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1 Introduction

1.1 Overview
This thesis contributes to the theory of “integrable systems” , i.e., systems of “integrable” differen-
tial (or difference) equations. Roughly speaking, “integrability” should mean an exact (in contrast
to numerical) method to solve differential equations. A given system of differential equations
should certainly be called ”integrable”

• if the system can be transformed into a linear one. Linear equations are (at least in principle)
always completely solvable.

• if there is a method to solve the initial data problem exactly.

For Hamiltonian systems with a finite number of degrees of freedom there is the notion of “Liou-
ville integrability” [1]. The existence of a sufficient number of Poisson-commuting constants of
motions implies the complete integrability (solvability) of the equations of motion. In the case of
an infinite number of degrees of freedom, where we are dealing with partial differential (or differ-
ence) equations (PDEs), there is no analog of this Liouville theorem. Partially guided by results
for systems with a finite number of degrees of freedom, several “integrability aspects” have been
proposed which, however, do not necessarily imply a strong form of “integrability” :

• Lax pair or zero-curvature representation [2, 3] : The system is expressed as compatibility
(integrability) condition of a linear system (see Sec.1.2).

• A formulation as an infinite-dimensional Hamiltonian system with an infinite number of
Poisson-commuting conserved quantities. However, there is no analog of the Liouville the-
orem. A weaker condition would be :

Existence of an infinite number of (independent) conservation laws.

• Bi-Hamiltonian (or multi-Hamiltonian) structure [4] : More than one Hamiltonian formula-
tion for the dynamical system.

• Bäcklund transformations [5] : Solution-generating methods which produce a new solution
from a given one.

• Inverse scattering theory [6, 7] : A method to construct the solution of a PDE for given
initial data via calculation of scattering data of a Schrödinger-type operator (or a suitable
generalization).

• Riemann-Hilbert-Problem (Riemann-Hilbert factorization, Birkhoff decomposition) [1].

• Formulation in terms of Hirota bilinear equations : “Bi-linearization” of a PDE [5, 8, 9].

• Painleve’ property [5, 10] : There is a conjecture that every (“complexified”) ordinary dif-
ferential equation obtained from an “integrable” partial differential equation by a similarity
reduction (typically determined by a symmetry group of the PDE) has the Painleve’ prop-
erty that the only moving singularities (those which depend on the initial conditions) of its
solutions are rational.
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• Infinite number of symmetries [11, 12] in the sense of commuting flows : “hierarchy” of
PDEs.

In this work we will concentrate on the hierarchy aspect (see also [13–15]). More precisely, we
explore hierarchies associated with the (anti-) self-dual Yang-Mills (sdYM) equations.

The (anti-) sdYM equations play an important role in mathematics and physics. With Euclidean
signature of the metric, special solutions of the (anti-) sdYM equations describe “instantons”, i.e.,
minima of the Euclidean Yang-Mills action [16]. The (anti-) sdYM equations are also a central
research object in the field of “integrable systems” . Many “integrable” systems, which include
most of the known soliton equations, such as the Korteweg-de Vries (KdV) equation , N-wave sys-
tem, nonlinear Schrödinger (NLS) equation , Kadomtsev-Petviashvili (KP) equation , have been
obtained by reductions, i.e., special choices of the Yang-Mills potentials. It has been conjectured
that actually (almost) all “integrable” systems can be obtained in this way [17].

The self-dual Yang-Mills hierarchy is a system which consists of an infinite number of commuting
flows in which the sdYM equations are embedded. However, as a matter of fact, it is not clear in
which sense this really defines a hierarchy (see Sec.2.2). Only by a suitable reduction, we actually
obtain a hierarchy (see Sec.3). The purpose of this thesis is to explore examples of reductions and
to find out under which conditions we indeed obtain hierarchies.

We consider more generally hierarchies with dependent variables in any (possibly noncommuta-
tive) associative algebra (see also [18–20], in particular). By specialization to matrix algebras,
this includes cases of coupled systems of equations. Matrix versions of integrable equations are
also a possible source for new integrable equations. Another motivation is given by the operator
method [21–23], which associates with a (scalar) nonlinear equation an operator version. By a suit-
able map, solutions of an operator valued equation lead to solutions of the scalar one. This requires,
of course, a generalization of the respective equation with dependent variable in a noncommutative
associative algebra. Due to these reasons, in the following the calculations are performed “non-
commutatively” unless we make a special assumption.

In the following subsections, we explain a bit more some points this thesis is based on. This in-
cludes the notions of a “Lax pair”, “zero-curvature condition”, “linear system”, “symmetry of a
PDE” and a short review of the (anti-) sdYM equations. In Sec.2.1, we give a definition of a sdYM
hierarchy and build a relationship with the sdYM equations. We consider in detail a subsystem of
the sdYM hierarchy (which we call pre-sdYM hierarchy). In Sec.3, we give a general overview
of reductions and consider examples of reductions in order to show how to reduce the pre-sdYM
hierarchy to a hierarchy associated with well-known integrable PDEs such as the N -wave system,
KdV equation. In Sec.4 we consider an infinite system introduced in [13] which leads to 2+1-
dimensional integrable systems. Examples of reductions of the system are discussed in Sec.4.2.

1.2 Lax pair, zero-curvature condition, linear system
The notion of Lax pair [2] as well as zero-curvature (or Zakharov-Shabat) condition is at the basics
of the theory of integrable systems. These two notions are equivalent to the compatibility (integra-
bility) condition of a linear system which is a good startpoint to consider integrable systems.
Firstly, we consider the Lax equation :

Lt = [P , L ]. (1.1)
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where B, L are linear operators, This is the compatibility condition of the following linear system

(∂t − P )Ψ = 0,

(L− λ)Ψ = 0, (1.2)

where λ is a constant. If the equation (1.1) is equivalent to the considered PDE, we call P , L a
“Lax pair” associated with the considered PDE. By choosing P , L,

L := ∂2
x − u,

P := ∂3
x −

3

2
u∂x −

3

4
ux, (1.3)

the Lax equation (1.1) is equivalent to the KdV equation

ut =
1

4
uxxx −

3

4
(u2)x (1.4)

where ∂x is a differential operator with respect to x and u is a function of x, t.

Next we consider a zero-curvature (or Zakharov-Shabat) condition

Px −Qt + [P , Q ] = 0 (1.5)

where P , Q are linear operators. (1.5) is equivalent to the compatibility condition of the following
linear system

(∂t − P )Ψ = 0,

(∂x −Q)Ψ = 0, (1.6)

If we choose

P =

(
0 1

λ− u 0

)
,

Q =

(
−ux 2u+ 4λ

−uxx − 2λu+ 4λ2 − 2u2 ux

)
, (1.7)

the equation (1.5) is equivalent to the KdV equation

ut = uxxx + 3(u2)x. (1.8)

Only very few PDEs possess a “good” (see Appendix A.3.2) Lax pair or a zero curvature formu-
lation and it is difficult to find one. Moreover, the two formalisms do not cover with each other.
However, both are special cases of the compatibility condition of the following linear system

X[u]Ψ = 0,

Y [u]Ψ = 0, (1.9)

where the operators X[u], Y [u] are functionals of u. This means that the considered nonlinear
system (e.g., the KdV equation) is expressed as

[X[u] , Y [u] ] = 0. (1.10)
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1.3 Symmetries of PDEs
Let us consider the KdV equation

ut = uxxx + uux, (1.11)

here with dependent variable in a commutative algebra. We look for solutions which depend
differentiably on a parameter τ ,

u = u(t, y, τ). (1.12)

A necessary condition for u in (1.12) to solve (1.11) is that uτ has to satisfy the linearized KdV
equation:

(uτ )t = (uτ )xxx + uτux + u(uτ )x (1.13)

We may understand such a 1-parameter family of solutions as the result of the action of a 1-
dimensional Lie group on a particular solution. Then uτ should be viewed as the generator of this
symmetry.

For example, the KdV equation (1.11) has the symmetry

uτ =
1

6
uxxxxx +

5

18
uuxxx +

5

9
uxuxx +

5

36
u2ux. (1.14)

Although it is straightforward to verify that uτ satisfies the linearized KdV equation (1.13), this
is a lengthy calculation and it is therefore helpful to use computer algebra. In Appendix C.4.1 a
corresponding FORM program is attached.

If an equation possesses an infinite number of symmetries which commute with each other, then
we have a hierarchy associated with this equation 1. We refer to [11, 12] for further details on
symmetries of PDEs.

1There are symmetries which do not belong to a hierarchy. Such symmetries are called additional symmetries.
See [24], Chapter 7.

6



1.4 (anti-) self-dual Yang-Mills (sdYM) equations
In the following we recall the definition of (anti-) self-dual Yang-Mills equation [13, 25] and its
properties. We use Cartesian coordinates x = (xµ), µ = 0, 1, 2, 3 on Euclidean space R4 with the
Euclidean metric 2

ds2 = (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (1.15)

The Yang-Mills field strength is

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ], (1.16)

where Aµ has values in a matrix Lie algebra G, and ∂µ = ∂
∂xµ

.

Fµν is obviously antisymmetric and invariant under the gauge-transformation

Aµ 7→ Ãµ = g−1Aµg − g−1∂µg (1.17)

where g is an element of a Lie group G with Lie algebra G. Now we define the duality operation
(Hodge star operator)

∗Fµν =
1

2

3∑
κ,λ=0

εµνκλFκλ, (1.18)

where εµνκλ is the totally antisymmetric Levi-Civita pseudo-tensor with ε0123 = 1 in the coordi-
nates chosen above. The (anti-) self-dual Yang-Mills equations are defined by

∗Fµν = ±Fµν (1.19)

where the sign ± selects the self-dual (+) and the anti-self-dual case (-), respectively. From (1.18)
we obtain for the self-dual case

F01 = F23, F02 = F31, F03 = F12. (1.20)

These are the sdYM equations in the Cartesian coordinates on R4. For the anti-self-dual case, we
obtain (see [16], for example)

F01 = −F23, F02 = −F31, F03 = −F12. (1.21)

In the following, let us concentrate on the self-dual case.

With a different choice of the complex coordinates, the sdYM equations (1.20) are rewritten in a
different way. In terms of the complex coordinates

y = x1 + ix2, y = x1 − ix2,
z = x0 + ix3, z = x0 − ix3,

(1.20) reads

Fyz = 0, Fy z = 0, Fyy + Fzz = 0. (1.22)

2Alternatively, one can use the metric with signature (+ + - -), see [26], for example.
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These equations are the compatibility condition of the linear system

D1Ψ = A1Ψ, D2Ψ = A2Ψ, (1.23)

where
D1 := ∂y + λ∂z, D2 := ∂z − λ∂y,
A1 := Ay + λAz, A2 := Az − λAy,

and λ is a (spectral) parameter.

Remark. In particular,

0 = Fȳz̄ = ∂ȳAz̄ − ∂z̄Aȳ − [Aȳ, Az̄] (1.24)

is a zero curvature condition in the ȳz̄-plane. This implies that Aȳ, Az̄ are locally “pure gauge”.
Then there is a gauge transformation which transforms Aȳ, Az̄ to commuting constant matrices
such that

[Aȳ, Az̄] = 0 (1.25)

(see Lemma 1 in [13]). The sdYM equations (1.22) are then reduced to

∂ȳAy + ∂z̄Az = 0, Fyz = 0, . (1.26)

1.5 Potential forms of the (anti-) sdYM equations
As we mentioned in the last subsection, by a gauge transformation we can reach (1.26).
a) The last equation in (1.26) is the integrability condition of the linear system

(∂y − Ay)J = 0 = (∂z − Az)J . (1.27)

If J is an invertible matrix field, this is equivalent to

Ay = Jy J
−1 , Az = Jz J

−1 (1.28)

and the remaining sdYM equation becomes

∂z̄(Jz J
−1) + ∂ȳ(Jy J

−1) = 0 . (1.29)

b) Instead, we can solve the first of equations (1.26) locally by introducing a potential K such that

Ay = ∂z̄K , Az = −∂ȳK . (1.30)

The remaining sdYM equation then takes the form

(∂z∂z̄ + ∂y∂ȳ)K − [∂z̄K, ∂ȳK] = 0 . (1.31)

For more details, see [16], for example.
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2 Self-dual Yang-Mills hierarchies
In this section we consider the sdYM hierarchy introduced in [27], starting from an infinite linear
system. We show that the linear system (1.23) in Sec.1.4 can be generalized to a infinite linear
system and this leads to the sdYM hierarchy considered in [27]. Furthermore, we can see that this
sdYM hierarchy contains several subsystems such as the sdYM hierarchy introduced in [13] and
also other versions of sdYM hierarchies (see [14–16, 26, 28, 29]) by a suitable restriction on it.

2.1 From a linear system to a hierarchy
In Sec.1.4, we have seen that the compatibility condition of the linear system (1.23) is equivalent
to the sdYM equations . As a generalization of (1.23), we consider the following linear system
studied in [27] 3

(λ∂xk−1
− ∂xk

)Ψ = (λAk−1 −Dk)Ψ, (2.1)
(λ∂tl−1

− ∂tl)Ψ = (λCl−1 −Bl)Ψ, k, l = 1, 2, . . . (2.2)

where xk, tl are independent variables and Ak, Bk, Ck, Dk are functions which take values in A, a
(Lie) algebra of N×N matrices. Obviously, the linear system (2.1), (2.2) is gauge covariant under
the gauge transformation

Ψ 7→ Ψ̃ = g−1Ψ,

Aµ 7→ Ãµ = g−1Aµg − g−1∂µ, Aµ, g ∈ A. (2.3)

If there is a nontrivial Ψ which solves (2.1) and (2.2) for k, l = 1, 2, . . ., the compatibility (integra-
bility) condition must be satisfied, so that

[λ∂xk−1
− ∂xk

− (λAk−1 −Dk), λ∂tl−1
− ∂tl − (λCl−1 −Bl)] = 0, (2.4)

k, l = 1, 2,

[λ∂xk−1
− ∂xk

− (λAk−1 −Dk), λ∂xk′−1
− ∂xk′

− (λAk′−1 −Dk′)] = 0, (2.5)
k, k′ = 1, 2, . . . , k 6= k

[λ∂tl−1
− ∂tl − (λCl−1 −Bl), λ∂tl′−1

− ∂tl′
− (λCl′−1 −Bl′)] = 0, (2.6)

l, l′ = 1, 2, . . . , l 6= l′

The first equation (2.4) is equivalent to the definition of the sdYM hierarchy introduced in [16,26].
In the following, we assume that we can find such functions (typically matrix-valued functions)
Ak, Bk, Ck, Dk. First we show that the equations (2.1) and (2.2) are indeed a generalization of
(1.23).

Theorem 2.1 The compatibility condition of an arbitrary pair of equations from (2.1) and (2.2)
yields the sdYM equations (or a restriction of it).

Proof. Obviously, the compatibility condition of (2.1) and (2.2) for fixed k, l yields the sdYM
equations by choosing

3One can also consider the case where the indices k,l extend to negative integers. We restrict our considers to
positive indices, however.
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xk−1 = z̄, xk = −y, tl−1 = −ȳ, tl = −z ,
Ax−1 = Az̄, Bl = −Az, Cl−1 = −Aȳ, Dk = −Ay .

Next we consider the following linear system, which consists of two different equations of (2.1),

(λ∂xk−1
− ∂xk

)Ψ = (λAk−1 −Dk)Ψ,

(λ∂xk′−1
− ∂xk′

)Ψ = (λAk′−1 −Dk′)Ψ, k 6= k′, k′ − 1. (2.7)

For k 6= k′, the compatibility condition of (2.7) also yields the sdYM equations under the identifi-
cation

xk−1 = z̄, xk = −y, xk′−1 = −ȳ, xk′ = −z ,
Ax−1 = Az̄, Dk′ = −Az, Ak′−1 = −Aȳ, Dk = −Ay .

For k = k′ − 1, the linear system (2.7) reads

(λ∂xk−1
− ∂xk

)Ψ = (λAk−1 −Dk)Ψ,

(λ∂xk
− ∂xk+1

)Ψ = (λAk −Dk+1)Ψ, (2.8)

whose compatibility condition leads to

∂xk
Ak−1 − ∂xk−1

Ak + [Ak−1 , Ak ] = 0,

∂xk+1
Dk − ∂xk

Dk+1 + [Dk , Dk+1 ] = 0,

∂xk
Ak + ∂xk−1

Dk+1 − ∂xk+1
Ak−1 − ∂xk

Dk − [Ak−1 , Dk+1 ]− [Dk , Ak ] = 0. (2.9)

Under the identification

xk−1 = z̄, xk = −y, xk+1 = −z,
Ax−1 = Az̄, Ak = −Aȳ, Dk = −Ay, Dk+1 = −Az,

we find that (2.9) yields

∂z̄Aȳ − ∂yAz̄ − [Az̄ , Aȳ ] = 0,

∂zAy − ∂yAz − [Az , Ay ] = 0,

∂yAȳ + ∂yAȳ − ∂z̄Az − ∂yAy + [Az̄ , Az ]− [Ay , Aȳ ] = 0. (2.10)

This is the sdYM equation with y = ȳ. In the same way, we can see that the compatibility condition
of two different equations of (2.2) leads to the sdYM equations (or the sdYM equations with the
condition y = ȳ). �

Next we write the linear system (2.1), (2.2) in a different form. For this purpose, we eliminate
the derivative with respect to the variables x1, . . . , xm−1, m = 1, 2, . . . and t1, . . . , tn−1, n =
1, 2, . . . as follows.

(λ∂x0 − ∂x1)Ψ = (λA0 −D1)Ψ × λm−1

(λ∂x1 − ∂x2)Ψ = (λA1 −D2)Ψ × λm−2

...
(λ∂xm−1 − ∂xm)Ψ = (λAm−1 −Dm)Ψ × λ0

 adding the first m equations
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...

(λ∂t0 − ∂t1)Ψ = (λC0 −B1)Ψ × λn−1

(λ∂t1 − ∂t2)Ψ = (λC1 −B2)Ψ × λn−2

...
(λ∂tn−1 − ∂tn)Ψ = (λCn−1 −Bn)Ψ × λ0

 adding the first n equations

...

⇓

(λm∂x0 − ∂xm)Ψ = (
m∑

i=1

Am−iλ
i −

m−1∑
i=0

Dm−iλ
i)Ψ,

(λn∂t0 − ∂tn)Ψ = (
n∑

i=1

Cn−iλ
i −

n−1∑
i=0

Bn−iλ
i)Ψ (2.11)

Setting Ai = Ci = 0, i = 0, 1, . . ., (2.11) yields the “positive” part of the linear system considered
by Takasaki 4 [29] (see also [14, 15]).

We define the sdYM hierarchy as the compatibility condition (Zakharov-Shabat equations) of
the linear system (2.1), (2.2), respectively (2.11). By choosing a fixed m and n, m,n = 1, 2, . . .,
we obtain several subsystems which are equivalent to other versions of sdYM hierarchies. We
should consider the compatibility condition of the linear system (2.11) as a large “framework”, in
which we can find “smaller” sdYM hierarchies, which appeared in the literature, as subsystems.
In the following, we give two examples of such subsystems for fixed m. For convenience, in the
following we use the identifications

x0 = z̄, xm = −y, i = 1, 2, . . . t0 = −ȳ, t1 = −z ,
A0 = Az̄, B1 = −Az, C0 = −Aȳ, D1 = −Ay.

m = 1 Setting Ci = 0, i = 1, 2, . . ., (2.11) reads

(∂y + λ∂z̄)Ψ = (Ay + λAz̄)Ψ,

(∂tn + λn∂ȳ)Ψ = (
n−1∑
i=1

Bn−iλ
i + Aȳλ

n)Ψ. (2.12)

whose compatibility condition of the system (2.11) yields

[ ∂y + λ∂z̄ − Ay − λAz̄ , ∂tn + λn∂ȳ −
n−1∑
i=1

Bn−iλ
i − Aȳλ

n ] = 0 n = 1, 2, . . . (2.13)

4Note that Takasaki considers also a sdYM hierarchy for negative indices m, n.
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We mainly consider this system (in the following, we call this system “pre-sdYM hierarchy”) in
this thesis (note that we name tn = −zn+1, Bn = −Ln, n = 1, 2, . . . and L0 = −Aȳ in the
following sections). However, this is just a part of the compatibility condition of (2.11). We must
also consider the compatibility condition of (2.11) for n, n′ = 1, 2, . . ., n 6= n′, so that

[ ∂tn + λn∂ȳ −
n−1∑
i=0

Bn−iλ
i − Aȳλ

n , ∂tn′
+ λn′∂ȳ −

n′−1∑
i=0

Bn′−iλ
i − Aȳλ

n′ ] = 0,

n, n′ = 1, 2, . . . n 6= n′ (2.14)

We will treat this system in more detail in Sec.2.2 and Sec.2.3. Furthermore, we consider its
reductions in Sec.3.

Remark. The reduced linear system (2.12) is not gauge covariant anymore (note that the linear
system (2.11) is gauge covariant) since we impose Ci = 0, i = 1, 2, . . . Rewriting (2.12) in the
following form,

(D1 − P )Ψ = 0, (2.15)
(Dn −Q)Ψ = 0. (2.16)

where

D1 := ∂y + λ∂z̄, Dn := ∂tn + λn∂ȳ,

P := Ay + Az̄λ, Q :=
n−1∑
i=1

Bn−iλ
i + Aȳλ

n.

