∂W

∂φi
+

∂2W

∂φi∂φj
ψ−iψ+j

)
− h.c.

(3.8)
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Lgauge = −
∑
a

1

4ea2

∫
d4θΣ̄aΣa

= −
∑
a

1

e2a

(
1

2
v2
01,a +

1

2
D2
a + iλ̄+a(∂0 − ∂1)λ+a

+ iλ̄−a(∂0 + ∂1)λ−a − |∂µσa|2
)

(3.9)

LD,θ =
it′

2
√

2

∫
dθ+dθ̄−Σ|θ−=θ̄+=0 −

it̄′

2
√

2

∫
dθ−dθ̄+Σ̄|θ+=θ̄−=0

= −rD +
θ

2π
v01

(3.10)

where t′ is defined by

t′ = ir +
θ

2π
. (3.11)

This action has the following symmetries.
1. N = 2 supersymmetries in two dimensions

Two left-moving supersymmetries and two right moving supersymmetries acting on (θ−, θ̄−)
and (θ+, θ̄+) respectively.

2. If we ignore the superpotential LW , we have two additional R symmetries.
Right moving one acts on (θ+, ψ+i, Fi, σa, λ−a) with charges (1,−1,−1, 1, 1) and their
complex conjugate with opposite charges. Left moving one acts on (θ−, ψ−i, Fi, σa, λ+a)
with charges (1,−1,−1, 1, 1) and their complex conjugates with opposite. Other fields
are neutral. Let us denote the currents associated with these symmetries as JR and JL
respectively. The existence of these symmetries seems natural from the four dimensional
point of view. Many four dimensional supersymmetric theories have a single R symmetry.
In addition, in the process of dimensional reduction, we have a chance to have a second
U(1) symmetry corresponding to rotations of the two extra dimensions. However, the R
symmetries are sometimes anomalous. The condition for these to be non anomalous is
given by ∑

i

Qi,a = 0 for a = 1, 2, ..., s. (3.12)

Then, what happens when we include superpotential terms? The superpotential term
is of the form

∫
d2θW and by definition, have charge 1 under JR. To preserve this, we

should add JR of the form Φi → exp(iαki)Φi under which W → e−iαW . If this is possible,
the superpotential is said to be quasi-homogeneous.

Later, this charge condition turns out to be equivalent to the target space Calabi-Yau
condition. Usually, the sigma model apporach is a semiclassical approximation. So we
can get correct information when the target space is large compared with the string scale.
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3.1.2 Calabi-Yau/Landau-Ginzburg correspondence

Consider the model with gauge group U(1) and n chiral fields Si of charge 1 and one
chiral field P of charge −n. We take the superpotential to be

W = PG(S1, S2, ..., Sn) (3.13)

where G is a homogeneous polynomial of degree n. Note that this superpotential is quasi-
homogeneous. If we take ki to be −1 for P and 0 for Si, we can have the desired symmetry.
In fact, the superpotentials we will consider in this section are all quasi-homogeneous.

We impose the following condition on G(S1, ..., Sn):

∂G

∂S1
= ... =

∂G

∂Sn
= 0 (3.14)

has no solution except S1 = ... = Sn = 0. This means that the hypersurface defined by
G = 0 in CPn−1 is smooth. We call this a transverse condition. By solving equations of
motion for auxiliary fields D and Fi, we have

D = −e2
(∑

i

Qi|φi|2 − r

)
(3.15)

Fi =
∂W

∂φi
. (3.16)

Then, the potential energy for the scalar fields si, p, σ is easily read from the Lagrangian
to be

U = |G(si)|2 + |p|2
∑
i

∣∣∣∣∂G∂si
∣∣∣∣
2

+
1

2e2
D2 + 2|σ|2

(∑
i

|si|2 + n2|p|2
)

(3.17)

where

D = −e2
(∑

i

s̄isi − np̄p− r

)
. (3.18)

We want to discuss the low energy physics. When r � 0, for D to vanish, we must have
some nonzero si’s. Then vanishing of the term |p|2∑ |∂iG|2 in the potential requires that
p = 0.Then vanishing of D gives us ∑

i

s̄isi = r. (3.19)

And vanishing of the remaining terms gives G = 0 and σ = 0. Let us look at the classical
vacua from a geometrical point of view. We can regard si’s to be coordinates of Cn. Then,
imposing the condition

∑
s̄isi = r and dividing by the gauge group U(1) means that we

have (n−1) dimensional complex projective space CPn−1 with Kähler class proportional
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to r (Gauge symmetry is spontaneously broken but this is due to the expectation values
of si’s). In addition, we have G = 0. So, the moduli space of classical vacua is isomorphic
to the hypersurface in projective space defined by G = 0. Recall that hypersurfaces
defined by homogeneous polynomials of degree n in CPn−1 are Calabi-Yau manifolds.
Note that this condition comes from the charge neutrality condition. Therefore, the
Calabi-Yau condition is equivalent to the non-anomalous R symmetry. The meaning of
this is that non-anomalous R invariance gives us U(1) piece of the N = 2 superconformal
algebra and the world sheet theory becomes a superconformal theory. Recall that strings
in curved back ground gives conformal anomaly proportional to Rµν in one loop level and
this vanishes in Calabi-Yau manifold.

All modes other than oscillations tangent to X are massive. So, the low energy theory
is a sigma model with target space Calabi-Yau manifold and Kähler class proportional
to r.

Let us turn to the case when r � 0. In this case, vanishing of D requires p to be
nonzero. Then, vanishing of |p|2∑ |∂iG|2 requires all si to be 0. From vanishing of D,
we have |p| =

√−r/n. By the gauge transformation, we can fix the argument of p to 0.
The theory has a unique classical vacuum. If you expand around this vaccum, the si’s
are all massless (for n > 2). By setting p to its expectation value, we have a effective
field theory for si’s with superpotential W̃ =

√−rG(si). This effective action has by
definition a degenerate critical point at the origin for n > 2. It vanishes up to order n.
Therefore the low energy theory is a Landau-Ginzburg theory. (To be precise, this is
a Landau-Ginzburg orbifold because the vacuum expectation value of p does not break
the gauge symmetry completely and Zn subgroup remains unbroken which acts on si as
si → ζsi where ζ is an n-th root of 1).

It seems that the Calabi-Yau and Ginzburg-Landau theories are the different phases
of the same theory with phase transition at r = 0. But surprisingly, it turns out that
there is no phase transition between them and they are connected smoothly.

Let us discuss this point. Recall that phase transitions occur in infinite degrees of
freedom. In our model, we are interested in the compact worldsheet theory. So, singu-
larities arise when the target space loses its effective compactness and gives a continuous
spectrum. Then, where does the compactness of the target space break down? To see
this, let us forget the σ field. Then the region in which the potential energy is less than
some given value is always compact. So, there is no way for singularities to arise. But
including the σ field changes the situation. If we set si = p = 0, the potential energy is
e2r2/2 and independent of σ. This means that the region where the energy is less than
some value can be noncompact. The critical value is, in the semiclassical approximation,
Ucr = e2r2/2. But, near the region r ∼ 0, the approximation breaks down. So we must be
more presice though the idea is the same. There are three corrections to be considered.
One is from fluctuations of si and p. But these only gives corrections of negative powers
of |σ| (note that the masses of these fields are proportional to |σ|). So, in the region
where we are considering now (large σ) we can ignore them. The second one is from
ultraviolet behavior. But in our case this is not important. For example, the one loop
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correction to the expectation value of −D/e2 is of the form

∑
i

Qi

∫
d2k

(2π)2

1

k2 + 2|σ|2 . (3.20)

This vanishes because of the Calabi-Yau condition. The case in which this condition
is not obeyed is discussed in [15]. So, the remaining issue is non-perturbative effects.
This is the last one we should consider. From the above arguments, we can simply
throw away the supermassive chiral superfields. And we have the effective theory of the
massless gauge multiplet with Lagrangian Lgauge + LD,θ. This effective theory is a free
theory and supersymmetry ensures the cancelation of zero point energy corrections to the
ground state energy from σ and λ. The gauge field, on the other hand, has an important
correction. The action for the gauge field is

S =

∫
d2y

(
1

2e2
v2
01 +

θ

2π
v01

)
. (3.21)

As we know, the θ term in abelian gauge theory in two dimensions induces the constant
electric field in the vacuum, which is equal to the electric field made by a charge of
strength θ/2π. So this gives a contribution to the vacuum energy (e2/2)(θ/2π)2 (We take
the range |θ| ≤ π). In sum, we have an exact, quantum corrected critical value, which is,

Ucr =
e2

2

(
r2 +

(
θ

2π

)2
)
. (3.22)

So, in the presence of the θ term, this cannot vanish. This means that only singularity
is at r = θ = 0 and by swiching on the θ term, we can smoothly connect the two
phases; Calabi-Yau and Ginzburg-Landau. This is the Calabi-Yau/Ginzburg-Landau
correspondence from a sigma model point of view.

3.1.3 Symplectic quotient

Let us introduce some geometrical aspects. These turn out to be useful later. Consider
the manifold Y = Cn+1 with coordinates s1, s2, ..., sn and p with C∗ action defined by

si → λsi

p→ λ−np
(3.23)

Suppose we want to form a quotient of Y by this action. As C∗ acts freely on (Y − O)
(O is the origin), one might think one could form a reasonable quotient (Y − O)/C∗.
However, because C∗ action forms a noncompact group, this is not so easy. Let P be a
point in Y with p = 0, and P ′ be a point with si = 0 for all i. Then, P can be brought
arbitrarily close to the origin by the C∗ action. And similarly for P ′. This means that the
quotient (Y −O)/C∗ with its natural topology is not a Hausdorff space. How can we save
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the situation? One obvious answer is the following one. Let Y1 be the subset of Y with
p = 0 and the si not all 0. Let Y2 be si = 0 and p 	= 0. And set Ỹ = Y − (Y1 ∪ Y2 ∪ O).
Since Ỹ contains only good C∗ orbits, the quotient Ỹ /C∗ becomes a manifold. However
deleting Y1,Y2, and O is too much. And there is a systematic way to include some of the
ill-behaved orbits. This is the symplectic quotient and is directly related to the physical
process explained above.

Y is endowed with the Kähler metric ds2 =
∑

i |dsi|2 + |dp|2. This metric is not
invariant under the action of C∗. Therefore, C∗ is not a symmetry group of our physical
models (Recall that in N = 2 theories in two dimensions the target space is Kähler).
However, under the maximal compact subgroup U(1), the metric is invariant (U(1) action
is defined by those with |λ| = 1). This was a gauge group in the previous section. Then
consider the following function

D̃ =
∑
i

|si|2 − n|p|2 − r. (3.24)

It is easy to see that this function generates the U(1) action on Y by Poisson brackets.
In other words, this is a Hamiltonian function. In the previous section, this was a part
of the potential energy and what we did was to set D = 0 and divide by the gauge group
U(1). The operation of setting D = 0 and dividing by the gauge group is called the
symplectic quotient. In our example, we say that we do the simplectic quotient of Y by
U(1). We denote this as Y//U(1). Of course, this operation depends on r.

Let us study this operation in some detail. We first consider Ỹ //U(1). The D̃ function
restricted to some C∗ orbit is

|λ|2
∑
i

|si|2 − n|λ|−2n|p|2 − r. (3.25)

As we are in Ỹ , this is a monotonically increasing function of |λ|, and goes to +∞ as
λ → +∞ and to −∞ as λ → 0. So, D̃ = 0 has a unique solution for |λ|. Since |λ| is
uniquely determined by D̃ = 0 and the argument of λ is absorbed in the U(1) action, the
given C∗ orbit contributes precisely one point to Ỹ //U(1). This shows that Ỹ //U(1) is
naturally identified with Ỹ /C∗. Next, we consider Y//U(1).
(1) r > 0
Setting D̃ = 0 is possible only in Ỹ ∪ Y1. Y1//U(1) is a copy of CPn−1 with Kähler form
proportional to r. So, Y//U(1) is the union of Ỹ /C∗ and CPn−1.
(2) r = 0
The origin is the only bad point. Its symplectic quotient is of course a point. So, Y//U(1)
is the union of Ỹ /C∗ and that point.
(3) r < 0
Setting D̃ = 0 is possible only in Y2. The symplectic quotient Y2//U(1) is a single point.
So, Y//U(1) is the union of Ỹ /C∗ and that point.

This generalize the simple procedure explained first. Indeed these include some of
the bad points, which is precisely what we wanted to do. Note that the Y//U(1) for
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positive, negative, or zero are all equivalent on dense open sets because on a dense
open set, they are all coincide with Ỹ /C∗. This means that they are all birationally
equivalent (Not topologically in general). This birational equivalence lies behind the
Calabi-Yau/Ginzburg-Landau correspondence.

3.1.4 A flop

Now we change the model. Here, we consider a U(1) gauge theory with two chiral
superfields Ai of charge 1 and two chiral superfields Bj of charge −1. We regard them
as coordinates on V = C4. We take the superpotential to be zero. Then, the potential
energy for bosonic fields at σ = 0 is

U(ai, bj) =
e2

2

(∑
i

|ai|2 −
∑
j

|bj |2 − r

)2

. (3.26)

The U(1) action is defined by

ai → λai

bj → λ−1bj ,
(3.27)

which can be extended to a C∗ action. The low energy effective theory is obtained as
before by V//U(1). As in the previous section, denote the region where the ai are not
both 0 and the bj are not both 0 as Ṽ . Also, define V1 to be the region in which ai are
not both 0 and bj are both 0. And similarly for V2 by exchanging ai and bj . There are
three possible symplectic quotient corresponding to r > 0, r = 0 and r < 0. We call
them Z+, Z0 and Z− respectively.
(1) Z+

For r > 0, setting the potential U to be zero is possible in Ṽ ∪ V1 and each C∗ orbit
contributes to precisely one point to Z+. Therefore, Z+ = (Ṽ ∪ V1)/C

∗. Ṽ ∪ V1 is the
region where the ai are not both 0. The values of the ai, up to scaling by C∗, determine
a point in a copy of CP1 that we call CP1

a. Z+ is fibered over CP1
a by forgetting the

values of bj . Since the values of the bj are arbitrary, the fiber is a copy of C2. The zero
section of Z+ → CP1

a gives an embedding CP1
a � Z+. Hence, we can identify CP1

a with
the image of this embedding. For bj = 0, the vanishing of V gives

∑ |ai|2 = r. Therefore
the Kähler form of CP1

a is proportional to r.
(2) Z0

The only ill-behaved orbit is O and it contributes a single point to Z0. This point turns
out to be singular and we will study this singularity later.
(3) Z−
This is similar to (1). Z− = (Ṽ ∪ V2)/C

∗. Ṽ ∪ V2 is the region in which the both bj are
not 0. So just as in the case (1), there is a fibration Z− → CP1

b whose zero section gives
an embedding CP1

b � Z−. As above, we identify CP1
b with this image. CP1

b has Kähler
form proportional to −r.
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Z+, Z0, Z− are all non-compact Calabi-Yau manifolds. To see this, consider the holo-
morphic 4-form Θ = da1 ∧da2 ∧db1 ∧db2 on V . As

∑
iQi = 0, this is invariant under the

C∗ action. Contracting this form with the vector field generating the C∗ action gives an
everywhere non-zero holomorphic 3-form whose restriction to the suitable region of V is
the pullback of a holomorphic volume form on Z+, Z0, or Z−.

As we said, Z+ and Z− are birationally equivalent but not topologically. What does
this mean physically? In string theory, Fayet-Iliopoulos parameters are like all operators
in the world-sheet Lagrangian interpreted as expectation values of some fields in space-
time. So, they are dynamical variables and free to change in time. Suppose we are in
the region r > 0. Also, suppose that the Fayet-Iliopoulos term r somehow decreases
as time goes. The size of CP1

a becomes smaller and smaller, shrinking to 0. Then a
change of topology occurs and CP1

a is replaced by CP1
b for r < 0. As we explained, the

interpolation is smooth. In this way, we have achieved the smooth change of topology in
string theory.

Next, we want to study the singularity at the origin more closely. Let x, y, z, t be
coordinates on a copy of C4 that we call W . Consider the following C∗ invariant map
V → W .

x = a1b1

y = a2b2

z = a1b2

t = a2b1.

(3.28)

Let us call this formula (∗). By restricting these formulas to Ṽ ∪ O and dividing by C∗

we get a map Z0 → W . It is obvious that the image of Z0 in W lies in the Q defined by

xy − zt = 0. (3.29)

In fact the map is an isomorphism between Z0 and Q.
Proof
(1) Surjectivity
If x = y = z = t = 0, we take ai = bj = 0. If, for instance, x 	= 0 we pick a1 = 1 and
then iteratively solve (∗). In this way, we see that the map is surjective.
(2) Injectivity
If x = y = z = t = 0, from (∗), we must have either the ai or bj are both zero. In that case,
for ai and bj to define a point in Z0, they must all be zero. Therefore, x = y = z = t = 0
is the image only of the point O ∈ Z0. If, say, x 	= 0, then (∗) requires a1 	= 0. By using
the C∗ action, we can set a1 = 1. Then (∗) uniquely determines a2, b1, b2. This completes
the proof.

Therefore we must study the singularity of the affine quadric Q. This is an example
of a conical singularity. More precisely, this is a cone on SU(2)×SU(2)/U(1). A conical
singularity on an n-dimensional manifold Xn is a point (we will label it as r = 0) near
which the metric can be put in the form

hmndx
mdxn = dr2 + r2gijdx

idxj. (3.30)
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Here, gij is a metric on an n− 1 dimensional manifold Yn−1. The point r = 0 is singular
unless Yn−1 is a round sphere. The conelike property is due to the fact that there is a
group of diffeomorphisims of Xn that rescale the metric; i.e. the group r → tr with t > 0.
This is isomorphic to R∗

+. We call Xn a cone over Yn−1. To identify Yn−1 for given Xn is
easy. Just omit the singularity at the origin and divide by R∗

+.
Let us apply this to our case. After change of coordinates, we can describe Q as

z2
1 + z2

2 + z2
3 + z2

4 = 0. (3.31)

The zi transform in the four-dimensional representation of SO(4). This is a cone because
the equation defining it transforms with definite weight under zi → tzi. To identify Y5,
we note that after omitting the singularity at the origin, dividing by R∗

+ is equivalent to
intersecting it with the unit sphere

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1. (3.32)

The group SO(4) acts transitively on this intersection. Any given point on the inter-
section, such as P = (1/

√
2, i/

√
2, 0, 0), is invariant under only a single U(1) ⊂ SO(4)

(For example, P is invariant under the subgroup U(1) = SO(2) that rotates z3 and z4).
Therefore Q is a cone on SO(4)/U(1) = SU(2)× SU(2)/U(1). Moreover, from the work
of Hopf, we know that S3 is a U(1) bundle over S2. Since the singularity is a local one,
we can say Q is a cone on S3 × S2. This singularity can be resolved by blowing up, but
that would ruin the Calabi-Yau condition. There are mainly three ways to resolve this
singularity while preserving the Calabi-Yau condition. The two of them are to replace the
singular point with a copy of CP1. These are called small resolutions and the two ways
exactly correspond to CP1

a and CP1
b . Thus Z+ and Z− are precisely the small resolutions

of Q. The topology changing transition we found above is a transition between these two
small resolutions. This is called a flop. The third way to resolve the singularity instead of
changing FI term or Kähler parameter is to deform the complex structure. This can be
done as follows. The defining equation is z2

1 + z2
2 + z2

3 + z2
4 = 0. We change the equation

to z2
1 + z2

2 + z2
3 + z2

4 = µ, where µ is a real number. Then it is evident that there is
now no singularity. But what is this geometrically? To see this, let us write the complex
coordinates zj in terms of real ones zj = xj + iyj. The equation becomes∑

i

(x2
i − y2

i ) = µ (3.33)

∑
i

xiyi = 0. (3.34)

If we set yi = 0, we have
∑

i x
2
i = µ. By differentiating this equation with respect to

xi, we have
∑

i xidxi = 0. From this observation, it is easy to see that the resulting
geometry is T ∗S3, the cotangent bundle of S3. Since µ is a radius of the S3, we can say
that we have deleted the singularity by replacing the singular point by S3. Unlike the
transition between the small resolutions, the transition between the resolved conifold and
the deformed conifold is singular in string theory.
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3.2 Topological closed strings

We next study topological strings. We will concentrate on N = 2 topological strings.
N = 2 topological field theory can be constructed from N = 2 superconformal field
theory by twisting. By coupling it to gravity, we have the topological strings.