(2.15) is gauge covariant under the gauge transformation (2.3),

(D1 − P )Ψ 7→ (D1 − P̃ )Ψ̃ = g−1(D1 − P )Ψ. (2.17)

On the contrary, (2.16) is transformed as follows

(Dn −Q)Ψ 7→ (Dn − Q̃)Ψ̃ = g−1(Dn −Q−
n−1∑
i=1

λigtn−i
g−1)Ψ. (2.18)

This means that the compatibility condition of (2.15), (2.16) is gauge dependent.

m = 2 Setting x2 = x1 = −y, A1 = 0, Ci = 0, i = 1, 2, . . ., and D2 = 0, we obtain

[λ2∂z̄ + ∂y − λAy − λ2Az̄ , ∂tn + λn∂ȳ − λnAȳ −
n−1∑
i=0

Bn−iλ
i ] = 0, n = 1, 2, . . . (2.19)

and

[ ∂tn + λn∂ȳ − λnAȳ −
n−1∑
i=0

Bn−iλ
i , ∂tn′

+ λn′∂ȳ − λn′Aȳ −
n′−1∑
i=0

Bn′−iλ
i ] = 0,

n, n′ = 1, 2, . . . n 6= n′. (2.20)

which lead to a (2+1)-dimensional generalization of the Derivative Nonlinear Schrödinger (DNLS)
hierarchy studied by Strachan (see [27]). Obviously, we can obtain a large number of other systems
by fixing the m and n. As mentioned above, in this thesis we will especially concentrate on the
system (2.13) and (2.14).
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2.2 A pre-sdYM hierarchy
In this subsection we turn to a study of the system (2.13). In the following, y, z = z2, zk,
k = 3, 4, . . ., are complex variables, G a Lie algebra, and Ĝ the Lie algebra of objects which
are polynomials in an indeterminate λ and formal power series in its inverse λ−1 with coefficients
in G. Furthermore, ad denotes the adjoint action of the Lie group G which is generated by G,

adA(B) = [A,B], A,B ∈ G.

Ĝ− names the formal group generated by Ĝ−. In the following, partial derivatives of elements of
G or Ĝ are sometimes expressed in index notation, e.g., A1,y := ∂yA1.

Moreover we name tn = −zn+1, n = 1, 2, . . ., following [13] and in (2.13), (2.14), we write

n−1∑
i=0

Bn−iλ
i + λAȳ = −

n∑
i=0

Ln−iλ
i, L0 := −Aȳ (2.21)

Furthermore, we rename the index

n→ k − 1, k = 2, 3, . . . (2.22)

and introduce the differential operators

D1 = ∂y + λ ∂z̄ (2.23)
Dk = ∂zk

− λk−1 ∂ȳ k = 2, 3, . . . (2.24)

Then we find that (2.13) is written by

[D1 − A1, Dk − Ak] = 0 k = 2, 3, . . . (2.25)

with

A1 = Ay + λAz̄ (2.26)

Ak =
k−1∑
j=0

Lk−1−j λ
j k = 2, 3, . . . (2.27)

Using the above definitions of D1, Dk, (2.25) becomes

A1,zk
− Ak,y + [A1, Ak]− λ (Ak,z̄ − [Az̄, Ak])− λk−1A1,ȳ = 0 . (2.28)

Then we obtain

Ay,zk
= (∂y − adAy)Lk−1, k = 2, 3, . . . (2.29)

(∂z̄ − adAz̄)L0 = −Az̄,ȳ (2.30)
(∂z̄ − adAz̄)L1 = −(∂y − adAy)L0 − Ay,ȳ (2.31)
(∂z̄ − adAz̄)Li = −(∂y − adAy)Li−1 i = 2, . . . , k − 2 (2.32)

(∂z̄ − adAz̄)Lk−1 = −(∂y − adAy)Lk−2 + Az̄,zk
. (2.33)
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Imposing the condition

Az̄,zk
= 0 k = 2, 3, . . . (2.34)

this reduces to the “evolution equations”

Ay,zk
= (∂y − adAy)Lk−1 k = 2, 3, . . . (2.35)

and the “recursion formula”

(∂z̄ − adAz̄)Li = −(∂y − adAy)Li−1 − Ay,ȳ δi,1 − Az̄,ȳ δi,0 i = 0, 1, 2, . . . (2.36)

(where L−1 = 0). One easily verifies that in terms of

L =
∞∑
i=0

Li λ
−i (2.37)

the recursion relations (2.36) can be written equivalently as

D1L = [A1, L]− ∂ȳA1 . (2.38)

Remark. The equation (2.36) simply becomes a recursion formula if the operator ∂z̄ − adAz̄

possesses an inverse, which however is rarely the case in reductions. Moreover, the authors of [13]
showed that (2.13) implies indeed (2.14) if the operator ∂z̄ − adAz̄ is invertible (see sec.2.3).
However, in several examples of reductions we obtain hierarchies associated with the considered
system from (2.13), though the operator is not invertible (See Sec.3). But as a matter of fact, the
system (2.13) is not automatically a hierarchy and we should rather call this system as “pre-sdYM
hierarchy” (where we do not assume that the operator ∂z̄ − adAz̄ is invertible) . We sketch the
relations in the following, assuming that a reduction has been chosen.
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Is ∂z̄ − adAz̄

invertible?
No - Is there a

recursion relation ?
No- No hierarchy

(2.13) implies
(2.14) (Hierarchy)

(see Sec.2.3)
(There are no examples.)

Yes

?

(2.13) reduces to
a pre-sdYM hierarchy

associated with
considered PDE

Yes

?

all equations in the pre-sdYM
hierarchy are symmetries of

each other?

?

No- No hierarchy

Hierarchy
associated with
considered PDE

Yes

?

Figure 1 : Pre-sdYM hierarchy

Remark. In general, the equation (2.35) and (2.36) are not genuinly the “evolution equation” and
“recursion relation”. Depending on the reduction ansatz, (2.35) can include conditions which are
necessary to determine Li (see Sec.3.3.1).

2.3 More about the pre-sdYM hierarchy
In this subsection we show that we can reach (2.14) starting from the pre-sdYM hierarchy (2.13)
under the particular assumption that the operator ∂z̄ − adAz̄ is invertible. In the following, we
restrict to the gauge where L0 = −Aȳ and Az̄ are constant commuting matrices .

Lemma 2.1 Let ∂z̄ − adAz̄ be invertible. There is an element W ∈ Ĝ− such that

D1 − A1 = Ŵ (D1 − λAz̄)Ŵ
−1 (2.39)

where Ŵ denotes the multiplication operator associated with W .
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Proof: Rewritting (2.39) in the form

D1(W ) = A1W − λWAz̄. (2.40)

We look for W in the form

W = 1 +
∞∑
i=1

Wiλ
−i, Wi ∈ G. (2.41)

Inserting this in (2.40), we get

Ay +
∞∑
i=1

(AyWi −Wi,y)λ
−k =

∞∑
i=1

(∂z̄ − adAz̄)Wiλ
−i+1, (2.42)

which yields the recursion relation

(∂z̄ − adAz̄)Wi = −(∂y − Ay)Wi−1, i = 1, 2, . . . (2.43)

for Wi with the initial condition

(∂z̄ − adAz̄)W1 = −Ay. (2.44)

Since ∂z̄ − adAz̄ is assumed to be invertible, the Wi, i = 1, 2, . . . are determined recursively by
(2.43). �

Next we show that

L = W (∂ȳ − Aȳ)W
−1 . (2.45)

Lemma 2.2 Let W satisfy (2.39) and let Aȳ, Az̄ be constant and commuting. Then L defined by
(2.45) satisfies

D1L = [A1, L]− ∂ȳA1 (2.46)

(which is (2.38)).

Proof: (See also Lemma 3 in [13].) First we rewrite (2.45) in the form

∂ȳ + L̂ = Ŵ (∂ȳ − Aȳ)Ŵ−1 .

Using also (2.39), we find

[D1 − A1, ∂ȳ + L̂] = Ŵ [D1 − λAz̄, ∂ȳ − Aȳ] Ŵ
−1 = 0

which is (2.46). �

Note that using (2.37), we can write

Ak = (λk−1 L)+ . (2.47)
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Proposition 2.1 If ∂z̄ − adAz̄ is invertible, the system (2.13) implies the Wilson-Sato (WS) equa-
tions [24] for W ∈ Ĝ−,

∂zk
W = −(λk−1 L)−W, k = 2, 3, . . . . (2.48)

Proof:

0 = Ŵ−1[D1 − A1, Dk − Ak] Ŵ

= [Ŵ−1 (D1 − A1) Ŵ , Ŵ−1(Dk − Ak) Ŵ ]

= [D1 − λAz̄, Ŵ
−1(Dk − Ak) Ŵ ]

where we applied the previous lemma. First, multiplying λk−1 in (2.45) we find

λk−1Wȳ = −λk−1(LW +WAȳ). (2.49)

With the help of

(Dk − Ak) Ŵ = Wzk
− λk−1Wȳ︸ ︷︷ ︸

(2.49)

−AkW +W (∂zk
− λk−1∂ȳ)

= Wzk
+ (λk−1L)−W +W (Dk + λk−1Aȳ) (2.50)

and using that Aȳ and Az̄ are constant and commuting, this yields

0 = [D1 − λAz̄,W
−1(Wzk

+ (λk−1L)−W )]

= (∂y + λ (∂z̄ − adAz̄))W
−1(Wzk

+ (λk−1L)−W )

and thus (2.48) if ∂z̄ − adAz̄ is invertible. �

We already noted in section 2.2 that inserting the expansion (2.37) in (2.46) reproduces (2.36)
(in fact without any restrictions on Aȳ, Az̄). This shows that L defined in (2.45) indeed coincides
with what we previously named by the same symbol (under the conditions stated there).

Note that (2.48) can be written in the following form,

Dk − Ak = Ŵ (Dk + λk−1Aȳ) Ŵ
−1 k = 2, 3, . . . . (2.51)

Together with (2.39) this expresses the pre-sdYM hierarchy in terms of a dressing by the inter-
twiner W .

Considering the following commutator

[Dk − Ak, ∂ȳ + L̂] = Ŵ [Dk + λk−1Aȳ, ∂ȳ − Aȳ]Ŵ−1 = 0, (2.52)

which implies the generalized Lax equations

∂zk
L = −[(λk−1 L)−, L] + ∂ȳ(λ

k−1 L)− (2.53)

and thus

DkL = [Ak, L]− ∂ȳAk k = 2, 3, . . . (2.54)
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Note that (2.53) alone does not lead us back to the pre-sdYM hierarchy. We also need (2.46). In
fact, the compatibility conditions of (2.46) and (2.54) are

(∂ȳ + adL) (DkA1 −D1Ak + [A1, Ak]) = 0 (2.55)

by use of the Jacobi identity. If ∂ȳ + adL is invertible, this implies DkA1 −D1Ak + [A1, Ak] = 0
which is (2.25).

Theorem 2.2 The flows given by the Wilson-Sato equations (2.48) commute, so that we have a
hierarchy.

Proof:

Wzkzl
−Wzlzk

=
(
(λl−1L)−,zk

− (λk−1L)−,zl
+ [(λk−1L)−, (λ

l−1)−]
)
W. (2.56)

Multiplying equations (2.53) for zk and zl by λl−1 and λk−1 respectively, subtracting and finally
projecting the difference onto Ĝ−, we obtain

(λl−1L)−,zk
− (λk−1L)−,zl

= 2[(λl−1L)−, (λ
k−1L)−]

+[(λl−1L)−, (λ
k−1L)+]− + [(λl−1L)+, (λ

k−1L)−]−

= [λl−1L, λk−1L]−︸ ︷︷ ︸
=0

+[(λl−1L)−, (λ
k−1L)−]

= [(λl−1L)−, (λ
k−1L)−]. (2.57)

Then we obtain

Wzkzl
−Wzlzk

= 0. (2.58)

�

Theorem 2.3 As a consequence of (2.54) we have

[Dk − Ak, Dl − Al] = 0 k, l = 2, 3, . . . . (2.59)

Proof: First we note that (2.54) implies

Dk(Al) =
(
[Ak, λ

l−1L]− λl−1 ∂ȳAk

)
+
.

Using this we find

[Dl − Al, Dk − Ak] = Dk(Al)−Dl(Ak)− [Ak, Al]

= ([Ak, λ
l−1L]− [Al, λ

k−1L]− [Ak, Al])+ + (λk−1 ∂ȳAl − λl−1 ∂ȳAk)+

= ([Ak, (λ
l−1L)−] + [(λl−1L)−, λ

k−1L])+ + (−λk−1 ∂ȳ(λ
l−1L)− + λl−1 ∂ȳ(λ

k−1L)−)+ = 0 .

�

Without the last term, respectively when all fields are independent of the coordinate ȳ, equation
(2.53) for L given by (2.37) is a well-known setting for (generalized) AKNS hierarchies. In this
case the (reduced) pre-sdYM hierarchy is the extended AKNS hierarchy

∂zk
L = [(λk−1L)+, L] , (∂y + λ ∂z̄)L = [Ay + λAz̄, L] (2.60)

(where we assume that (2.34) holds).
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3 Reductions of the pre-sdYM hierarchy
In this section, we show how the pre-sdYM hierarchy considered in Sec.2.2 leads to hierarchies
associated with well-known integrable systems by reductions.

3.1 What is a reduction?
In general, a reduction means a special choice of the gauge fields. Typical ingredients of a reduction
are

• the choice of the gauge group.

• the choice of concrete form of gauge fields in a certain gauge.

• restrictions on the dependence of the gauge fields on the coordinates.

See also [26] for a more restricted notion of a reduction. The following diagram shows schemati-
cally the relation between the sdYM equations, the pre-sdYM hierarchy, and a reduction map.

Linear system
D1Ψ = A1Ψ,
D2Ψ = A2Ψ.

(a)

(1)
-

sdYM equations
Fyz = Fȳz̄ = 0,
Fyȳ + Fzz̄ = 0.

(b)

(2)
-

pre-sdYM hierarchy
[D1 − A1, Dk − Ak] = 0.

(c)

Reduced linear
system

(d)

?

-
Reduced sdYM

equations
(e)

Reduction (3)

?

(4)
- Hierarchy?

?

Figure 2. A reduction map

The relations in the above diagram are as follows.

(1). The compatibility condition of the linear system (a) is equivalent to the sdYM equations (b).
(2). The sdYM equations constitute the first member of the pre-sdYM hierarchy (c), with the iden-
tification Aȳ = −L0, Az = L1.
(3). By a reduction the linear system (a) and the sdYM equations are reduced to (d), (e), respec-
tively. The compatibility conditions of (d) should be equivalent to the considered nonlinear system.
(4). It is not guaranteed whether there exists a hierarchy associated with the considered system.
Only for special reductions of the sdYM equations it is possible to obtain a well-defined recursion
formula for the corresponding hierarchy directly from the pre-sdYM hierarchy, which does not in
general possess a well-defined recursion formula.
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In this section we consider several reductions which lead to well-known soliton equations such as
N -wave system, KdV equation, NLS equation and Sine-Gordon equation. Furthermore we discuss
whether the reduction also yields a hierarchy associated with these reduced systems. Moreover,
as mentioned in Sec.1.1, we allow the entries of the gauge potential matrices to be elements of an
arbitrary associative and typically noncomutative algebra, e.g., a matrix algebra. Additionally, in
the calculations we drop constants of integration unless stated otherwise.

3.2 Reduction to the N -wave system
Let us assume that all fields do not depend on the coordinates ȳ, z̄, and let us choose

Az̄ = diag(a1, . . . , an) (3.1)

with all eigenvalues different from each other. As a consequence, adAz̄ is invertible on off-diagonal
matrices.5

Under the specified conditions, the pre-sdYM hierarchy equations reduce to

Uzk
= (∂y − adU)Lk−1 k = 2, 3, . . . (3.2)

together with

(adAz̄)L0 = 0 , (adAz̄)Lk = (∂y − adU)Lk−1 k = 1, 2, . . . (3.3)

where we write U instead of Ay. In particular, this requires that L0 (= −Aȳ) is also diagonal. We
write

L0 = −diag(b1, . . . , bn) . (3.4)

Splitting (3.3) into off-diagonal and diagonal parts, we obtain

(Lk+1)off−diag = (adAz̄)
−1 (∂yLk − [U,Lk])off−diag (3.5)

(∂yLk − [U,Lk])diag = 0 (3.6)

where k = 0, 1, 2, . . ..

1. Calculation of the first hierarchy equation

Since L0 is diagonal, (adU)L0 is off-diagonal. For k = 0 the last equation thus requires

L0,y = 0 (3.7)

and we obtain

[Az̄, L1] + [U,L0] = 0 (3.8)

5Note that the commutator of a diagonal and an off-diagonal matrix is off-diagonal.
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which determines the off-diagonal part of L1 (= Az),

(L1)ij = λij Uij i 6= j (3.9)

where

λij :=
bi − bj
ai − aj

= λji i 6= j . (3.10)

It is convenient to set λii := 0. Noting that

(adU)L1 = [U,L1] =
( n∑

l=1

(λil − λlj)Uil Ulj

)
(3.11)

has vanishing diagonal part, the diagonal part equation (3.6) for k = 1 requires ∂y(L1)diag = 0.
Let us assume vanishing diagonal part of U , which implies vanishing diagonal part of L1. The first
evolution equation then becomes

Uij,z − λij Uij,y =
n∑

l=1

(λil − λlj)Uil Ulj i 6= j (3.12)

which is known as theN -wave interaction equation [7,30–33] . For n = 2 this is a linear equation.
The first interesting case is therefore n = 3.

2. Calculation of the second hierarchy equation

Using (3.9), the off-diagonal part of L2 is given by the following equation,

(ai − aj)L2ij = λij Uij,y +
n∑

l=1

(λil − λlj)Uil Ulj i 6= j . (3.13)

The diagonal part of L2 is determined by

L2ii,y =
∑
j 6=i

(Uij L2ji − L2ij Uji)

= −
∑
j 6=i

λij

ai − aj

(Uij Uji),y +
∑
j 6=i

∑
l 6=i,j

λil − λlj

ai − aj

(Uij Ujl Uli − Uil Ulj Uji)

= −
∑
j 6=i

λij

ai − aj

(Uij Uji),y +
∑
j,l6=i
j 6=l

(λil − λlj

ai − aj

− λij − λlj

ai − al

)
Uij Ujl Uli . (3.14)

where,

λil − λlj

ai − aj

− λij − λlj

ai − al

= (bj − bl)
( 1

(ai − al)(ai − aj)
+

1

(ai − al)(aj − al)

+
1

(ai − aj)(al − aj)

)
= 0. (3.15)
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Thus we obtain

L2ii = −
∑
k 6=i

λik

ai − ak

Uik Uki. (3.16)

The next hierarchy equation then reads

Uij,z3 = L2ij,y −
∑
k 6=j

Uik L2kj − Uij L2jj +
∑
k 6=i

L2ik Ukj + L2ii Uij

=
1

ai − aj

(
λij Uij,yy +

∑
k 6=i,j

(λik − λkj) (Uik Ukj),y

)
+

∑
k 6=i,j

( λik

ai − ak

Uik,y Ukj −
λkj

ak − aj

Uik Ukj,y

)
+

∑
k 6=i

1

ai − ak

n∑
l=1

(λil − λlk)UilUlkUkj −
∑
k 6=j

1

aj − ak

n∑
l=1

(λjl − λlk)UikUklUlj

+Uij

∑
k 6=j

λjk

aj − ak

Ujk Ukj −
∑
k 6=i

λik

ai − ak

Uik Uki Uij . (3.17)

Using FORM the commutativity of the first and second equation has been checked (see Sec.C.4.2).

Proceeding with these calculations, we can obtain the higher evolution equations. Hence, in this
example of a reduction, the pre-sdYM hierarchy leads to a hierarchy for the reduced system (see
also [13]).

The equation (3.3) determines the diagonal and off-diagonal part of Li, i = 0, 1, . . ., i.e., Li is
determined sufficiently. From (3.2) we obtain the evolution equations for the off-diagonal entries
of U . This is one of particular examples of reductions for which (3.2) implies “genuinely” the
evolution equation and (3.3) implies the recursion formula which determines each Lk, k = 0, 1, . . .
, respectively. As we have discussed in Sec.2.2, in general (3.2) includes conditions that determine
Li (see Sec.3.3.1, for example).

3.2.1 Recursion formula of the N -wave hierarchy

Now we present a more complete treatment of the N-wave hierarchy by deriving a recursion for-
mula.

Proposition 3.1 The reduced pre-sdYM hierarchy is equivalent to

Uij,zk
= (ai − aj)(Lk)ij i 6= j, k = 2, 3, . . . (3.18)

and

(Lk)ij =
1

ai − aj

(
(Lk−1)ij,y −

∑
l

(Uil(Lk−1)lj − (Lk−1)ilUlj)
)

i 6= j, (3.19)

(Lk)ii,y =
∑

l

(Uil(Lk)li − (Lk)ilUli)
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=
∑

l

1

al − ai

(
Uil(Lk−1)li,y + (Lk−1)il,yUli

)
+

∑
l

∑
m

[
{Uim(Lk−1)ml − (Lk−1)imUml}Uli

−Uli{Ulm(Lk−1)mi − (Lk−1)lmUmi}
]
, k = 2, 3, . . . (3.20)

with

(L1)ij = λijUij i 6= j, (L1)ii = 0 (3.21)

(λij is defined in (3.10)).

Proof. Inserting (3.3) in (3.2) we find for k ≥ 2,

Uzk
= adAz̄(Lk). (3.22)

The diagonal parts of these equations yield (3.18). Furthermore, splitting (3.3) into off-diagonal
and diagonal parts, we obtain the recursion formula for the corresponding entries of Lk, (3.19) and
(3.20) for k ≥ 2. �

Due to the reduction ansätze (3.1), the operator ∂z̄−adAz̄ is invertible only on the off-diagonal
part of arbitrary non-zero matrices. In this example, the weak invertibility of the operator leads to
the recursion relation of the off-diagonal part of Lk. The missing diagonal part of Lk is obtained
from the diagonal part of (3.2).
Applying (3.18), (3.19) and (3.20), the higher hierarchy equations are calculated recursively. For
the first values of k we find

(L2)ij =
1

ai − aj

(
(L1)ij,y −

∑
l

(Uil(L1)lj − (L1)ilUlj)
)

=
1

ai − aj

(
λijUij,y +

∑
l

(λil − λlj)UilUlj

)
i 6= j

(L2)ii,y =
∑

l

1

al − ai

(
Uil(L1)li,y + (L1)il,yUli

)
+

∑
l

∑
m

[{Uim(L1)ml − (L1)ml − (L1)imUml}Uli

−Uli{{Ulm(L1)mi − (L1)lmUmi}]

=
∑
l 6=i

λil

ai − aj

(UilUli)y

(L3)ij =
1

ai − aj

(
(L2)ij,y −

∑
l

(Uil(L2)lj − (L2)ilUlj)
)

=
1

ai − aj

(
(L2)ij,y − Uij(L2)jj + (L2)iiUij −

∑
l 6=i,j

(Uil(L2)lj − (L2)ilUlj)
)

=
1

(ai − aj)2

(
λijUij,yy +

∑
m6=i,j

(λim − λmj)(UimUmj)y

)
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+
1

ai − aj

( ∑
l 6=i,j

(
λil

ai − al

Uil,yUlj −
λlj

al − aj

UilUlj,y)

+
∑
l 6=i

1

ai − al

∑
m

(λim − λml)UimUmlUlj

−
∑
l 6=j

1

al − aj

∑
m

(λlm − λmj)UilUlmUmj

Uij

∑
l 6=j

λjl

aj − al

UjlUlj −
∑
l 6=i

λil

ai − al

UilUliUij

)
(L3)ii,y =

∑
l 6=i

λil

(ai − al)2
(UilUli,y − Uil,yUli)y

+
∑
l 6=i

∑
m6=i,l

(λlm − λmi)

(ai − al)2

(
Uil(UlmUmi)y + (UimUmi)yUli

)
+

∑
l 6=i

1

al − ai

∑
p6=i

λip

ai − ap

(UilUliUipUpi − UipUpiUilUli)

∑
l 6=i

1

ai − al

∑
p6=l

λlp

al − ap

(UilUlpUplUli − UilUlpUplUli)

∑
l 6=i

1

al − ai

∑
n6=i,l

( λln

al − an

(UilUln,yUni − UinUnl,yUli)

+
λin

ai − an

(UilUlnUni,y − Uin,yUnlUli)
)

∑
l 6=i

1

al − ai

∑
m6=i,l

∑
n6=i,l,m

(λln − λnm

al − am

(UilUlnUnmUmi + UimUmnUnlUli)

−λin − λnm

ai − am

(UinUnmUmlUli + UilUlmUmnUni)
)

(3.23)

These reproduce the first member of the N -wave hierarchy

Uij,z2 = (ai − aj)(L2)ij

= λijUij,y +
∑

l

(λil − λlj)UilUlj

Uij,z3 = (ai − aj)(L3)ij

=
1

ai − aj

(
λijUij,yy +

∑
l

(λil − λlj)(UilUlj)y

)
+

∑
l 6=i,j

(
λil

ai − al

Uil,yUlj −
λlj

al − aj

UilUlj,y)

+
∑
l 6=i

1

ai − al

∑
m

(λim − λml)UimUmlUlj
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−
∑
l 6=j

1

al − aj

∑
m

(λlm − λmj)UilUlmUmj

Uij

∑
l 6=j

λjl

aj − al

UjlUlj −
λil

ai − al

UilUliUij (3.24)

3.3 Reduction to the KdV hierarchy
In the following, two examples of reductions are discussed, which lead to the KdV equation. The
first example is the Bakas-Depireux (BD) reduction [13], and the second is the Mason-Sparling
(MS) reduction [25, 34]. In both cases of reductions, we assume that the Yang-Mills potentials do
not depend on the coordinates z̄ and y − ȳ.

3.3.1 Bakas-Depireux (BD) reduction

We choose the gauge potentials as follows

Ay =

(
0 1
u 0

)
, Az̄ =

(
0 0
1 0

)
, (3.25)

with a function u, depending differentiably on the coordinates y, zk, k = 2, 3, . . . . Then (2.35),
(2.36) read

Ay,zk
= (∂y − adAy)Lk−1, k = 2, 3, . . . (3.26)

and

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,yδi,1, i = 0, 1, . . . (3.27)

(where L−1 = 0).

1. Calculation of the first hierarchy equation

For i = 0, the last equation reads

[Az̄, L0] = 0, (3.28)

which leads to

L0 =

(
f 0
h f

)
, (3.29)

with functions f, h. (3.27) for i = 1 reads

[Az̄, L1] = (∂y − adAy)L0 + Ay,y, (3.30)
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and insertion of our expression for L0 in particular leads to fy = 0. Imposing the condition f = 0.
Then L1 takes the form

L1 =

(
a h
c a− (u+ h)y

)
, (3.31)

with new functions a, c. Now we insert this result in the first evolution equation (3.26) for k = 2.
Then we obtain

h = −1

2
u , c = −1

2
u2 +

1

4
uyy , a =

1

4
uy, (3.32)

and the (noncommutative) KdV equation

uz =
1

4
uyyy −

3

4
(u2)y . (3.33)

2. Calculation of the second hierarchy equation

Equation (3.27) for i = 2 reads

adAz̄(L2) = (∂y − adAy)L1, (3.34)

which leads to

L2 =

(
p 0
r p− (1

4
uyy − 3

4
u2)y

)
, (3.35)

with functions p, r. (3.26) for k = 3 reads

Ay,z3 = (∂y − adAy)L2. (3.36)

The upper off-diagonal part of (3.36) reads 6

(uyy − 3u2)y = 0, (3.37)

Furthermore from the diagonal part of (3.36) we obtain py = r = 0. This leads to L2 = 0
imposing p = 0. As a consequence, the lower off-diagonal part of (3.36) yields

uz3 = 0, (3.38)

with the constraint (3.37).
Calculating the higher hierarchy equations in this way, we find

uzk
= 0, Lk = 0, k = 3, 4, . . . (3.39)

6If u is a function, the solution of (3.37) has the form u = ℘(y + C),where ℘ is the Weierstrass ℘-function and C
a constant.
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Hence, in case of the BD reduction, the pre-sdYM hierarchy does not give rise to a recursion
formula to obtain a hierarchy associated with the KdV equation. Apparently, the authors of [13]
overlooked the shortcoming of this reduction.

Remark. In this example, L0, L1 is not determined simply by the apparent recursion relation
(2.36), but only in combination with the (apparent) evolution equation (3.27). Note that, since Ay

has no diagonal part, (3.26) splits into an (apparent) evolution equation

(Ay,zk
)off−diag = ∂y(Lk−1)off−diag − [Ay, Lk−1]off−diag k = 2, 3, . . . (3.40)

and the constraint

∂y(Lk−1)diag = [Ay, Lk−1]diag k = 2, 3, . . . . (3.41)

For k = 2 the latter takes the form(
ay 0
0 ay − (u+ h)yy

)
=

(
c− hu 0

0 −c+ uh

)
(3.42)

which is equivalent to c = (u + h)yy + uh + hu and ay = uh + (u + h)yy, and we see that
the resulting relations are also not sufficient to fix L0 and L1. The missing equation which fixes
h arises from the upper right entry of (3.26) which is also a constraint, as a consequence of the
“degenerate” ansatz for Ay.

This example in particular shows that the apparently obvious distinction between (3.26) and (3.27)
into evolution and recursion equations, respectively, does not hold in general.

3.3.2 Mason-Sparling (MS) reduction

In this case, we choose the gauge potentials,

Ay =

(
u 1

uy − u2 −u

)
, Az̄ =

(
0 0
1 0

)
. (3.43)

(2.35) and (2.36) have the same form as in the BD reduction, so that

Ay,zk
= (∂y − adAy)Lk−1, k = 2, 3, . . . (3.44)

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,yδi,1, i = 0, 1, . . . , (3.45)

and the calculation is similar.

1. Calculation of the first hierarchy equation

(3.45) for i = 0 reads

[Az̄, L0] = 0, (3.46)
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which leads to

L0 =

(
f 0
h f

)
. (3.47)

with functions f , h. (3.45) for i = 1 reads

[Az̄, L1] = (∂y − adAy)L0 + Ay,y (3.48)

The diagonal part of (3.48) leads to fy = 0. Imposing the condition f = 0, we have

L0 =

(
0 0
h 0

)
, L1 =

(
a h− uy

c a−D

)
, (3.49)

with new functions a, c, and

D := hy + {u, h}+ uyy − (u2)y, (3.50)

with the anti-commutator {A,B} = AB +BA. (3.44) for k = 2 reads

Ay,z2 = (∂y − adAy)L1, (3.51)

which leads to

h = 0, a =
1

2
uyy − uyu,

c =
1

4
uyyy −

1

2
{u, uyy} −

1

2
(uy)

2 + uuyu, (3.52)

and the (noncommutative) potential KdV equation [35] :

uz2 =
1

4
uyyy −

3

2
(uy)

2. (3.53)

In terms of

v := 2uy, (3.54)

this gives the (noncommutative) KdV equation :

vz2 =
1

4
vyyy −

3

4
(v2)y. (3.55)

2. Calculation of the second hierarchy equation

Let us calculate the next hierarchy equation. (3.45) for i = 2 reads

adAz̄ = (∂y − adAy)L1, (3.56)
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which leads to

L2 =

(
p −1

4
uyyy + 3

2
(uy)

2

r p−Q

)
, (3.57)

where p, r are functions and

Q : =
1

4
uyyyy −

3

2
(u2

y)y −
1

4
{u, uyyy}+

3

2
{u, u2

y}. (3.58)

(3.44) for k = 3 is

Ay,z3 = (∂y − adAy)L2, (3.59)

Inserting (3.57) in (3.59), we obtain the following expressions for unknown functions p, r,

p =
1

8
uyyyy − uyuyy −

1

2
uyyuy +

3

2
(uy)

2u− 1

4
uyyyu,

r =
1

16
uyyyyy −

1

8
(uyy)

2 +
1

2
(uy)

2

−1

4
uuyyyu−

3

2
u(uy)

2u− 3

8
{uy, uyyy}

−1

8
{u, uyyyy}+

3

4
{u, (u2

y)y}+
1

4
{u2, uyyy}, (3.60)

and the evolution equation

uz3 =
1

16

(
uyyyyy − 10(uyyyuy + uyuyyy + u2

yy) + 40u3
y

)
. (3.61)

In terms of (3.54), this becomes the second evolution equation of the (noncommutative) KdV
hierarchy [24, 36],

vz3 =
1

16

(
vyyyy − 5(vyyv + vvyy + v2

y) + 10v3
)

y
(3.62)

The commutativity of the first equations of the hierarchy can be checked by using FORM (see
Sec.C.4.3).

In contrast to the BD reduction, in case of the MS reduction the pre-sdYM hierarchy indeed leads
to the KdV hierarchy. At least we verified this by computing the second member of the hierarchy.

3.3.3 Recursion formula of the KdV hierarchy

Now we present a derivation of the complete (noncommutative) KdV hierarchy following the
method in Sec.3.2. Let

Lp =

(
l(p) m(p)

n(p) h(p)

)
p = 0, 1, . . . . (3.63)
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Proposition 3.2 The pre-sdYM hierarchy is equivalent, in the reduction under consideration, to

uzk
= −m(k), k = 2, 3, . . . (3.64)

with the recursion formula

m(k) =
1

4
m(k−1)

yy − 1

2
{m(k−1), uy} −

1

2

∫
{m(k−1)

y , uy} dy

+

∫
uyum

(k−1) dy −
∫
um(k−1)uy dy

−
∫

[uy,

∫
um(k−1)

y dy +

∫
m(k−1)uy dy] dy, k = 2, 3, . . . (3.65)

where m(1) = −uy.

Proof. Inserting (3.45) in (3.44) yields

Ay,zk
= adAz̄(Lk), k = 2, 3, . . . (3.66)

which leads to

uzk
= −m(k), (uy − u2)zk

= l(k) − h(k), k = 2, 3, . . . (3.67)

Now let us calculate the recursion formula for m(k). The equation (3.44) leads to the following
four equations

uzk
= l(k−1)

y − [u, l(k−1)]− n(k−1) +m(k−1)(uy − u2), (3.68)

l(k−1) − h(k−1) = {u,m(k−1)} −m(k−1)
y , (3.69)

uyzk
− {uzk

, u} = n(k−1)
y − (uy − u2)l(k−1) + {n(k−1), u}+ h(k−1)(uy − u2), (3.70)

−uzk
= h(k−1)

y + [u, h(k−1)] + n(k−1) − (uy − u2)m(k−1). (3.71)

Adding (3.68) and (3.71), using (3.69), and integrating with respect to y, yields

l(k−1) + h(k−1) =

∫
[uy,m

(k−1)]dy +

∫
[m(k−1)

y , u]dy. (3.72)

Together with (3.69), we find

l(k−1) = −1

2
m(k−1)

y +

∫
m(k−1)

y udy +

∫
uym

(k−1)dy,

h(k−1) =
1

2
m(k−1)

y −
∫
um(k−1)

y dy −
∫
m(k−1)uydy. (3.73)

Using (3.68) on the left hand side of (3.70), we obtain

uyzk
− {uzk

, u} = l(k−1)
yy − [uy, l

(k−1)]− [u, l(k−1)
y ]− n(k−1)

y

+m(k−1)
y (uy − u2) +m(k−1)(uyy − {uy, u})− {l(k−1)

y , u}
+{u, [u, l(k−1)]} − {u,m(k−1)(uy − u2)}+ {n(k−1), u}. (3.74)
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Solving (3.70) in terms of n(k−1) and using (3.73) we find

n(k−1) = −1

4
m(k−1)

yy − 1

2

∫
{uy,m

(k−1)
y }dy

+
1

2
({m(k−1)

y , u}+ {uy,m
(k−1)})

−
∫

(um(k−1)
y u+ uuym

(k−1) +m(k−1)uyu)dy (3.75)

By using (3.73), (3.75) we eliminate l(k−1), n(k−1), h(k−1) from (3.68). Then we obtain (3.65). We
get the initial condition m(1) = −uy from the upper off-diagonal entry of L1. �

Hence, we can obtain m(k), k = 2, 3, . . ., the upper off-diagonal part of Lk, recursively from
(3.65) and once each m(k) is determined, we obtain not only the evolution equations (3.64), but
also all other entries of Lk from (3.73) and (3.75). In this example, the operator ∂z̄ − adAz̄ is not
invertible on the upper off-diagonal part of arbitrary matrices due to the reduction ansatze (3.43),
however this weakened invertibility of the operator leads to the recursion relation with respect to
m(k) and this is enough to calculate higher hierarchy equations.

For the first values of k we find

m(2) = −1

4
uyyy +

1

2
{uy, uy}+

1

2

∫
{uy, uyy}dy

−
∫
uyuuydy +

∫
uu2

ydy +

∫
[uy,

∫
uuyydy +

∫
u2

ydy]dy

= −1

4
uyyy +

3

2
(uy)

2, (3.76)

m(3) = −1

4
(
1

4
uyyy −

3

2
(uy)

2)yy

+
1

2
{1

4
uyyy −

3

2
(uy)

2, uy}+
1

2

∫
{uy, (

1

4
uyyy −

3

2
(uy)

2)y}dy

−
∫
uyu(

1

4
uyyy −

3

2
(uy)

2)dy +

∫
u(

1

4
uyyy −

3

2
(uy)

2)uydy∫
[uy,

∫
u(

1

4
uyyy −

3

2
(uy)

2)ydy +

∫
(
1

4
uyyy −

3

2
(uy)

2)uydy]dy

= − 1

16

(
uyyyyy − 10(uyy)

2 − 10{uyyy, uy}+ 40(uy)
3
)
, (3.77)

In terms of (3.54), these reproduce the first members of the KdV hierarchy

vz2 =
1

4
vyyy −

3

4
(v2)y,

vz3 =
1

16

(
vyyyy − 5(vyyv + vvyy + v2

y) + 10v3
)

y
.

(3.78)
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In particular, in the commutative case (3.65) reduces to

m(k) = Im(k−1)

= Ik−1m(1), k = 2, 3, . . . , (3.79)

with the integro-differential operator

I := ∂−1
y (

1

4
∂3

y − 2uy∂y − uyy), (3.80)

where ∂−1
y is the operator of integration with respect to the coordinate y. Inserting (3.79) in (3.64)

we obtain the recursion formula for the evolution equations,

uzk
= Ik−1uy. (3.81)

3.3.4 The relation between BD and MS reduction

In the last two subsections, we considered two reductions which both lead to the KdV equation.
Whereas for the first example (BD reduction), the pre-sdYM hierarchy did not lead to the KdV
hierarchy, it worked out well in the case of the second example (MS reduction). The diagram
below summarizes the relations.

Linear system
D1Ψ = A1Ψ,
D2Ψ = A2Ψ.

-

sdYM equations
Fyz = Fȳz̄ = 0,
Fyȳ + Fzz̄ = 0.

-
pre-sdYM hierarchy

[D1 − A1, Dk − Ak] = 0.

Reduced linear
system

for KdV

?

-
Reduced sdYM

equations
⇔ KdV (1)

BD Reduction

?

- No hierarchy
?

Figure 3 : BD reduction
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Linear system
D1Ψ = A1Ψ,
D2Ψ = A2Ψ.

-

sdYM equations
Fyz = Fȳz̄ = 0,
Fyȳ + Fzz̄ = 0.

-
pre-sdYM hierarchy

[D1 − A1, Dk − Ak] = 0.

Reduced linear
system

for KdV

?

-
Reduced sdYM

equations
⇔ KdV (2)

MS Reduction

?

- KdV hierarchy
?

Figure 4 : MS reduction

With the identification,

Aȳ := −L0 , Az := L1 , (3.82)

the Yang-Mills potentials corresponding to the two reductions are

ABD
z =

(
1
4
uy −1

2
u

1
4
uyy − 1

2
u2 −1

4
uy

)
, ABD

z̄ =

(
0 0
1 0

)
,

ABD
y =

(
0 1
u 0

)
, ABD

ȳ =

(
0 0
1
2
u 0

)
. (3.83)

and

AMS
z =

(
1
2
vyy − vyv −vy

1
4
vyyy − 1

2
{v , vyy} − 1

2
v2

y + vvyv −1
2
vyy + vvy

)
,

AMS
z̄ =

(
0 0
1 0

)
, AMS

y =

(
v 1

vy − v2 −u

)
, AMS

ȳ = 0, (3.84)

where, for convenience, we renamed the function u to v in the MS case. u and v are solutions of
the KdV and potential KdV equation (3.33), (3.53) respectively, i.e.,

uz =
1

4
uyyy −

3

4
(u2)y,

vz =
1

4
vyyy −

3

2
v2

y , (3.85)

Proposition 3.3 (See also [37]) Via the gauge transformation

Aµ 7→ Ãµ = gAµg
−1 + gµg

−1, (3.86)
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where

g =

(
1 0
v 1

)
, (3.87)

the gauge potentials (3.84) are transformed to (3.83), i.e., the BD and MS gauge potentials are
gauge equivalent.

Proof. By a gauge transformation (3.86), the Yang-Mills potentials (3.84) are transformed to

ÃMS
z =

(
1
2
vyy −vy

1
2
vyyy − 2v2

y −1
2
vyy

)
, ÃMS

z̄ =

(
0 0
1 0

)
ÃMS

y =

(
0 1

2vy 0

)
, ÃMS

ȳ =

(
0 0
vy 0

)
, (3.88)

where we made use of (3.85). Setting

u = 2vy, (3.89)

we obtain

ÃMS
z =

(
1
4
uy −1

2
u

1
4
uyy − 1

2
u2 −1

4
uy

)
,

ÃMS
z̄ =

(
0 0
1 0

)
, ÃMS

y =

(
0 1
u 0

)
, ÃMS

ȳ =

(
0 0
1
2
u 0

)
. (3.90)

which is (3.83) (see also [37]). �

As we have seen in Sec.3.3.1, this “new” u satisfies the first equation in (3.85). Furthermore
under this gauge transformation the condition (2.34) for k = 2 is preserved.

Again we show schematically this result.

Reduced sdYM eq.
for KdV (BD) (1)

�

gauge transformation
-

Reduced sdYM eq.
for KdV (MS) (2)

No hierarchy from
pre-sdYM hierarchy (3)

?

�
? KdV hierarchy from

pre-sdYM hierarchy (4)

?