3.2.1 N = 2 superconformal field theory

General aspects

There are four defining operators in N = 2 superconformal field theory [20]. Energy-
momentum T (z), its superpartners G+(z),G−(z), and U(1) current J(z). Their OPEs
are

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
(3.35)

T (z)G±(w) ∼ 3/2

(z − w)2
G±(w) +

∂wG
±(w)

z − w
(3.36)

T (z)J(w) ∼ J(w)

(z − w)2
+
∂wJ(w)

z − w
(3.37)

G+(z)G−(w) ∼ 2c/3

(z − w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂wJ(w)

z − w
(3.38)

J(z)G±(w) ∼ ±G
±(w)

z − w
(3.39)

J(z)J(w) ∼ c/3

(z − w)2
. (3.40)

We expand them in modes

T (z) =
∑
n

Lnz
−n−2 (3.41)

J(z) =
∑
n

Jnz
−n−1 (3.42)

G±(z) =
∑
n

G±
n±az

−(n±a)−3/2, (3.43)

where we impose the boundary condition to be

G±(e2πiz) = −e∓2πiaG±(z). (3.44)
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Then the commutation relations become as follows

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (3.45)

[Ln, Jm] = −mJm+n (3.46)

[Ln, G
±
m±a] =

(n
2
− (m± a)

)
G±
m+n±a (3.47)

[Jm, Jn] =
c

3
mδJm+n,0 (3.48)

[Jn, G
±
m±a] = ±G±

m+n±a (3.49)

{G+
m+a, G

−
m−a} = 2Lm+n + (n−m+ 2a)Jm+n +

c

3

(
(n+ a)2 − 1

4

)
δm+n,0, (3.50)

or equivalently

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (3.51)

[Ln, Jm] = −mJm+n (3.52)

[Ln, G
±
r ] =

(n
2
− r
)
G±
n+r (3.53)

[Jm, Jn] =
c

3
mδm+n,0 (3.54)

[Jn, G
±
r ] = ±G±

n+r (3.55)

{G±
r , G

∓
s } = 2Lr+s − (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0. (3.56)

Note that each state can be labeled by the U(1) charge (the eigenvalue of J0) and the
conformal weight. Left-chiral states are defined to be the states in the NS Hilbert space
which satisfy

G+
−1/2|φ〉 = 0 (3.57)

and anti-chiral states are similarly defined by replacing G+ with G−. And similarly for
right-chiral states, replacing G with Ḡ. We will concentrate on the left-movers. Primary
chiral states are defined to be the states satisfying

G+
−1/2|φ〉 = G−

n+1/2|φ〉 = G+
n+1/2|φ〉 = 0 for n ≥ 0. (3.58)

By using the commutation relations and the above definitions, we deduce that for such
states

{G−
1/2, G

+
−1/2}|φ〉 = (2L0 − J0)|φ〉 = 0. (3.59)

Therefore, for a primary chiral state the dimension h is one-half of its charge q; i.e. h = q
2
.

By replacing the primary chiral state with a general one, and taking its expectation value,
we deduce

h ≥ |q|
2

(3.60)
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for an unitary theory. This inequality is saturated prcisely for the primary chiral and
anti-chiral states. One can also go in the opposite direction and show that the states with
h = q

2
are both chiral and primary. To prove this, suppose |φ〉 saturates the inequality.

Then, we have

〈φ|{G−
1/2, G

+
−1/2}|φ〉 = 0 = |G−

1/2|φ〉|2 + |G+
−1/2|φ〉|2. (3.61)

By unitarity, we deduce

G+
−1/2|φ〉 = G−

1/2|φ〉 = 0. (3.62)

Any operator which lowers the L0 eigenvalue but does not change the U(1) charge must
annihilate |φ〉 because of the bound h ≥ |q/2|. In particular

Jn|φ〉 = 0 for n > 0. (3.63)

By combining the commutation relation

[Jn, G
±
r ] = ±G±

n+r (3.64)

with (3.62), we easily see that |φ〉 is a primary chiral state.
Next, we want to show that for a primary chiral state

h ≤ c/6. (3.65)

To see this, use the N = 2 algebra

{G−
3/2, G

+
−3/2} = 2L0 − 3J0 + 2c/3 (3.66)

and take the expectation value of this positive operator for any chiral primary state.
Taking into consideration the fact that h = q/2, we get the result. This fact is very
important. Since the dimension of primary chiral fields is always less than or equal to
some given value c/6, it follows that in non-degenerate N = 2 conformal theories, for
which the spectrum of L0 is discrete, there is only a finite number of primary chiral
operators.

Now consider the operator algebra of primary chiral fields. In a general conformal
field theory, we have to worry about how to define the composite operators. However,
for chiral primary fields φ and χ we can choose the naive product

(φχ)(z) = lim
z′→z

φ(z′)χ(z). (3.67)

This is non-singular because U(1) charges of the fields are additive and the conformal
weights satisfy

hφχ ≥ 1

2
(qφ + qχ) = hφ + hχ. (3.68)
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When we take the limit z′ → z of the right hand side of (3.67), the fields except the
primary chiral fields vanishes because of (3.68). Therefore, the primary chiral fields form
a finite ring known as “chiral ring”. To be more prcise, there are four rings that we can
obtain in this way, depending on whether the left- and right-moving states are chiral or
anti-chiral primary states. These four rings are pairwise conjugate.

We now turn our attention to the Ramond sector. By using the commutation relation
{G−

0 , G
+
0 }, we deduce that h ≥ c/24. Equality is hold if and only if the state is annihilated

by both G+
0 and G−

0 . These are precisely the states which contribute to Witten’s index
Tr(−1)F . For theories satisfying

qL − qR ∈ Z (3.69)

for left- and right-moving U(1) charges (qL, qR), the operator (−1)F where F = FL + FR
and FL,FR are left- and right-moving fermion numbers can be defined in terms of the
U(1) current as

(−1)F = exp{iπ(J0 − J̄0)}. (3.70)

As is well-known, we can continuously connect the NS sector and the R sector by spectral
flow. For a twist parameter θ we consider the Hilbert space Hθ of states which differ from
the original one H0 only in that their U(1) charges are shifted by − c

3
θ. We denote the

corresponding flow operator as Uθ

Uθ : H0 → Hθ. (3.71)

Under the spectral flow, the N = 2 algebra flows to an isomorphic algebra:

UθLnU
−1
θ = Ln + θJn +

c

6
θ2δn,0

UθG
+
r U

−1
θ = G+

r+θ

UθG
−
r U

−1
θ = G−

r−θ

UθJnU
−1
θ = Jn +

c

3
θδn,0

(3.72)

and similarly for right movers. Note that for θ ∈ Z + 1
2
, it interpolates between the NS

and R sectors and for θ ∈ Z it takes the NS to NS and R to R. We first examine the
effect of flow with θ = 1/2. If we concentrate on chiral states, we see

U1/2G
+
−1/2U

−1
1/2U1/2|φ〉 = G+

0 |φ̃〉 = 0 (3.73)

where |φ̃〉 = U1/2|φ〉. If |φ〉 is also primary, it follows that

G−
n |φ̃〉 = G+

n+1|φ̃〉 = 0 for n ≥ 0. (3.74)

Combining these we see that |φ̃〉 is in the ground state of the R sector. Therefore, under
the flow by θ = 1/2, the chiral primary states flow to the ground states of the Ramond
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sector. Under the left-right symmetric spectral flow, qL − qR is invariant. Therefore, the
index

Tr(−1)F = TrR[(−1)J0−J̄0qL0− c
24 q̄L̄0− c

24 ] (3.75)

can be calculated in terms of chiral primary states of the NS sector by

Tr(−1)F =
∑

chiralring

exp(iπ(qL − qR)). (3.76)

In fact, we can do better. The difference between the charges of the chiral primary fields
and the charges of the ground states of the Ramond sector is the shifted value c/6. Thus,
we can relate the U(1) character valued degeneracy of the ground states of the R sector
to the character valued sum over the chiral ring in the NS sector:

TrG±
0 =Ḡ±

0 =0[t
J0 t̄J̄0 ] = (tt̄)−c/6Trchiralring[t

J0 t̄J̄0] = (tt̄)−c/6P (t, t̄) (3.77)

where we define P (t, t̄) = Trchiralring[t
J0 t̄J̄0]. Due to the charge conjugation invariance of

the Ramond sector, P (t, t̄) satisfies the following duality property

P (t, t̄) = (tt̄)c/3P (1/t, 1/t̄). (3.78)

We call P (t, t̄) the Poincaré polynomial. This property implies that there exists an unique
primary chiral field with the highest possible left and right charges qR = qL = c/3 and
dimensions hL = hR = c/6. This state is the Poincaré dual of the vacuum.

Now, we consider the flow with flow parameter θ = 1. Under this flow, (chiral,chiral)
primary states are mapped to the (anti-chiral,anti-chiral) primary states. In particular,
the vacuum, which is primary and is chiral as well as anti-chiral (annihilated by G±

−1/2)

flows to an anti-chiral state |ρ̄〉 = U1|0〉, which satisfies

G+
n+1/2|ρ̄〉 = G−

n−3/2|ρ̄〉 = 0 for n ≥ 0. (3.79)

By the commutation relation of {G−
−3/2, G

+
3/2} we see that

(2L0 + 3J0 + 2c/3)|ρ̄〉 = 0. (3.80)

Since |ρ̄〉 is anti-chiral and primary, we have

hρ̄ =
c

6
. (3.81)

So, the vacuum flows to the conjugate of the chiral primary state with the highest charge
mentioned above.

Let us bosonize the U(1) current as

J(z) = i
√
c/3∂φ(z). (3.82)

The normalization is fixed by the commutation relations. Then, a state with charge
(qL, qR) can be represented by

OqL,qR
= exp[i

√
3/c(qLφL − qRφR)]χ (3.83)

where χ is a neutral operator. And the spectral flow operator is expressed as

Uθ = exp(−iθ
√
c/3(φL − φR)). (3.84)
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Aspects of strings

Now, we discuss the relations to spacetime supersymmetry. The necessary condition to
have spacetime supersymetry is that the left and right U(1) charges should be integers. If
this is satisfied, we can define the (−1)FL and (−1)FR separately in terms of the currents
as

(−1)FL = exp[iπJ0] (3.85)

(−1)FR = exp[−iπJ̄0]. (3.86)

In such a case, we can perform spectral flow for left and right movers independently. For
instance, set θR = 0 and θL = 1

2
. The (R,R) sector flows to the (NS,R) sector. The

corresponding operator can be represented by

exp

[
− i

2

√
c/3φL

]
(3.87)

To make this a well-defined in the entire theory, this must be augmented by similar
flow operators in the ghost and noncompact sectors. In this way, we can construct
the space-time supersymmetry operator from the spectral flow operator if the charge
integral condition is imposed. In fact, Gepner constructed some models for Calabi-Yau
compactification by using N = 2 minimal models. He projected to the states with odd
integral charges to have space-time supersymmetry [81].

An easy example

The example is the simplest type of superstring compactification, namely, on a two
dimensional torus. Let us examine the chiral ring. This theory has one complex boson,
and one complex fermion. So, the central charge is 3. The N = 2 algebra is realized by

G+(z) = ψ∗∂x

G−(z) = ψ∂x∗

J(z) = ψψ∗
(3.88)

and similary for right movers. Left primary chiral states are

|0〉, ψ∗
−1/2|0〉. (3.89)

The easiest way to achieve this result is to note the fact h ≤ 1
2
.

Therefore the (chiral,chiral) primary states are

|0〉, ψ∗
−1/2|0〉, ψ̄∗

−1/2|0〉 ψ∗
−1/2ψ̄

∗
−1/2|0〉 (3.90)

The corresponding (c, c) ring is

{1, ψ∗, ψ̄∗, ψ∗ψ̄∗}. (3.91)

The Poincaré polynomial is

P (t, t̄) = 1 + t+ t̄+ tt̄. (3.92)

It is easy to check the duality property.
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Chiral rings and cohomology

Look at the results obtained in the previous paragraph. Under the identification

1 → 1

ψ∗ → dz

ψ̄∗ → dz̄

ψ∗ψ̄∗ → dz ∧ dz̄

(3.93)

the ring structure for the superconformal model on the torus is isomorphic to the ring
structure of the Dolbeault cohomology groups of the torus. The duality property of the
Poincaré polynomial is precisely translated to the Poincaré duality of the cohomology
groups. The fact that dim Hd,d = dim H0,0 = 1 corresponds to the uniqueness of the
vacuum and of the field with highest charge. This can be understood as follows. If we
are considering a supersymmetric non-linear σ-model, we know from the work of Witten
[13] that there is a one to one correspondence between the cohomology classes of the
manifold and the ground states of the Ramond sector. Since, we know that the ground
states of the Ramond sector are related to the chiral primary fields by spectral flow, there
is a one-to-one correspondence between the harmonic forms that represent the Dolbeault
cohomology and the elements of the chiral ring. Note that the U(1) charge corresponds to
the grade of the differential forms, and the isomorphism preserves the left-right grading.

But it should be noted that this is only a large radius approximation. When we
decrease the radii, the semi-classical approximation is no longer justifiable. Indeed, there
are many examples that invalidate the isomorphisms of the two rings. The chiral rings
get deformed, and these deformed cohomology rings are called the quantum cohomology
ring.

3.2.2 Topological twists

Here, we twist the superconformal theory studied above [21, 22, 23].
Let us begin with an easy example. Consider the level-1 N = 2 superconformal theory

in two dimensions whose central charge is 1. There exists a free field realization, which
is [24]

T (z) = −1

2
: ∂φ∂φ :

G+(z) =

√
2

3
: ei

√
3φ(z) :

G−(z) =

√
2

3
: e−i

√
3φ(z) :

J(z) =
i√
3
∂φ(z).

(3.94)

Here, φ(z) is a free boson with OPE ∂φ(z)∂φ(w) ∼ − 1
(z−w)2

.
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Now the important step. Re-define the energy-momentum by

T ′(z) = T (z) +
1

2
∂J(z) (3.95)

It may seem that nothing important has occured. To see what really occurs, let us
calculate the new central charge

T ′(z)T ′(w) =

(
T (z) +

1

2
∂J(z)

)(
T (w) +

1

2
∂J(w)

)

=
c/2

(z − w)4
+

1

4

c

3

−2 × 3

(z − w)4
+ less singular terms

= O

(
1

(z − w)2

)
.

(3.96)

So, the central charge vanishes. Similar caluculation yields the following important rela-
tion

{
∫
dzG+(z), G−(w)} = 2

(
T (w) +

1

2
∂J(w)

)
= 2T ′(w). (3.97)

The meaning of these facts are as follows. First note that changing the energy-momentum
tensor induces the change of conformal weight h′ = h − q

2
. From the algebra of N = 2,

we see that G+ has originally a conformal weight 3/2, and charge 1. Therefore, after
twisting, the G+ has a conformal dimension 1. So, Q =

∫
dzG+(z) is a scalar. In fact,

from the algebra of G+
0 , we easily see Q2 = 0. Therefore, We can regard the Q as the

BRST operator. Then, the above fact shows that the energy-momentum tensor is not only
BRST closed but also BRST exact. Since the energy-momentum tensor is an operator of
an evolution of space and time, it follows that the correlation functions are independent
of where operators are. Also, from the definition of the energy-momentum tensor the
correlation functions are independent of the two dimensional metric. Therefore, what we
have is a topological field theory! Moreover, by using the free field representation above,
the new energy momentum tensor can be expressed as

T ′(z) = −1

2
(∂φ)2 +

i

2
√

3
∂2φ(z). (3.98)

On the other hand, the unitary discrete series of the Virasoro algebra has the following
free field representation

T (z) = −1

2
(∂φ)2 + iα0∂

2φ(z) (3.99)

where α0 = 1√
2(l+2)(l+3)

and the central charge is c = 1 − 12α2
0. We easily see that the

above twisted theory is equivalent to the Virasoro case of l = 0.
Though we explained in a paricular example, the above facts are generally true. But,

there are in fact two ways to twist the theory. What we have done is called chiral
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twist. The reason for this name is the fact that the BRST closed observables are the
chiral primary fields (Note that chiral primary fields are by definition those satisfying∮
w
dzG+(z)φ(w) = 0). On the other hand, modifying the energy-momentum tensor as

T ′(z) = T (z) − 1

2
∂J(z) (3.100)

gives so-called anti-chiral twist. In that case, the new conformal weights are h′ = h + q
2

and the roles of G+ and G− are exchanged.

3.2.3 Topological sigma models

We will discuss the topological sigma models or so called A-model and B-model. As
we studied above, there are two ways to twist the N = 2 theory. So, starting from the
N = 2 theory, we have two topological field theories. Therefore, taking into consideration
the fact that there are actually left- and right-movers, one might think that there are
four possible twists. But this is not the case. The (chiral, chiral) twist is equivalent to
the (antichiral, antichiral) twist by redefinition. Similarly, (chiral, antichiral) and (anti-
chiral, chiral) are the same. So, there are two independent ways. We call A-model in the
first case, and B-model in the latter. These names come from the relation to the type IIA
and type IIB compactifications. We assume that the target space of the sigma models
are always Calabi-Yau.

Preliminaries

We consider the N = 2 supersymmetric non-linear sigma model. The action is

S = 2t

∫
Σ

d2z

(
1

2
gIJ∂zφ

I∂z̄φ
J + iψı̄−Dzψ

i
−gı̄i + iψı̄+Dz̄ψ

i
+gı̄i +Rīıj̄ψ

i
+ψ

ı̄
+ψ

j
−ψ

̄
−

)
(3.101)

where Rīıj̄ is the Riemann tensor of the target space and the covariant derivative Dz̄ are
given by

Dz̄ψ
i
+ = ∂z̄ψ

i
+ + ∂z̄φ

jΓijkψ
k
+. (3.102)

And similarly for Dz. The transformation laws are

δφi = iα−ψi+ + iα+ψ
i
−

δφı̄ = iα̃−ψ ı̄+ + iα̃+ψ
ı̄
−

δψi+ = −α̃−∂zφi − iα+ψ
j
−Γijmψ

m
+

δψı̄+ = −α−∂zφı̄ − iα̃+ψ
̄
−Γı̄̄m̄ψ

m̄
+

δψi− = −α̃+∂z̄φ
i − iα−ψ

j
+Γijmψ

m
−

δψı̄− = −α+∂z̄φ
ı̄ − iα̃−ψ

̄
+Γı̄̄m̄ψ

m̄
+ .

(3.103)
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Our assignments of the quantum numbers (hL, qL, hR, qR) are

φ→ (0, 0, 0, 0)

ψi+ → (
1

2
,
1

2
, 0, 0)

ψ ı̄+ → (
1

2
,−1

2
, 0, 0)

ψi− → (0, 0,
1

2
,−1

2
)

ψ ı̄− → (0, 0,
1

2
,
1

2
)

α− → (−1

2
,−1

2
, 0, 0)

α̃− → (−1

2
,
1

2
, 0, 0)

α+ → (0, 0,−1

2
,
1

2
)

α̃+ → (0, 0,−1

2
,−1

2
).

(3.104)

Note that these are not fixed canonically. If we adopt other possible assignments, the
chiral twist and anti-chiral twist can be exchanged. This is the nature of the mirror
symmetry, as will be gradually clear. We denote the Riemann surface by Σ and the
target space by X.

A model

Apply the (chiral,chiral) twist to the above sigma model. After this procedure, ψi+ and
ψ ı̄− become scalars, ψ ı̄+ a (1,0) form, and ψi− a (0,1) form on the Riemann surface Σ. We
set χi = ψi+, χı̄ = ψ ı̄−, ψ ı̄z = ψ ı̄+, and ψiz̄ = ψi−. We next want to consider the topological
transformation laws. Since α− and α̃+ become scalars we can set them to constants,
which we call α and α̃. By doing so and setting α+ = α̃− = 0, we have

δφi = iαχi

δφı̄ = iα̃χı̄

δχi = δχı̄ = 0

δψı̄z = −α∂zφı̄ − iα̃χ̄Γı̄̄m̄ψ
m̄
z

δψiz̄ = −α̃∂z̄φi − iαχjΓijmψ
m
z̄ .

(3.105)

The supersymmetry algebra of the original model collapses for these topological trans-
formation laws to δ2 = 0, which holds modulo the equations of motion.

From now on, we generally set α = α̃ for simplicity. In this case, the first two lines
of the above transformation laws combine to δΦ = iαχI . Also, we define the BRST
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operator Q such that δW = −iα{Q,W} for any field W . In terms of these variables, the
action is given by

S = 2t

∫
Σ

d2z

(
1

2
gIJ∂zφ

I∂z̄φ
J + iψı̄zDz̄χ

igı̄i + iψizDzχ
ı̄gı̄i −Rīıj̄ψ

i
z̄ψ

ı̄
zχ

jχ̄
)
. (3.106)

We note the important fact that this can be written modulo terms that vanish by the
equation of motion as

S = it

∫
Σ

d2z{Q, V } + t

∫
Σ

Φ∗(K) (3.107)

where

V = gī
(
ψ ı̄z∂z̄φ

j + ∂zφ
ı̄ψjz̄
)
. (3.108)

And ∫
Σ

Φ∗(K) =

∫
Σ

d2z
(
∂zφ

i∂z̄φ
̄gī − ∂z̄φ

i∂zφ
̄gī
)

(3.109)

is the integral of the pullback of the Kähler form K = −igīdzi ∧ dz̄. Therefore
∫

Φ∗(K)
depends only on the cohomology class of K and the homotopy class of the map Φ. If
H2(X,Z) ∼= Z and the metric is normalized so that the periods of K are integer multiples
of 2π, then ∫

Φ∗(K) = 2πn. (3.110)

We adopt this terminology for simplicity.
Suppose we wish to compute the path integral for fields of degree n. With insertions

of BRST invariant operators Oa, we want to compute

〈
∏

Oa〉n = e−2πnt

∫
Bn

DφDχDψe−it
� {Q,V }∏Oa (3.111)

Here Bn is the component of the field space for maps of degree n. In fact, this expression
is independent of t (we need Re t > 0 for convergence) except the factor of e−2πnt. The
reason for this is that differentiating the other t dependent factor with respect to t gives
only the irrelevant factors of the form {Q, ...}. Thus, we can compute the path integral
by taking the limit of large Re t. This is the conventional weak coupling limit. Looking
at the original form of the Lagrangian, we see that the bosonic part of S is minimized
for holomorphic maps; that is

∂z̄φ
i = ∂zφ

ı̄ = 0. (3.112)

Therefore the weak coupling limit involves a reduction to the moduli space Mn of holo-
morphic maps of degree n.
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Note also that in the A model the correlation functions are independent of the complex
structure of Σ and X, and depend only on the cohomology class of the Kähler form K.
This is certainly true for

∫
Σ

Φ∗(K). For the rest, all dependence of the Lagrangian on the
complex structure is in V , which appears only in the form {Q, V }. Therefore, varying the
path integral with respect to the complex structure will therefore bring only irrelevant
factors of the form {Q, ...}.