Figure 5 : Gauge equivalence between BD and MS gauge potentials

There is no clear relationship on the level between (3) and (4). The result manifests the fact that
the pre-sdYM hierarchy equations (2.35), (2.36) are not gauge invariant.
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3.4 Reduction to NLS and Zakharov system
In this subsection we consider two reductions with Yang-Mills potentials

Az =

(
a1N 0
0 −a1M

)
, Ay =

(
0 q
−r 0

)
, (3.91)

where a ∈ C and 1N is the N × N unit matrix, q, r are N ×M and M × N complex matrices
respectively. It is known that NLS equation and Zakharov system, one of 2+1-dimensional exten-
sions of NLS equation are obtained as a reduction of the (anti-) sdYM equations with the reduction
ansätze above (see [37], for example).

3.4.1 Reduction to NLS

Let us assume that Aµ does not depend on the variables z̄ and y − ȳ. The pre-sdYM hierarchy
equations take the following form,

Ay,zk
= (∂y − adAy)Lk−1 k = 2, 3, . . . , (3.92)

and

adAz(Li) = (∂y − adAy)Li−1 + Ay,yδi,1 i = 0, 1, . . . . (3.93)

1. Calculation of the first hierarchy equation

(3.93) for i = 0 reads

adAz̄(L0) = 0, (3.94)

which leads to

L0 =

(
f 0
0 k

)
, (3.95)

with functions f , k. (3.93) for i = 1 reads

adAz(L1) = (∂y − adAy)L0 + Ay,y. (3.96)

Inserting

L1 :=

(
φ ψ
θ τ

)
,

with new functions φ, ψ, θ, τ , we obtain from the diagonal part of (3.96),

fy = ky = 0.
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In the following, we impose the conditions f = k = 0. Together with this we have

L1 =

(
φ 1

2a
qy

1
2a
ry τ

)
, (3.97)

(3.92) for k = 2 reads

Ay,z2 = (∂y − adAy)L1, (3.98)

which leads to

φ =
1

2a
qr, τ = − 1

2a
rq, (3.99)

qz2 =
1

2a
(qyy + 2qrq), rz2 = − 1

2a
(ryy + 2rqr), (3.100)

and

L1 =
1

2a

(
qr qy
ry −rq

)
. (3.101)

Choosing

a =
1

2
i, r = ±q∗, (3.102)

where q∗ denotes the adjoint, i.e., conjugate transpose of q. (3.100) yields the noncommutative
NLS equation

iqz2 = qyy ± 2qq∗q. (3.103)

(The second of equations of (3.100) yields the adjoint of (3.103)).

2. Calculation of the second hierarchy equation

(3.93) for i = 2 reads

adAz̄(L2) = (∂y − adAy)L1, (3.104)

which leads to

L2 =

(
s 1

4a2 (qyy + 2qrq)
− 1

4a2 (ryy + 2rqr) v

)
, (3.105)

with functions s, v. (3.92) for k = 3 reads

Ay,z3 = (∂y − adAy)L2, (3.106)

which leads to

s =
1

4a2
(qyr − qry), v = − 1

4a2
(rqy − ryq), (3.107)
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qz3 =
1

4a2

(
qyyy + 3(qyrq + qrqy)

)
, rz3 =

1

4a2

(
ryyy + 3(ryqr + rqry)

)
. (3.108)

Setting (3.102) in (3.108), the first equation of (3.108) yields the noncommutative complex modi-
fied KdV (mKdV) equation (see also [24]).

qz3 = −qyyy ∓ 3(qyq
∗q + qq∗qy). (3.109)

3. Calculation of the third hierarchy equation

(3.93) for i = 3 reads

adAz̄(L3) = (∂y − adAy)L2, (3.110)

which leads to

L3 =

(
b qyyy + 3(qyrq + qrqy)

ryyy + 3(ryqr + rqry) c

)
, (3.111)

with functions b, c. (3.92) for k = 4 reads

Ay,z4 = (∂y − adAy)L3, (3.112)

which leads to

b = qyy + qryy − qyry + 3qrqr,

c = −(ryyq + rqyy) + ryqy − 3rqrq, (3.113)

qz4 =
1

8a3

(
qyyyy + 4(qyyrq + qrqyy)

+2(qyryq + qryqy + qryyq) + 6(qyrqy + qrqrq)
)

rz4 = − 1

8a3

(
ryyyy + 4(ryyqr + rqryy)

+2(ryqyr + rqyry + rqyyr) + 6(ryqry + rqrqr)
)
. (3.114)

Setting (3.102) again, we obtain from the first of equations (3.114)

−iqz4 = qyyyy ± 2(qyq
∗
yq + qq∗yqy + qq∗q)± 4(qyyq

∗q + qq∗qyy)

±6(qyq
∗qy + qq∗qq∗q). (3.115)

This is the second NLS hierarchy equation [36]. Using FORM we checked the commutativity of
the first/second and second/third equations (see Sec.C.4.4).

3.4.2 Reduction to the Zakharov system

Now we assume that the Yang-Mills potentials are only independent of z̄. In this case, the sdYM
hierarchy equations take the following form

Ay,zk
= (∂y − adAy)Lk−1, k = 2, 3, . . . (3.116)

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,ȳδi,1, i = 0, 1, . . . (3.117)
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1. Calculation of the first hierarchy equation

The equation (3.117) for i = 0, ad(L0) = 0 leads to the following form of L0

L0 =

(
f 0
0 k

)
(3.118)

with functions f , k. Subsequently, (3.117) for i = 1 reads

adAz̄ = (∂y − adAy)L0 + Ay,ȳ. (3.119)

The diagonal part of (3.119) leads to fy = ky = 0. Setting f = k = 0 and then, we can see that L1

has a form

L1 =

(
φ 1

2a
qȳ

1
2a
rȳ ν

)
. (3.120)

with new functions φ and ν. The equation (3.116) for k = 2 reads

Ay,z2 = (∂y − adAy)L1. (3.121)

Inserting (3.120) in this equation, the diagonal part determine the unknowns φ and ν such that

φ =
1

2a

∫
(qr)ȳ dy,

ν =
1

2a

∫
(rq)ȳ dy (3.122)

Inserting these in the off-diagonal part of (3.121) we obtain the following equations

qz2 =
1

2a

(
qȳy + q

∫
(rq)ȳ dy +

∫
(qr)ȳ dy q

)
,

rz2 = − 1

2a

(
rȳy − r

∫
(qr)ȳ dy −

∫
(rq)ȳ dy r

)
. (3.123)

Proceeding as in Sec.3.4.1, setting

a =
i

2
, r = ±q∗, (3.124)

we obtain

iqz2 = qȳy ±
(
q

∫
(q∗q)ȳ dy +

∫
(qq∗)ȳ dy q

)
, (3.125)

and the adjoint of (3.125). This is the Zakharov system [16, 37]. If we set y = ȳ, the equation
(3.125) reduces to the NLS equation (see Sec.3.4.1).
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2. Calculation of the second hierarchy equation
The equation (3.117) for i = 2 reads

adAz̄(L2) = (∂y − adAy)L1, (3.126)

which leads to the following form of L2

L2 =
1

4a2

(
4a2P qȳy + q

∫
(rq)ȳ dy +

∫
(qr)ȳ dy q

rȳy + r
∫

(qr)ȳ dy +
∫

(rq)ȳ dy r 4a2S

)
, (3.127)

with functions P and S. (3.116) for k = 2 is

Ay,z3 = (∂y − adAy)L2 (3.128)

which determines the functions P , S,

P =
1

4a2

∫ (
qȳyr − qrȳy + [

∫
(qr)ȳ dy, qr]

)
dy,

S =
1

4a2

∫ (
rȳyq − rqȳy + [

∫
(rq)ȳ dy, rq]

)
dy,

and the second hierarchy equations

qz3 =
1

4a2

(
qȳyy + q(rq)ȳ + (qr)ȳq + qy

∫
(rq)ȳ dy +

∫
(qr)ȳ dy qy

+

∫
(qȳyr − qrȳy) dy q − q

∫
(rȳyq − rqȳy) dy

−q
∫

[

∫
(rq)ȳ dy, rq] dy +

∫
[

∫
(qr)ȳ dy, qr] dy q

)
,

rz3 =
1

4a2

(
rȳyy + r(qr)ȳ + (rq)ȳr + ry

∫
(qr)ȳ dy +

∫
(rq)ȳ dy ry

−r
∫

(qȳyr + qrȳy) dy −
∫

(rqȳy − rȳyq) dy r

−r
∫

[

∫
(qr)ȳ dy, qr] dy +

∫
[

∫
(rq)ȳ dy, rq] dy r

)
(3.129)

With the setting (3.124) we obtain

−qz3 = qȳyy ±
(
q(q∗q)ȳ + (qq∗)ȳq + qy

∫
(q∗q)ȳ dy +

∫
(qq∗)ȳ dy qy

+

∫
(qȳyq

∗ − qq∗ȳy) dy q − q

∫
(q∗ȳyq − q∗qȳy) dy

−q
∫

[

∫
(q∗q)ȳ dy, q

∗q] dy +

∫
[

∫
(qq∗)ȳ dy, qq

∗] dy q
)

(3.130)

and its adjoint. If we impose y = ȳ, this equation reduces to the complex mKdV equation obtained
in Sec.3.4.1.
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3.4.3 Recursion formula of the NLS and Zakharov system hierarchy

Now we turn to a more complete treatment of the NLS and Zakharov system reduction, following
the procedure of Sec.3.2.1 and 3.3.3. The hierarchy equations for both reductions have a similar
form. As we have seen, the “evolution equation” has the same form

Ay,zk
= (∂y − adAy)Lk−1, k = 2, 3, . . . (3.131)

Recalling the “recursion relation” for both reductions,

NLS

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,yδi,1, i = 0, 1, . . . (3.132)

Zakharov system

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,ȳδi,1, i = 0, 1, . . . (3.133)

Obviously, the only difference between (3.132) and (3.133) is the last term on the right hand side
(Ay,y or Ay,ȳ). Thus, inserting (3.132) and (3.133) in (3.131), this results in the same equation,

Ay,zk
= adAz̄(Lk), k = 2, 3, . . . . (3.134)

Inserting

Lp =

(
l(p) m(p)

n(p) h(p)

)
p = 0, 1, . . . (3.135)

in (3.134) leads to

qzk
= 2am(k), rzk

= 2an(k), k = 2, 3, . . . . (3.136)

The equation (3.92) leads to the following equations

l(k−1)
y = qn(k−1) −m(k−1)r, (3.137)

qzk
= m(k−1)

y − qh(k−1) + l(k−1)q, (3.138)

−rzk
= −n(k−1)

y + h(k−1)r − rl(k−1), (3.139)

h(k−1)
y = −(rm(k−1) + n(k−1)q). (3.140)

Integrating (3.137) and (3.140) with respect to y we easily find

l(k−1) =

∫
qn(k−1) dy +

∫
m(k−1)r dy,

h(k−1) = −
( ∫

rm(k−1) dy +

∫
n(k−1)q dy

)
(3.141)
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Inserting these in (3.138) and (3.139), we obtain the recursion formula for m(k), n(k),

m(k) =
1

2a

(
m(k−1)

y + q

∫
rm(k−1) dy +

∫
qn(k−1) dy q

+q

∫
n(k−1)q dy +

∫
m(k−1)r dy q

)
,

n(k) = − 1

2a

(
n(k−1)

y + r

∫
qn(k−1) dy +

∫
n(k−1)q dy r

+r

∫
m(k−1)r dy +

∫
rm(k−1) dy r

)
, k = 2, 3, . . . (3.142)

Hence, whereas both reductions lead to different systems, they yield the same recursion for-
mula. Furthermore, due to the form of Az̄, the operator ∂z̄ − adAz̄ is not invertible on the diagonal
part of arbitrary matrices which have non-zero entries.

Considering the equation (3.132) and (3.133), the noninvertible diagonal part enables that l(k),
h(k), the diagonal entries of Lk, k = 2, 3, . . . are written with respect to m(k), n(k). It helps to
obtain the recursion relation of m(k), n(k). Therefore, the diagonal part of the equation (3.132) and
(3.133) is an additional condition to determine the missing diagonal entries l(k) and h(k).

Using (3.136) and (3.142) we can calculate the higher hierarchy equations selecting the initial
values

NLS hierarchy

m(1) =
1

2a
qy, n(1) =

1

2a
ry, (3.143)

Zakharov system hierarchy

m(1) =
1

2a
qȳ, n(1) =

1

2a
rȳ, (3.144)

NLS hierarchy For even k we find

m(2) =
1

4a2
(qyy + 2qrq), n(2) = − 1

4a2
(ryy + 2rqr),

m(4) =
1

16a4

(
qyyyy + 2(qyryq + qryyq + qryqy)

+4(qyyrq + qrqyy) + 6(qyrqy + qrqrq)
)
,

n(4) = − 1

16a4

(
ryyyy + 2(ryqyr + rqyyr + rqyry)

+4(ryyqr + rqryy) + 6(ryqry + rqrqr)
)
, (3.145)
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In terms of (3.102), these reproduce the noncommutative NLS hierarchy [36]

iqz2 = qyy ± 2qq∗q,

−iqz4 = qyyyy ± 2(qyq
∗
yq + qq∗yqy + qq∗q)± 4(qyyq

∗q + qq∗qyy)

±6(qyq
∗qy + qq∗qq∗q)) (3.146)

For odd k we find

m(3) =
1

8a3

(
qyyy + 3(qyrq + qrqy)

)
, n(3) =

1

8a3

(
ryyy + 3(ryqr + rqry)

)
,

m(5) =
1

32a5

(
qyyyyy + 5(qyyyrq + qrqyyy + qyyryq + qryqyy + qyryyq + qryyqy)

+10(qyyrqy + qyrqyy + qyryqy) + 10(qyrqrq + qrqyrq + qrqrqy)
)
,

n(5) =
1

32a5

(
ryyyyy + 5(ryyyqr + rqryyy + ryyqyr + rqyryy + ryqyyr + rqyyr)

+10(ryyqry + ryqryy + ryqyry) + 10(ryqrqr + rqryqr + rqrqry)
)
, (3.147)

and we obtain the noncommutative complex mKdV hierarchy (see also [36]).

qz3 = −qyyy ∓ 3(qyq
∗q + qq∗qy),

qz5 = qyyyyy ± 5(qyyyq
∗q + qq∗qyyy + qyyq

∗
yq + qq∗yqyy + qyq

∗
yyq + qq∗yyqy)

±10(qyyq
∗qy + qyq

∗qyy + qyq
∗qy)

+10(qyq
∗qq∗q + qq∗qyq

∗q + qq∗qq∗qy), (3.148)

In the following we sketch the results.

pre-sdYM hierarchy

reduced pre-sdYM hierarchy

NLS hierarchy
for even order
qz2 = . . .
qz4 = . . .

...

complex mKdV hierarchy
for odd order
qz3 = . . .
qz5 = . . .

...

?

NLS reduction

Figure 6 : NLS Reduction
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Hence, from the pre-sdYM hierarchy we obtain a hierarchy which consists of the two hierarchies
associated with NLS and complex mKdV equations. 7.

Zakharov system hierarchy From (3.142) we obtain

m(2) =
1

4a2

(
qȳy + q

∫
(rq)ȳ dy +

∫
(qr)ȳ dy q

)
,

n(2) = − 1

4a2

(
rȳy + r

∫
(qr)ȳ dy +

∫
(rq)ȳ dy r

)
,

m(3) =
1

8a3

(
qȳyy + q(rq)ȳ + (qr)ȳq + qy

∫
(rq)ȳ dy +

∫
(qr)ȳ dy qy

+

∫
(qȳyr − qrȳy) dy q + q

∫
(rqȳy − rȳyq) dy

+q

∫
[rq,

∫
(rq)ȳ dy] dy +

∫
[

∫
(qr)ȳ dy, qr] dy q

)
,

n(3) =
1

8a3

(
rȳyy + r(qr)ȳ + (rq)ȳr + ry

∫
(qr)ȳ dy +

∫
(rq)ȳ dy ry

−r
∫

(qȳyr − qrȳy) dy −
∫

(rqȳy − rȳyq) dy r

−r
∫

[

∫
(qr)ȳ dy, qr] dy −

∫
[rq,

∫
(rq)ȳ] dy r

)
, (3.149)

which reproduces the Zakharov system hierarchy

qz2 = 2am(2)

=
1

2a

(
qȳy + q

∫
(rq)ȳ dy +

∫
(qr)ȳq

)
,

rz2 = 2an(2)

= − 1

2a

(
rȳy + r

∫
(qr)ȳ dy +

∫
(rq)ȳ dy r

)
,

qz3 = 2am(3)

1

4a2

(
qȳyy + qy

∫
(rq)ȳ +

∫
(qr)ȳ dy qy + q(rq)ȳ + (qr)ȳq

+q

∫
(rqȳy − rȳyq) dy +

∫
(qȳyr − qrȳy) dy q

q

∫
[rq,

∫
(rq)ȳ +

∫
[

∫
(qr)ȳ dy, qr] dy q

)
,

rz3 = 2an(3)

1

4a2

(
rȳyyry

∫
(qr)ȳ dy +

∫
(rq)ȳ dy ry + r(qr)ȳ + (rq)ȳr

−r
∫

(qȳy − qrȳy) dy −
∫

(rqȳy − rȳyq) dy r

7As a reduction of the AKNS-D hierarchy, a generalization of the AKNS hierarchy, it is known that the NLS and
mKdV equation are obtained as its first and second flow. See [24], Chapter 9.
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−r
∫

[

∫
(qr)ȳ, qr] dy −

∫
[rq,

∫
(rq)ȳ dy r

)
, (3.150)

In particular, considering the commutative case, (3.142) can be written in vector form(
m(k)

n(k)

)
= I

(
m(k−1)

n(k−1)

)
= Ik−1

(
m(1)

n(1)

)
, k = 2, 3, . . . , (3.151)

where I is defined by

I :=
1

2a

(
∂y + 2q∂−1

y r 2q∂−1
y q

−2r∂−1
y r −∂y − 2r∂−1

y q

)
(3.152)

and ∂−1
y is the operator of integration with respect to the variable y. Inserting (3.136) in (3.151),

we obtain the following recursion formula for the hierarchy equations,(
qzk

rzk

)
= 2aIk−1

(
m(1)

n(1)

)
, k = 2, 3, . . . (3.153)

In [38], the NLS hierarchy which is in the form (3.153) is studied as a reduction of the AKNS
hierarchy. Selecting the initial values m(1), n(1) with (3.143) or (3.144), the recursion formula
(3.153) reproduces the commutative NLS or Zakharov system hierarchy.