The action has a “ghost number” conservation law at the classical level. χ has ghost
number 1, ψ has −1, and φ has 0. The BRST operator has ghost number 1. The ghost
number is not a symmetry at the quantum level because of the anomaly. Let an be the
number of χ zero modes, or the dimension of the space of solutions of Dz̄χ

i = Dzχ
ı̄ = 0,

and similarly, bn the number of ψ zero modes, solutions of Dz̄ψ
ı̄
z = Dzψ

i
z̄ = 0. Then

the index theorem gives a formula for the difference wn = an − bn. If X is a Calabi-Yau
manifold of complex dimensison d, and Σ has genus g, then wn = 2d(1 − g), which is
independent of n. Therefore, the expression 〈∏Oa〉 vanishes unless the sum of the ghost
numbers of the Oa is equal to wn. The number wn is often called the “virtual dimension”
of Mn. The reason for this is that in a sufficiently generic situation, one would expect
that if wn > 0, then bn = 0 hence wn = an.

Next, we discuss the observables of the A model. The BRST cohomology of the A
model, in the space of local operators, can be represented by those that are functions of
φ and χ only. They have the following simple construction. Let W = WI1I2...In(φ)dφI1 ∧
dφI2 ∧ ... ∧ dφIn be an n-form on X. Define the corresponding local operator as

OW (P ) = WI1I2...In(φ)χI1χI2...χIn(P ). (3.113)

The ghost number of OW is n. A simple calculation shows

{Q,OW} = −OdW (3.114)

Therefore, takingW → OW gives a map from the de Rham cohomology ofX to the BRST
cohomology of the quantum field theory. If we restrict to local operators, this map is
an isomorphism. There are following convenient representatives of the cohomology. Let
H be a homology cycle. The Poincaré dual of H is a cohomology class that counts
intersections with H . It can be represented by a differential form W (H) that has delta
function support on H . We refer to OW (H) as OH . The ghost number of OH is the
codimension of H .

Now let us evaluate the path integral. We pick some homology cyclesHa, a = 1, 2, ..., s
of codimension qa. We want to compute the quantity

〈OH1(P1)...OHs(Ps)〉n = e−2πnt

∫
DφDχDψeit

� {Q,V }∏OHa(Pa). (3.115)

As we saw, the path integral reduces to an integral over the moduli space Mn of in-
stantons. Moreover, since we have picked OHa(Pa) to have delta function support for
instantons Φ such that

Φ(Pa) ∈ Ha, (3.116)
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the path integral actually reduces to an integral over the moduli space M̃n of instantons
obeying the above condition. In a generic situation, the dimension an of Mn coincides
with the virtual dimension wn. And, requiring Φ(Pa) ∈ Ha imposes qa conditions. There-
fore the dimension of M̃n is wn −

∑
a qa = 0. In such cases, M̃n consists of a finite set

of poins.. We denote the number of such points by #M̃n We take Re t → ∞. The
computation reduces to evaluation of a ratio of boson and fermion determinants and this
ratio is simply 1 because of the BRST symmetry which ensures cancellation between bose
and fermi modes. Therefore, in a generic situation

〈
∏

OHa(Pa)〉n = e−2πnt#M̃n. (3.117)

Summing over n, we have

〈
∏

OHa(Pa)〉 =
∑
n

e−2πnt#M̃n. (3.118)

In complex geometry, the term “generic” doesn’t mean that other cases are unimportant.
Therefore we should consider the case M̃n have components of positive dimensions. Let
s be the dimension of M̃n. In this case, the space V of ψ zero modes is s dimensional
and varies as the fibers of a vector bundle V of dimension s over M̃n. The known result
is that we simply replace

#M̃n →
∫
M̃n

χ(V) (3.119)

where χ(V) is the Euler class of the bundle V. See [25] for detail. Thus, the generalization
is

〈
∏

OHa(Pa)〉 =
∑
n

e−2πnt

∫
M̃n

χ(V). (3.120)

B model

We study the B model in a similar way. Apply the (anti-chiral, chiral) twist to the
nonlinear sigma model. Then, ψ ı̄± are scalars, ψi+ is a (1,0) form, and ψi− is a (0,1) form.
We set

η ı̄ = ψ ı̄+ + ψ ı̄− (3.121)

θi = gīı
(
ψ ı̄+ − ψ ı̄−

)
. (3.122)

Also, we combine ψi± into a one form ρ. Thus, the (1,0) part of ρ is ρiz = ψi+ and the
(0,1) part is ρiz̄ = ψi−. As for the transformation laws, we set α± = 0 and α̃+ = α̃− = α
as in the A model. Here, α is a constant. Then, the transformation laws are

δφi = 0

δφı̄ = iαη ı̄

δη ı̄ = δθi = 0

δρi = −αdφi.

(3.123)

44



The BRST operator is defined by δ(...) = −iα{Q, ...} and obeys Q2 = 0 modulo the
equations of motion.
The action is

S = t

∫
Σ

d2z(gIJ∂zφ
I∂z̄φ

J + iη ı̄(Dzρ
i
z̄ +Dz̄ρ

i
z)gīi

+iθi(Dz̄ρ
i
z −Dzρ

i
z̄) +Rīıj̄ρ

i
zρ
j
z̄η
ı̄θkg

k̄)

(3.124)

As in the A model, this can be rewritten

S = it

∫
{Q, V } + tW (3.125)

where

V = gī
(
ρiz∂z̄φ

̄ + ρiz̄∂zφ
̄
)

(3.126)

and

W =

∫
Σ

(
−θiDρi − i

2
Rīıj̄ρ

i ∧ ρjη ı̄θkgk̄
)
. (3.127)

Here D is the exterior derivative on Σ extended to act on forms with values in Φ∗(T 1,0X)
by using the pullback of the Levi-Civita connection of X. We can see that the B model is
independent of the complex structure of Σ and the Kähler metric of X. Under a change
of complex structure of Σ or Kähler metric of X, the action changes by irrelevant terms
of the form {Q, ...} only. This is obvious for the {Q, V } term. As for W , it is independent
of the complex structure of Σ, because it is written in terms of differential forms which
depend only on the differentiable structure. It is less obvious, but can be shown that
under change of Kähler metric of X, W changes by {Q, ...}. These are mirror to our
earlier result that the A model is independent of the complex structure of Σ and X but
depends on the Kähler class of the metric of X. In fact, as mirror symmetry reverses
one of the U(1) quantum numbers in the N = 2 algebra, it can be taken to exchange the
twists of ψ+ while leaving ψ− alone. Therefore, mirror symmetry exchanges A model and
B model. The B model is independent of the coupling constant t except for a trivial factor
which will appear shortly (as long as Re t > 0). Under a change of t, the t{W,V } term
changes by {Q, ...}. As for the t in tW this can be removed by redefining θ → θ/t. This
is possible because V is independent of θ and W is homogeneous of degree one. Hence,
the B model is independent of t except for factors that come from the θ dependence of
the observables. If Oa are BRST invariant operators that are homogeneous in t of degree
ka, the t dependence of 〈∏Oa〉 is a factor of t−

�
a ka . This arises from the rescaling of θ.

This trivial t dependence should be contrasted with the complicated t dependence of the
A model, coming from the instanton sum.

As the t dependence of the B model is known, all calculations can be performed in
the limit Re t→ ∞, that is, in the weak coupling limit. In this limit, we expand around
minima of the bosonic part of the Lagrangian. These are just the constant maps; dφ = 0.
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Since the space of such maps is a copy of X, the path integral reduces to an integral over
X.

The fermion determinant of the A model is real and positive as the χi,ψı̄z determinant
is the complex conjugate of the χı̄,ψiz̄ determinant. In particular, there is no problem
in defining this determinant as a function, and the A model makes sense as a quantum
field theory for any complex manifold X. The B model is very different. Since the 0-
forms η ı̄, g ı̄iθi are sections of T 0,1X and the 1-forms ηi are sections of T 1,0X, the fermion
determinant in the B model is complex. The B model does not make any sense as a
quantum field theory without an anomaly cancellation condition that makes it possible
to define the fermion determinants as functions. The relevant condition is c1(X) = 0, that
is, X must be a Calabi-Yau manifold. Thus in the B model, the Calabi-Yau condition
plays an even more fundamental role than it does in the untwisted model, where it
is merely necessary for conformal invariance. Like the A model, the B model has an
important ghost number. The ghost number is 1 for η and θ, −1 for ρ, and 0 for φ. If X
is a Calabi-Yau manifold of complex dimension d, and Oa are BRST invariant operators
of ghost number wa, 〈Oa〉 vanishes in genus g unless∑

a

wa = 2d(1 − g). (3.128)

There is actually a more refined Z × Z grading, which we have obscured by setting
α̃+ = α̃− and combining ψi± into ρ.

Now we consider the observables of the B model. Instead of the cohomology of X,
we consider (0, p) forms on X with values in ∧qT 1,0X, the q-th exterior power of the
holomorphic tangent bundle of X. We can write such an object as

V = dz̄i1dz̄i2 ...dz̄ipVı̄1 ı̄2...ı̄p
j1j2...jq

∂

∂zj1

∂

∂zj2
...

∂

∂zjq
, (3.129)

where V is antisymmetric in the j’s as well as in the ı̄’s.
For every V and P ∈ Σ, we can make the operator

OV = η ı̄1 ...η ı̄pVı̄1...ı̄p
j1...jqθj1...θjq . (3.130)

Simple calculation gives

{Q,OV } = −O∂̄V . (3.131)

Consequently OV is BRST closed if ∂̄V = 0 and exact if V = ∂̄S for some S. Thus,
V → OV gives a natural map from ⊕p,qH

p(X,∧qT 1,0X) to the BRST cohomology of the
B model. As long as local operators are concerned, this is in fact an isomorphism.

Next, we want to compute

〈
∏

OVa(Pa)〉 (3.132)
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where Pa ∈ Σ are points and Va ∈ Hpa(X,∧qaT 1,0X). We consider only the case of
genus zero. Then, by considering the ghost number (this is related to a more prcise left-
right-moving ghostnumbers), this correlation function vanishes unless∑

a

pa =
∑
a

qq = d. (3.133)

Taking Re t → ∞ we reduce the path integral to an integral over the space of constant
maps. In addition to the bose zero modes which are the displacements of the constant
map, there are fermi zero modes, which are the constant modes of η and θ. The nonzero
bose and fermi modes are independent of the particular constant map about which one is
expanding. So, these go into the definition of the string coupling constant. Therefore, we
reduce to a computation involving the zero modes only. This means that the correlation
functions of the B model reduce to classical expressions. Once we restrict to the space
of zero modes, a function of φ,η and θ which is of p-th order in η and q-th order in θ
can be interpreted as a (0, p) form on X with values in ∧dT 1,0X. In multiplying such
functions, we automatically antisymmetrizes on the appropriate indices because of the
fermi statistics. Therefore,

∏
OVa can be interpreted as a d form with values in ∧dT 1,0X

(the number d comes from the anomalous ghost number conservation). The map

⊗aH
pa(X,∧qaT 1,0X) → Hd(X,∧dT 1,0X) (3.134)

is the classical wedge product. What remains to be done is to integrate over X the
element of Hd(X,∧dT 1,0X) obtained in this way. The Calabi-Yau condition ensures that
Hd(X,∧dT 1,0X) is non-zero and one dimensional. The space of linear forms on this space
is thus likewise one-dimensional; any such non-zero form gives a method of integration
unique up to a constant multiple. Of course, the path integral of the B model gives
formally a method of evaluating the correlation functions, this procedure formally is
unique up to a multiplicative constant (a correction to the string coupling constant). We
noted that the B model is anomalous except for Calabi-Yau manifolds. The restriction
to Calabi-Yau manifolds amounts to the fact that what can be integrated naturally are
top forms, elements of Hd(X,ΩdX). In general the relation between ΩdX and ∧dT 1,0X
is that they are inverses each other but in Calabi-Yau cases, they are both trivial and
hence isomorphic. Indeed, multiplication by the square of a holomorphic d form gives a
map from ∧dT 1,0X to ΩdX.

Reduction from another viewpoint

In the A model, we reduce the path integral to integrals over moduli spaces of holomorphic
maps, while in the B model we reduce to integrals over spaces of constant maps. We
explain this in an alternative way.

Consider an arbitrary quantum field theory, with some function space E over which
we want to integrate. Let F be a group of symmetries of the theory. We first assume
that F acts on E freely. Then, we have a fibration E → E/F . If we first integrate over
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the fibers, we have ∫
E
e−SO = vol(F )

∫
E/F

e−SO. (3.135)

where we assume Os are invariant under the F action. Now we want to apply this to the
case in which F is generated by the BRST operator Q. In this case, the volume of the
group F is zero, because for a fermionic variable θ,∫

dθ1 = 0. (3.136)

This tells us that if Q acts freely, the expectation value of any BRST closed operator
vanishes. Therefore, this result is a localization formula expressing the path integral as
an integral on a fixed point locus E0. In other words, the contribution comes entirely
from the fixed points of Q.

In the A model, requiring δψI = 0 gives χI = 0 and setting δψ = 0, we have

∂z̄φ
i = ∂zφ

ı̄ = 0. (3.137)

In the B model δρi = 0 gives us

dφi = 0. (3.138)

These are precisely the conditions that we got before.

Relations to physical models

So far, we have discussed the A model and the B model. These are of course not equivalent
to the standard untwisted theories. However, in some cases, the calculations based on
these topological sigma models coincides with those of “physical” untwisted ones. In
general, computations in the twisted models are easier than in the untwisted ones. So,
we can compute certain quantities which are difficult to compute in the ordinary models
by replacing them with the twisted models. Understanding the precise relations is the
theme of this section. In order to do so, it is convenient to use some mathematical terms.

Let K and K̄ be the canonical and anti-canonical bundles over Σ. These are the
bundles of 1-forms of types (1, 0) and (0, 1). And let K1/2 and K̄1/2 be square roots of
these. The index denotes the conformal weight. For example, in these terms, the field ψi+
is a section of K1/2⊗Φ∗(T 1,0X) and after the chiral twisting, it is a section of Φ∗(T 1,0X).
In constructing the twisted models, we twisted various fields by K1/2 and K̄1/2. If K is
trivial and we choose K1/2 and K̄1/2 to be trivial, the models coincide because in this
case, the twisting does nothing. The important example is the case in which Σ is the
Riemann surface of genus zero with two points deleted. Such a surface can be described
as a cylinder with a complete, flat metric ds2 = dτ 2 + dσ2, −∞ < τ < ∞, 0 ≤ σ ≤ 2π.
When we compute the path integrals on such a surface, we must pick initial and final
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states. Let the initial state be |i〉 and final state |f〉. Picking also points Pa ∈ Σ and
BRST invariant operators Oa, we are interested in the objects

〈f |
∏
a

Oa(Pa)|i〉. (3.139)

AsK is trivial, we can pickK1/2 and K̄1/2 to be trivial. If we do so, the twist does nothing.
Therefore the above quantity is equivalent to some matrix element in the untwisted model.
Of course, we can get only a few of them in this way because the untwisted model has a lot
of matrix elements. Let us first see from the viewpoint of untwisted model. The operators
Oa corespond to the chiral rings or standard vertex operators of massless bosons. Let us
call the such vertex operators Ba. Then, what about the initial and final states? The
equivalence between the untwisted and twisted models is a consequence of choosing K
and their square roots to be trivial. The fact that the K1/2 is trivial means that we
impose the boundary condition along the σ-direction to be periodic. So, the initial and
final states are in the Ramond sector, i.e. fermions. Let us denote these by f1 and f2.
From the point of view of the untwisted model, the above quantity can be written

〈f2|
∏
a

Ba|f1〉 (3.140)

Note that all we have done is just to change the notation. This is a coupling of two
ground state fermions |f1〉 and |f2〉 to an arbitrary number of ground state bosons Ba

that are all from the same chiral ring. These are particularly important because they
determine the superpotential.

On the other hand, the above expression can be interpreted in another way by com-
pactifying Σ - adding points P and P ′ and conformally rescaling the metric to bring
them to a finite distance. Then the states |i〉 and |f〉 will correspond to BRST invariant
operators Oi(P ) and Of(P

′). The matrix element is then equivalent to a correlation
function

〈Of(P
′)Oi(P )

∏
a

Oa(Pa)〉 (3.141)

of the twisted model. In this way, particular matrix elements of the untwisted model can
be identified with observables of the twisted model.

Some comments

We have seen that the A model is sensible to the Kähler class of the Calabi-Yau manifold
and B model to the complex structure. They are exchanged when we redefine the charge
correctly. This means that the mirror symmetry exchanges the Kähler and complex
structure moduli. Let us consider the most easiest case, the torus. The shape of the
torus is characterized by R1/R2 and the volume is R1R2. Here, R1, R2 are radii of the
torus. Then, in this case, exchanging the Kähler moduli and complex moduli is equal to

R2 ↔ 1

R2
. (3.142)

49



This is nothing but a T-duality.

3.2.4 Topological strings; coupling to gravity

So far, we concentrated on the sigma models. These are the correct descriptions when the
target space is large enough. To have topological strings, we have to couple to gravity,
that is, including the integration on moduli space of the Riemann surface. In order to
do so it is convenient to use the analogy with the bosonic string theory. We concentrate
on the A model case. Recall that the bosonic string theory has a scalar supercharge
QBRST = Q+ Q̄, anti-ghosts, b, b̄ of spin (2,0) and (0,2) with the property

Q2 = b20 = 0 (3.143)

{Q, b0} = L0 (3.144)

and two U(1)’s, G, Ḡ corresponding to the left and right ghost numbers. We identify

2jBRST ↔ G+

b ↔ G−

bc ↔ J

(3.145)

and similarly for right-movers. Then, the notion of a physical state in the bosonic string
becomes exactly the same as that of a chiral primary state in the twisted theory. Therefore
we can define coupling of twisted N = 2 theory to gravity by integrating correlation
functions of chiral primary fields over moduli space of Riemann surface with the insertion
of G−’s folded with 3g − 3 Beltrami differentials. In particular, the partition function
of the twisted N = 2 theory coupled to gravity at genus g > 1 that we denote by Fg is
defined by

Fg =

∫
Mg

〈
3g−3∏
k=1

∫
Σg

G−µk

∫
Σg

Ḡ−µ̄k〉 (3.146)

where µi ∼ g−1 ∂g
∂τk

denote the Beltrami differentials, τk the complex moduli of the Rie-
mann surfaces, and Mg denotes the moduli space of genus g Riemann surfaces. For F1

the answer can be written using the corresponding analysis of the bosonic string case. In
bosonic string, one inserts bcb̄c̄ to absorb the ghost zero modes. This is translated in the
twisted theory to the insertion of left and right fermion number currents. Also, to fix the
normalization it is best to write the answer in the operator formulation, which is

F1 =
1

2

∫
d2τ

τ2
Tr[(−1)FFLFRq

L0 q̄L̄0 ] (3.147)

where the factor 1/2 takes care of the fact that there is a Z2 reflection symmetry for al
tori. For genus 0, the 0,1, and 2 point funtions are zero, as is the case in bosonic string,
and the three point functions can be written as

〈φiφjφk〉 = Cijk (3.148)
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where we define Cijk by the coefficient of the OPE φiφj = Ck
ijφk with lowering the indices

by ηij = 〈j|i〉.
It is a rather good property of twisted unitary N = 2 theories that Fg is finite and

thus well-defined. The only potential divergence would have come from the regions near
the boundary of moduli space. But in such cases, the fact that the propagator on a long
tube is given by G−

0
1

L0+L̄0
Ḡ−

0 and that this annihilates the massless modes imply that
only the massive modes propagate and the integrand in Fg is exponentially small.

There are two notable differences between bosonic string and twisted N = 2 theories.
One is that the ghost number violation in bosonic string at genus g is universal and is
given by 3g−3, while for twisted N = 2 theories it is given by ĉ(g−1), where we defined
ĉ = cuntwisted/3. In particular, we see that ĉ = 3 is a critical case in that it gives the
same degree of charge violation as bosonic string. This means that only for ĉ = 3 the
Fg has a chance to be non-zero for g > 1. Therefore, the most interesting case is again
the Calabi-Yau 3-fold. The other difference between the two even if we choose ĉ = 3
is that in the case of topological strings, the G− cohomology is generically non-trivial
whereas absolute b-cohomology is always trivial in the bosonic strings. This leads to the
“holomorphic anomaly”. Viewing chiral fields as the first component of a superfields, we
can modify the action by perturbing with them as

ti

∫
d2zd2θ+φi + t̄i

∫
d2zd2θ−φ̄i = ti

∫
d2zφ

(2)
i + t̄i

∫
d2zφ̄

(2)
i (3.149)

where φ’s are chiral primary, φ̄i’ are anti-chiral primary, φ
(2)
i = {G−, [Ḡ−, φi]}, and ti are

complex parameters. Since, in the topological string based on the A model, insertion
of anti-chiral fields in the action modifies the theory by Q-trivial terms, we expect that
the amplitude is independent of t̄i therefore holomorphic in ti. However, this is correct
only in the tree level. “The holomorphic anomaly” emerges in the string loop level from
the boundary of the moduli space [28]. So, in general the topological string amplitudes
depend not only on ti but also on t̄i. Note that from the above form of the perturbation,
we see that by differentiating the genus 0 amplitude F0 with respect to ti’s, we have the
following equation

Cijk =
∂3F0

∂ti∂tj∂tk
. (3.150)

Therefore, the genus 0 partition function is the prepotential and the Yukawa coupling
can be derived from it.

Relations to superstrings

We have defined the topological string theory. We want to discuss here the relations
to the ordinary superstring theories [27]. One of the main motivations to study N = 2
superconformal field theories comes from the fact that they serve as building blocks for
string vacua. In this connection, particular objects which have natural interpretations for
the N = 2 SCFT’s turm out to also have some interesting phenomenological implications
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in string models. One such object is the Yukawa coupling. If we consider heterotic
strings compactified on a Calabi-Yau 3-fold with gauge connection identified with the spin
connection of Calabi-Yau, then, the chiral primary fields of charge 1 give rise to massless
generations and the chiral ring coefficients Cijk give the Yukawa couplings between the
different generations. The fact that Yukawa couplings are simply the three point function
of topological gravity leads us to expect that all the other computations of twisted theories
also have similar physical significance for an appropriate string theory. We discuss the
significance of Fg in connection with standard superstring theories in the case g ≥ 1.