3.5 Reduction to Sine-Gordon
In [25], a reduction of the (anti-) sdYM equations which leads to the sine-Gordon equation is
presented. Now we turn to apply this reduction ansatz to the pre-sdYM hierarchy. We choose the
gauge potentials

Ay = − i
2

(
c 0
0 −c

)
, Az̄ = − i

2

(
0 1
1 0

)
, (3.154)

where c is a function which does not depend on z, z̄. The pre-sdYM hierarchy equations take the
following form

Ay,zk
= (∂y − adAy)Lk−1, k = 3, 4, . . . (3.155)

with

(∂y − adAy)L1 = 0, (3.156)

and

adAz̄(Li) = (∂y − adAy)Li−1 + Ay,ȳδi,1 + Az̄,ȳδi,0, i = 0, 1, . . . (3.157)
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1. Calculation of the first hierarchy equation

The equation (3.157) for i = 0 reads

adAz̄(L0) = 0, (3.158)

which leads to

L0 =

(
f g
g f

)
, (3.159)

with functions f, g. (3.157) for i = 1 reads

adAz̄(L1) = (∂y − adAy)L0 + Ay,ȳ. (3.160)

Inserting

L1 =

(
p q
r s

)
, (3.161)

equation (3.160) yields these following equations

i

2
(q − r) = fy −

i

2
[f, c]− i

2
cȳ = −fy +

i

2
[c, f ]− i

2
cȳ, (3.162)

i

2
(p− s) = gy +

i

2
{g, c} = −gy +

i

2
{g, c}, (3.163)

From (3.162) and (3.163) we find fy = 0, gy = 0. We set f = g = 0. Then we have

q − r = −cȳ, p− s = 0. (3.164)

We find that L1 takes the form

L1 =

(
p q

q − cȳ p

)
. (3.165)

Inserting this in (3.156), we obtain

py −
i

2
[p, c] = py −

i

2
[c, p] = 0, (3.166)

qy +
i

2
{c, q} = qy − cȳy −

i

2
{c, q − cȳ} = 0. (3.167)

The equation (3.166) implies py = 0. We set p = 0. Adding first and second equations in (3.167)
and integrating with respect to y, we obtain

q =
1

2
cȳ −

i

4

∫
(c2)ȳ dy. (3.168)

Introducing

a :=
1

2

∫
{(c2)ȳ} dy, b := −cȳ, (3.169)
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we have q = −1
2
(b+ ia). Inserting this in the first equation (3.167), we obtain

ay = −1

2
{b, c}, by =

1

2
{a, c}. (3.170)

In the commutative case, we can see that ay = −bc, by = ac. This implies that the quantity a2 + b2

does not depend on y. Choosing a2 + b2 = r2, r ∈ R, r 6= 0 and parametrizing

a = r cos u, b = r sin u, (3.171)

where u is a function of y, ȳ. Inserting (3.171) in (3.170) this gives c = uy. As a consequence the
second equation (3.169) yields the sine-Gordon equation

uȳy = −r sin u. (3.172)

2. Calculation of the second hierarchy equation

Now let us calculate the next hierarchy equation. (3.157) for i = 2 reads

adAz̄(L2) = (∂y − adAy)L1. (3.173)

Inserting

L2 =

(
s t
v w

)
(3.174)

with functions s, t, v, w. The off-diagonal part of the equation (3.173) leads to

s− w = iby + ay +
1

2
{c, b} − i

2
{c, a} = iby − ay +

1

2
[c, b]− i

2
{c, a}. (3.175)

This gives ccȳ = 0. This condition leads a = b = 0, L1 = 0. Hence, in the case of the sine-
Gordon reduction, the pre-sdYM hierarchy does not produce a recursion formula which leads to a
hierarchy associated with the sine-Gordon equation.
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4 Towards hierarchies in 2+1 dimensions
In this section we consider how to obtain 2+1-dimensional (1 time variable and 2 space variables)
integrable systems such as 2+1-dimensional N -wave system, KP equation as a reduction of the
sdYM hierarchy. As an example how to obtain a 2+1-dimensional integrable system, we start from
the following linear system

∂yΨ = XΨ,

∂zΨ = YΨ, (4.1)

where X , Y are elemtns in the Lie algebra of objects which are polinomials in an indeterminate λ
and formal power series in its inverse λ−1 with coefficients in an associative algebra. Choosing

X =

(
0 1

u+ λ 0

)
, Y =

(
1
4
uy −1

2
u+ λ

1
4
uyy − 1

2
u2 + 1

2
uλ+ λ2 −1

4
uy

)
. (4.2)

The compatibility condition of (4.1) is equivalent to the (noncommutative) KdV equation

uz =
1

4
uyyy −

3

4
(u2)y. (4.3)

Next we assume that X , Y are elements in the Lie algebra of matrix differential operators with
respect to a new variable s :

G =

{
�∞∑
j=0

aj ∂
j
s

}
(4.4)

where aj are N ×N matrices with entries from an associative algebraA over C (typically an alge-
bra of matrices of functions). Furthermore, Ĝ is the Lie algebra of objects which are polynomials
in the differential operator ∂s and formal power series in its inverse ∂−1

s with coefficients in G. By
( )± we denote the projections to the regular (+), respective singular (-) part of such a series. We
choose

X =

(
0 1

u+ ∂s 0

)
, Y =

(
1
4
uy −1

2
u+ ∂s

1
4
uyy − 1

2
u2 + 1

2
u∂s + ∂2

s −1
4
uy

)
. (4.5)

which is indeed equivalent to (4.2) in terms of replacing λ by ∂s. In this case, the compatibility
condition of (4.1) is equivalent to the noncommutative KP equation

uz3 =
1

4
uyyy −

3

4
(u2)y +

3

4
[u,

∫
us dy] +

3

4

∫
uss dy. (4.6)

In the following, we consider a sdYM hierarchy and its reductions assuming that all gauge poten-
tials are in G. In this case, we can not apply the pre-sdYM hierarchy simply replacing λ by ∂s. The
compatibility condition (2.13) in Sec.2.1 with the replacement, λ→ ∂s reads

[ ∂y + ∂s∂z̄ − Ay − Az̄∂s , ∂tn + ∂n
s ∂ȳ −

n−1∑
i=1

Bn−i∂
i
s − Aȳ∂

n
s ] = 0 n = 1, 2, . . . (4.7)

which does not give rise to a recursion relation since second order of differential operators appear,
such as ∂s∂z̄.
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4.1 A sdYM hierarchy with gauge potentials in a Lie algebra of differential
operators

In this section we consider a sdYM hierarchy with gauge potentials in G introduced in [13] which
can be a candidate of an extension of the sdYM hierarchy which reduces to hierarchies associated
with 2+1-dimensional integrable systems and its reductions.

4.1.1 Definition of the hierarchy

In this subsection, we consider a sdYM hierarchy for 2 + 1-dimensions introduced in [13]. Intro-
ducing the following differential operators

D1 := ∂y + ∂z̄, (4.8)
Dk := ∂zk

− ∂ȳ, k = 2, 3, . . . (4.9)

and considering the system defined by

[D1 − A1, Dk − Ak] = 0, k = 2, 3, . . . (4.10)

where A1, Ak ∈ G. Now we choose them as follows

A1 = U + A∂s, (4.11)

Ak =
k−1∑
j=0

L
(k)
j ∂k−j−1

s , k = 2, 3, . . . (4.12)

where U , A and L(k)
j , k = 2, 3, . . . are in A and A is a constant matrix. Moreover, the index above

Lj specifies the number of “flow”. Inserting theseA1 andAk, the system (4.10) takes the following
form

Uzk
− Uȳ +

k−1∑
j=0

(UL
(k)
j + AL

(k)
j,s − L

(k)
j,y − L

(k)
j,z̄ )∂sk−j−1

−
k−1∑
j=0

L
(k)
j

k−j−1∑
l=0

(
k − j − 1

m

)
Usk−j−m−1∂m

s +
k−1∑
j=0

[A,Lj]∂
k−j
s = 0 (4.13)

where Usj = U s . . . s︸︷︷︸
j-times

, i.e., j-times differentiation of U with respect to the variable s. Now we equate

(4.13) with respect to ∂s. For each order of ∂s we obtain

Uzk
= Uȳ + (∂y + ∂z̄)L

(k)
k−1 − UL

(k)
k−1 − AL

(k)
k−1,s

+
k−1∑
j=0

L
(k)
j Usk−j−1 , k = 2, 3, . . . (4.14)

adA(L
(k)
i ) = (∂y + ∂z̄)L

(k)
i−1 − UL

(k)
i−1 − AL

(k)
i−1,s

+
k−1∑
j=0

(
k − j − 1
k − i

)
L

(k)
j Usi−j−1 , i = 1, 2, . . . , k (4.15)

adA(L
(k)
0 ) = 0, k = 2, 3, . . . (4.16)
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This is the sdYM hierarchy for 2+1-dimensions introduced in [13] . One can see that

L(k) =
∞∑

j=0

L
(k)
j ∂k−j−1

s (4.17)

satisfies the following differentials equation

D1(L
(k)) = [U + A∂s , L

(k) ]. (4.18)

Remark. The “recursion relation” (4.15) can be solved exactly if the operator adA is invertible,
there are no examples in reductions, however. In examples of reductions, we show that we ob-
tain a recursion relation without the condition that the operator adA is invertible (see Sec.4.2.2,
Sec.4.2.4).

To see the relationship between the system (4.10) and the sdYM equations, firstly we consider
the sdYM equations with the following gauge choices Aȳ = Az̄ = 0

∂yAz − ∂zAy − [Ay, Az] = 0, ∂ȳAy + ∂z̄Az = 0. (4.19)

Furthermore we assume

Ay = U + A∂s, Az = V +B∂s (4.20)

V and B are also inA and we assume thatB is a constant matrix. Then the sdYM equations (4.19)
yield

Vy − Uz − [U, V ] +BUs − AVs = 0, (4.21)
[U,B] + [A, V ] = 0, (4.22)

[A,B] = 0, (4.23)
Uȳ + Vz̄ = 0. (4.24)

From (4.24) we can see that A and B are commuting matrices. The “first members” of the system
(4.10), i.e., for k = 2 we have

[D1 − A1, D2 − A2] = 0 (4.25)

which is equivalent to the compatibility condition of the following linear system

D1Ψ = A1Ψ, D2Ψ = A2Ψ (4.26)

where

A2 =
1∑

j=0

L
(2)
j ∂k−j−1

s = L
(2)
0 ∂s + L

(2)
1 . (4.27)

The system (4.25) yields the following equations

L
(2)
1,y − Uz − Uȳ + L

(2)
0 Us − AL

(2)
1,s − [U,L

(2)
1 ] + L

(2)
1,z̄ − Uȳ = 0, (4.28)

L
(2)
0,y + L

(2)
0,z̄ − AL

(2)
0,s + [U,L

(2)
0 ] + [A,L

(2)
1 ] = 0, (4.29)

[A,L
(2)
0 ] = 0. (4.30)
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With the Setting

L
(2)
0 := B, L

(2)
1 := V, (4.31)

the equations (4.30) and (4.30) become (4.23) and (4.24), respectively. However, the equation
(4.29) becomes a linear combination of (4.22) and (4.24). Imposing the condition

Uȳ + Vz̄ = Uȳ + L
(2)
1,z̄ = 0, (4.32)

Then the system (4.25) is equivalent to sdYM equations with the special gauge choice Aȳ = Az̄ =
0 , Ay = U + A∂s, Az = V + B∂s. In general, the above condition (4.32) is too strong and rarely
satisfied in the process of reductions. In Sec.4.2, we consider examples of reductions in which the
condition (4.32) is indeed satisfied.

4.1.2 Some general results

In this subsection we show that the sdYM hierarchy for 2+1 dimensions (4.10) implies a hierarchy
under the special condition that the operator adA is invertible, though we have no examples for
reductions in which the condition is satisfied.

Lemma 4.1 If adA is invertible, there is a W ∈ Ĝ− in the form

W = 1 +
∞∑

k=1

Wk∂
−k
s (4.33)

which satisfies

D1 − A1 = Ŵ (D1 − A∂s)Ŵ−1 (4.34)

where Ŵ is the multiplication operator associated with W .

Proof. We find that (4.34) yields

A1W = D1(W ) +WA∂s. (4.35)

Inserting (4.33) in (4.35), we find the recursion relation with respect to Wk

adA(Wi) = (∂y + ∂z̄)Wi−1 − UWi−1 − AWi−1,s, i = 2, 3, . . . (4.36)

with the initial condition

adA(W1) = −U. (4.37)

Hence, Wk is determined recursively if adA is invertible. �

Now we define

L(k) := W (∂ȳ +B∂k−1
s )W−1 (4.38)

where B is a constant matrix and commutes with A.
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Proposition 4.1 The sdYM hierarchy for (2 + 1)-dimension (4.10) implies the following equation,

Wzk
= −(L(k))−W (4.39)

if adA is invertible.

Proof. First we rewrite (4.38) as follows.

L(k) = −WȳW
−1 +W (B∂k−1

s )W−1 (4.40)

Inserting the equation (4.34) in (4.10), we have

[Ŵ−1(D1 − A∂s)Ŵ ,Dk − Ak] = 0. (4.41)

Multiplying Ŵ−1, Ŵ from the right and left side in (4.41), we obtain

[D1 − A∂s, Ŵ−1(Dk − Ak)Ŵ ] = 0 (4.42)

where

(Dk − Ak)Ŵ = Wzk
− Wȳ︸︷︷︸
−L(k)W+WB∂k−1

s

−AkW +W (∂zk
− ∂ȳ)

= Wzk
+ (L(k))−W +WB∂k−1

s +W (∂zk
− ∂ȳ) (4.43)

Then the equation (4.42) yields

0 = [D1 − A∂s,W
−1Dk(W )−W−1AkW ]

= (∂y + ∂z̄)W
−1(Wzk

+ (L(k))−W )−

−A∂s

(
W−1(Wzk

+ (L(k))−W )
)
− adA

(
W−1(Wzk

+ (L(k))−W )
)
∂s. (4.44)

Then (4.44) implies (4.39) if adA is invertible. In the following we assume the invertibility of this
operator.

The equation (4.39) together with (4.38) can be rewritten as

Dk − Ak = Ŵ (Dk −B∂k−1
s )Ŵ−1. (4.45)

We rewrite (4.38) in the form

∂ȳ + L̂(k) = Ŵ (∂ȳ +B∂k−1
s )Ŵ−1 (4.46)

and considering the following commutator and applying (4.34) as well as (4.45), we find

[D1 − A1 , ∂ȳ + L̂(k) ] = Ŵ [D1 − A∂s , ∂ȳ +B∂k−1
s ]Ŵ−1

= 0, (4.47)

[Dk − Ak , ∂ȳ + L̂(k) ] = Ŵ [Dk −B∂k−1
s , ∂ȳ +B∂k−1

s ]Ŵ−1

= 0. (4.48)
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which lead to

D1(L
(k)) = [U + A∂s , L

(k) ]− Uȳ, (4.49)
Dk(L

(k)) = [Ak , L
(k) ]− Ak,ȳ. (4.50)

Remark. In [13], L(k) is defined by

L(k) = W (B∂k−1
s )W−1. (4.51)

If we assume (4.51), (4.43) has the following form

(Dk − Ak)Ŵ = Dk(W )− AkW +W (∂zk
− ∂ȳ). (4.52)

Then (4.44) reads

0 = (∂y + ∂z̄)W
−1(Dk(W )− AkW )− A∂s

(
W−1(Dk(W )− AkW )

)
−adA

(
W−1(Dk(W )− AkW )

)
∂s (4.53)

If adA is invertible, we have

Dk(W ) = AkW

= (L(k))+W. (4.54)

Then

Ŵ (Dk −B∂k−1
s )Ŵ−1 = Dk −Dk(W )W−1 −W (B∂k−1

s )W−1

= Dk − Ak − L(k)

6= Dk − Ak. (4.55)

Hence, the necessary condition to obtain (4.45) is that L(k) must be defined by (4.38). In the
following, we take (4.38) as a definition of L(k).
Moreover, the equation (4.49) does not reproduce the recursion relation (4.15) and (4.16) due to
the additional term −Uȳ. If the gauge potentials do not depend on ȳ, (4.49) leads to (4.16). In
examples of reductions which we consider in Sec.4.2, this condition is always satisfied. In this
subsection, we assume that all gauge potentials depend on ȳ and one can show that the system
(4.10) has the hierarchy property, i.e., arbitrary flows of (4.10) commute (under the condition that
the operator adA is invertible).

Theorem 4.1 The flows given by (4.39) commute.

Proof.

Wzkzl
−Wzlzk

=
(
(L(l))−,zl

− (L(k))−,zl
+ [ (L(k))− , (L(l))− ]

)
W (4.56)

Considering following commutators

[Dk − Ak , ∂ȳ + L̂(l) ] = Ŵ [Dk −B∂k−1
s , ∂ȳ +B∂l−1

s ]Ŵ−1

= 0 (4.57)
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and

[Dl − Al , ∂ȳ + L̂(k) ] = Ŵ [Dl −B∂l−1
s , ∂ȳ +B∂k−1

s ]Ŵ−1

= 0, (4.58)

since B is constant. This yields

Dk(L
(l)) = [ (L(k))+ , L

(l) ]− ∂ȳ(L
(k))+,

Dl(L
(k)) = [ (L(l))+ , L

(k) ]− ∂ȳ(L
(l))+. (4.59)

Projecting on Ĝ−, we find

(L(l))−,zk
− (L(k))−,zl

= [ (L(k))+ , (L(l))− ]− − [ (L(l))+ , (L(k))− ]−

+∂ȳ(L
(l))− − ∂ȳ(L

(k))−. (4.60)

To eliminate the commutators on the right side, we look at the following commutator

[ ∂ȳ + L̂(k) , ∂ȳ + L̂(l) ] = Ŵ [∂ȳ +B∂k−1
s , ∂ȳ +B∂l−1

s ]Ŵ−1

= 0. (4.61)

Hence,

∂ȳ(L
(l))− ∂ȳ(L

(k)) + [ (L(k)) , (L(l)) ] = 0 (4.62)

Projecting (4.62) on Ĝ−, we obtain

[ (L(k))+ , (L(l))− ]− − [ (L(l))+ , (L(k))− ]− = [ (L(l))− , (L(k))− ]

+∂ȳ(L
(k))− − ∂ȳ(L

(l))−. (4.63)

Then (4.60) yields

(L(l))−,zk
− (L(k))−,zl

= −[ (L(k))− , (L(l))− ] (4.64)

Inserting this in (4.56), we obtain

Wzkzl
−Wzlzk

= 0 (4.65)

�

Theorem 4.2 The arbitrary flows of the sdYM hierarchy for 2+1- dimensions commute such that

[Dk − Ak, Dl − Al] = 0, k, l = 2, 3, . . . (4.66)

Proof:

[Dk − Ak , Dl − Al ] = Dl(Ak)−Dk(Al) + [Ak , , Al ]

= Dl(L
(k))+ −Dk(L

(l))+ + [ (L(k))+ , (L(l))+ ] (4.67)

53



Considering the projection of (4.62) on ĝ+, we find

∂ȳ(L
(k))+ − ∂ȳ(L

(l))+ = [ (L(k))+ , (L(l))+ ] + [ (L(k))+ , (L(l))− ]

+[(L(k))− , (L(l))+ ]. (4.68)

Then

Dl(L
(k))+ −Dk(L

(l))+ = 2[ (L(l))+ , (L(k))+ ] + [ (L(l))+ , (L(k))− ]+

−[ (L(k))+ , (L(l))− ]+ + ∂ȳ(L
(k))+ − ∂ȳ(L

(l))+︸ ︷︷ ︸
(4.68)

= [ (L(l))+ , (L(k))+ ] (4.69)

Inserting this in (4.67), we have (4.66). �
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4.2 Reductions
In this section we consider the reductions of the sdYM hierarchy defined in Sec.4.1.1 . We consider
two examples of reductions which lead to the 2+1-dimensional N -wave system hierarchy and the
KP hierarchy.
In both examples, we assume that the gauge potentials do not depend on ȳ and z̄.

4.2.1 Reduction to 2+1-dimensional N -wave system

Choosing the gauge potentials

A = diag(a1, . . . , an) (4.1)

with all eigenvalues different from each other. The hierarchy equations read

Uzk
= L

(k)
k−1,y − UL

(k)
k−1 − AL

(k)
k−1,s +

k−1∑
j=0

L
(k)
j Usk−j−1 , k = 2, 3, . . . (4.2)

adA(L
(k)
i ) = L

(k)
i−1,y − UL

(k)
i−1 − AL

(k)
i−1,s

+
k−1∑
j=0

(
k − j − 1
k − i

)
L

(k)
j Usi−j−1 , i = 1, 2, . . . , k, k = 2, 3, . . . (4.3)

adA(L
(k)
0 ) = 0, k = 2, 3, . . . (4.4)

1. Calculation of the first hierarchy equation From (4.4) we can see that L(k)
0 is a diagonal

matrix. Assuming

L
(k)
0 = diag(b1, b2, . . . , bn), k = 2, 3, . . . (4.5)

with different eigenvalues bi, i = 1, 2, . . . n 8. (4.3) for i = 1, k = 2 reads

adA(L
(2)
1 ) = L

(2)
0,y − adU(L

(2)
0 )− AL

(2)
0,s (4.6)

which leads to the off-diagonal parts of L1,

(L
(2)
1 )ij = λijUij, i 6= j (4.7)

where

λij :=
bi − bj
ai − aj

= λji, (4.8)

The equation (4.2) for k = 2 reads

Uz2 = L
(2)
1,y + L

(2)
0 Us − [U,L

(2)
1 ]− AL

(2)
1,s. (4.9)

8In general, all L
(k)
0 , k = 2, 3, . . . can differ from each other. However, by a suitable gauge transformation it is

possible to transform L(k) in the form (4.5).
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This yields the 2 + 1 dimensional N -wave system [34]

Uij,z2 = λijUij − µijUij +
n∑

l=1

(λin − λnj)UikUkj (4.10)

where

µ := aiλij − bi. (4.11)

Ignoring the dependency of the additional variable s, the equation (4.10) reduces to the N -wave
interaction equation which we obtained in Sec.3.2.

2. Calculation of the second hierarchy equation (4.3) for i = 1, k = 3 reads

adA(L
(3)
1 ) = L

(3)
0,y − [U,L

(3)
0 ]− AL

(3)
0,s. (4.12)

This equation hat the same form as (4.6) except for the difference of index above L. This gives

(L
(3)
1 )ij = λijUij (4.13)

The equation (4.3) for i = 2, k = 3 reads

adA(L
(3)
2 ) = L

(3)
1,y − [U,L

(3)
1 ]− AL

(3)
1,s + 2L

(3)
0 Us, i 6= j (4.14)

which determines the off-diagonal parts of L2

L
(3)
2,ij =

1

ai − aj

[λijUij,y + (2bi − aiλij)Uij,s +
n∑

m=1

(λim − λmj)UimUmj]. (4.15)

The equation (4.2) for k = 3 reads

Uz3 = L
(3)
2,y − [U,L

(3)
2 ]− AL

(3)
2,s + L

(3)
0 Uss + L

(3)
1 Us. (4.16)

Splitting this into diagonal and off-diagonal parts, the diagonal part read

(∂y − ai∂s)(L
(3)
2 )ii = [U,L

(3)
2 ]ii − (L

(3)
1 Us)ii

=
n∑

k=1

( λik

ai − ak

(UikUki)y +
2bi − aiλik

ai − ak

(UikUki)s

−2λikUikUki,s

)
, (4.17)

and the off-diagonal part yields the second hierarchy equation

Uij,z3 =
1

ai − aj

[
λijUij,yy + 2(bi − ai)λijUij,ys + (a2

iλij − bi(ai + aj))Uij,ss

]
+

n∑
k=1

( λik

ai − ak

Uik,yUkj −
λkj

ak − aj

UikUkj

)
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+
n∑

k=1

(2bi − aiλik

ai − ak

Uik,sUkj −
2bk − akλkj

ak − aj

UikUkj,s

)
+

n∑
k=1

1

ai − ak

n∑
l=1

(λil − λlk)UilUlkUkj −
n∑

k=1

1

ak − aj

Uik

n∑
l=1

(λkl − λlj)UklUlj

+
n∑

k=1

λikUikUkj,s +
1

ai − aj

n∑
k=1

(λik − λkj)
(
(UikUkj)y − ai(UikUkj)s

)
+(L

(3)
2 )iiUij − Uij(L

(3))jj. (4.18)

Due to the dependency of gauge potential on s, the diagonal part (L
(3)
2 )ii contains integrals with

respect to y and s (cf. Sec.3.2). If we assume that the gauge potentials do not depend on s, the
equation (4.18) yields the second hierarchy equation of the N -wave system in Sec.3.2

4.2.2 Recursion formula of the 2+1-dimensional N -wave system

In the following, we treat the 2+1-dimensional N -wave system more exactly by deriving a recur-
sion formula of the reduced sdYM hierarchy.

Proposition 4.2 The reduced sdYM hierarchy is equivalent to

Uij,zk
= (ai − aj)(L

(k)
k )ij, k = 2, 3, . . . (4.19)

where L(k)
p , p = 1, 2, . . . , k is determined by the following recursion formula

(L(k)
p )ij =

1

ai − aj

(
(L

(k)
p−1)ij,y −

n∑
m=1

Uim(L
(k)
p−1)mi − ai(L

(k)
p−1)ij,s

+
k−1∑
j=0

(
k − j − 1
k − p

) n∑
m=1

(L
(k)
j )imUmj,sp−j−1

)
,

p = 1, 2, . . . , k (4.20)

(∂y − ai∂s)(L
(k)
p−1)ii =

n∑
m=1

Uim(L
(k)
p−1)mi −

k−1∑
j=0

(
k − j − 1
k − p

) n∑
m=1

(L
(k)
j )imUmi,sp−j−1 ,

i = 1, 2, . . . , k (4.21)

with the initial condition

adA(L
(k)
0 ) = 0 (4.22)

Proof. The right-hand side of (4.2) and (4.3) for p = k are equivalent, therefore we find

Uzk
= adA(L

(k)
k ) (4.23)

which yields (4.19). Moreover, the diagonal and off-diagonal part of (4.3) yield (4.21) and (4.20)
respectively. �

For the first value of k we find
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k = 2

L
(2)
0 = diag(b1, b2, . . . , bn),

(L
(2)
1 )ij =

1

ai − aj

(
(L

(2)
0 )ij −

n∑
m=1

Uim(L
(2)
0 )mj − ai(L

(2)
0 )ij,s

+
1∑

j=0

(
1− j

1

) n∑
m1

(L
(2)
j )imUmj,s−j

)
= λijUij,

(∂y − ai∂s)(L
(2)
1 )ii = 0 ⇒ (L

(2)
1 )ii = 0

Uij,z2 = (L
(2)
2 )ij

=
1

ai − aj

(
(L

(2)
1 )ij,y −

n∑
m=1

Uim(L
(2)
1 )mj − ai(L

(2)
1 )ij,s

+
1∑

l=0

(
1− l

0

) n∑
m=1

(L
(2)
l )imUmj,s1−l

)
.

k=3

L
(3)
0 = diag(b1, b2, . . . , bn),

(L
(3)
1 )ij =

1

ai − aj

(
(L

(3)
1 )ij,y − ai(L

(3))ij,s −
n∑

m=1

Uim(L
(3)
mj

+
2∑

j=0

(
2− j

2

) n∑
m=1

(L
(3)
j )imUmj,s−j

)
,

= λijUij,

(L
(3)
1 )ii = (∂y − ai∂s)

−1
( n∑

m=1

Uim(L
(3)
1 )mi −

2∑
j=0

(
2− j

1

) n∑
m=1

(L
(3)
j )imUmi,s1−j

)
= 0,

(L
(3)
2 )ij =

1

ai − aj

(
(L

(3)
0 )ij,y − ai(L

(3)
0 )ij,s −

n∑
m=1

Uim(L
(3)
0 )mj

+
2∑

j=0

(
2− j

2

) n∑
m=1

(L
(3)
j )imUmj,s−j

)
=

1

ai − aj

[λijUij,y + (2bi − aiλij)Uij,s +
n∑

m=1

(λim − λmj)UimUmj],

(L
(3)
2 )ii = (∂y − ai∂s)

−1
( n∑

m=1

Uim(L
(3)
2 )mi −

2∑
j=0

n∑
m=1

(L(3))imUmi,s2−j

)
= (∂y − ai∂s)

−1
( n∑

m=1

λim

am − ai

(UimUmi)y
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+
2bi − aiλik

ai − ak

(UikUki)s − 2λikUikUki,s

)
,

Uij,z3 = (L
(3)
3 )ij

=
1

ai − aj

(
(L

(3)
2 )ij,y − ai(L

(3)
2 )ij,s −

n∑
m=1

Uim(L
(3)
2 )mj

+
2∑

j=0

n∑
m=1

(L
(3)
j )imUmj,s2−j

)
=

1

ai − aj

[
λijUij,yy + 2(bi − ai)λijUij,ys + (a2

iλij − bi(ai + aj))Uij,ss

]
+

n∑
k=1

( λik

ai − ak

Uik,yUkj −
λkj

ak − aj

UikUkj

)
+

n∑
k=1

(2bi − aiλik

ai − ak

Uik,sUkj −
2bk − akλkj

ak − aj

UikUkj,s

)
+

n∑
k=1

1

ai − ak

n∑
l=1

(λil − λlk)UilUlkUkj −
n∑

k=1

1

ak − aj

Uik

n∑
l=1

(λkl − λlj)UklUlj

+
n∑

k=1

λikUikUkj,s +
1

ai − aj

n∑
k=1

(λik − λkj)
(
(UikUkj)y − ai(UikUkj)s

)
+(L

(3)
2 )iiUij − Uij(L

(3))jj.

4.2.3 Reduction to the KP hierarchy

In this case, we choose the gauge potentials

A =

(
0 0
1 0

)
, U =

(
0 1
u 0

)
. (4.24)

The hierarchy equations have same form as in the 2+1-dimensional N -wave case, so that

Uzk
= L

(k)
k−1,y − UL

(k)
k−1 − ALk−1,s +

k−1∑
l=0

L
(k)
j Usk−l−1 , k = 2, 3, . . . (4.25)

adA(L
(k)
i ) = L

(k)
i−1,y − UL

(k)
i−1 − ALk

i−1,s

+
k−1∑
l=0

(
k − l − 1
k − i

)
L

(k)
l Usi−l−1 , i = 1, 2, . . . , k, k = 2, 3, . . .(4.26)

adA(L
(k)
0 ) = 0 k = 2, 3, . . . (4.27)

(4.27) means that L(k)
0 has a following form

L
(k)
0 =

(
φ 0
ψ φ

)
, (4.28)
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with functions φ, ψ.

1. Calculation of the first hierarchy equation

(4.26) for i = 1, k = 2 reads

adA(L
(2)
1 ) = L

(2)
0,y − [U,L

(2)
0 ]− AL

(2)
0,s. (4.29)

Inserting

L
(2)
0 :=

(
f 0
h f

)
, L

(2)
1 :=

(
a b
c d

)
(4.30)

with unknowns a, b, c, d, f , h, the equation (4.29) leads to

b = h, a− d = 0. (4.31)

The equation (4.25) for k = 2 reads

Uz2 = L
(2)
1,y − [U,L

(2)
1 ]− AL

(2)
1,s + L

(2)
0 Us, (4.32)

which leads to the following four equations

ay − c+ hu = 0 (4.33)
2hy = 0 (4.34)
uz2 = cy − [u, a] (4.35)
ay − uh+ c (4.36)

Adding (4.33) and (4.36) we see that ay = 0. Now we impose a = 0. Inserting this in (4.33) and
(4.35) we obtain

c = hu, uz2 = huy. (4.37)

Setting

L
(k)
0 = A, k = 2, 3, . . . , (4.38)

we obtain c = u and the linear equation

uz2 = uy. (4.39)

2. Calculation of the second hierarchy equation

The equation (4.26) for i = 1, k = 3 reads

adA(L
(3)
1 ) = L

(3)
0,y − [U,L

(3)
0 ]− AL

(3)
0,s. (4.40)

Inserting

L
(3)
0 :=

(
n 0
m n

)
, L(3) :=

(
p q
r s

)
(4.41)
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The diagonal parts of (4.40) lead to ny = 0, q = h. As a consequence, L(3)
1 has the form

L
(3)
1 =

(
p n
r p

)
(4.42)

(4.26) for i = 2, k = 3 is

adA(L
(3)
2 ) = L

(3)
1,y − [U,L

(3)
1 ]− AL

(3)
1,s + 2L

(3)
0 Us. (4.43)

Inserting

L
(3)
2 :=

(
α β
δ ε

)
(4.44)

the upper off-diagonal part of this equation implies my = 0. Requiring (4.38), the remaining
equations in (4.43) lead to py = 0, β = r − u.
Then we have

L
(3)
0 = A =

(
0 0
1 0

)
, L

(3)
1 =

(
0 1
r 0

)
, L

(3)
2 =

(
α r − u
δ α− ry

)
. (4.45)

Inserting (4.45) in (4.25) for k = 3 yields

Uz3 = L
(3)
2 − [U,L(3)]− AL

(3)
2,s + L

(3)
0,ss + L

(3)
1 Us, (4.46)

and this leads to the following four equations

αy + ru+ us − δ − u2 = 0, (4.47)

r =
1

2
u, (4.48)

uz3 = δy − αs − ryu− [u, α] (4.49)
αy + δ − rs − ur − ryy + us + u2 = 0 (4.50)

(4.51)

Adding (4.47) and (4.50) arrive at

α =
1

4
uy −

3

4

∫
us dy, δ =

1

4
uyy +

1

4
us −

1

2
u2. (4.52)

Inserting these in (4.49) we obtain the noncommutative KP equation [39]

uz3 =
1

4
uyyy −

3

4
(u2)y +

3

4
[u,

∫
us dy] +

3

4

∫
uss dy. (4.53)

We can see that the first and second flows of this hierarchy commute

uz2z3 = uz3z2 (4.54)
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4.2.4 Recursion formula of the KP hierarchy

We turn to a more complete treatment of the KP hierarchy to derive the recursion formula of the
reduced sdYM hierarchy. First we show that the upper off-diagonal entry of L(k)

i determines all
other entries recursively.

Proposition 4.3 Writing

L
(k)
i =

(
l
(k)
i m

(k)
i

n
(k)
i h

(k)
i

)
, k = 2, 3, . . . , i = 0, 1, . . . , k, (4.55)

the upper off-diagonal entry m(k)
i is determined by the recursion formula

m
(k)
i =

1

4

[
m

(k)
i−1,yy − um

(k)
i−1 − 2m

(k)
i−1,s − 2

k−1∑
l=0

(
k − l − 1
k − i

)
m

(k)
l usi−l−1

+

∫
(u

∫
um

(k)
i−1 dy) dy +

∫
(u

∫
m

(k)
i−1,s dy) dy −

∫
um

(k)
i−1,y dy

−
k−1∑
l−0

(
k − l − 1
k − i

) ∫
(u

∫
m

(k)
l usi−l−1 dy) dy

+

∫ ( ∫
(um

(k)
i−1)s dy +

∫
m

(k)
i−1,s dy −

k−1∑
l=0

(
k − l − 1
k − i

) ∫
m

(k)
l usi−l−1 dy

)
dy

−
k−1∑
l=0

(
k − l − 1
k − i

) ( ∫
m

(k)
l,y usi−l−1 dy +

∫
(

∫
um

(k)
l dy)usi−l−1 dy

−
k−1∑
p=0

(
k − p− 1
k − l − 1

) ∫
(

∫
m(k)

p usl−p dy)usi−l−1 dy
)]

with m
(k)
0 = 0, m

(k)
1 = 1. (4.56)

Proof. Inserting (4.55) in (4.26), we find that (4.26) yields the following equations

−m(k)
i = l

(k)
i−1,y − n

(k)
i−1 +

k−1∑
l=0

(
k − l − 1
k − i

)
m

(k)
l usi−l−1 , (4.57)

l
(k)
i−1 − h

(k)
i−1 = m

(k)
i−1,y, (4.58)

l
(k)
i − h

(k)
i = n

(k)
i−1,y − ul

(k)
i−1 − l

(k)
i−1,s +

k−1∑
l=0

(
k − l − 1
k − i

)
h

(k)
l usi−l−1 , (4.59)

m
(k)
i = h

(k)
i−1,y − um

(k)
i−1 −m

(k)
i−1,s + n

(k)
i−1. (4.60)

Adding (4.57) and (4.60), then integrating with respect to y, we can see that

l
(k)
i−1 + h

(k)
i−1 =

∫
um

(k)
i−1 dy +

∫
m

(k)
i−1,s dy −

k−1∑
l=0

(
k − l − 1
k − i

) ∫
m

(k)
l usi−l−1 dy. (4.61)
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Together with (4.58), we obtain

l
(k)
i−1 =

1

2

(
−m

(k)
i−1,y +

∫
um

(k)
i−1 dy +

∫
m

(k)
i−1,s dy

−
k−1∑
l=0

(
k − l − 1
k − i

) ∫
m

(k)
l usi−l−1 dy

)
, (4.62)

h
(k)
i−1 =

1

2

(
m

(k)
i−1,y +

∫
um

(k)
i−1 dy +

∫
m

(k)
i−1,s dy

−
k−1∑
l=0

(
k − l − 1
k − i

) ∫
m

(k)
l usi−l−1 dy

)
. (4.63)

Inserting (4.62) and (4.63) in (4.57), we find

n
(k)
i−1 = m

(k)
i +

1

2

(
um

(k)
i−1 +m

(k)
i−1,s −m

(k)
i−1,yy

) k−1∑
l=0

(
k − l − 1
k − i

)
m

(k)
l usi−l−1 . (4.64)

Inserting l(k)
i−1, h(k)

i−1 and n(k)
i−1 in (4.59), we have (4.56). Due to the requirement (4.38), i.e.

L
(k)
0 = A =

(
0 0
1 0

)
, (4.65)

we must set

m
(k)
0 = 0, n

(k)
0 = 1

Inserting this in (4.64) for i = 1, we have m(k)
1 = 1. �

Next we show that the reduced sdYM hierarchy is determined recursively, once the upper off-
diagonal entry of L(k)

i is calculated by (4.56).

Proposition 4.4 The reduced sdYM hierarchy is equivalent to

uzk
=

1

2

[
−m

(k)
k−1,yyy + 2m

(k)
k−1,sy + um

(k)
k−1,y + {uy , m

(k)
k−1}+ {u , m(k)

k−1,y}

+
k−2∑
l=0

(m
(k)
l us)y − u

∫
[u , m

(k)
k−1 ] dy − u

∫
m

(k)
k−1,s dy −

∫
m

(k)
k−1,ss dy

+
k−2∑
l=0

u

∫
m

(k)
l usk−l−1 dy −

∫
[us , m

(k)
k−1 ] dy −

∫
[u , m

(k)
k−1,s ] dy

+
k−2∑
l=0

∫
(m

(k)
l usk−l−1)s dy −

k−1∑
l=0

k−2∑
p=0

(
k − p− 1
k − l − 1

) ∫
m(k)

p usl−p dyusk−l−1

+
k−1∑
l=0

(
m

(k)
l,y +

∫
[u , m

(k)
l ] dy +

∫
m

(k)
l,s dy

)
usk−l−1

]
. (4.66)
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Proof, By inserting (4.55), we find that the lower off-diagonal part of (4.25) yields

uzk
= n

(k)
k−1,y − ul

(k)
k−1 − l

(k)
k−1,s −

k−1∑
l=0

h
(k)
l usk−l−1 . (4.67)

Applying (4.62), (4.64) for i = k and (4.63) for i− 1 = l to (4.67), we obtain (4.66). �

Hence, the upper off-diagonal entry m
(k)
i determines the evolution equations as well as the

other entries of L(k)
i recursively. For the first k we find

k = 2

m
(2)
0 = 0, m

(2)
1 = 1,

uz2 = uy. (4.68)

k = 3

m
(3)
0 = 0, m

(3)
1 = 1,

m
(3)
2 =

1

4

[
− um

(3)
1 − 2

1∑
l=0

(
2− l

1

)
m

(3)
l us1−l

+

∫
(u

∫
um

(3)
1 dy) dy −

∫
um

(3)
1,y dy −

1∑
l=0

(
2− l

1

) ∫
(u

∫
m

(3)
l us1−l dy) dy

+

∫ ( ∫
(um

(3)
1 )s dy −

1∑
l=0

(
2− l

1

) ∫
m

(3)
l us1−l dy

)
dy

−
1∑

l=0

(
2− l

1

) ( ∫
(

∫
um

(3)
l dy)us1−l dy

−
1∑

p=0

(
2− p
2− l

) ∫
(

∫
m(3)

p usl−p dy)us1−l dy
)]

= −1

2
u,

uz3 =
1

2

[
−m

(3)
2,yyy + 2m

(3)
2,sy + um

(3)
2,y + {uy , m

(3)
2 }+ {u , m(3)

2,y}

+
1∑

l=0

(m
(3)
l us)y − u

∫
[u , m

(3)
2 ] dy − u

∫
m

(3)
2,s dy −

∫
m

(3)
2,ss dy

+
1∑

l=0

u

∫
m

(3)
l us2−l dy −

∫
[us , m

(3)
2 ] dy −

∫
[u , m

(3)
2,s ] dy

+
1∑

l=0

∫
(m

(3)
l us2−l)s dy −

2∑
l=0

1∑
p=0

(
2− p
2− l

) ∫
m(3)

p usl−p dyus2−l
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+
2∑

l=0

(
m

(3)
l,y +

∫
[u , m

(3)
l ] dy +

∫
m

(3)
l,s dy

)
usk−l−1

]
=

1

4
uyyy −

3

4
(u2)y +

3

4
[u,

∫
us dy] +

3

4

∫
uss dy. (4.69)
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Conclusion
In this thesis we explored a definition of a sdYM hierarchy, starting from the infinite linear sys-
tem (2.1), (2.2), and showed that it includes (or implies) some other versions of sdYM hierarchies.
Furthermore, we explored a subsystem of the sdYM hierarchy introduced in Sec.2.1 (pre-sdYM hi-
erarchy) and showed that the pre-sdYM hierarchy reduces to “possible” hierarchies (it is necessary
to check that all equation of the hierarchy commute with each other) associated with the following
well-known (noncommutative) integrable systems by a suitable choice of the gauge potentials, and
we obtained recursion formulae for the reduced pre-sdYM hierarchies. We summarize our results
in the following table

Considered Reduction PDE Recursion formula
PDE ansatz from sdYM? from pre-sdYM hierarchy?

(1) N -wave system ∂ȳ = ∂z̄ = 0
Az̄ = diag(a1, a2, . . .) Yes Yes

KdV equation ∂z̄ = 0, y = ȳ

(2) (BD reduction) Az̄ =

„
0 0
1 0

«
Yes No

Ay =

„
0 1
u 0

«

(3) (MS reduction) Az̄ =

„
0 0
1 0

«
Yes Yes

Ay =

„
u 1

uy − u2 −u

«

(4) NLS equation ∂z̄ = 0, y = ȳ

Az̄ =

„
a1N 0

0 −a1M

«
Yes Yes

Ay =

„
0 q
−r 0

«

(5) Zakharov system ∂z̄ = 0

Az̄ =

„
a1N 0

0 −a1M

«
Yes Yes

Ay =

„
0 q
−r 0

«

(6) Sine-Gordon equation ∂z = ∂z̄ = 0 Yes (in the No

Az̄ = − i
2

„
0 1
1 0

«
commutative case)

Ay = − i
2

„
c 0
0 −c

«

Table 1 : Reductions of the pre-sdYM hierarchy
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Considered Reduction PDE Recursion formula
PDE ansatz from sdYM? from pre-sdYM hierarchy?

(7) 2+1-dimensional ∂ȳ = ∂z̄ = 0
N -wave system A = diag(a1, a2, . . .) Yes Yes

(8) KP equation ∂ȳ = ∂z̄ = 0

A =
(

0 0
1 0

)
Yes Yes

U =
(

0 1
u 0

)

Table 2 : Reductions of the sdYM hierarchy with gauge potentials in a Lie algebra of
differential operators

In the tables above, the reductions of the pre-sdYM hierarchy (1), (2), (4), (7), (8) can be found
in [13] (in the commutative cases). The reductions (3), (5), (6) are performed applying the re-
duction ansätze which lead from the sdYM equation to the KdV equation, Zakharov system and
Sine-Gordon equation, respectively (see [25, 37]). The noncommutative calculations as well as
derivation of the (noncommutative) recursion formulae for the reduced pre-sdYM hierarchies ap-
pear to be new. Moreover, we showed that via the reduction (3), the pre-sdYM hierarchy reduces
to a hierarchy consisting of the two hierarchies associated with the NLS equation and complexified
mKdV equation.

All formalisms in [13] were derived under the condition that the operator ∂z̄ − adAz̄ is in-
vertible (see Sec.2.2 and Sec.2.3), though there are no examples of reductions in [13] for which
this turns out to be the case that the authors of [13] do not formulate this condition so strictly and
leave alternatives open. But this condition is strongly used in the development of the theory and no
concrete alternative is mentioned. Moreover, we showed that recursion relations for reduced pre-
sdYM hierarchies could be derived in cases where this operator is not invertible. Hence, we expect
that the condition is too strong and there should be other conditions with similar implication. We
need further research to find out under which conditions we indeed obtain a recursion relation to
calculate higher equations of reduced pre-sdYM hierarchies. For this purpose, our results should
be helpful.