We first give an idea. The massless fields in general end up as lowest component
of chiral superfields from the spacetime point of view. Usually, we have superpotential
terms or F -terms which involve only chiral superfields. This means that such terms
depend holomorphically on the massless fields or moduli. So, if we forget the holomorphic
anomaly, we expect that Fg contributes to the superpotential terms. We show this below.

We must start by asking which string theory the Fg should be related with? By
considering the fact that it is left-right symmetric, and is related to the twisting of a
supersymmetric sigma model for closed string theory, we are naturally led to consider
the type II strings compactified on a ĉ = 3 internal theory (A-model is related to type IIA
and B-model to type IIB). Therefore we are searching for low energy effective field theory
terms which Fg is computing. When we compactify the type II theory on Calabi-Yau
3-folds, we have N = 2 supergravity theory in four dimensions. In the multiplet having
graviton in it, there is a U(1) gauge field called graviphoton. We denote the field strength
of this field by F . This field comes from the RR sector of type II string. In the limit of
vanishing momentum k → 0, the vertex operator for this field is proportional to

V ±±
F = k±±S±S̄±σσ̄e−φ/2 (3.151)

here φ is part of the bosonized β, γ field and S denotes the left-moving 4-dimensional
spinor vertex operator and σ denotes the vertex operator for the left-moving unique charge
3/2 Ramond ground vacuum state for the internal N = 2 theory. The ± denote the index
of the spinor. Note that σ, S and e−φ/2 together with their right-moving countarparts
generate the spectral flow from the NS sector to the R sector. Recall that the ordinary
type II strings have more fields than the twisted ones and also that ordinary strings
have the fermionic diffeomorphism ghosts (b, c), the bosonic super-diffeomorphism ghosts
(β, γ), the space-time fields, which we take to be two complex bosons X i, two complex
fermions ψi, and their conjugates χı̄, and their right-moving part. If we could twist the
1/2 integral spin fields by half a unit, then their spins would be the same as the integral
spin fields but with opposite statistics. So they would tend to cancel out of the partition
function. In addition, we would need to twist the internal N = 2 theory which is also
the same as shifting the 1/2 integral fermion spins of the internal theory. In fact, both
of these can be accomplished by insertion of (2g − 2) vertex operators for gravi-photon
V ++
F . The way to see this is that the spin content of fields can be changed by adding the

following term to the action

1

2

∫
Rϕ (3.152)
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where ϕ denotes the bosonized version of the fields. We can choose the curvature R to
have delta-function like support at 2g − 2 points (Recall the Gauss-Bonnet theorem).
From the above arguments, this is equivalent to the insertion of V ++

F . To write it in
a conformally meaningful way, we have to integrate it over the Riemann surface (Note
that V ++

F has dimension (1,1) and the above procedure is equivalent to choosing the
delta-function support for R by averaging over all points). We thus have〈[∫

V ++
F

]2g−2

...

〉
untwisted

= 〈...〉twisted . (3.153)

This is not the whole story. We have to take the zero modes of extra fields into consid-
eration. There are zero modes for b, β and the ψ, χ system that have to be absorbed in
order for the partition functions not to vanish.

The b zero modes give rise to the measure over moduli space. We have to insert in
the superstring measure a factor of the form

|b(µ1)...b(µ3g−3)|2 (3.154)

to absorb the b zero modes. For the β zero modes we usually have to insert 2g − 2
factors of δ(β)G where G is the N = 2 supersymmetry current for the full theory. But
this is true for the partition function with no operators inserted. In our case inserting
2g− 2 vertex operators V ++

F which are in the −1/2 picture means that we need to insert
3g − 3 factors of δ(β). Moreover the fact that β, γ is effectively twisted means that we
can choose the same basis for the Beltrami differentials to fold with them. Moreover by
charge conservation for the internal theory only the G− component of the internal theory
gives non-vanishing amplitude. Thus we have

|δ(β(µ1))...δ(β(µ3g−3))|2|G−(µ1)...G
−(µ3g−3)|2. (3.155)

With this choice, the zero modes of b and δ(β) give opposite contributions and thus b, c
and β, γ completely drop out of the picture, leaving us with the twisted N = 2 theory
with 3g − 3 insertions of G−. This is presicely the prescription we had for computing Fg
of the twisted string coupled to gravity. However we still have to consider the space-time
fermion zero modes. There are g of ψi and one of χı̄ zero modes for each i. To absorb
the χ zero mode and one ψ zero mode we insert the operator

εijεi′j′εı̄̄εı̄′ ̄′

∫
ψiχı̄ψ̄

i′χ̄ı̄′

∫
ψjχ̄ψ̄

j′χ̄̄′. (3.156)

This is equal to the insertion of two graviton vertex operators up to factors of momentum.
We are left to absorb g−1 extra zero modes of ψi. Taking into account that after twisting
ψi has spin 1, one is tempted to introduce g−1 operators of the form

∫
ψiψ̄j but this does

not have a well-defined meaning as a vertex operator for the untwisted theory. Instead, we
insert g−1 operators of the form ψ1ψ2ψ̄1ψ̄2 at g−1 points where we have taken the delta
function curvature singularity. This choice have the property of absorbing the unwanted

53



ψ zero modes without getting an operator which does not make sense in the untwisted
theory. This is because choosing this position for the g − 1 curvature singularities will
convert g − 1 of V ++

F to V −−
F which is the vertex for gravi-photon field with opposite

self-duality property. In this way we have for g ≥ 1

Fg =

〈[∫
V ++
F

]g−1 [∫
V −−
F

]g−1

εijεi′j′εı̄̄εı̄′ ̄′

∫
ψiχı̄ψ̄

i′χ̄ı̄′

∫
ψjχ̄ψ̄

j′χ̄̄′

〉
. (3.157)

Putting the momentum factors, we see, from the above expression, that Fg is the coeffi-
cient in the low energy effective action for a term of the form

R2
+(F 2

+)g−1. (3.158)

Here, + means the self-dual part of the field-strength. We should expect a term in the
superpotential which gives rise to the effective action of the above form. In fact, we can
find an F -term which gives rise to such a term:∫

d4θW2g. (3.159)

Here Wµν = F+
µν − R+

µνλρθσ
λρθ + ... is a Weyl superfield and W2 = WµνWµν . Note

that the above superpotential terms receive contributions only from genus g amplitudes
in the physical untwisted string theory. Moreover there are no non-perturbative string
corrections. This can be seen as follows. We have considered type IIA theory compactified
on a Calabi-Yau manifold to 4 dimensions. We obtained an N = 2 supersymmetric
theory. The massless moduli is in the vector or hypermultiplets. The Kähler moduli are
in the vector multiplets and the complex moduli in the hypermultiplets. In particular
the dilaton is in the hypermultiplet. And the term FgR

2
+F

2g−2
+ involves only Kähler

moduli. Then, combining these, we can say that the above superpotential terms receive
contributions only from genus g amplitudes in the physical string theory because the
dilaton cannot mix with the vector multiplet moduli. Therefore the partition function of
topological strings computes certain exact quantities in the full, physical string theory.

Some known results

The general form (or the leading term for large volume limit) of the partition functions
for g > 1 is calculated in [27] to be

Fg =
1

2
χ(X)g2g−2

s

∫
Mg

c3g−1 +O(exp(−A)). (3.160)

Here χ(X) denotes the Euler characteristic of the target space X and cg−1 denotes the
(g−1)-th Chern class of the Hodge bundle over Mg . The Hodge bundle is a holomorphic
vector bundle over Mg whose fiber is spanned by g holomorphic 1-forms on the Riemann
surface Σg. The leading term comes from the constant map. The constant map is a map
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that sends the whole Riemann surface to a point in the target Calabi-Yau space. And
the other terms come from the worldsheet instantons. The worldsheet instanton is a map
that maps the Riemann surface to the nontrivial curve in the Calabi-Yau manifold X.
The leading term was computed by mathematicians to be [31]∫

Mg

c3g−1 =
Bg

2g(2g − 2)

Bg−1

(2g − 2)!
= (−1)g−1χg

2ζ(2g − 2)

(2π)2g−2 (3.161)

where χg = (−1)g−1 Bg

2g(2g−2)
is the Euler characteristic of Mg, and the Bg are the Bernoulli

numbers. Bernoulli numbers are defined by

x

ex − 1
+
x

2
− 1 =

∞∑
n=1

(−1)n−1 Bn

(2n)!
x2n. (3.162)

On the other hand, the genus 0 amplitude for Calabi-Yau target space with only one
Kähler moduli is calculated in [26] to be

F0 =
1

g2
s

[
−χ(X)

2
ζ(3)− π2

6
c2t+ iπat2 − C

3!
t3 +

∑
m,n

dm
1

n3
e−nmt

]
(3.163)

where χ(X) is the Euler number, c2 is a second Chern class of X (moreprecisely c2t =∫
K ∧ c2), Ct3 =

∫
X
K ∧K ∧K is a self intersection number with respect to the Kähler

class, and dm is the number of primitive holomorphic curve of degree m. Here, a is
predicted for Calabi-Yau manifolds with one Kähler moduli as a = C

2
mod Z. And genus

1 partition function for Calabi-Yau with only genus 0 holomorphic curve was computed
in [28] to be

F1 = − c2
24
t+

1

12

∑
m

dm ln(1 − e−mt). (3.164)

These are calculated by path integral or other direct calculational method. Such com-
putations are of course very important. However, if we want to calculate the more
complicated higher genus partition functions, these methods are not useful because of
the difficulty in integrating over the moduli space of the Riemann surfaces. Therefore it
seems that in practice we can’t know the higher genus answers. However, Gopakumar
and Vafa succeeded in computing all genus partition functions from a totally different
point of view. Our next task is to explain this.

3.2.5 Deriving all genus answers

Schwinger’s computations

Let us go to totally different subject here, the effects of electron-positron pair creation
on the Maxwell’s classical action. The relation will become clear later.
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Our set up is as follows. There are fermions minimally coupled to the classical constant
external electric field. The interaction part of the Lagrangian is

LI(x) = −eψ̄(x)γµψ(x)Aµ(x) (3.165)

Our aim is to compute the probability amplitude of emitting no electron-positron pair,
which we denote by S0. Usual quantum field theory tells us that this can be computed
as

S0(A) = 〈0|S|0〉

=
∞∑
n=0

(−ie)n
n!

∫
dx1...dxn〈0|T [ψ̄(x1)/A(x1)ψ(x1)...ψ̄(xn)/A(xn)ψ(xn)]|0〉 (3.166)

where S is the S matrix which is given by

S = T exp

[
−ie

∫
d4xψ̄int(x)γ

µψint(x)Aµ(x)

]
. (3.167)

According to the Wick’s theorem, each term is a sum of products of the form

〈0|T /A(xk)ψ(xk)ψ̄(xl)|0〉. (3.168)

Define the 4 × 4 matrix by

C(αk, xk;αl, xl) = −ie
∑
α

〈0|T [ /Aαkα(xk)ψα(xk)ψ̄αl
(xl)]|0〉 (3.169)

for given xk, xl. In terms of these, S0 can be written

S0(A) =
∑ (−1)n

n!

∫
dx1...dxn

∑
P

εP
∑
α1...αn

C(α1, x1;αP1, xP1)...C(αn, xn;αPn, xPn).

(3.170)

Let us regard the discrete indices αi and the continuous variables xi as the same footing
and denote them in a bracket notation |x, α〉. It is convenient to introduce the matrix Γ,
which is defined to be

〈x, α|Γ|y, β〉 = C(x, α; y, β). (3.171)

In terms of these, S0 can be expressed as

S0(A) = Det(I − Γ) = exp[Tr ln(I − Γ)]

= Det

[
I − e/A(x)

1

/P −m+ iε

]

= Det

{
[ /P − e/A(x) −m+ iε]

1

/P −m+ iε

}

= exp

{
Tr ln

[
( /P − e/A(x) −m+ iε)

1

/P −m+ iε

]}
.

(3.172)
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Therefore all we have to do is to calculate

ln(S0) = Tr ln

{
[ /P − e/A(x) −m+ iε]

1

/P −m+ iε

}
(3.173)

By inserting the charge conjugation matrix C and using the fact CγµC
−1 = −γTµ , we can

write the above expression as

ln(S0) = Tr ln

{
[ /P − e/A(x) +m− iε]

1

/P +m− iε

}
. (3.174)

Summing the above two equations, we have

2 ln(S0) = Tr ln

(
{[ /P − e/A]2 −m2 + iε} 1

P 2 −m2 + iε

)
. (3.175)

By using the identity,

ln
a

b
=

∫ ∞

0

ds

s
(eis(b+iε) − eis(a+iε)), (3.176)

we have

w(x) = Re

∫ ∞

0

ds

s
e−is(m

2−iε)tr (〈x|eis(/P−e/A(x))2 |x〉 − 〈x|eisP 2|x〉)

= Re tr

∫ ∞

0

ds

s
e−is(m

2−iε)〈x|
(
exp

{
is
[
(P − eA(x))2 +

e

2
σµνF

µν(x)
]}

− eisP
2
)
|x〉

(3.177)

where we defined w(x) by

|S0|2 = exp

[
−
∫
d4xw(x)

]
. (3.178)

The meaning of w(x) is clear. It is a probability density for pair creation.
For a constant background field, this cannot depend on x. Moreover, σµνF

µν com-
mutes with all the other operators and we can compute its exponential. Also, note that
the spin dependence comes entirely from here and the generalization to the particle with
arbitrary spin is easy. From now on, we assume that the electro-magnetic field is purely
electric and that the electric field is along the z axis. In addition, we choose a gauge such
that only A3 = −Et is nonzero. In this case, it is easy to see

tr eiseσµνFµν/2 = 4cosh(seE). (3.179)

Using the commutation relation [X0, P0] = −i, we have

(P − eA)2 = P 2
0 − P2

T − (P 3 + eEX0)2

= e−iP
0P 3/eE(P 2

0 − P2
T − e2E2X02)eiP

0P 3/eE .
(3.180)
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Therefore,

tr〈x|eis[(P−eA)2+eσµνFµν/2]|x〉
= 4cosh(seE)

∫
d3p

(2π)4
dωdω′ei(ω

′−ω)(t+p3/eE)−isp2T 〈ω|eis(P 2
0−e2E2X2

0 )|ω′〉

=
2eE

(2π)2is
cosh(eEs)

∫ ∞

−∞
dω〈ω|eis(P 2

0−e2E2X2
0 )|ω〉.

(3.181)

The last integral can be regarded as the trace of the evolution operator of the harmonic
oscillator via the correspondence P0 → P,−X0 → Q, 2ieE → ω0, 1/2 → m0. By using
the result of ordinary harmonic oscillators, we have

Tr exp

[
is

(
P 2

2m0
+
m0ω

2
0

2
Q2

)]
=
∑
n

exp

[
is

(
n+

1

2

)
ω0

]

=
i

2sin sω0/2
.

(3.182)

Collecting all the terms, we finally get

w = − 1

(2π)2

∫ ∞

0

ds

s2

[
eEcosh(eEs) − 1

s

]
Re (ie−is(m

2−iε)). (3.183)

The term 1/s corresponds to the subtraction at e = 0. The effective action is of course
given by

S0(A) = exp

[
i

∫
d4xδL

]
. (3.184)

Note that in the above calculation, we did not use any approximations. Therefore the
result is exact and provides us with both perturbative and non-perturbarive information.
As we said, the generalization to arbitrary spins is easy. Just replace σµν → 4Jµν and take
care of the sign of statistics. Therefore, the generalization is (after analytic continuation)∫ ∞

ε

ds

s
Tr(−1)F e−s(∆+m2+2eJµνFµν)

=
1

4

∫ ∞

ε

ds

s

1

sinh2(seF/2)
e−sm

2

Tr(−1)F e−2seJµνFµν

.

(3.185)

Reduction to Schwinger’s computation

What we wanted to do is to calculate the partition functions. We want to reduce this
problem to the calculation discussed above. Suppose we give an expectation value to the
self-dual field strength 〈F+〉 = F . Then, let us ask what the coefficient of the effective
action of the form

Seff =

∫
R2

+

(∑
g

F 2g−2Ag

)
(3.186)
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is. The answer is of course given by the partition function; Ag = Fg. Let us see from the
point of view of effective field theory. Consider the particles in the half hypermultiplet
which have BPS charge Z. Particles in the half hypermultiplet have quantum numbers
under SO(4) = SU(2)L × SU(2)R and transform as[

2

(
1

2
, 0

)
⊕ (0, 0)

]
. (3.187)

Then, the contribution to the R2
+ term of the effective action can be computed by inte-

grating out the half hypermultiplets which are charged under the graviphoton. Therefore
we must calculate the loop amplitudes with 2g − 2 graviphotons and 2 gravitons on the
external lines. This seems difficult. But, the tremendous fact that Gopakumar and Vafa
found is that the amplitude we want to calculate is equal to the more easier one. By using
the result of the work of Antoniadis, Gava, Narain, and Taylor [30], they found that the
amplitude is the loop amplitude with scalar particles in the loop and 2g−2 graviphotons
on the external lines [40]; i.e. that of Scwinger’s! Moreover, they found that the contri-
bution to R2

+F
2g−2
+ from a state with spin [(1

2
, 0) ⊕ 2(0, 0)] ⊗ [(j1, j2)] is equal to that to

F 2g−2
+ from a particle with spin [(j1, j2)] in the Schwinger’s case. Therefore what we have

to do is to generarize the calculation discussed before and substituting the correct charge
and mass to the result. In the next section, we will compute the amplitudes in this way
but from a different point of view.

Calculation from M theory point of view

Let us turn our viewpoint to the case when the string coupling constant becomes large. In
this case, it is suitable to think that we consider the M theory compactified on CY3 ×S1.
The lightest objects are, in the type IIA terms, the D0 branes, their bound states, and
D2 branes wrappped over the 2-cycles in the Calabi-Yau manifold. Let us set α′ = 1

4π2 .
What we want to do is to show that the particles in the loop are these lightest D

branes. The bound states of D0 branes always give the half hypermultiplets and therefore
we can reduce to the scalar case. But the D2 branes are in general not so and we must
consider the particles with higher spin. Though there is no problem in such cases, we
want to avoid them for simplicity. Therefore we assume that the 2-cycle over which we
wrap the D2 brane is topologically S2. This condition assures that there is no bound
states of multiple D2 branes wrapped over 2-cycles and there is only bound states of a
single D2 brane with a number of D0 branes. This means that not only the bound states
of D0 branes but also the bound state of a wrapped D2 brane with D0 branes gives the
half hypermultiplet and the computation is reduced to the scalar case of Schwinger’s. If
this assumption is not obeyed, we have to use the Schwinger’s result in the higher spin
case. This point is discussed in [40].

Let us first consider the D0 branes. The bound states of the D0 branes are BPS states
and the charge Z is given by

Z =
2πin

gs
. (3.188)
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The Schwinger’s result for the scalar particle with BPS charge Z in a constant self-dual
field F is

F(Z) =

∫ ∞

ε

ds

s3

(
s/2

sinhs/2

)2

e−
sZ
F (3.189)

as we noted before. Here we define F(Z). This has a perturbative expansion of the form

F(Z) =
∑
g

F ′
gF

2g−2 +O(e−
Z
F ) (3.190)

where F ′
g is equal to the partition function if we choose the particles correctly. Direct

computation shows that F ′
g = −χgZ2−2g. where χg is the Euler characteristic of the

Riemann surface. We claim that the bound states of D0 branes and the bound states of
a D2 brane with many D0 branes give the correct answer. To see this, let us substitute
Z = 2πin

gs
for F ′

g and sum over n.

F ′(0)
g = −χg

∑
n�=0∈Z

(
2πin

gs

)2−2g

. (3.191)

This is equal to

−
[
(−1)g−1χg

2ζ(2g − 2)

(2π)2g−2

]
g2g−2
s (3.192)

where we used ζ(z) =
∑∞

n=1
1
nz . This is the result for a single hypermultiplet. We must

take into account all the multiplets for a fixed Kaluza-Klein momentum around the circle
(for fixed n). The net contribution is known to be h2,1(X) − h1,1(X) = −χ(X)/2 times
the contribution of a single hypermultiplet. The derivation of this fact is not so easy, see
[40]. Therefore the final answer for the contribution from the D0 branes is

F ′(0)
g =

χ(X)

2

[
(−1)g−1χg

2ζ(2g − 2)

(2π)2g−2

]
g2g−2
s . (3.193)

Let us compare this result with the contribution from the constant map, the equation
(3.160). We easily see that these are exactly the same. Therefore we can reinterpret the
contribution from the constant map as the one from the bound states of the D0 branes.

We next discuss the contribution from the D2 brane. The BPS charge of the bound
states of a D2 brane with n D0 branes is also determined by BPS property to be

Z =
2π(A+ in)

gs
, (3.194)

where A denotes the area of the surface over which the D2 brane is wrapped. Note again
that from our assumption, we have only one D2 brane and no multiwrapped D2 brane.
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Following the D0 brane case, we have

F ′(2)
g = − χgg

2g−2
s

(2π)2g−2

∑
m∈Z

(A+ im)2g−2

= − χgg
2g−2
s

(2π)2g−2(2g − 3)!

(
d

dA

)2g−2

ln(1 − e2πA)

= χgg
2g−2
s

1

(2g − 3)!

∑
m

m2g−3e−2πmA,

(3.195)

where we use the following product formula

sinh(πx)

πx
=

∞∏
n=1

(
1 +

x2

n2

)
. (3.196)

For the genus 0 and 1, this expression should be interpreted in the regularized form
χg/(2g− 3)! = 1,−1/12 respectively. This expression is known to agree for g = 1, 2 with
the contribution from degenerate genus zero instantons and generalizes it to an arbitrary
genus amiplitude [32]. In this way, not only we rederive the known results for topological
string amplitudes, but also we can get the all genus answer in a simple way. In summary,
we have

F0 =
1

g2
s

[
−χ(X)

2
ζ(3) − π2

6
c2t+ iπat2 − C

t3

3!
+
∑
n,m

dm
1

n3
exp(−nmt)

]
(3.197)

F1 = − c2
24
t+

1

12

∑
m

dm ln(1 − e−mt) (3.198)

Fg = g2g−2
s

[
(−1)g−1χg

2ζ(2g − 2)

(2π)2g−2
− χg

(2g − 3)!

∑
n

n2g−3e−nt
]
. (3.199)

3.3 Topological open strings

We have discussed the topological closed string. We started from N = 2 SCFT, twisted
it to the topological field theory, and coupled it to gravity. Then we have found the
relation to untwisted models, and by using that property we could get all genus answers.
In this section, we would like to discuss the topological open string. The A model and
the B model again play fundamental roles. But in the open strings, the world sheet has
nontrivial boundaries. Therefore we must impose suitable boundary conditions. Then
we will couple these systems to space-time gauge fields in the sense of string theory (we
assume the coupling to two dimensional gravity implicitly). Again we will concentrate
on the case in which the target space is a Calabi-Yau 3-fold. After investigating the
models, we will find the interesting phenomena again. The main goal of this section is to
demonstrate that under certain conditions, the A model with Calabi-Yau target space is
equivalent to the Chern-Simons theory on the certain 3-dimensional submanifold in the
Calabi-Yau. This is the work of Witten [61].
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3.3.1 Boundary conditions

As we said above, we want to study the A model and the B model on Riemann surfaces Σ
with boundaries with emphasis on the A model. The action and the transformation laws
are the same as before. Therefore, we have only to consider the boundary conditions.
Let each component of ∂Σ be Ci. And let Mi be a special Lagrangian submanifold of the
Calabi-Yau manifold. The definition of the special Lagrangian submanifold is as follows.
A 3-dimensional submanifold M in the Calabi-Yau 3-fold X is a special Lagrangian
submanifold if and only if the following conditions are satisfied

i∗(Ω) = Ω|M , i∗(K) = 0 (3.200)

where i : M ↪→ X is an inclusion, Ω is a holomorphic 3-form on the Calabi-Yau and K
is a Kähler form. And we denote the tangent bundle and normal bundles to M in X
by TM and NM respectively. We regard them as the real and imaginary subbundles of
TX|M .

In the A model, regarding Ci as a real locus in the complex Riemann surface, we
impose the following boundary conditions.

1. Φ|Ci
maps Ci to M , that is Φ|Ci

is real.

2. The normal derivative of Φ at Ci is imaginary, or it takes values in Φ∗(NM).

3. χ and the pullback of ψ to Ci are real, that is they take values in Φ∗(TM).

These are the boundary conditions for the A model. Above boundary conditions mean
that we impose the Dirichlet boundary conditions because the boundary of the Riemann
surface must be mapped to certain fixed manifold. Therefore, we have “D-branes” on M .
As is well-known, we cannot put D-branes in an arbitrary place. The known result is that
we must impose the SUSY cycle condition to put the D-branes. In our case, this condition
requires M to be special Lagrangian submanifold. This is the reason we introduce this
object. If we couple this model to gauge fields by introducing U(N) Chan-Paton factors,
we can interpret this as being N D-branes which are wrapped over M .

In the B model, we pick boundary conditions that do not require anything similar to
the choice of the M . For the B model, we impose the following conditions.

1. The normal derivative of Φ is zero on ∂Σ.

2. θ vanishes on ∂Σ.

3. The pullback to ∂Σ of �ρ vanishes. Here � is the Hodge star operator.

3.3.2 Coupling to gauge fields

We would like to couple the above systems to gauge fields on X. This can be done by
introducing Chan-Paton factors. We will concentrate on the oriented Riemann surfaces.
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Therefore we take the gauge group to be U(N). This condition turns out to be essential
later.

Before coupling to gauge fields, what we are interested in is the path integral∫
DΦi exp(−S(Φi)) (3.201)

where Φi are the various fields and S is the action. Then, what happens when we couple
this to gauge fields? To see this, let A = AIdφ

I be a gauge field of the gauge group U(N).
Note that the worldsheet Σ is oriented and the orientation of Σ induces the orientation of
Ci. Therefore for a given Φ : Σ → X, we can define the following object (the holonomy
of Φ∗(A) around Ci)

TrP exp

∮
Ci

Φ∗(A) (3.202)

where the trace is taken in the fundamental N dimensional representation of U(N). Then,
the coupling to gauge fields can be done by replacing the above path integral by∫

DΦi exp(−L(Φi))
∏
i

TrP exp

∮
Ci

Φ∗(A). (3.203)

To be true, this expression is for the A model. The B model requires some modification,
which we will discuss later. Therefore we first discuss the A model case. We must check
whether this procedure preserves the fermionic symmetry of the theory. In general, the
variation of the trace of the holonomy is given by

δTrP exp

∮
C

Φ∗(A) = Tr

∮
C

δφI
dφJ

dτ
FIJ(τ)dτ · P exp

∮
C;τ

Φ∗(A). (3.204)

Here, τ is a coordinate on C and exp
∮
C;τ

Φ∗(A) is the holonomy of Φ∗(A) around C
starting and ending at τ . FIJ are of course the pullback of the space-time field strength
FIJ = dA + A ∧ A by Φ. The transformation law of the A model is δφI = iαχI .
Therefore, the above expression is invariant under the fermionic symmetry if and only if
the spacetime field strength vanishes. So, in the A model, it is possible to couple only
to flat connections on M . We will later see that the target space physics is equivalent
to the Chern-Simons gauge theory on M . The classical solutions of the Chern-Simons
gauge theory are the flat connections. (The action of the Chern-Simons gauge theory
is defined by S = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A)). This corresponds to the fact that

in the ordinary string theory, the background fields that can be incorporated in the
worldsheet theory are always classical solutions of the spacetime theory.

As for the B model, we can discuss in a similar way. But, as we mentioned, we must
modify some expressions. Substituting the transformation law δφi = 0, δφı̄ = iαη ı̄ for the
equation (3.203), we find that the holonomy is invariant under the symmetry if and only
if the (1,1) and (0,2) parts of the field strength is zero. The vanishing of the (1,1) part
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of the field strength turns out to be too restrictive and we want to relax it. This can be
done as follows. We replace the Φ∗(A) with the following new connection

Ã = Φ∗(A) − iη ı̄Fı̄jρ
j . (3.205)

In the same way as before, we can show that for any circle C, the trace of the holonomy

TrP exp

∮
C

Ã (3.206)

is invariant under the fermionic symmetry if and only if the (0,2) part of the field strength
of A vanishes. Therefore, the coupling to the gauge fields should be modified in the B
model to ∫

DΦi exp(−S(Φi)) ·
∏
i

TrP exp

∮
Ci

Ã. (3.207)

On the other hand, the fact that the (0,2) part of the field strength vanishes means that
the (0,1) part of the gauge field A defines a holomorphic structure on the bundle E. Here
E is a rank N complex vector bundle over X with structure group (or gauge group) U(N)
on which the connection A is defined.

3.3.3 Large t limit

We discuss here the large t limit or equivalently the large radius limit. We discuss in
terms of the Hamiltonian description. Let us take Σ to be an infinite strip with coordinate
σ, τ (0 ≤ σ ≤ π,−∞ ≤ τ ≤ ∞) and metric ds2 = dσ2 + dτ 2.

A model

Recall that there are scalars φ, χ and the 1-form ψ. If we write ψ = ψσdσ + ψτdτ , then
the self-duality condition relates ψσ and ψτ . Therefore we can regard χ and ψτ as the
independent fermi fields. The canonical commutation relations are[

dφI

dτ
(σ), φJ(σ′)

]
= − i

t
gIJδ(σ − σ′) (3.208)

{ψτ (σ), χ(σ′)} =
1

t
δ(σ − σ′). (3.209)

The Hilbert space consists of functionals A(Φ, ...) where now Φ is a map from the interval
I = [0, π] to X whose restriction to ∂I is a map from ∂I to M . The Hamiltonian is given
by

L0 =

∫ π

0

dσT00. (3.210)
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From the canonical commutation relations, we can write dφ/dτ in terms of δ/δφ. Then
the Hamiltonian can be written as

L0 =
1

2

∫ π

0

(
−1

t
gIJ

δ2

δφIδφJ(σ)
+ tgIJ

dφI

dσ

dφJ

dσ

)
+ terms with fermions. (3.211)

Recall that in the topological theories, the energy-momentum tensor can be written as

Tαβ = {Q, bαβ} (3.212)

for some field bαβ. If we define the zero mode of the b field by

b0 =

∫ π

0

dσb00, (3.213)

then we have

L0 = {Q, b0}. (3.214)

This implies that the Q cohomology can be computed in the subspace of the Hilbert
space annihilated by L0. Since the physics is independent of t, it is suffice to study the
kernel of L0 for large t.

By looking at the Hamiltonian, we see that such objects are localized near dφI/dσ = 0
or the constant maps. As our boundary condition is such that ∂I is mapped to M , the
constant map is in fact a map from I to M . Since the contribution to L0 from the
non-zero fermion modes is of order 1, the low-lying eigenfunctions of L0 is described by
the functional of the bose and fermi zero modes only. The other modes are in their
Fock vacuum and the energy of this Fock vacuum is zero from the supersymmetry of the
untwisted model.

From the above arguments, the bose and fermi zero modes are all tangent to M . Let
us denote them as qa, χa, ψτ

a, a = 1, 2, 3, where qa are coordinates on M . The canonical
commutation relations enable us to represent ψτ

a as ∂/∂χa. Therefore, the functional A
reduces to a function A(qa, χa). If we expand in powers of χa, we have

A = c(q) + χaAa(q) + χaχbBab(q) + ... (3.215)

The successive terms can be interpreted as p-forms on M because of the fermi statistics.
When we introduce the Chan-Paton factors, these differential forms become matrices
that is, the differential forms with values in End(E), where End(E) consists of the endo-
morphisms of the flat vector bundle over M .

Now look at the commutation relations

[Q, φI ] = −χI , {Q,χJ} = 0. (3.216)

If we interpret χI as −dφI , we can identify Q with the exterior derivative d on M .
Therefore, the Q cohomology is equal to H∗(M,End(E)). Moreover, the form of the
Hamiltonian shows that when acting on the differential forms on M , the L0 reduces to

L0 =
π

2t
∆ (3.217)
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where ∆ = dd∗ + d∗d is the Laplacian. From the relation L0 = {Q, b0} we can see that
b0 reduces to

b0 =
π

2t
d∗. (3.218)

B model

In the B model there are scalars φ, θ, η and 1-form ρ. From the similar argument in the
A model, the functional reduces to a function of zero modes of φI and η ı̄ (the zero modes
of ρ is represented as ∂/∂η). As in the A model, we expand

A(φI , η ı̄) = c(φI) + η ı̄Aı̄(φ
I) + η ı̄η̄Bı̄̄(φ

I) + ... (3.219)

The successive terms are again interpreted as (0, q) forms on X with values in End(E).
Where now E is a holomorphic vector bundle over X. From the commutation relations

[Q, φi] = 0

[Q, φı̄] = −ηı̄
{Q, η ı̄} = 0,

(3.220)

we can identify Q with the ∂̄ operator if we regard η ı̄ as −∂̄φı̄. Therefore the Q coho-
mology is H0,∗(X,End(E)). L0 and b0 reduce to

L0 =
π

2t
(∂̄∂̄∗ + ∂̄∗∂̄) (3.221)

b0 =
π

2t
∂̄∗. (3.222)

One might wonder the absence of θi. But, θi do not play any role in the above discussion
since δφi = 0.

3.3.4 Space-time physics

In this section, we study the space-time physics of the models costructed above by using
the open string field theory. We will find that the A model with target space T ∗M is
equivalent to the Chern-Simons gauge theory on M .

Open string field theory

Let us first construct the open string field theory. We have string fields A with ghost
number 1, a multiplication � and the BRST operator Q with ghost number 1 and Q2 = 0.
There is also a linear functional

∫
of ghost number −3. This means that

∫
b is zero unless

b has ghost number 3. The conditions imposed on
∫

and � are as follows∫
a � b = (−1)deg(a)deg(b)

∫
b � a (3.223)∫

Qb = 0 (3.224)
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where deg(a) is a ghost number of a. Then the action for the open string field theory is

S =
1

2

∫ (
A � QA +

2

3
A �A �A

)
. (3.225)

This action is invariant under the gauge tranformation defined by

δA = Qε− ε �A + A � ε. (3.226)

We can also introduce the Chan-Paton factors. We have only to replace the string fields
with the fields having values in matrtices and

∫
with

∫ ⊗Tr. Here Tr is the usual trace
on matrices. If a suitable reality condition is imposed, A take values in N ×N hermitian
matrices which is nothing but the Lie algebra of U(N). The fact that integration law
is of ghost number −3 comes from the fact that the Euler characteristic of a disk is −1
and the ghost number of the vacuum is −3χ(Σ) in the critical string theory. We take
a topological sigma model with a Calabi-Yau target space X of dimension 6 as a world
sheet theory. And we identify the multiplication and integration with standard gluing
operations, and Q with the BRST operator of the topological field theory. Let us first
study the A model.

Space-time physics of the A model

The boundary conditions are the same as before. When we studied a particular surface,
we introduced a separate special Lagrangian submanifold Mi to which each component
Ci is mapped. In string field theory, one generates all possible Σ’s through Feynmann
diagram expansions. Therefore the Mi’s must be built in universally at the outset. We
will do this by picking a single M once and for all.

Let us summarize what we will show here. A neighborhood of M in X is known to be
equivalent topologically to a neighborhood of M in its cotangent bundle T ∗M . Roughly
speaking, the topological string theory consists of two pieces. One is the instantons with
target space X and boundary values in M . And the other is the Chern-Simons theory
with target space M . The instantons can be suppressed if we replace X with T ∗M as
will be proved below. Therefore, we will concentrate on the case X = T ∗M .

We will show the vanishing thoerem explained just now. The claim is that the instan-
tons mapping Σ to T ∗M with ∂Σ to M are constant. T ∗M has the symplectic structure
ω which can be written as ω =

∑
dpa ∧ dqa with pa linear coordinates in the fibers that

vanish on M . This can be written as ω = dρ where ρ =
∑
padq

a vanishes on M . From
this, we can read gī = ḡi = −iωī. Of course, gij = gı̄̄ = 0 as usual. An instanton is
defined to be a map Φ : Σ → X with ∂̄φi = 0. The bosonic part of the action is

I = i

∫
Σ

dz ∧ dz̄gIJ∂zφI∂z̄φJ .

= 2i

∫
Σ

dz ∧ dz̄gı̄j∂zφı̄∂z̄φj − i

∫
Σ

dz ∧ dz̄gı̄j(∂zφı̄∂z̄φj − ∂zφ
j∂z̄φ

ı̄)

= 2i

∫
Σ

dz ∧ dz̄gı̄j∂zφı̄∂z̄φj +

∫
Σ

Φ∗(ω).

(3.227)
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The first term of the last form vanishes for instantons. Therefore for instantons, the
action reduces to the second one. But this term is also zero in our special case. This is
because ∫

Σ

Φ∗(ω) =

∫
∂Σ

Φ∗(ρ) = 0 (3.228)

where we used the fact that Φ(∂Σ) ∈ M . From the original form of I, we see that it
vanishes only for constant maps, which completes the proof.

Now we study the spacetime physics. Recall that the low lying modes can be described
as functions of the form A(qa, χb). In the string case, we need the fields with ghost number
1. Therefore the fields must be linear in χ. Then we have the expansion

A = χaAa(q). (3.229)

Recall also that in the large t limit, Q can be identified with the exterior derivative d.
Therefore, in the limit t→ ∞, the first part of the string field action 1

2

∫ A �QA reduces
to

1

2

∫
M

TrA ∧ dA. (3.230)

We next consider the cubic part of the action. Let A(j) be a mode of the gauge field
A. The corresponding vertex operator is given by V (j) = χaA

(j)
a (q). Let us evaluate the

coupling of three these modes on the disk by inserting three vertex operators which are
put on the boundary of the disk. By using the SL(2,R) symmetry, we have only to
consider 〈V (1)(0)V (2)(1)V (3)(∞)〉. As we saw, the path integral reduces to an integral
over zero modes in the large t limit. Therefore the expression is equal to∫

dq1dq2dq3dχ1dχ2dχ3TrχaA(1)
a (q)χbA

(2)
b (q)χ(3)

c (q) =

∫
M

TrA(1) ∧ A(2) ∧ A(3). (3.231)

In summary, we have

S =
1

2

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)

=
1

2

∫
M

d3qTr

(
εµνλ(Aµ∂νAλ +

2

3
AµAνAλ)

)
.

(3.232)

This is precisely the action for the Chern-Simons gauge theory. In the ordinary string
theory, the above reduction is only an approximation because of the corrections of order
α′. But in the topological string case, the above reduction is exact. The corrections
corresponding to theO(α′) corrections are perturbative corrections in 1/t. But, as we saw,
the topological string is independent of t. Therefore there are no such terms. Combining
with the fact that the instantons are also absent, we see that the reduction we have done
is exact. The perturbative calculations of both sides are also discussed in [61].
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Space-time physics of the B model

We will be brief because the essential points are the same as the A model. The low-lying
modes are functions A(φI , η ı̄) of the zero modes. For the field A to have ghost number
zero, it must be linear in η. Therefore the expansion is

A = η ı̄Aı̄(φ
I). (3.233)

So, the physical field is a 1-form of type (0, 1). The linearized gauge transformation δA
reduces to δA∂̄ε. Therefore, we should regard A as the (0, 1) part of a connection on E.
Recall that for the B model to be able to be coupled to gauge fields, it is necessary for
the (0,2) part of the field strength vanishes. Therefore, we expect that the space-time
action has the classical solution with this property. In fact, arguments similar to the A
model case shows that the action can be reduced to

S =
1

2

∫
X

Ω ∧ Tr

(
A ∧ ∂̄A+

2

3
A ∧ A ∧ A

)
. (3.234)

where Ω is an everywhere non-zero holomorphic 3-form on X.

Some comments

We should note one more point. In the ordinary string theory, we must consider the
closed strings, too. However the simplification also occurs in this respect. Witten also
showed in his paper [61] that the on-shell coupling between the open string and the closed
string is zero. Therefore, in the topological theory, we can consider the physics of the
open string directly without taking any limits as was done by Maldacena in the AdS/CFT
correspondence [35].

3.3.5 Relations to superstring

In the closed string section, we have seen that topological closed string tells us about
certain amplitude of the untwisted theory. We discuss here the open string version of
this. The natural candidate is of course the type I theory. This is indeed so. We
concentrate on the genus 0 oriented case. The idea is the same as the closed string case.
The twisting is done by the gaugino field, which we denote by V ±

Ψ . This operator is
again the spectral flow operator in the internal N = 2 theory combined with the twisting
operator acting on superconformal ghosts and space-time fermionic fields. This operator
is again inserted where the world sheet has curvature singularity. Consider a cylinder
with two boundaries and h − 2 slits cut on it. This gives curvature singularities at the
two end points of each of the slits. Therefore, we should insert the operator VΨ at each
such point. Then, the twisting is done. After taking into account the zero modes, we
have

F0,h =

〈[∮
Si

V +
Ψ

∮
Si

V −
Ψ

]h−2 ∮
S

VF

∮
S

VF

〉
untwisted

, (3.235)
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where Si are slits on the cylinder, S is the one of the boundaries of the cylinder and VF
is the vertex operator for a gauge field (up to momentum factors). This gives the term
of the form

TrF 2[TrΨ2]h−2. (3.236)

This should be written as an F term. There is indeed such superpotential term, which is∫
d2θ[(TrW 2)]h−1 (3.237)

where W is the chiral superfield with gaugino as its bottom component. Similarly the
higher genus amplitudes calculate the terms of the form∫

d2θW2g[TrW 2]h−1. (3.238)

3.4 Duality of topological strings

In this section we discuss the topological version of the duality between open and closed
strings. A more precise statement is that the SU(N) Chern-Simons theory on S3 is
exactly dual to the topological closed string on the resolved conifold. This can be consid-
ered as a duality between the topological open string and the topological closed string,
because the Chern-Simons gauge theory on S3 can be realized as an open string on T ∗S3.
This duality was proposed by Gopakumar and Vafa [41].

3.4.1 Open/Closed duality

Suppose we want to calculate the free energy or effective action by large N expansion.
Our notations are as follows. We denote the coupling constant by κ, and we assume that
the action is of the form S ∼ 1

κ

∫
L. We should sum over all the diagrams which are so

similar to the open string diagrams, that is, the Feynman diagrams with the double line
notation. There are N fermions in each loop. Therefore the power of N is given by the
number of loops, or number of holes h. From the normalization of the kinetic term, each
edge gives a factor of κ and each vertex gives 1/κ. Therefore free energy can be expanded
as

F =
∑

NhκE−V f(h,E, V ) (3.239)

where f is some function. By using the formula V −E + h = 2− 2g, we can rewrite this
as

F =
∞∑

g=0,h=0

Cg,hN
hκ2g−2+h. (3.240)
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We usually consider the large N limit by fixing the ’t Hooft coupling λ = κN . In terms
of this we can write as

F =
∞∑

g=0,h=1

Cg,hN
2−2gλ2g−2+h. (3.241)

Because of the expansion in genus and holes, we can regard this expression as a pertur-
bative expansion of the open string theory. Then, the fact that the Chern-Simons gauge
theory is equivalent to the open topological string theory means that the coefficient Cg,h
is given by the partition function of the open string of the Riemann surface with g genus
and h holes, that is, Cg,h = Fg,h.