In the 2+1-dimensional case, we showed that the sdYM hierarchy introduced in [13] ((4.10)
in Sec.4.1.1) yields hierarchies of 2+1-dimensional integrable systems. However, there are still
problems left open. Firstly, the authors of [13] developed the formalisms under the condition that
the operator adA is invertible (see Sec.4.1.2) which, however, is not satisfied in examples of re-
ductions. This is the same problem as in the 1+1-dimensional case.

There are also other points left for future research. Firstly, the pre-sdYM hierarchy is only an
example of the subsystem of the sdYM hierarchy defined in Sec.2.1. We can find another version
of “smaller” sdYM hierarchies which reduce to another integrable systems (see [27], for example).
Secondly, as we mentioned in Sec.2.1, the form of the pre-sdYM hierarchy is not gauge invariant.
Alternatively, we can consider another subsystem of the sdYM hierarchy, such as the compatibility
condition of the following linear system (all notations follow in Sec.2.1)

(λ∂x0 − ∂x1)Ψ = (A0λ−D1)Ψ,
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(λn∂t0 − ∂tn)Ψ = (
n∑

i=1

Cn−iλ
i −

n−1∑
i=0

Bn−iλ
i)Ψ, n = 1, 2, . . . (4.70)

which is covariant under the gauge transformation (2.3) :

Ψ 7→ Ψ̃ = g−1Ψ,

Aµ 7→ Ãµ = g−1Aµg − g−1gµ, (4.71)

where g, Aµ are in a (Lie) algebra of N × N matrices. We expect that we can obtain a gauge in-
variant pre-sdYM hierarchy from the compatibility condition of this linear system and its recursion
relation by a suitable reduction.
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Appendix A: Another approach to 2+1-dimensional hierarchies

A.1 Another 2+1-dimensional system
In the following, we show another “possibility” to obtain hierarchies of 2+1-dimensional systems.
As mentioned in Sec.2.1, the linear system (2.11)

(λm∂x0 − ∂xm) Ψ = (
∑m

i=1Am−iλ
i −

∑m−1
i=0 Dm−iλ

i) Ψ,

(λn∂t0 − ∂tn) Ψ = (
∑n

i=1Cn−iλ
i −

∑n−1
i=0 Bn−iλ

i) Ψ
(A.1)

is a large source of hierarchies of integrable systems. Now we consider (A.1) in a different algebra.
The process introduced in this subsection still needs further reserches. We show the current results.
Considering (A.1) for m = 1 in Sec.2.1 :

(∂y + λ∂z̄)Ψ = (Ay + Az̄λ)Ψ,

(∂zn+1 − λn∂ȳ)Ψ = (
n∑

i=1

Cn−iλ
i −

n−1∑
i=0

Bn−iλ
i)Ψ. n = 1, 2, . . . (A.2)

whose compatibility condition is equivalent to the sdYM hierarchy introduced in [13]. Note that
we use the identification

x0 = z̄, x1 = −y, t0 = −ȳ, tn = −zn+1 ,
A0 = Az̄, B1 = −Az, C0 = −Aȳ, D1 = −Ay ,

(A.3)

for easy comparison with the notations in Sec.2.2.

By imposing the following conditions on (A.2), we obtain the following reduced systems :

(1) ∂z̄ = 0, ∂ȳ = 0 9

∂yΨ = (Ay + Az̄λ)Ψ,

∂zn+1Ψ = (
n∑

i=1

Cn−iλ
i −

n−1∑
i=0

Bn−iλ
i)Ψ, n = 1, 2, . . . (A.4)

(2) ∂z̄ = 0, y = ȳ

(∂y + ∂s∂z̄)Ψ = (Ay + Az̄∂s)Ψ,

∂zn+1Ψ = (
n∑

i=1

Cn−i∂
i
s −

n−1∑
i=0

Bn−i∂
i
s + Ay∂

n
s + Az̄∂

n+1
s )Ψ

n = 1, 2, . . . (A.5)
9The notation ∂z̄ = 0 means that all gauge potentials do not depend on the variable z̄
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For these reduced systems, we consider another “version” whose gauge potentials are in (4.4), i.e.,
the Lie algebra of matrix differential operators with respect to the variable s such that

G =

{
�∞∑
j=0

aj ∂
j
s

}
(A.6)

where aj are N × N matrices with entries from an associative algebra A over C (typically an
algebra of matrices of functions). By replacing λ→ ∂s, the systems (1) and (2) yield

(1)’

∂yΨ = (Ay + Az̄∂s)Ψ,

∂zn+1Ψ = (
n∑

i=1

Cn−i∂
i
s −

n−1∑
i=0

Bn−i∂
i
s)Ψ, n = 1, 2, . . . (A.7)

(2)’

∂yΨ = (Ay + Az̄∂s)Ψ,

∂zn+1Ψ = (
n∑

i=1

Cn−i∂
i
s −

n−1∑
i=0

Bn−i∂
i
s + Ay∂

n
s + Az̄∂

n+1
s )Ψ, n = 1, 2, . . . (A.8)

which lead to (2+1)-dimensional N -wave system and KP equation respectively, with suitable
choice of Ay and Az̄.

In contrast to the case where the gauge potentials are in the λ-dependent Lie algebra, we have
not succeeded to obtain a recursion relation. We only succeeded to obtain the first hierarchy equa-
tion.

Remark. After replacing λ → ∂s, the systems (1)′ and (2)′ have no longer a clear relationship
with the sdYM equations. For example, the compatibility condition of (1)′ reads

Ay,z2 = (∂y − adAy)Az + AȳAy,s + Az̄Az,s, (A.9)

[Az̄ , Az ] = −(∂y + adAy)Aȳ − AȳAz̄,s + Az̄Aȳ,s, (A.10)

[Az̄ Aȳ ] = 0, (A.11)

where we use the identification (A.3). These equations do not imply the sdYM equations.

A.2 Reduction to 2+1 dimensional N -wave system
Choosing the gauge potentials

Az̄ = diag(a1, . . . , an) (A.12)
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with all eigenvalues different from each other.

The equation (A.7) for n = 1 reads

∂yΨ = (U + Az̄∂s)Ψ,

∂zΨ = (Az − Aȳ∂s)Ψ, (A.13)

whose compatibility (integrability) condition is

[ ∂y − U − Az̄∂s , ∂z2 − Az + Aȳ∂s ] = 0. (A.14)

where we write U instead of Ay, following the way in Sec.3.2. (A.13) leads to the following three
equations

Uz2 = (∂y − adU)Az + AȳUs + Az̄Az,s, (A.15)

[Az̄ , Az ] = −(∂y + adU)Aȳ − AȳAz̄,s + Az̄Aȳ,s, (A.16)

[Az̄ Aȳ ] = 0, (A.17)

The equation (A.17) leads to

Aȳ = diag(b1, . . . , bn). (A.18)

(A.16) reads

[U , Aȳ ] + [Az̄ , Az ] = 0, (A.19)

which leads to

(Az)ij = λijUij (A.20)

where λij = bi−bj
ai−aj

. Then (A.15) yields the 2+1-dimensional N -wave system [25]

Uij,z2 = λijUij,y + (bi − aiλij)Uij,s +
n∑

k=1

(λik − λkj)UikUkj (A.21)

Remark. Considering the compatibility condition of (A.7) for n = 2, we obtain the following
equations

Uz3 = [U , B2 ] + (C1 + Az)Us + Az̄B2,s −B2,y, (A.22)

[Az̄ , C1] = −(∂y − adU)Aȳ + Az̄Aȳ,s − 2AȳAz̄,s − [Az̄ , Az ], (A.23)

[Az̄ , B2 ] = [U , C1 + Az ] + 2AȳUs − (C1,y + Az,y) + AȳAz̄,ss

+Az̄(C1,s + Az,s)− (C1 + Az)Az̄,s. (A.24)
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From (A.23) and (A.24) we find

C1 = 0,

(B2)ij =
1

ai − aj

{(2bi + aiλij)Uij,s − λijUij,y −
n∑

k=1

(λik − λkl)UikUkj}

(∂y − ai∂s)B2,ii = −
n∑

k=1

λik

ak − ai

(UikUki)y +
n∑

k=1

(2bi + aiλik)

ak − ai

(UikUki)s

−4
n∑

k=1

λikUikUki,s,

(A.25)

and the off-diagonal part of (A.22) yields the second evolution equation

Uij,z3 =
n∑

k=1

( λkj

ak − aj
UikUkj,y −

λik

ai − ak

Uik,yUkj

)
+

n∑
k=1

(bk − akλkj

ak − aj

UikUkj,s −
bi − aiλik

ai − ak

Uik,sUkj

)
+

n∑
k=1

1

ak − aj

Uik

n∑
l=1

(λkl − λlj)UklUlj −
n∑

k=1

1

ai − ak

n∑
l=1

(λil − λlk)UilUlkUkj

−
n∑

k=1

λikUikUkj,s

+
1

ai − aj

(
(2a1λij − bi)Uij,ys − λijUij,yy + qi(bi − aiλij)Uij,ss

+ai

n∑
k=1

(λik − λkj)(UikUkj)s −
n∑

k=1

(λik − λkj)(UikUkj)y

)
−(B2)iiUij + Uij(B2)jj (A.26)

If we ignore the dependency on the variable s, this equation reduces to the second hierarchy equa-
tion of the N -wave system (3.17) which is obtained in Sec.3.2. Comparing with the second hierar-
chy equation of the 2+1-dimensional N -wave system which we obtained in Sec.4.18, there are no
clear relationships between (A.26) and (4.18).

A.3 Reduction to KP
In this subsection we consider the system (A.8) with two different choice of the gauge potentials.

(1)

Az̄ =

(
0 0
1 0

)
, Ay =

(
0 1
u 0

)
. (A.27)
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(2)

Az̄ =

(
0 0
1 0

)
, Ay =

(
u 1

uy − u2 −u

)
. (A.28)

Furthermore, we assume that the gauge potentials do not depend on the variables z̄, y + ȳ.

In this case, (A.8) for n = 1 reads

∂yΨ = (Ay + Az̄)Ψ,

∂zΨ = (Az + (Ay − Aȳ)∂s + Az̄∂
2
s )Ψ (A.29)

which leads to

Ay,z = Az,y − [Ay , Az ] + (Ay − Aȳ)Ay,s + Az̄Ay,ss − Az̄Az,s, (A.30)

[Az̄ , Az ] = Ay,y + [Ay , Aȳ ] + Az̄Ay,s + Az̄Aȳ,s, (A.31)

[Az̄ , Aȳ ] = 0. (A.32)

A.3.1 Reduction (1)

First, the equation (A.32) leads to the form of Az̄,

Aȳ =

(
f 0
h f

)
(A.33)

with functions f, h. By inserting (A.33) in (A.31) we obtain fy = 0. In the following we set f = 0.
As the consequence, we have

Az =

(
p −h
r p− uy + hy

)
(A.34)

with new functions p, r. Now we insert (A.33) and (A.34) in (A.30) and find the following four
equations,

0 = py − r − hu+ us, (A.35)

h =
1

2
u, (A.36)

uz = ry − up+ (p− uy + hy)− ps, (A.37)
0 = py − uyy + hyy + uh+ r + hs. (A.38)

Adding (A.35) and (A.38) we can determine p,

p =
1

4
uy −

3

4

∫
us dy. (A.39)

Inserting this in (A.35) we find

r =
1

4
uyy +

1

4
us −

1

2
u2. (A.40)

By insertion of (A.39) and (A.40) in (A.37) we obtain the noncommutative KP equation [39]

uz =
1

4
uyyy −

3

4
(u2)y +

3

4
[u ,

∫
us dy ] +

3

4

∫
uss dy. (A.41)
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A.3.2 Reduction (2)

The Yang-Mills potential Aȳ takes a same form as (A.33). Let

Az :=

(
p q
r s

)
(A.42)

with functions p, q, r, s. The equation (A.31) yields

−q = uy − fy + [u , f ] + h, (A.43)
p− s = uyy − {u , uy} − hy + [uy − u2 , f ]− {u , h}+ us + fs, (A.44)

q = −uy − fy + [ f , u ]− h. (A.45)

Adding (A.43) and (A.45) we find fy = 0. In the following, we set f = 0. Then we have
q = −uy − h. As the result, we obtain

Az =

(
p −uy − h
r p−D

)
(A.46)

where

D := uyy − {u , uy} − hy + us − {u , h}. (A.47)

The equation (A.30) leads to the following four equations

uz = py − [u , p ]− r − (uy + h)(uy − u2) + uys − usuu, , (A.48)
hy = 0, (A.49)

uyz − {uz , u} = ry − (uy − u2)p+ {u , r}
+(p−D)(uy − u2) + uyus − uuys + uusu− hus + uss − ps, (A.50)

−uz = py −Dy + (uy − u2)(uy + h)− [ p , u ]− [u , D ] + r + uus

+uys + hs. (A.51)

In (A.49) we impose h = 0. Adding (A.48) and (A.51) we obtain

p =
1

2
uyy − uyu−

1

2
us (A.52)

Inserting (A.48) in (A.50), we have

r =
1

4
uyyy −

1

2
{u , uyy} −

1

2
(uy)

2 +
1

2
uys + uuyu

−3

2

∫
uysu dy −

∫
uyus dy +

1

2

∫
uuys dy −

3

4

∫
uss dy (A.53)

As a result, we obtain the noncommutative potential KP equation

uz =
1

4
uyyy −

3

2
(uy)

2 +
1

2
uus −

3

2
usu

+
3

2

∫
uysu dy +

∫
uyus dy −

1

2

∫
uuys dy +

3

4

∫
uss dy. (A.54)
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In terms of

v := 2uy, (A.55)

we find the noncommutative KP equation [39]

vz =
1

4
uyyy −

3

4
(v2)y +

3

4
[ v ,

∫
vs dy ] +

3

4

∫
vss dy. (A.56)
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Appendix B: True/Fake “zero-curvature” conditions
In the following, we consider some examples to show that not all zero-curvature (Zakharov-Shabat)
condition which is equivalent to the considered PDE are good ones. For convenience, all calcula-
tions in the following are performed “commutatively”.

Firstly, we consider the following linear system with (spectral) parameter λ

ψxx = −(
1

6
u+ λ)ψ, ψt = (−1

6
ux + 4iλ

3
2 )ψ + (−1

3
u+ 4λ)ψx, (B.1)

whose compatibity condition is equivalent to the KdV equation

ut = (uxx +
1

2
u2)x. (B.2)

Next let us assume that f , g are arbitrary (differentiable) functions. Calogero and Nucci [3]
showed that the equation

ft = gx, (B.3)

which has the form of a conservation law, is equivalent to the compatibility condition of the fol-
lowing linear system

ψxx = λf 2ψ + (µf +
fx

f
)ψx, ψt = νψ +

(g + ρ)

f
ψx. (B.4)

where λ, µ, ν, ρ are spectral parameters. By direct calculation one can verify that the compatibility
condition

ψxxt = ψtxx (B.5)

for this linear system is indeed equivalent to (B.3). Obviously, not all equations of the form (B.3)
can be integrable. Hence, the existence of a zero-curvature formulation does not imply an aspect of
integrability in some sense. One has to distinguish somehow between good and bad zero-curvature
formulations and some methods have been proposed (see [40], for example), but so far there are
no satisfactory methods.

As a consequence of the above result, the KdV equation

ut = auxxx + buux = (auxx + bu2)x, a, b ∈ R ( orC) (B.6)

is equivalent to the linear systems given by

1)

f = u, g = auxx + bu2

ψxx = λu2ψ +
(
µu+

ux

u

)
ψx, ψt = νψ +

(
a
uxx

u
+ bu+

ρ

u

)
ψx (B.7)
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2)

f = u2, g = 2auuxx − au2
xx +

2

3
bu3,

ψxx = λu4ψ +
(
µu2 + 2

ux

u

)
ψx, ψt = νψ +

(
2a
uxx

u2
− a

u2
x

u2
+

2

3
bu+

ρ

u2

)
ψx (B.8)

We expect that the compatibility condition of such linear systems, which are generated by the
above recipe, will turn out to be “fake” in the sense that no integrability aspects can be deduced
from them. In this thesis we shall not discuss further details since this is a sideaspect of our work.

77



Appendix C: FORM

FORM - Computer algebra program

C.1 What is FORM?
In the following, we briefly describe the FORM, a computer algebra program which we used in
this thesis. FORM has been developed by J.A.M. Vermaseren at NIKHEF (the Dutch Institute for
Nuclear and High-Energy Physics) by the end of the 80’s and it was widely used in the field of
mathematics and physics to perform lengthy algebraic calculations.
Binaries for various platforms are available for download on the web page of the developer (see
http://www.nikhef.nl/ form/license.html/). We do not discuss FORM in detail and only mention
some the characteristics of FORM from our point of view, based on what we have learned by
using FORM ( for more information on FORM, see [41]). In this thesis we used the version 3.1 of
FORM.

C.2 How to work with FORM?
Now let us review the basic things which are necessary to use FORM. In order to use FORM, we
have to write a program, store it in a file with extension .frm. To run the FORM program, using
UNIX system, putting in a console window the following command

form -l filename.frm

where the option ’-l’ generates a log file ”filename.log”. Each statement ends with a semicolon
except for special instructions such as .sort (sort the result and continue), .store (store global
variables, delete local variables and continue) and .end (terminate the program). Furthermore,
like in well-known computer languages such as C, C++, the preprocessor instructions starting with
# , such as #define , #do , do not end with a semicolon either. Comment lines start with *. To
understand quickly how to work with FORM, we should better at look a little example rather than
tackle a thick reference manual. The following program calculates the rational sum

100∑
n=1

1

n
(C.1)

*
* Example : Calculation of summation

* SUM = 1 + 1/2 + ... + 1/100

*

#define N "100"

Function f;
Symbol i;

Local SUM = f(’N’);
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repeat;
id f(1) = 1;
#do i = 2, ’N’
id f(’i’) = 1/’i’ + f(’i’-1);
#enddo
endrepeat;
print SUM;
.end

The statement Function declares noncommuting objects. Alternatively, for a commutative cal-
culation one has to use CFunction. The Symbol statement declares objects used typically as
arguments and arbitrary constants. These declarations are available to be used with an arbitrary
number of arguments separated by commas. The Local statement defines a local variable SUM
which is finally evaluated in this program. The commands

repeat;

...

endrepeat;

and the preprocessor instruction

#do

...

#enddo

are iterative procedures. The sentences between #do - #enddo are calculated iteratively up to N,
but no substitutions are done. The results are

f(2) =
1

2
+ f(1), f(3) =

1

3
+ f(2), . . . (C.2)

The repeat - endrepeat statement substitutes values in each f until values for all f are sub-
stituted. As a consequence, we obtain

f(2) =
1

2
+ 1 =

3

2
, f(3) =

1

3
+

3

2
=

11

6
, . . . (C.3)

The output of this program is

FORM by J.Vermaseren,version 3.1(Feb 8 2005)
Run at: Thu Jun 1 17:48:24 2006

*
* Example : Calculation of summation

* SUM = 1 + 1/2 + ... + 1/100

*

#define N "100"

79



Function f;
Symbol i;

Local SUM = f(’N’);

repeat;
id f(1) = 1;
#do i = 2, ’N’
id f(’i’) = 1/’i’ + f(’i’-1);
#enddo
endrepeat;
print SUM;
.end

Time = 0.00 sec Generated terms = 10
SUM Terms in output = 1

Bytes used = 10

SUM =
7381/2520;

FORM displays automatically informations of running times, a number of generated terms while
FORM is running, a number of output terms, and used bytes. These informations can be suppressed
by use of nwrite statistics; or off statistics;.

In this thesis we used frequently FORM to apply differentiation and FORM fits to achieve this
purpose. 10 The following program is just a small sample how to achieve differentiation in FORM,
however the basic concept of calculation which is used in the programs shown in Sec.C.4 is same.

*
* Example : Differentiation

*
* The function u depends on the variables x,

* u = u(x).

*

Function u, dx ;
Symbol x;

*
* The argument stands for the differentiation

* with respect to x, i.g.,

* u(2) = uxx (second order derivative of u

* with respect of x).

*
10In the context of integrable systems, FORM has been used in [36], see also [42].
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Local F = u(3) - 2*u(2)ˆ2 + 5*u(1);
Local Fx = dx*F;

* Define and perform the differentiation

* with respect to x.
repeat;

id dx*u?(x?) = u(x+1) + u(x)*dx;
endrepeat;
id dx = 0;
print +s Fx;
.end

The statement

repeat;
id dx*u?(x?) = u(x+1) + u(x)*dx;

endrepeat;

defines the operation rule of the differential operator dx . dx operates on the function u from left
to right iteratively until there are no objects on the right hand side of dx . After differentiations
and substitutions, we set dx=0 to eliminate the remaining differential operator. The result is

Fx =
+ 5*u(2)
- 2*u(2)*u(3)
- 2*u(3)*u(2)
+ u(4)
;

C.3 Features of FORM
As mentioned in Sec.C.1, FORM has an extensive and powerful functionality. In this thesis we
mainly applied FORM to check the commutativity of hierarchy equations (see also [36]). Such
calculations are usually enormously long and laborious. FORM enables a quick evaluation of them
with low overheads on computers. Additionally, FORM fits to noncommutative calculations since,
as we mentioned in Sec.C.2, the objects declared by Function are noncommutative objects and
switching in CFunction declaration, we can easily check our calculation in the commutative
case (this is a powerful tool to debug the programs).