When the ’t Hooft coupling λ is small, the open string description is good because of
the factor λ2g−2+h. However, as the ’t Hooft coupling λ becomes larger, this description
is getting worse. We must sum over all holes. After this process, the resulting expression
should be of the form

F =
∑
g=0

N2−2gFg(λ). (3.242)

It is natural to interpret this expression as a closed string expansion. Therefore, we expect
that the open string theory has its closed string dual pair. One example of this realization
is the AdS/CFT correspondence. The AdS/CFT correspondence states that the N = 4
SYM on N D3 branes in the flat space R10 is dual to the closed string propagating on
AdS5 × S5. In the same spirit, we want to find the dual pair of the topological open
string theory on T ∗S3. In the AdS/CFT case, the open string is in flat space, but the
closed string is in the curved space. Therefore, we expect that the closed string we are
looking for is in the different geometry from T ∗S3. Then, what is the geometry on which
the closed string propagates? As we saw in the section on flop, the cotangent bundle
T ∗S3 is a deformed conifold. Therefore natural candidate is the resolved conifold which
corresponds to turning on the FI term r. Therefore, we claim that

Topological Open String on T ∗S3 ↔ Topological Closed String on resolved conifold.

We show below that this is indeed the case.

3.4.2 Proof of duality

We will prove the duality stated above by demonstrating that the partition functions of
both sides exactly coincide. The S2 resolved conifold has only one S2 as an element of
the nontrivial homology. This means that the Schwinger’s calculation can be applied to
the closed string side without any generalizations. On the other hand, the exact partition
function of the Chern-Simons gauge theory on S3 is also known. Therefore, the checks
of the claim can be done in a straightforward way. Let us first discuss the Chern-Simons
side.
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Partition functions of Chern-Simons

The partition function of the Chern-Simons theory on a three manifold M is defined by

Z[M,N, k] =

∫
DA exp

(
ik

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

)
. (3.243)

The exact partition function on S3 with gauge group SU(N) is known to be

Z[S3, N, k] = e
iπ
8
N(N−1) 1

(N + k)N/2

√
N + k

N

N−1∏
j=1

{
2sin

(
jπ

N + k

)}N−j
. (3.244)

The bare ’t Hooft coupling is λb = 2πN
k

. However, it is known that there is a finite
renormalization of the coupling constant. The renormalized ’t Hooft coupling is λ = 2πN

k+N
.

This is the true parameter by which we should expand. Then, the result is

F (S3, N, λ) = −N
2

lnN +
N − 1

2
lnλ

+
N−1∑
j=1

(N − j)

[
ln j + ln

(
λ

2πN

)
+

∞∑
n=1

ln

(
1 − j2λ2

4π2n2N2

)] (3.245)

where we defined Z = e−F . We focus on the last term F̃ =
∑

j(N−j)∑n ln(1− j2λ2

4π2n2N2 ).
By expanding the logarithm and summing over n, we have

F̃ =
∞∑
m=1

ζ(2m)

m

(
λ

2πN

)2m N−j∑
j=1

(N − j)j2m (3.246)

where we have used the definition ζ(z) =
∑∞

n=1
1
nz . The sum over j can be carried out

with the result

N−j∑
j−1

(N − j)j2m =
N2m+2

(2m+ 1)(2m+ 2)
+ 2m

m∑
g=1

(
2m− 1

2g − 3

)
(−1)g

Bg

2g(2g − 2)
N2m+2−2g.

(3.247)

Then, with the replacement m = g − 1 + p, the result becomes

F̃ =
∞∑
p=2

N2 ζ(2p− 2)

p− 1

( λ
2π

)2p−2

2p(2p− 1)
−

∞∑
p=1

B1
ζ(2p)

2p

(
λ

2π

)2p

+

∞∑
g=2

N2−2g (−1)gBg

2g(2g − 2)

∞∑
p=1

ζ(2g − 2 + 2p)

(
2g − 3 + 2p

2p

)(
λ

2π

)2g−2+2p

.

(3.248)
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In this way, we have the partition function for every genus. The result is

F0(λ) =
3

4
− 1

2
lnλ+

∞∑
p=2

ζ(2p− 2)

p− 1

( λ
2π

)2p−2

2p(2p− 1)
(3.249)

F1(λ) = −
∞∑
p=1

B1
ζ(2p)

2p

(
λ

2π

)2p

(3.250)

Fg(λ) = χg

[
1 + 2

∞∑
p=1

ζ(2g − 2 + 2p)

(
2g − 3 + 2p

2p

)(
λ

2π

)2g−2+2p
]

(3.251)

where we use χg = (−1)g−1 Bg

2g(2g−2)
. The sum over p is of course the sum over the holes.

Therefore, we must calculate the summation over p.

Comparing with closed string amplitudes

Let us first compare the genus zero partition function. We rewrite the above expression
as

F0 =
3

4
− 1

2
lnλ+

1

λ2

∞∑
p=2

ζ(2p− 2)

p− 1

λ2p

(2π)2p−22p(2p− 1)
. (3.252)

Then the sum over p of the last term can be done by differentiating twice with respect
to λ, rewriting ζ(2m) =

∑
1

n2m with the result

∞∑
p=1

ζ(2p)

2p

(
λ

2π

)2p

=
∞∑
p=1

∞∑
n=1

1

2p

(
λ

2πn

)2p

=
1

2

(
ln

(
Γ

(
1 − λ

2π

))
+ ln

(
Γ

(
1 +

λ

2π

)))

=
1

2
ln

(
1

2
λCsc

(
λ

2

))

= −1

2
ln

(
2

λ
sin

(
λ

2

))

∼ −1

2
ln

(
2 sin

(
λ

2

))

= −iλ
4

− 1

2
ln(1 − e−iλ)

= −iλ
4

− 1

2

∞∑
n=1

e−inλ

n
.

(3.253)

Then, the final result is

N2F0 = −
(
N

λ

)2
[
−ζ(3) + i

π2

6
λ− i(m+

1

4
)πλ2 +

iλ3

12
+

∞∑
n=1

e−inλ

n3

]
. (3.254)
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The first term, for example, is determined by the fact that limλ→0 λ
2F0 = 0. And, m is

an integer which is not fixed uniquely. Let us compare this with the closed string result.
The genus 0 amplitude for Calabi-Yau X with one Kähler class is

F0 =
1

g2
s

[
−χ(X)

2
ζ(3) − π2

6
c2t+ iπat2 − C

t3

3!
+
∑
n,m

dm
1

n3
exp(−nmt)

]
. (3.255)

The notations are as before. For the S2 resolved conifold, we have

d1 = 1, di = 0, for i > 1

C =
1

2
, c2 = −1, χ = 2

(3.256)

If we identify the parameters by gs = iλ
N

and t = iλ, we easily see that both expressions
are the same.

Let us next compare the genus 1 amplitude. In the same way as genus 0 amplitude,
the summation on p can be carried out with the result

F1(λ) = i
B1

4
λ+

B1

2
ln(1 − e−iλ). (3.257)

On the other hand, the closed string side is

F1 = − c2
24
t+

1

12

∑
m

dm ln(1 − e−mt). (3.258)

These expressions again coincide (we used B1 = 1
6
).

Finally, we compare the genus g > 1 partition function. We add the “closed string
sector (p = 0)” to the Chern-Simons free energy and weigh terms with 2p holes with a
factor of (2πA)2p.

N2−2gFg = N2−2gχg

[ ∞∑
n=1

(
λ

2πn

)2g−2 ∞∑
p=0

(−1)g−1+p 1

n2p

(
2g − 3 + 2p

2p

)
(2πA)2p

]

= N2−2gχg

(
λ

2π

)2g−2 ∞∑
n=1

[
1

(A+ in)2g−2
+

1

(A− in)2g−2

]

=

(
N

λ

)2−2g

(−1)g−1

[
(−1)g−1χg

2ζ(2g − 2)

(2π)2g−2
− χg

(2g − 3)!

∑
n∈Z

1

(λ+ 2πn)2g−2

]

= g2g−2
s

[
(−1)g−1χg

2ζ(2g − 2)

(2π)2g−2
− χg

(2g − 3)!

∞∑
n=1

n2g−3e−nt
]
.

(3.259)

This is again equal to the closed string amplitude. In this way we have a strong evidence
for the duality. This duality is proposed by Gopakumar and Vafa in [41]. They also give
some more evidences for the duality such as the coupling via the gravitational Chern-
Simons terms and the Wilson loops. We do not discuss here. Interested reader should
consult their paper.
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3.5 Duality of superstrings

In the previous section, we see that topological strings also have a duality property which
is similar to the AdS/CFT correspondence. However, what we are truely interested in
is untwisted physical superstring theory. As explained before, the topological string
amplitude gives a certain exact expression for F-term or superpotential. Therefore we
can regard the above duality as the duality between the superstrings whose evidence is
given by the above calculation. Embedding the duality in the ordinary string theory
is the purpose of this section. Our main claim is that type IIA string on the deformed
conifold with N D6 branes wrapped over S3 is dual to the type IIA theory on the resolved
conifold without D-branes but with RR fluxes. This is the work of Vafa [42].

3.5.1 RR fluxes and topological string amplitudes

Consider the type IIA theory compactified on a Calabi-Yau 3-fold. The resulting physics
is of course the N = 2 theory. Then, what happens when we turn on the RR-fluxes in
the internal space? The answer is that the RR fluxes generate superpotential terms and
partially break the supersymmetry to N = 1. The superpotential generated by the RR
2-form F , 4-form G and 6-form G6 is given by [64, 65]

gsW =

∫
F ∧K ∧K + i

∫
G ∧K +

∫
G6 (3.260)

where gs is the coupling constant and K is the complexified Kähler class. This seems
to have nothing with the topological string amplitudes. However, it turns out that we
can rewrite this expression in terms of the prepotential or the genus 0 topological string
amplitude. This is the crucial step to embed the duality. Below we show this fact. Let
us go to the dual description by using the mirror symmetry. And consider the 3-cycle.
Choose a basis for H3(M,Z) such that A ∩ A = B ∩ B = 0 and A ∩ B = 1. Here the ∩
means the intersection number. Consider the following objects

Π =

∫
A

Ω, Π′ =

∫
B

Ω. (3.261)

We know that there is a prepotential F0 such that

Π′ =
∂F0

∂Π
. (3.262)

When we return to the original description, the Π becomes the Kähler parameter t or the
volume of the 2-cycle. Then, the Π′ becomes the dual of it or, the volume of the 4-cycle.
This shows that in terms of the complexified area of the basic 2-cycle the volumes of the
0, 2, 4 cycles are given by

1, t,
∂F0

∂t
. (3.263)
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Then, if we consider the N units of the two form flux F through the basic 2-cycle, the
generated superpotential can be written as∫

F ∧K ∧K = N
∂F0

∂t
. (3.264)

In the same way, the superpotential generated by the N,L, P units of F,G,G6 fluxes can
be written as

gsW = N
∂F0

∂t
+ itL+ P. (3.265)

The above F0 is of course the topological string amplitude with RR flux turned on.
We assume that the topological string amplitudes are not modified at all even if the
RR flux are switched on. The following arguments may be helpful. Let us rewrite the
superpotential as

gsW =

∫
(F + i ∗G) ∧K ∧K +

∫
G6. (3.266)

The vector superfield with bottom component t has an auxiliary field in the superspace
of the form

t+ θ2(F + ∗iG) + ... (3.267)

where F and G are the R fluxes of the internal Calabi-Yau space. In the usual set up,
they are set to zero. Let F off

0 (t) be the genus 0 topological string amplitude without the
flux. If we turn N units of 2-form flux on, the superpotential is modified as∫

d4θF off
0 (t) →

∫
d4θF off

0 (t+ θ2F + ...) =

∫
d2θN

∂F off
0

∂t
, (3.268)

which is exactly the expected answer if F off
0 = F on

0 . Of course, this is not a proof.
The higher genus amplitudes also give rise to superpotential terms when we turn the

flux on. For N units of RR 2-form,∫
d4θW2gFg → N

∫
d2θW2g ∂Fg

∂t
. (3.269)

In this way, we see that under the assumption that the topological string amplitudes are
not modified by the RR fluxes, we can determine the terms generated by the fluxes. If
we have also NS fluxes, the expression gsW = N ∂F0

∂t
+ ... is the same. But in this case,

N,L, P also have imaginary pieces. We will denote N,L, P with keeping in mind that
they can be complex numbers.

76



3.5.2 Embedding the duality

Now we will interpret the topological string duality in terms of ordinary superstring
theory. Let us make clear what we should do. What we want to show is that type IIA
theory on the deformed conifold with N D6-branes wrapped on the S3 of T ∗S3 (open
side) is dual to the type IIA theory on the resolved conifold with RR flux but no D-branes
(closed side). The open topological string amplitudes compute the superpotential terms
of the gauge theory realized on the D-branes the form of which is∫

d2θFg,hW2gNhSh−1 (3.270)

where we defined S = gsTrW 2. The coefficient of Nh comes as follows. We have to
choose h− 1 holes to put the S fields and this can be done in h ways and the trace over
the hole without a field gives a factor of N . If we define F open

g (r) =
∑

h Fg,hr
h, the fixed

genus amplitude computes the term of the form

N

∫
d2θW2g

∂F open
g (S)

∂S
. (3.271)

Let us concentrate on the genus 0 amplitude. As we saw just now, the genus 0
amplitude of the open string computes

gsW = N
∂F open

0

∂S
+ αS + β (3.272)

where we showed explicitly the contribution coming from h = 2 in the form αS. The
closed string computes

gsW = N
∂F0

∂t
+ itL+ P. (3.273)

If both theories are dual to each other, these must be the same with suitable identifica-
tion. Let us assume that they are equivalent. Then, we should identify α, β with iL, P
respectively. Since the vacuum of both sides must satisfy W = dW = 0 and the W has
the same form, this will identify

〈S〉 = 〈gsTrW 2〉 = t, F open
0 = F0. (3.274)

The same argument for the general genus leads us to the condition

〈S〉 = t, F open
g = Fg. (3.275)

This is nothing but the condition for the duality between the topological strings explained
before. In this way, the topological string duality can be seen as a nontrivial check of the
duality of the superstring theory.
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Physical implications

Let us discuss some physics of this duality. The important thing is the fact that 〈S〉 	= 0,
that is, the gaugino condensation. We first look at this from the purely gauge theoretical
point of view. We consider the small S limit. The leading term with the lowest number
of derivatives is given by the superpotential of the form

1

gs

∫
d2θSY. (3.276)

Y is the chiral superfield with its bottom component iC + µ, where C is the vacuum
expectation value of the 3-form gauge field of IIA normalized with periodicity 2π and
µ is the volume of S3. Note that if Y is not a dynamical field, this is just a coupling
constant. In particular, the analog of the ’t Hooft coupling for this system is given by

Y

Ngs
. (3.277)

Therefore, we have a non-standard supersymmetric gauge theory with coupling constant
as a dynamical field. It is known that there is a nonperturbative effect and the superpo-
tential becomes

W =

∫
d2θ

(
1

gs
SY + iN2ξe−Y/N

)
(3.278)

where ξ is a constant. By the shift Y → Y + Y0, ξ can be identified with a shift in the
bare coupling constant of S

ξ = e−Y0/N . (3.279)

We can integrated out the field Y by requiring

∂YW = 0, (3.280)

which gives

Y = ln

(
S

iNξgs

)−N
. (3.281)

Then we have

Weff(S) =
1

gs

[
S ln

(
S

iNξgs

)−N
+NS

]
. (3.282)

Setting ∂SWeff = 0 gives[
S

iNξgs

]N
= 1 → S = iNξgse

2πil/N = iNgse
(−Y0+2πil)/N . (3.283)
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If we compare this expression with the gaugino condensate for standardN = 1 Yang-Mills
theory [84]

TrW 2 = iNΛ3e
−1

Ng2
Y M

+ 2πil
N , (3.284)

we have the identification that Λ corresponds to the string scale and 1/g2
YM = Y0. We

can also get this result from the dual closed topological string amplitude in the limit
t→ 0. In this limit the topological closed string amplitude is

F0 → −1

2
t2 ln t+ at2 + bt+ c (3.285)

which gives

W (S) =
1

gs
[N∂SF0(S) + αS + β] =

1

gs
(S ln(S−N) + const ·NS + const ·N). (3.286)

This is perfect agreement with the open string analysis. This simple calculation shows
the possibility that we might understand the non-perturbative dynamics of the gauge
theory in terms of the perturbative topological string amplitudes.

Solution for t

To be true, we must be more careful in one point in establishing the duality. We must pay
attention to the existence of the gravitational solution. When we try to solve some system
of equations, there are sometimes topological obstructions. Unless these obstructions are
absent, we cannot solve the equations. These phenomena are common in mathematics
and physics such as Mittag-Leffler problem, Calabi’s conjecture, and so on. Then, what is
the obstruction relevant here? The similar example with the same number of supercharges
was already studied from this point of view with the result that the conditions for the
existence of the gravitational solution are equivalent to the condition W = dW = 0
[66, 67]. This is the condition to preserve the N = 1 supersymmetry.

Let us solve the equations W = dW = 0. There are four parameters; t, N, L, P . But
N is fixed by the number of D6-branes. We solve the equations

∂tW = → L = iNF ′′
0 (3.287)

W = 0 → P = −NF ′
0 +NtF ′′

0 . (3.288)

From gsW = N∂tF0 + itL + P and the identification αS = itL, we see that a shift in L
is related to a shift in the bare coupling constant of the gauge system. In order to agree
with the bare coupling constant of the gauge theory, we have iL = µ/gs where µ is the
volume of the S3. Then, the value of t can be expressed in terms of N, µ, gs by using the
explicit form of the partition function F0 = 1

6
t3 −∑n>0

e−nt

n3 +quadratic term. The result
is

(et − 1)N = a · exp(−µ/gs) (3.289)
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where a is a constant which depends on the ambiguity in the quadratic part of F0. This
expression can be read as follows. For large µ, Ng2

YM ∼ Ngs/µ� 1 and t→ 0. Therefore,
in this case, the wrapped D-brane description is good and the resolved description is bad.
On the other hand, when t � 0, the resolved description is good. But the wrapped D-
brane description is bad since µ→ −∞.

3.6 M-theory flop and duality

Now we have come to one of the main themes. We have seen that the topological string
theories also have a duality property which is similar to the AdS/CFT correspondence.
By embedding the duality in the superstring, we have had a new duality. This duality
is between the type IIA theories with and without D-branes. Moreover the D-branes
which appear there are D6-branes. Therefore it is natural to ask, “How can we see this
duality in terms of M-theory?”. Atiyah, Maldacena, and Vafa [43] succeeded in deriving
the duality from simple geometrical way by embedding type IIA in M-theory. Here we
discuss their work.

3.6.1 Generalized flop

String case

Let us recall a flop. We considered a (2, 2) supersymmetric U(1) gauge theory with
four fields (a1, a2, b1, b2) and an FI term given by r and θ. The charges of the fields are
(1, 1,−1,−1) respectively. We set t = r + iθ. The low energy vacuum is given by

V : |a1|2 + |a2|2 − |b1|2 − |b2|2 = r. (3.290)

The gauge inequivalent solutions are V/U(1). This can be identified with O(−1)+O(−1)
bundle over CP1. When r > 0, the CP1 is identified as the locus b1 = b2 = 0 and the
normal directions are b1 and b2. If we replace t→ −t, we have the same system with the
role of the (a1, a2) ↔ (b1, b2) exchanged. We also saw that the region r > 0 and r < 0
are completely different phase but connected smoothly if we turn the parameter θ on.

Here, we consider a modified theory where we mod out the ai’s and bj ’s by some dis-
crete group G that does not necessarily act symmetrically under the exchange (a1, a2) ↔
(b1, b2). Let us denote the resulting theory as QG[t]. Because of the asymmetric action
of G, QG[−t] 	= QG[t]. Instead, we have

QG[−t] = QG′ [t] (3.291)

where G′ is related to G by conjugation with U

U : (a1, a2) ↔ (b1, b2)

G′ = UGU−1.
(3.292)
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Let us explain the effects of these processes in an example. Suppose G is generated by
the element

(a1, a2, b1, b2) → (ωa1, ω
−1a2, b1, b2) (3.293)

where ω is an n-th root of unity. Geometrically this corresponds to the action on O(−1)+
O(−1) bundle over CP1

(ζ1, ζ2, z) → (ωζ1, ωζ2, ω
−2z) (3.294)

where z is the coordinate of CP1 and ζi are the coordinates of the fiber. Note that
modding by this discrete group gives two orbifold singularities; the north and south poles
at the origin of ζi. On the other hand, the group G′ is generated by

(ζ1, ζ2, z) → (ωζ1, ω
−1ζ2, z). (3.295)

This action produces totally different singularities. It leads to an AN−1 singularity over
CP1. Therefore, modding by the discrete group gives a totally new dual theory. This is
just a warming up for the next subsection.

M-theory case

We first want to discuss the duality which can be obtained by the technique introduced
just now, but here we are interested in M-theory not in string theory. What we finally
want to have is the 4-dimensional N = 1 supersymmetric theory. Therefore, we must
consider the M-theory on G2 manifolds. We consider the following G2 manifold. Let ui,
vi, i = 1, 2, 3, 4 be real and impose the following condition.

(u2
1 + u2

2 + u2
3 + u2

4) − (v2
1 + v2

2 + v2
3 + v2

4) = V. (3.296)

The topology of this manifold is R4 × S3. For V > 0, the S3 is identified with the locus
vi = 0 and vi correspond to the R4 normal directions over S3. We denote the S3 defined
by vi = 0 as S̃3. When V < 0, the roles of the ui’s and vi’s are exchanged. And we denote
the S3 given by ui = 0 as Ŝ3. A G2 holonomy metric can be defined on this manifold by

ds2 = α2dr2 + γ2(w̃a)2 + β2(ŵa − 1

2
w̃a)2 (3.297)

with

α−2 = 1 − a3

r3
, β2 =

r2

9

(
1 − a3

r3

)
, γ2 =

r2

12
(3.298)

and w̃a and ŵa are left invariant one forms on two three-spheres which we defined as S̃3

and Ŝ3. The variable r fills one of the S3’s depending on the sign of V . In the above
form, r ≥ a and it fills the Ŝ3 associated with the 1-form ŵa. And S̃3 is not filled and
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topologically non-trivial. We can regard the S3’s as the SU(2) group manifolds. The
following formulas are useful

g = eiψ/2σ
3

eiθ/2σ
1

eiφ/2σ
3

(3.299)

i

2
waRσ

a = dgg−1,
i

2
waLσ

a = g−1dg (3.300)

w1
R + iw2

R = e−iψ(dθ + isinθdφ), w3
R = dψ + cosθdφ (3.301)

w1
L + iw2

L = eiφ(dθ − isinθdψ), w3
L = dφ+ cosθdψ (3.302)

dwaR = −1

2
εabcwbRw

c
R, dwaL =

1

2
εabcwbLw

c
L. (3.303)

From these definitions, we can see that the forms waL are invariant under left multi-
plications g → hLg and transform in the adjoint representation of SU(2) under right
multiplication g → ghR. In terms of these forms, the metric of the unit three-sphere can
be written as

ds2 =
1

4

∑
a

(waL)2 =
1

4

∑
a

(waR)2. (3.304)

The G2 metric has SU(2) × SU(2) × SU(2) isometry. Two SU(2)’s come from left
multiplication in each of the S3 while the third SU(2) arises from right multiplication on
both three-spheres by the same group element, or the diagonal subgroup of SU(2)R ×
SU(2)R. The last fact can be seen by noticing that the index a transforms in the adjoint
of SU(2) and is contracted in an SU(2) invariant way. Let us denote this isometry group
as

SU(2)1
L × SU(2)2

L × [SU(2)1
R × SU(2)2

R]D (3.305)

where L,R mean the left and right multiplication and 1, 2 denote which S3 they act. For
example, SU(2)1

L acts on ui by left multiplications. We associate SU(2)1 with the S̃3 and
SU(2)2 with the contractible Ŝ3.

The explicit form of the 3-form which defines the G2 structure is given by

ϕ =
a3

72
εabcw̃

aw̃bw̃c − 1

18
(r3 − a3)εabc(w̃

aŵbŵc − w̃aw̃bŵc) +
r2

3
drw̃aŵa

=
a3

72
εabcw̃

aw̃bw̃c + d

(
r3 − a3

9
w̃aŵa

)
.

(3.306)

From this, we see that ϕ is invariant under the isometry group of the metric. This means
that if we quotient the manifold by the subgroup of the isometry group, we still have a
manifold with G2 holonomy metric.

If we consider the limit r → ∞, the metric becomes

ds2 ∼ dr2 +
r2

9
[(w̃a)2 + (ŵa)2 − w̃aŵa]. (3.307)
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This is the cone on S̃3 × Ŝ3. Therefore, the space we are considering is asymptotic to a
cone on S̃3 × Ŝ3. In other words, the space can be made by eliminating the singularity
of the cone by giving a finite volume to one of the S3’s. If we give a finite volume to S̃3,
we have the above metric. On the other hand, if we give a finite volume to Ŝ3, we obtain
the metric with w̃a ↔ ŵa. These two manifolds are related by a flop.

In general, the number of moduli of the Ricci-flat metric of a compact manifold is
given by the dimension of the third homology class or b3. Therefore, the point on the
moduli space of Ricci-flat metrics is characterized by the volume of some basis for 3-cycles.
This corresponds physically to the lowest components of chiral fields in N = 1 multiplets.
Thus, we expect that the complexification of the volumes occurs. In fact, we have a 3-
form gauge field C in M-theory and its vacuum expectation values about each cycle give
the imaginary part of the volume. Let us denote this combination as VM = V + iC. Just
as in the string propagating on the resolved confolds, the phase structure of M-theory as
a function of VM is expected to have a singularity only at the origin V = C = 0 and we
can connect the two regions (V > 0 and V < 0) smoothly. Though there is no rigorous
arguments, this can be seen as follows. The fact that VM is the lowest component of a
chiral field implies that the moduli space of M-theory compactified on G2 manifolds are
given by analytic expressions therefore singularities occur in complex codimension 1 or
higher. For the theory we are considering, this means that the singularities can arise only
at V = C = 0 in particular not at V = 0, C 	= 0. Therefore as in the resolved conifold
case, two regions are connected smoothly. Let us denote the M-theory in the presence of
the back ground VM as Q[VM ]. It is evident that

Q[VM ] = Q[−VM ]. (3.308)

As in the string case, we can consider modding out by the action of the subgroup of the
isometry group. In this case, the duality property is expressed by

QG[−VM ] = QG′ [VM ] (3.309)

where G = UG′U−1 and U is the Z2 outer automorphism which exchanges the ui’s and
vi’s and acts on SU(2)’s as

U [SU(2)1,2
L,R]U−1 = SU(2)2,1

L,R. (3.310)

We take G as a ZN subgroup of SU(2)2
L. To write down its action explicitly, it is

convenient to introduce the complex notation like z1 = u1 + iu2. In terms of these, our
manifold is expressed as

(|z1|2 + |z2|2) − (|z3|2 + |z4|2) = V. (3.311)

Note that the G2 holonomy manifold is not a complex manifold. Therefore to write the
equation in terms of the complex coordinates has no intrinsic meaning other than for
simpler notations. In terms of these, the group action is defined by

g : (z1, z2, z3, z4) → (z1, z2, ωz3, ωz4). (3.312)
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Then, G′ is generated by

g′ : (z1, z2, z3, z4) → (ωz1, ωz2, z3, z4). (3.313)

Let us first consider QG[VM ] for VM � 0. In this case, the elements g ∈ G do not act
freely. There are fixed points at S̃3 defined by z3 = z4 = 0. Since the normal directions are
R4/ZN with the usual action of ZN on R4, this singularity is the AN−1 singularity. This
singularity gives rise to an SU(N) gauge symmetry on the singular locus. Therefore, we
have an N = 1 sypersymmetric SU(N) Yang-Mills theory on S̃3 times Minkowski space.

Let us next consider QG[VM ] for VM � 0. By the duality property, it is equal to
QG′ [VM ] for VM � 0. In this case, the elements g′ ∈ G′ act freely. This is because the
locus z1 = z2 = 0 is not on the manifold for VM � 0. There is no sign of gauge symmetry.
What does this mean? We discuss this in the next section.

3.6.2 Gauge theoretical interpretation

We see above that QG[VM ] for VM � 0 contains N = 1 Yang-Mills sector in four dimen-
sions. Recall that the Yang-Mills coupling are given by

1

g2
YM

+ iθ = VM (3.314)

where gYM should be regarded as the gauge coupling at the Planck scale. We know that
the effective coupling constant depends on the energy scale we probe. Then, the above
relation shows that VM also runs and its value depends on the energy scale. Let us denote
the running volume as VM(µren). Then VM(µren) decreases logarithmically as

VM(µren) = VM + const · ln
(
µren

Mpl

)
. (3.315)

Let us consider the region for small µren. In this case, VM(µren) is very small. Moreover,
it seems that we would get a negative volume. From the purely field theoretical point of
view, this cannot be allowed. However, we already know that this is a flop. Therefore,
we are led to the idea that for large VM � 0, we have an ordinary gauge theoretical
description QG[VM ] but as the energy scale becomes smaller and smaller until VM becomes
negative, we have an another description QG′ [VM ]. Recall that in terms of QG′ [VM ],
there is no singularity in geometry so we have N = 1 theory without any sign of gauge
symmetry. This is exactly what we expect for a confining phase!

3.6.3 Type IIA description

We have seen that not only in string theory but also in M-theory we can use the idea
of flop. And we saw that we have a candidate for describing the confining gauge theory.
However, our main claim was how we can derive the superstring duality from M-theory.
In order to do so, we must choose the eleventh dimension. There are many ways to do
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so. To derive the duality proposed by Vafa, we identify the 11-th direction with the
fibers of U(1) sitting in SU(2)2

L = Ŝ3. The ZN that we modded out is a subgroup of
it, that is, ZN ⊂ U(1) ⊂ SU(2)2

L = Ŝ3. Let us forget the modding out for a while
and consider how the M-theory flop described in the previous section can be seen from
the type IIA viewpoint. As we saw, the geometry for Q[VM ], VM � 0 is a “resolved”
conifold over S̃3 × Ŝ3, where the desingularization is done by replacing the singular point
with S̃3. With the identification of the eleventh dimension as above, this geometry can
be described as an ordinary deformed conifold T ∗S3 in type IIA. On the other hand,
Q[VM ], VM � 0 is a “resolved” conifold over S̃3 × Ŝ3, where we replace the singular point
with Ŝ3. Therefore, from a 10-dimensional viewpoint, this is an ordinary resolved confold.
Let us next consider the effect of modding out. The geometry for QG[VM ], VM � 0 has
AN−1 type singularity. The AN−1 type singularity in M-theory corresponds to the N D6-
branes in type IIA theory. Therefore QG[VM ] for VM � 0 corresponds to the deformed
conifold T ∗S3 with N D6-branes wrapped over S̃3. At large distances from D6-branes,
we detect the presence of the branes by the presence of a two form field strength on
the surrounding S2. If we lift up to M-theory, this means that the eleventh circle is
non-trivially fibered over the S2. The total topology of this fibration is S3/ZN . On the
other hand, QG[VM ] for VM � 0 or QG′[VM ] for VM � 0 has no singularity. Therefore
there is no D-branes. However, the eleventh circle is non-trivially fibered over S2. This
means that in the type IIA terms we have N units of RR 2-form flux through S2. In
this way, we can derive the duality from M-theory. Let us check whether the relations
of parameters are consistent with the type IIA duality. From the relation between the
M-theory parameters and type IIA ones, we deduce

VM = VIIA/gs = µ/gs. (3.316)

And the volume of the minimal S2 (Kähler class) is given by

t = −VM/N. (3.317)

This relation is correct for large t where the supergravity approximation is good. From
these two relations we have

t =
−VIIA
Ngs

=
−µ
Ngs

. (3.318)

This coincides with the large t limit of the result obtained before

(et − 1)N = a · exp(−µ/gs). (3.319)

The latter expression contains the contribution of world sheet instantons which is ne-
glected at the large volume limit.
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Chapter 4

Superstring on G2

In this chapter we discuss the CFT description of manifolds with G2 holonomy.

4.1 Fundamental properties

4.1.1 G2 CFT

Let us first construct the algebra that underlies sigma models with N = 1 superconformal
symmetry on manifolds with G2 holonomy. The idea is the same as in the Calabi-Yau
case. In that case, we start from N = 1 superconformal algebra and we include the U(1)
current. This is because we have a priori a U(n) symmetry when we consider the sigma
model on a Kähler manifold and the holomomy of the Calabi-Yau manifold SU(n) breaks
part of the symmetry leaving the U(n)/SU(n) = U(1) unbroken. Then the closure of the
algebra requires N = 2 superconformal algebra. We will construct the G2 CFT in the
same way [69].

We start from the flat 7 dimensional space and construct the chiral operators. We
assume that they continue to exist even after we perturb the metric to a non-trivial G2

holonomy. The N = 1 superconformal has two operators, the energy-momentum tensor
T (z) and its superpartner G(z). They are represented as

T (z) = Tb + Tf =
1

2

7∑
i=1

: J iJ i : −1

2

7∑
i=1

: ψi∂ψi : (4.1)

G(z) =
7∑
i=1

: J iψi : (4.2)

where we defined Jk = i∂xk . Their OPE’s are given by

Jk(z)J l(w) ∼ 1

(z − w)2
δkl, ψk(z)ψl(w) ∼ 1

z − w
δkl. (4.3)
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Then, what is the operator which captures the G2 structure? Recall that the G2 structure
is characterized by the 3-form ϕ which is invariant under the holonomy group. This
suggests that we should add the following operator to the N = 1 generators

Φ(z) =ψ1ψ2ψ5 + ψ1ψ3ψ6 + ψ1ψ4ψ7 −
ψ2ψ3ψ7 + ψ2ψ4ψ6 − ψ3ψ4ψ5 + ψ5ψ6ψ7.

(4.4)

The OPE of the algebra must close. Other operators are determined by this condition.
If we calculate the OPE of Φ with itself, we have

Φ(z)Φ(w) ∼ − 7

(z − w)3
+

6

z − w
X(w) (4.5)

where we have a new operator X with spin 2 defined by

X(z) = −ψ1ψ2ψ3ψ4 + ψ1ψ2ψ6ψ7 − ψ1ψ3ψ5ψ7 + ψ1ψ4ψ5ψ6 −
ψ2ψ3ψ5ψ6 − ψ2ψ4ψ5ψ7 − ψ3ψ4ψ6ψ7 − 1

2

∑
i

: ∂ψiψi :

= − ∗ Φ + Tf

(4.6)

where ∗Φ is defined by the dual form ∗ϕ. Next we compute the OPE of the form
G(z)Φ(w), and G(z)X(w). The result is

G(z)Φ(w) ∼ 1

z − w
K(w) (4.7)

G(z)X(w) ∼ −1

2

1

(z − w)2
G(w) +

1

z − w
M(w) (4.8)

where we again obtain the new operators K,M defined by

K(z) =J1ψ2ψ5 + J1ψ3ψ6 + J1ψ4ψ7 − J2ψ1ψ5 − J2ψ3ψ7 +

J2ψ4ψ6 − J3ψ1ψ6 + J3ψ2ψ7 − J3ψ4ψ5 − J4ψ1ψ7 − J4ψ2ψ6 +

J4ψ3ψ5 + J5ψ1ψ2 − J5ψ3ψ4 + J5ψ6ψ7 + J6ψ1ψ3 + J6ψ2ψ4 −
J6ψ5ψ7 + J7ψ1ψ4 − J7ψ2ψ3 + J7ψ5ψ6

(4.9)

and

M = − J1ψ2ψ3ψ4 + J1ψ2ψ6ψ7 − J1ψ3ψ5ψ7 + J1ψ4ψ5ψ6 + J2ψ1ψ3ψ4 −
J2ψ1ψ6ψ7 − J2ψ3ψ5ψ6 − J2ψ4ψ5ψ7 − J3ψ1ψ2ψ4 + J3ψ1ψ5ψ7 +

J3ψ2ψ5ψ6 − J3ψ4ψ6ψ7 + J4ψ1ψ2ψ3 − J4ψ1ψ5ψ6 + J4ψ2ψ5ψ7 +

J4ψ3ψ6ψ7 − J5ψ1ψ3ψ7 + J5ψ1ψ4ψ6 − J5ψ2ψ3ψ6 − J5ψ2ψ4ψ7 +

J6ψ1ψ2ψ7 − J6ψ1ψ4ψ5 + J6ψ2ψ3ψ5 − J6ψ3ψ4ψ7 − J7ψ1ψ2ψ6 +

J7ψ1ψ3ψ5 + J7ψ2ψ4ψ5 + J7ψ3ψ4ψ6 +
∑
i

(
1

2
J i∂ψi − 1

2
∂J iψi

)
.

(4.10)
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The nontrivial fact is that the operator expansion algebra formed by the six operators
T,G,Φ, X,K and M closes. The OPE’s of these operators are given by

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) (4.11)

T (z)G(w) ∼ 3

2

1

(z − w)2
G(w) +

1

z − w
∂G(w) (4.12)

G(z)G(w) ∼ 2c/3

(z − w)3
+

2

z − w
T (w) (4.13)

T (z)Φ(w) ∼ 3/2

(z − w)2
+

1

z − w
∂Φ(w) (4.14)

G(z)Φ(w) ∼ 1

z − w
K(w) (4.15)

Φ(z)Φ(w) ∼ − 7

(z − w)3
+

6

z − w
X(w) (4.16)

Φ(z)X(w) ∼ − 2

15

1

(z − w)2
Φ(w) − 5

2

1

z − w
∂Φ(w) (4.17)

Φ(z)K(w) ∼ − 3

(z − w)2
G(w) − 3

z − w

(
M +

1

2
∂G

)
(w) (4.18)

Φ(z)M(w) ∼ 9

2

1

(z − w)2
K(w) − 1

z − w

(
3 : G(w)Φ(w) : −5

2
∂K(w)

)
(4.19)

T (z)X(w) ∼ −7

4

1

(z − w)3
+

2

(z − w)2
X(w) +

1

z − w
∂X(w) (4.20)

G(z)X(w) ∼ −1

2

1

(z − w)2
G(w) +

1

z − w
M(w) (4.21)

X(z)X(w) ∼ 35

4

1

(z − w)4
− 10

(z − w)2
X(w) − 5

z − w
∂X(w) (4.22)

X(z)K(w) ∼ − 3

(z − w)2
K(w) +

3

z − w
(: G(w)Φ(w) : −∂K(w)) (4.23)

X(z)M(w) ∼ −9

2

1

(z − w)3
G(w) − 1

(z − w)2

(
5M +

9

4
∂G

)
(w) +

1

z − w

(
4 : G(w)X(w) : −7

2
∂M(w) − 3

4
∂2G(w)

)
(4.24)

T (z)K(w) ∼ 2

(z − w)2
K(w) +

1

z − w
∂K(w) (4.25)

G(z)K(w) ∼ 4

(z − w)2
Φ(w) +

1

z − w
∂Φ(w) (4.26)

K(z)K(w) ∼ − 21

(z − w)4
+

6

(z − w)2
(X − T )(w) +

3

z − w
(∂X − ∂T )(w) (4.27)
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K(z)M(w) ∼ − 15

(z − w)3
Φ(w) − 11

2

1

(z − w)2
∂Φ(w) +

3

z − w
(: G(w)K(w) : −2 : T (w)Φ(w) :) (4.28)

T (z)M(w) ∼ −1

2

1

(z − w)3
G(w) +

5

2

1

(z − w)2
M(w) +

1

z − w
∂M(w) (4.29)

G(z)M(w) ∼ 7

2

1

(z − w)4
+

1

(z − w)2
(T + 4X)(w) +

1

z − w
∂X(w) (4.30)

M(z)M(w) ∼ − 35

(z − w)5
+

1

(z − w)3
(20X − 9T )(w) +

1

(z − w)2

(
10∂X − 9

2
∂T

)
(w)

+
1

z − w

(
3

2
∂2X(w) − 3

2
∂2T (w) − 4 : G(w)M(w) : +8 : T (w)X(w) :

)
(4.31)

where the central charge is c = 21
2
. This is the definition of the G2 CFT. An important

fact is that above algebra contains two N = 1 superconformal subalgebras. One is given
by the original N = 1 algebra generated by T and G. And the other is generated by
TI = −1

5
X and GI = i√

15
Φ. The latter has central charge cI = 7

10
. Therefore, the G2

CFT contains the tri-critical Ising model. Moreover, there is a decomposition of the form

TI(z)Tr(w) ∼ 0, T (z) = TI(z) + Tr(z). (4.32)

This fact allows us to classify the highest weight representation of our algebra by using two
numbers: tri-critical Ising weight and the eigenvalue of the zero mode of the remaining
part of the energy-momentum tensor. We use the notation [∆I ,∆r] for operators that
correspond to the Virasoro highest weights |∆I ,∆r〉. The first dimension is the dimension
of the tri-critical Ising part and the second is the dimension of the remaining Virasoro
algebra Tr.

The emergence of the tri-critical Ising model is not an accident. In the 7-dimensional
manifolds, we have a priori SO(7) symmetry or more precisely SO(7) current algebra at
level 1. However, we are left with only the residual symmetry SO(7)/G2 because of the
holonomy. SO(7)/G2 is no longer a group but we can see physically that this is the coset
model. SO(7) at level 1 has central charge 7/2 and G2 at level 1 has 14/5. Therefore,
the central charge for the residual symmetry is

7

2
− 14

5
=

7

10
, (4.33)

which is precisely the central charge of the tri-critical Ising model. Therefore, the exis-
tence of the tricritical Ising model is a consequence of the G2 holonomy.

4.1.2 Heighest weight states and a twist operator

From the fact that the total energy-momentum tensor is a sum of two commutative
Virasoro generators one of which is tri-critical Ising, we see that unitary highest weight
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representations must have the following tri-critical Ising dimensions

[0]Vir,

[
1

10

]
Vir

,

[
6

10

]
Vir

,

[
3

2

]
Vir

(4.34)

or in N = 1 terms

NS : [0],

[
1

10

]

R :

[
7

16

]
,

[
3

80

]
.

(4.35)

We first show that the Witten’s index (−1)F for the full theory can be identified with
the (−1)FI which is the Z2 symmetry of the tri-critical Ising model viewed as an N = 1
superconformal system. Our algebra has three bosonic generators T,X,K and three fer-
minonic generators G,Φ,M . Let us expand these in modes as A(z) =

∑
nAnz

−n−∆. The
commutation relations of these modes are found in [69]. We use the following commuta-
tion relations.

[Gn, Xm] = −1

2

(
n+

1

2

)
Gn+m +Mn+m (4.36)

[Xn, Km] = 3(m+ 1)Kn+m + 3 : GΦ :n+m (4.37)

[Xn,Mm] =

[
9

4
(n+ 1)

(
m+

3

2

)
− 3

4

(
n+m+

3

2

)(
n+m+

5

2

)]
Gn+m

−
[
5(n+ 1) − 7

2

(
n+m+

5

2

)]
Mn+m + 4 : GX :n+m (4.38)

{Gn,Mm} = − 7

12

(
n2 − 1

4

)(
n− 3

2

)
δn+m,0 +

(
n +

1

2

)
Ln+m + (3n−m)Xn+m

(4.39)

{Mn,Mm} = −35

24

(
n2 − 1

4

)(
n2 − 9

4

)
δn+m,0 +

[
3

2
(n+m+ 2)(n+m+ 3)

− 10

(
n+

3

2

)(
m+

3

2

)]
Xn+m +

[
9

2

(
n +

3

2

)(
m+

3

2

)

− 3

2
(n+m+ 2)(n+m+ 3)

]
Ln+m − 4 : GM :n+m +8 : LX :n+m (4.40)

where we defined : AB :n=
∑

p<−∆A−1ApBn−p + (−1)AB
∑

p>∆A
Bn−pAp. The important

property is that

Φ†
n = −Φ−n, K†

n = −K−n, M †
n =

1

2
G−n −M−n. (4.41)

From this property and the commutation relations, we see that

|M−1/2|0, 0〉|2 = 〈0, 0|M †
1/2M−1/2|0, 0〉 = 0 (4.42)

|M−3/2|0, 0〉|2 = 〈0, 0|M †
3/2M−3/2|0, 0〉 = 0. (4.43)
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On the other hand, the Z2 assignments for the tricritical is

[0]+,

[
1

10

]−
,

[
6

10

]+

,

[
3

2

]−
. (4.44)

To prove that (−1)F = (−1)FI , it is sufficient to derive the tri-critical Ising dimensions
of our generators and see if the two Z2 assignments agree. To see this, let us calculate as
follows

T I0G−3/2|0, 0〉 = −1

5
X0G−3/2|0, 0〉

=
1

10
G−3/2|0, 0〉 − 1

5
M−3/2|0, 0〉

=
1

10
G−3/2|0, 0〉.

(4.45)

This shows

G−3/2|0, 0〉 =

∣∣∣∣ 1

10
,
14

10

〉−
(4.46)

where − denotes the (−1)FI . Then, the similar calculation gives us

L−2|0, 0〉 = |2, 0〉+ + |0, 2〉+, X−2|0, 0〉 = |2, 0〉+

K−2|0, 0〉 =

∣∣∣∣ 6

10
,
14

10

〉+

,M−5/2|0, 0〉 = a

∣∣∣∣ 1

10
,
24

10

〉−
+ b

∣∣∣∣ 1

10
+ 1,

14

10

〉−
.

(4.47)

Then, we easily see that (−1)F = (−1)FI . This simple fact implies that in the NS sector
of the full theory only NS dimensions of tri-critical model show up and similarly for
the R sector. We next discuss the analog of the spectral flow operator. Recall that
supersymmetry requires that the Ramond vacuum for the whole theory has dimensions
c
24

= D
16

= 7
16

. This lead to the following unitary highest weight representations of our
theory in the Ramond ground state∣∣∣∣ 7

16
, 0

〉 ∣∣∣∣ 3

80
,
2

5

〉
. (4.48)

Note that there exists a ground state in the R sector which entirely consists of the tri-
critical Ising sector. The operator corresponding to the state | 7

16
, 0〉 plays the same role

as the spectral flow operator in N = 2 theories which is also entirely constructed out
of the U(1) piece of N = 2. To have one spacetime supersymmetry we want to have a
theory with only one Ramond ground state of the form | 7

16
, 0〉. To see that the operator

is the spectral flow operator, let us study the action of [ 7
16
, 0] on various states. We have

unique fusion rules for the operator [ 7
16

][
7

16

] [
7

16

]
= [0]Vir +

[
3

2

]
Vir

= [0] (4.49)[
7

16

] [
3

80

]
=

[
1

10

]
Vir

+

[
6

10

]
Vir

=

[
1

10

]
. (4.50)
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The existence of this operator enables us to predict the existence of certain states in the
NS sector. This is because of the fact that it sits entirely in the tri-critical Ising part
of the theory therefore its OPE with other fields depend only on the tri-critical Ising
content of other state and thus by considering the OPE of the operator corresponding to
[ 7
16
, 0] with the other states in the R sector we end up with certain special NS state. The

Ising spin field [ 7
16

] maps Ramond ground state | 7
16
, 0〉 to NS vacuum |0, 0〉 and vice versa.

Similarly, the spin field [ 7
16
, 0] maps the state | 3

80
, 2

5
〉 to a primary state in the NS sector

| 1
10
, 2

5
〉. This procedure can be repeated in opposite direction; the spin field maps | 1

10
, 2

5
〉

to | 3
80
, 2

5
〉. In this way, the tri-critical fusion rule leads to the prediction of existence of

the following NS sector

NS : |0, 0〉,
∣∣∣∣ 1

10
,
2

5

〉
. (4.51)

Note that the state | 1
10
, 2

5
〉 has dimension 1

2
and is primary. This means that G−1/2| 1

10
, 2

5
〉

is of dimension 1 and preserves N = 1 supersymmetry and thus a candidate for the
exactly marginal pertubation of the theory. This is indeed the case, which is proved in
[69].

4.1.3 Geometry and G2 CFT

Let us recall some basic facts about Witten’s index. If we consider the Hilbert space on a
circle with periodic boundary conditions (Ramond sector) of a 2-dimensional supersym-
metric sigma model with n-dimensional target space M , we know

Tr(−1)F exp(−βH) = χ(M) =
n∑
i=0

(−1)ibi = n+ − n− (4.52)

where χ(M) is the Euler number of M , bi are the Betti numbers of M , and n+, n− denote
the total numbet of even and odd dimensional cohomologies. The important idea is that
only the ground states H = 0 contribute to the index and in a suitable limit the ground
states are related to the harmonic forms on M and (−1)F can be identified with the
parity of the degree of the harmonic forms up to an overall sign. It is also known that
the number of ground states of the theory are equal to the number of harmonic forms.
This means

Tr exp(−βH)|β→∞ = n+ + n−. (4.53)

We note here two important facts. One is that from the above two physical computations,
we can determine only n+ and n− not all bi. This implies the limitation of N = 1 SCFT
as a probe of geometry. The other is that the sign of (−1)F cannot be fixed canonically.
Therefore, we can only deduce n+ and n− up to the exchange n+ ↔ n− from the physical
computations. The failure in fixing the sign reminds us of the mirror symmetry. In
fact, we can understand the mirror symmetry from this point of view. Suppose M is
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a Kähler manifold, the fermions are complex and so there is a U(1) conserved charge
corresponding to the fermion number F whose action on ground states can be identified
with the number of holomorphic forms p minus the number of antiholomorphic forms q
of the harmonic form

F = p− q. (4.54)

By decomposing the ground state to eigenstates of F we can compute the number of
cohomology elements with a given value of p− q. If in addition M is Calabi-Yau, there
is the chiral fermion number FA which is conserved non-perturbatively. The action of FA
on ground states can be identified with

FA = p + q − d (4.55)

where d is the complex dimension of M . From these, we can compute p, q as

p− d

2
=

1

2
(FA + F ) = FL (4.56)

q − d

2
=

1

2
(FA − F ) = FR. (4.57)

Just as in the previous calculation, there is an ambiguity in the identification of the sign
of FR, FL. This means that we can determine the Hodge numbers hp,q only up to the
ambiguity

hp,q ↔ hd−p,q. (4.58)

As we explained, this is the mirror symmetry of the Calabi-Yau manifold. Then, this
implies the generalization of the mirror symmetry to G2 manifolds. In fact, Shatashvili
and Vafa claim that the degree of ambiguity left by being unable to decipher all the
topological aspects of the target manifold using the algebraic formulation of quantum
field theory should be explained by having topologically inequivalent manifolds allowed
by the ambiguity to lead to the same quantum field theory up to deformation in the
moduli of the quantum field theory. They call this a generalized mirror conjecture.

We next discuss the dimension of moduli space. The dimension of moduli space of
deformation of G2 manifolds is b3. However, the dimension of moduli space of the CFT
is bigger than the geometrical one. This is because we can add the antisymmetric 2-form
to the action and this has no geometrical analog. Therefore, we have

dim(moduliphysical) = dim(moduligeometrical) + b2. (4.59)

As in the Calabi-Yau case, we are interested in manifolds with b1 = 0 in order to realize the
minimum number of covariantly constant spinor. In other words, for the manifold to have
exactly G2 holonomy, the b1 must vanish. Therefore, in the case of G2 holonomy, there are
two independent betti numbers b2, and b4 because of the Poincaré duality b3 = b4, b5 = b2.
As discussed, we can physically know only the sum b2 + b4 = b2 + b3 = b5 + b3, that is,
we can compute only the dimension of moduli space.
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4.1.4 Left-Right sector

Now we are ready to discuss the non-chiral sector. Our first claim is that there are only
following states in the (R,R) ground states

(R,R) :

∣∣∣∣
(

7

16
, 0

)
L

;

(
7

16
, 0

)
R

;±
〉
,

∣∣∣∣
(

3

80
,
2

5

)
L

;

(
3

80
,
2

5

)
R

;±
〉
. (4.60)

The meaning of ± will be explained momentarily. In principle, we have two other possi-
bilities of left-right combinations; |( 7

16
, 0)L; ( 3

80
, 2

5
)R;±〉 and the same with L ↔ R. The

reason for this is as follows. By using the fusion rules (4.49),(4.50), we see that primary
field corresponding to first ground state of the above two would lead to the highest weight
state |(0, 0)L; (

1
10
, 2

5
)R〉 in the NS sector if it acts on the states |( 7

16
, 0)L; ( 3

80
, 2

5
)R;±〉. But

this operator has total dimension 1
2

and is chiral. So, we get an additional chiral operator
with spin 1

2
which is not present in our original extended chiral algebra. Therefore, these

additional states do not exist in general.
We next explain the meaning of ±. If we act Φ0 on the ground states we have

{Φ0, Φ̄0} = 0,Φ2
0 = Φ̄2

0 = 6
15

. Thus, they form a 2-dimensional representation. The ±
signs reflect this fact and denote the two different (−1)F assignments. The fact that the
states exist in pairs is a consequence of the fact that in odd dimensional manifolds, the
dual of each cohomology is another cohomology with different degree mod 2. Therefore
we can say that the + states correspond to even cohomology elements and − to the odd.
So, we can concentrate on the even cohomology elements.

We next act the state |( 7
16
, 0)L; ( 7

16
, 0)R; +〉 on all + Ramond ground states. Then, we

obtain the following (NS,NS) states

(NS,NS) : |(0, 0)L; (0, 0)R〉
∣∣∣∣
(

1

10
,
2

5

)
L

;

(
1

10
,
2

5

)
R

〉
. (4.61)

The latter states have dimension (1
2
, 1

2
) and as mentioned before or proved in [69], these

are the exactly marginal operators that preserve the G2 structure. Therefore the number
of such states are given by b2 + b4. And it is evident that the number of these states
are the same as the number of states |( 3

80
, 2

5
)l; (

3
80
, 2

5
)R; +〉. The total number of Ramond

ground states is b0 +b2+b4 +b6 = 1+b2+b4 +b1 = 1+b2+b4. This shows the consistency
between the geometrical and physical considerations. The holonomy is exatly G2 requires
b1 = 0. On the other hand, we see above that the uniqueness of the state |( 7

16
)L; ( 7

16
)R; +〉

leads us to the same conclusion.
Now we discuss the relations to compactification of string theory. If we compactify

the string theory on G2 manifolds, we have N = 2 supersymmetry for type II and N = 1
for heterotic strings. We construct the corresponding supersymmetry generators. There
is a standard ansatz for target space supersymmetry current [82]. This is

JL,R = e−
φgh
2 Sα3 σ

L,R
7
16

(4.62)

where φgh is a bosonized 10-dimensional ghost field, Sα3 are 3-dimensional spinor and σ
is the tri-critical Ising model spin field. This operator has dimension 1. The dimension
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of 10-dimensional ghost part is always equal to 3
8
, dimension of 3-dimensional spin field

is 3× 1
16

and the dimension of σ is 7
16

. These add up to 1. Note that σ has a unique OPE
with the vacuum [0] in the right hand side and we can consider J as a chiral operator. The
subscript L,R explains this. From this operator it is easy to construct the 3-dimensional
supersymmetry generators. They are

QL,R =

∮
JL,R. (4.63)

One can show that these generate the supersymmetry algebra.

4.1.5 Example of Joyce

Here we study one of the examples constructed by Joyce [71]. Let us consider T 7 modded
out by Z2

3 and denote the generators of the Z2’s as α, β, γ. We represent each of them
by a pair of row vectors. The holonomy part of these elements, which are simultaneously
diagonal, are represented by a row of seven (±1)’s. And they are accompanied by the
translation on the torus, which is again written by another row vector. The seven co-
ordinates xi are taken to have period 1. In terms of these the action of α, β, γ is given
by

α = [(−1,−1,−1,−1, 1, 1, 1); (0, 0, 0, 0, 0, 0, 0)] (4.64)

β = [(−1,−1, 1, 1,−1,−1, 1); (0,
1

2
, 0, 0, 0, 0, 0)] (4.65)

γ = [(−1, 1,−1, 1,−1, 1,−1); (
1

2
, 0, 0, 0, 0, 0, 0)]. (4.66)

Note that the above holonomies preserve ϕ. However, they do not sit in an SU(3)
group. Let us first look at the untwisted Ramond sector. They can be identified with
the cohomology elements of the torus. We project out all the cohomologies except for
the following ones. H0, H7 which are one dimensional and 7 in H3 and 7 in H4. The
seven invariant elements precisely correspond to the seven monomials in the definition of
ϕ and ∗ϕ.

We next consider the sectors which give rise to new ground states in the Ramond
sector. For this to happen, there must be fixed points of the group action. Out of the
seven non-trivial elements only three have fixed points. The three elements are α, β and
γ. The fixed points of α consist of sixteen 3-tori and each of them has 8 cohomology
elements, (b0, b1, b2, b3) = (1, 3, 3, 1). To get the final answer, we must project to invariant
subsectors under the action of the full group. On this set, the β and γ act freely and leave
us with four invariant combinations of the sixteen 3-tori. Therefore, we have four copies
of (1, 3, 3, 1) added to the Ramond ground state from this sector. Similar analysis for β
gives us again four copies of 3-tori. We get a contribution to the b2 + b4 = 4× 4× 2 = 32
and to the b3 + b5 = 4 × 4 × 2 = 32 from the α and β sector. On the other hand, the γ
sector projected to its invariant fixed point set gives eight copies of T 3/Z2. The Z2 acts
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in the neighborhood of each of these T 3’s by

(y1, y2, y3, z1, z2) → (
1

2
+ y1,−y2,−y3, z1,−z2) (4.67)

where yi denote the coordinates of the fixed T 3 and the zi denote the orthogonal direction
in complex notation. That is, the zi’s are those that goes to minus itself under the action
of γ. Of the cohomologies of each of the 3-tori from the above Z2 action only two elements
survive, two in odd and two in even. Therefore, we get the additional 16 elements to
b2 + b4 and 16 to b3 + b5 from the total of eight 3-tori. In all, we have

b0 = 1, b2 + b4 = 55, b3 + b5 = 55, b7 = 1. (4.68)

Therefore, we have a 55 dimensional moduli space. 7 of them come from the untwisted
sector and correspond to the 7 radii of T 7. Other 48 come from blow up modes in the
twisted sectors.

Now we discuss how these moduli fit with the CFT. We concentrate on untwisted
moduli. The primary superconformal field of dimension 1

2
which correspond to the un-

twisted moduli are ψi. From the Xψ OPE, we see that ψi has dimension −1/2 under
X0, which means that ψi have dimension (TI)0 = −X0/5 = 1/10 for the tri-critical part
of the energy momentum tensor. This coincides with the prediction of the previous sec-
tion. Moreover, G−1/2ψ

i = ∂X i = J i and they commute with TI = −X0/5. This means
that the tri-critical dimension of the moduli is 0, which is necessary to preserve the G2

structure. In this way, we see that the geometrical analysis is consistent with the CFT
description.

As we explained, physically we can know the sum b2 + b4 but cannot identify b2 and
b4 separately. The above example indeed implies this. However, this fact is also reflected
mathematically. There are singularities in the manifold considered just now. To get
a smooth manifold, we must resolve the singularities. However there are inequivalent
ways to resolve them with different Betti numbers b2, b4 but the same b2 + b4. In fact,
Joyce found that depending on how the singularities are resolved, the resulting smooth
manifolds have following Betti numbers

b2 = 8 + l, b4 = 47 − l (4.69)

where l runs from 0 to 8. The meaning of this is as follows. We know physically that the
moduli space is smooth near the orbifold points. Therefore, the difference between these
answers have to do with turning on different marginal operators. Thus, this example
supports the conjecture that topologically distinct manifolds coming from the ambiguity
of b2, b4 give rise to the same conformal field theory. However, whether this is generally
correct is not understood yet.

4.1.6 Topological twist?

We have seen that G2 compactifications are very similar to the N = 2 superconfor-
mal field theories which correspond to Calabi-Yau compactification. Both of them have
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N = 1 space-time supersymmetry upon heterotic compactification and the supersym-
metry is obtained from the spectral flow operator. Basically the spectral flow operator
is responsible for the twisting. Therefore, it is natural to expect that the G2 CFT has
topological theories, too. As we will see, it seems that there is indeed a topological theory
for G2. However, whether the topological theory exists is far from well-understood.

Recall that the twisting is the same as the insertions of 2g − 2 of these spectral flow
operators. If we consider on the sphere, we can define the twsited correlation functions
by insertions of two spin fields σ 7

16

〈V1(z1, z̄1)...Vn(zn, z̄n)〉twisted = 〈σ(0)V1(z1, z̄1)...Vn(zn, z̄n)σ(∞)〉untwisted. (4.70)

Let us check that this works well. The tri-critical Ising model is one of the minimal
models. Such models have well-known free field representations. The bosonized tri-
critical Ising stress tensor and supercurrent have the form

TI = −1

5
X = (∂ϕ)2 +

√
2α0∂

2ϕ = (∂ϕ)2 +
1

2
√

5
∂2ϕ (4.71)

GI =
i√
15

Φ = e
6√
5
ϕ

(4.72)

where we defined ϕ = i√
2
φ and the φ is a free boson with ∂φ(z)∂φ(w) ∼ −1

(z−w)2
. And

α0 = 1
2
√

10
is a background charge. The operator [ 7

16
] is represented as[

7

16

]
= e

− 5
2
√

5
ϕ
. (4.73)

Then, inserting the spin fields induces the change of background charge to α̃0 = 3√
10

.
The change in the charge at infinity induces the change of the energy momentum tensor.
The new energy momentum tensor is now given by

Ttwisted = (∂ϕ)2 +
3√
5
∂2ϕ. (4.74)

Therefore, the new central charge is ctwisted = 1 − 12α̃0
2 = −98

10
. As we did not change

the remaining part Tr, and the remaining part has central charge cr = 98
10

, the new total
central charge becomes

ctwisted + cr = −98

10
+

98

10
= 0. (4.75)

This indeed implies the existence of a topological theory. After twisting, we get the
special states in the NS sector that have total dimension 0. These are∣∣∣∣ 1

10
,
2

5

〉
→
∣∣∣∣− 2

5
,
2

5

〉
(4.76)∣∣∣∣ 6

10
,
2

5

〉
→
∣∣∣∣− 2

5
,
2

5

〉
(4.77)∣∣∣∣32 , 0

〉
→ |0, 0〉. (4.78)
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These states are of course those we would expect for topological observables. Another
remarkable fact is that the operators forming a G2 CFT algebra have integral dimensions
after twisting. G has dimension 1, Φ dimension 0, M dimension 2, and K dimension 1.
Thus G is a candidate for BRST current of the topological theory.
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Chapter 5

Conclusion and summary

We have seen that the conifold transition provides us with interesting dualities from both
string and field theoretical points of view. We first showed that the transition between
small resolutions is smooth and we know that there can be a smooth change of topology
in nature. Then, we performed topological twists, which gives rise to topological field
theories. And then, we found the relations to untwisted theories. By making full use of
such relations, we could know all genus partition functions of topological closed strings.
We next considered topological open strings and demonstated that the topological open
string with “D-branes” is equivalent to the Chern-Simons theory on the “D-branes”. And
we found the duality between topological open and closed strings. Then, we embeded the
duality in superstring and finally we showed that this duality can be understood as an
M theory flop. The duality indicates the possibility of understanding non-perturbative
dynamics of the gauge theory such as instanton effects, gaugino condensation, quark
confinement, and so on by using only the perturbative methods.

We also considered a CFT description of G2 manifolds. We constructed the G2 CFT
and found that it contains the tri-critical Ising model and that this is the sign of the
G2 holonomy. Then we studied highest weight states and found that there is a unique
operator which serves as a spectral flow operator. And we discussed the relations to
geometry and knew that we can only know the dimension of moduli space from physical
computations. And we considered an example of Joyce and it supported the generalized
mirror conjecture. Then, we discussed a trial to topological twists. Although there are
some indications that there are many interesting phenomena in CFT description of G2

manifolds, these are not well understood.
Recently, Dijkgraaf and Vafa considered the B model version of the duality. The B

model version of

Chern-Simons ↔ Type IIA

is

Holomorphic Chern-Simons ↔ Type IIB.
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In [55], they showed that the B model topological strings on local Calabi-Yau threefolds
are the large N duals of matrix models. By using these facts, they found that the
superpotentials of N = 1 supersymmetric gauge theories can be computed by the planar
diagrams of the matrix model [56]. This is the “T-dual” version of the duality that we
have explained. One of the advantages of this work comes from the fact that computing
the planar amplitudes of the matrix model is generally easier than the computation of
the topological string amplitudes. This area has now received much attention.

On the other hand, CFT description of the G2 manifolds is not well understood yet.
Some non-trivial examples are constructed. In [74, 76] the G2 manifolds of the form
(CY3 × S1)/Z2 are constructed by using the Gepner constructions, and in [78] CFT is
realized by the coset construction. One of the main problems of the CFT approach is
that except for some examples, the geometrical meanings of the models are unknown.
The difficulty of the G2 comes from the fact that unlike Calabi-Yau manifolds the G2

manifolds are not complex manifolds.
We have discussed mainly new dualities. Understanding the non-perturbative physics

of string theories and field theories is the main theme of current elementary particle
physics. Though the duality we have discussed cannot give all what we want to know,
it is certainly the cornerstone. And behind the interesting phenomena we have discussed
in this review underlie the abundant structures of N = 1 supersymmetric theories and
N = 2 superconformal field theories.
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