However, on the other side, by using FORM there are points which we should take care of.
Firstly, FORM does not simplify rational expressions. Let us look at a example.

nwrite statistics;
Symbols l, m, n;

Local eq1 = 1/(l - m)/(m - n);
Local eq2 = 1/(m - n)/(l - m);
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Local diff = eq1 - eq2;

.sort

print +s diff;
.end

This program calculates

1

(l −m)(m− n)
− 1

(m− n)(l −m)
(C.4)

where l, m, n are arbitrary constants. The result must be 0. However, as a matter of fact, the result
of FORM calculation is

diff =
- 1/( - n + m)/( - m + l)
+ 1/( - m + l)/( - n + m)
;

For such a rational calculation we used the computer algebra system MuPAD to simplify the ex-
pression :

>> - 1/( - n + m)/( - m + l)
+ 1/( - m + l)/( - n + m)

0

We faced this “rational calculation problem” in the commutativity check of the N -wave flows (see
Sec.C.4.2). To deal with this problem, as mentioned above, we put the outputs of FORM into
MuPAD.

C.4 FORM programs
In the following we list the FORM programs we developed for the check of commutativity of
hierarchy equations which we obtained by examples of reductions.

C.4.1 Symmetry verification of the KdV equation

This program is for a verification that the KdV equation (1.11) considered in Sec.1.3

ut = uxxx + uux (C.5)

has the symmetry (note that u is a element of a commutative algebra)

uτ =
1

6
uxxxxx +

5

18
uuxxx +

5

9
uxuxx +

5

36
u2ux. (C.6)

This is a simple FORM program but the process of this program is a basis of the program we used
for the commutativity checks of the hierarchy equations we obtained in each example of reductions
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(only if there exist a reduced pre-sdYM hierarchy associated with the considered system). The
processes of this program are as follows.

1. Differentiate the function uτ (named f in the following FORM program) with respect to t.
2. Differentiate the KdV equation (C.5) with respect to x and substitute the result from step1.
3. Calculate the function

H = (uτ )t − (uτ )xxx + uτux + u(uτ )x (C.7)

and check whether H = 0.

* Symmetry verification of KdV equation

* The arguments of u stand for the differentiation

* with respect to x, t respectively so that

* u = u(x, t).

Functions dy, dt;
Functions u;
Functions x, t;
Symbols i, j;

* Symmetry of KdV equation

* f = u differentiated with respect to tau
Local f = u(5, 0)/6 + 5*u(0, 0)*u(3, 0)/18
+ 5*u(1, 0)*u(2, 0)/9 + 5*u(0, 0)*u(0, 0)*u(1, 0)/36;

Local fx = dy*f;
Local fxx = dy*fy;
Local fxxx = dy*fyy;
Local ft = dt*f;

Local G1 = u(3, 0) + u(0, 0)*u(1, 0); * KdV equation
Local G2 = dx*G1;
Local G3 = dx*G2;
Local G4 = dx*G3;
Local G5 = dx*G4;
Local G6 = dx*G5;

Local H = ft - fxxx - f*u(1,0) - u(0,0)*fy;

repeat;

* definitions of differentiation with respect to y and t
id dx*u(i?, j?) = u(i+1, j) + u(i, j)*dx;
id dt*u(i?, j?) = u(i, j+1) + u(i, j)*dt;
endrepeat;

id dx = 0;
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id dt = 0;

.sort

repeat;
id u(0, 1) = G1;
id u(1, 1) = G2;
id u(2, 1) = G3;
id u(3, 1) = G4;
id u(4, 1) = G5;
id u(5, 1) = G6;
endrepeat;

print +s H;
.end

The result is

> ./form -l symm.frm
FORM by J.Vermaseren,version 3.1(Feb 8 2005)
Run at: Sun Jun 11 18:43:14 2006

H =
- 5/36*u(0,0)*u(1,0)*u(3,0)
+ 5/12*u(0,0)*u(2,0)*u(2,0)
+ 5/36*u(1,0)*u(0,0)*u(3,0)
+ 5/6*u(1,0)*u(1,0)*u(2,0)
- 5/12*u(1,0)*u(2,0)*u(1,0)
- 5/12*u(2,0)*u(0,0)*u(2,0)
- 5/12*u(2,0)*u(1,0)*u(1,0)
- 5/6*u(2,0)*u(4,0)
+ 5/6*u(4,0)*u(2,0)
;

Putting this result into MuPAD, we can see that H = 0, i.e., this FORM program verifies that the
function f (= uτ ) is a symmetry of the KdV equation (1.11).

Remark. Since we assumed that the function u is an element of a commutative algebra, we
put the output of FORM into MuPAD directory (all calculations are performed commutatively in
MuPAD). In the noncommutative calculation, we must pick up coefficients of each term and verify
whether the coefficients indeed vanish.
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C.4.2 Commutativity of the first two N -wave flows

This program is developed to check the commutativity of the first two flows of N -wave hierarchy
which we obtained in Sec.3.2. This program consists of three parts. In PART 1 ( 2 ), we differenti-
ate the expression of the right hand side of the first (second) hierarchy equations named eq3 ( eq2
) with respect of the variable z3 (z2). Then, in PART 3 we calculate the difference. Furthermore,
the coefficients

ai, i = 1, 2, . . . bj, j = 1, 2, . . . λij =
bi − bj
ai − bj

, i 6= j (C.8)

are defined as CFunction in order to be allowed to possesse arguments ( objects defined as
Symbol can not have any arguments). In this program we define them as follows

a(’i’,’j’) :=
1

ai − aj

, lambda(’i’,’j’) := λij (C.9)

to avoid rational calculations. As we have seen in Sec.3.2, since the N -wave hierarchy equations
(3.12) and (3.17) are written in the form of each off-diagonal entry of U , we have to compute all
those entries of U with #do - #enddo instructions.

* N-wave system

* check of commutativity of the first two flows

* fixing the dimension of the matrices:
#define N "4"

**** PART 1 ****
nwrite statistics;
Functions U, dz3, eq2;
CFunctions lambda, a;
Symbols i, j, k, l, m, y, z2, z3;

* the symbols i, ..., m are summation indices

* y, z2, z3 stand for the numbers of derivatives w.r. to

* the variables y, z2, z3, respectively.

* computing derivative of rhs of

* first equation U_z2 = eq2 with respect to z3
#do i=1,’N’
#do j=1,’N’

Global expr’i’’j’ = dz3*eq2(’i’,’j’);
#enddo
#enddo

* defining the right hand side of the first equation
#do i=1,’N’

85



#do j=1,’N’
id eq2(’i’,’j’) = lambda(’i’,’j’)*U(’i’,’j’,1,0,0)
+ sum_(m,1,’N’,
(lambda(’i’,m)-lambda(m,’j’))

*U(’i’,m,0,0,0)*U(m,’j’,0,0,0));
#enddo
#enddo

repeat;

* definition of differentiation

* with respect to z3
id dz3*U(i?,j?,y?,z2?,z3?) =
U(i,j,y,z2,z3+1) + U(i,j,y,z2,z3)*dz3;
endrepeat;

* take into account that U has

* zero diagonal components
repeat;
id U(i?,i?,y?,z2?,z3?) = 0;
endrepeat;

.sort

id dz3=0;

* The variables expr12 etc now contain

* the derivative of eq2 w.r. to z3.

* defining the right hand side of

* the second equation U_z3 = eq3
#do i=1,’N’-1
#do j=’i’+1,’N’
id U(’i’,’j’,0,0,1) = a(’i’,’j’)*
( lambda(’i’,’j’)*U(’i’,’j’,2,0,0)
+ sum_(k,1,’N’, (lambda(’i’,k) - lambda(k,’j’))*(

U(’i’,k,1,0,0)*U(k,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,’j’,1,0,0) ) ) )
+ sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,1,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’,
lambda(k,’j’)*a(k,’j’)

*U(’i’,k,0,0,0)*U(k,’j’,1,0,0) )
+ sum_(k,1,’N’, sum_(l,1,’N’,

(lambda(’i’,k)-lambda(k,l))*a(’i’,l)

*U(’i’,k,0,0,0)*U(k,l,0,0,0)*U(l,’j’,0,0,0)))
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- sum_(k,1,’N’, sum_(l,1,’N’,
(lambda(l,k)-lambda(k,’j’))*a(l,’j’)

*U(’i’,l,0,0,0)*U(l,k,0,0,0)*U(k,’j’,0,0,0)))
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0) )*U(’i’,’j’,0,0,0);

* and its first derivative w.r. to y
id U(’i’,’j’,1,0,1) =
a(’i’,’j’)*( lambda(’i’,’j’)*U(’i’,’j’,3,0,0)
+ sum_(k,1,’N’, (lambda(’i’,k) - lambda(k,’j’))*(

U(’i’,k,2,0,0)*U(k,’j’,0,0,0)
+2*U(’i’,k,1,0,0)*U(k,’j’,1,0,0)

+U(’i’,k,0,0,0)*U(k,’j’,2,0,0) ) ) )
+ sum_(k,1,’N’, lambda(’i’,k)*a(’i’,k)

*(U(’i’,k,2,0,0)*U(k,’j’,0,0,0)
+U(’i’,k,1,0,0)*U(k,’j’,1,0,0) ) )

- sum_(k,1,’N’,
lambda(k,’j’)*a(k,’j’)

*(U(’i’,k,1,0,0)*U(k,’j’,1,0,0)
+U(’i’,k,0,0,0)*U(k,’j’,2,0,0) ) )

+ sum_(k,1,’N’, sum_(l,1,’N’,
(lambda(’i’,k)-lambda(k,l))*a(’i’,l)*(

U(’i’,k,1,0,0)*U(k,l,0,0,0)*U(l,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,l,1,0,0)*U(l,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,l,0,0,0)*U(l,’j’,1,0,0) )))

- sum_(k,1,’N’, sum_(l,1,’N’,
(lambda(l,k)-lambda(k,’j’))*a(l,’j’)*(

U(’i’,l,1,0,0)*U(l,k,0,0,0)*U(k,’j’,0,0,0)
+U(’i’,l,0,0,0)*U(l,k,1,0,0)*U(k,’j’,0,0,0)
+U(’i’,l,0,0,0)*U(l,k,0,0,0)*U(k,’j’,1,0,0) )))

+ U(’i’,’j’,1,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,1,0,0)*U(k,’j’,0,0,0) )
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,1,0,0) )
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)
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*U(’i’,k,1,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,0,0,0)
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,1,0,0)
)*U(’i’,’j’,0,0,0)
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,1,0,0);
#enddo
#enddo

#do i=2,’N’
#do j=1,’i’-1
id U(’i’,’j’,0,0,1) =
a(’i’,’j’)*( lambda(’i’,’j’)

*U(’i’,’j’,2,0,0)
+ sum_(k,1,’N’,
(lambda(’i’,k) - lambda(k,’j’))*(

U(’i’,k,1,0,0)*U(k,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,’j’,1,0,0) ) ) )
+ sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,1,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’,
lambda(k,’j’)*a(k,’j’)

*U(’i’,k,0,0,0)*U(k,’j’,1,0,0) )
+ sum_(k,1,’N’, sum_(l,1,’N’,

(lambda(’i’,k)-lambda(k,l))*a(’i’,l)

*U(’i’,k,0,0,0)*U(k,l,0,0,0)*U(l,’j’,0,0,0)))
- sum_(k,1,’N’, sum_(l,1,’N’,

(lambda(l,k)-lambda(k,’j’))*a(l,’j’)

*U(’i’,l,0,0,0)*U(l,k,0,0,0)*U(k,’j’,0,0,0)))
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,0,0,0);

* and its first derivative w.r. to y
id U(’i’,’j’,1,0,1) =
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a(’i’,’j’)*( lambda(’i’,’j’)*U(’i’,’j’,3,0,0)
+ sum_(k,1,’N’, (lambda(’i’,k) - lambda(k,’j’))*(

U(’i’,k,2,0,0)*U(k,’j’,0,0,0)
+2*U(’i’,k,1,0,0)*U(k,’j’,1,0,0)

+U(’i’,k,0,0,0)*U(k,’j’,2,0,0) ) ) )
+ sum_(k,1,’N’, lambda(’i’,k)*a(’i’,k)

*(U(’i’,k,2,0,0)*U(k,’j’,0,0,0)
+U(’i’,k,1,0,0)*U(k,’j’,1,0,0) ) )

- sum_(k,1,’N’,
lambda(k,’j’)*a(k,’j’)

*(U(’i’,k,1,0,0)*U(k,’j’,1,0,0)
+U(’i’,k,0,0,0)*U(k,’j’,2,0,0) ) )

+ sum_(k,1,’N’, sum_(l,1,’N’,
(lambda(’i’,k)-lambda(k,l))*a(’i’,l)*(

U(’i’,k,1,0,0)*U(k,l,0,0,0)*U(l,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,l,1,0,0)*U(l,’j’,0,0,0)
+U(’i’,k,0,0,0)*U(k,l,0,0,0)*U(l,’j’,1,0,0) )))

- sum_(k,1,’N’, sum_(l,1,’N’,
(lambda(l,k)-lambda(k,’j’))*a(l,’j’)*(

U(’i’,l,1,0,0)*U(l,k,0,0,0)*U(k,’j’,0,0,0)
+U(’i’,l,0,0,0)*U(l,k,1,0,0)*U(k,’j’,0,0,0)
+U(’i’,l,0,0,0)*U(l,k,0,0,0)*U(k,’j’,1,0,0) )))

+ U(’i’,’j’,1,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,1,0,0)*U(k,’j’,0,0,0) )
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,1,0,0) )
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,1,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,0,0,0)
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,1,0,0)
)*U(’i’,’j’,0,0,0)
- sum_(k,1,’N’,
lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,1,0,0);
#enddo
#enddo
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* Here we set a(i,j) = 1/(a(i)-a(j))

repeat;
id U(i?,i?,j?,k?,l?) = 0;
endrepeat;

* lambda(i,i) should not appear,

* we set it to zero.
repeat;
#do i=1,’N’
id lambda(’i’,’i’) = 0;
#enddo
endrepeat;

* The lambda(i,j) are symmetric.
repeat;
#do i=1,’N’-1
#do j=’i’+1,’N’
id lambda(’j’,’i’) = lambda(’i’,’j’);
#enddo
#enddo
endrepeat;

* The a(i,j) are antisymmetric.
repeat;
#do i=1,’N’-1
#do j=’i’+1,’N’
id a(’j’,’i’) = -a(’i’,’j’);
#enddo
#enddo
endrepeat;

* #do i=1,’N’

* #do j=1,’N’

* print +s expr’i’’j’;

* #enddo

* #enddo

.store

**** PART 2 ****
nwrite statistics;
Functions U, dz2, eq3;
CFunctions lambda, a;
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Symbols i, j, k, l, m, n, y, z2, z3;

* computing the derivative of rhs of

* first equation U_z3 = eq3 with respect to z2
#do i=1,’N’
#do j=1,’N’

Global exprr’i’’j’ = dz2*eq3(’i’,’j’);
#enddo
#enddo

* defining the right hand side of the second equation
#do i=1,’N’-1
#do j=’i’+1,’N’
id eq3(’i’,’j’) =
a(’i’,’j’)*( lambda(’i’,’j’)*U(’i’,’j’,2,0,0)
+ sum_(m,1,’N’, (lambda(’i’,m) - lambda(m,’j’))*(

U(’i’,m,1,0,0)*U(m,’j’,0,0,0)
+U(’i’,m,0,0,0)*U(m,’j’,1,0,0) ) ) )
+ sum_(m,1,’N’,
lambda(’i’,m)*a(’i’,m)

*U(’i’,m,1,0,0)*U(m,’j’,0,0,0) )
- sum_(m,1,’N’,
lambda(m,’j’)*a(m,’j’)

*U(’i’,m,0,0,0)*U(m,’j’,1,0,0) )
+ sum_(m,1,’N’, sum_(l,1,’N’,

(lambda(’i’,m)-lambda(m,l))*a(’i’,l)

*U(’i’,m,0,0,0)*U(m,l,0,0,0)*U(l,’j’,0,0,0)))
- sum_(m,1,’N’, sum_(l,1,’N’,

(lambda(l,m)-lambda(m,’j’))*a(l,’j’)

*U(’i’,l,0,0,0)*U(l,m,0,0,0)*U(m,’j’,0,0,0)))
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)*
U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’, lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,0,0,0);
#enddo
#enddo

#do i=2,’N’
#do j=1,’i’-1
id eq3(’i’,’j’) =
a(’i’,’j’)*( lambda(’i’,’j’)*U(’i’,’j’,2,0,0)
+ sum_(m,1,’N’, (lambda(’i’,m) - lambda(m,’j’))*(

U(’i’,m,1,0,0)*U(m,’j’,0,0,0)
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+U(’i’,m,0,0,0)*U(m,’j’,1,0,0) ) ) )
+ sum_(m,1,’N’, lambda(’i’,m)*a(’i’,m)

*U(’i’,m,1,0,0)*U(m,’j’,0,0,0) )
- sum_(m,1,’N’, lambda(m,’j’)*a(m,’j’)

*U(’i’,m,0,0,0)*U(m,’j’,1,0,0) )
+ sum_(m,1,’N’, sum_(l,1,’N’,

(lambda(’i’,m)-lambda(m,l))*a(’i’,l)

*U(’i’,m,0,0,0)*U(m,l,0,0,0)*U(l,’j’,0,0,0)))
- sum_(m,1,’N’, sum_(l,1,’N’,

(lambda(l,m)-lambda(m,’j’))*a(l,’j’)

*U(’i’,l,0,0,0)*U(l,m,0,0,0)*U(m,’j’,0,0,0)))
+ U(’i’,’j’,0,0,0)*sum_(k,1,’N’,
lambda(’j’,k)*a(’j’,k)

*U(’j’,k,0,0,0)*U(k,’j’,0,0,0) )
- sum_(k,1,’N’, lambda(’i’,k)*a(’i’,k)

*U(’i’,k,0,0,0)*U(k,’i’,0,0,0)
)*U(’i’,’j’,0,0,0);
#enddo
#enddo

* Note that a(i,j) = 1/(a(i)-a(j))

repeat;
id U(i?,i?,y?,z2?,z3?) = 0;
endrepeat;

* definition of differentiation

* with respect to z2
repeat;
id dz2*U(i?,j?,y?,z2?,z3?) =
U(i,j,y,z2+1,z3) + U(i,j,y,z2,z3)*dz2;
endrepeat;

.sort

id dz2=0;

* The variables expr12 etc now contain

* the derivative of eq3 w.r. to z2.

* use first equation U_z2 = eq2 and

* its first two derivative w.r. to y
id U(i?,j?,0,1,0) = lambda(i,j)*U(i,j,1,0,0)

+ sum_(k,1,’N’,
(lambda(i,k)-lambda(k,j))
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*U(i,k,0,0,0)*U(k,j,0,0,0));
id U(i?,j?,1,1,0) = lambda(i,j)*U(i,j,2,0,0)

+ sum_(k,1,’N’, (lambda(i,k)-lambda(k,j))*(
U(i,k,1,0,0)*U(k,j,0,0,0)
+U(i,k,0,0,0)*U(k,j,1,0,0) ));

id U(i?,j?,2,1,0) = lambda(i,j)*U(i,j,3,0,0)
+ sum_(k,1,’N’, (lambda(i,k)-lambda(k,j))*(

U(i,k,2,0,0)*U(k,j,0,0,0)
+2*U(i,k,1,0,0)*U(k,j,1,0,0)
+U(i,k,0,0,0)*U(k,j,2,0,0) ));

repeat;
id U(i?,i?,j?,k?,l?) = 0;
endrepeat;

* lambda(i,i) should not appear,

* we set it to zero.
repeat;
#do i=1,’N’
id lambda(’i’,’i’) = 0;
#enddo
endrepeat;

* The lambda(i,j) are symmetric.
repeat;
#do i=1,’N’-1
#do j=’i’+1,’N’
id lambda(’j’,’i’) = lambda(’i’,’j’);
#enddo
#enddo
endrepeat;

* The a(i,j) are antisymmetric.
repeat;
#do i=1,’N’-1
#do j=’i’+1,’N’
id a(’j’,’i’) = -a(’i’,’j’);
#enddo
#enddo
endrepeat;

* #do i=1,’N’

* #do j=1,’N’

* print +s exprr’i’’j’;
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* #enddo

* #enddo

.store

**** PART 3 ****
nwrite statistics;

Functions U;
CFunctions lambda, a, b;
Symbols i, j, tau;

Global diff12 = expr12-exprr12;

* This is only ONE of the set of

* equations to be checked

* insert the definitions of

* lambda(i,j) and a(i,j)
repeat;
id lambda(i?,j?) = (b(i)-b(j))/(a(i)-a(j));
id a(i?,j?) = 1/(a(i)-a(j));
endrepeat;

Bracket U;

print +s diff12;

* vanishes by pasting coefficient

* into MuPAD (after simplify) !!!

.end

The output from FORM includes vast terms and it is hard to see whether all terms vanish. The
statement Bracket U; enables us to pack coefficients of each term in bracket such that

diff12 =

+ U(1,2,0,0,0)*U(2,1,0,0,0)*U(1,3,0,0,0)*U(3,2,0,0,0) * (
- 1/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(1)ˆ2
+ 2/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(2)ˆ2
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)ˆ2
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(2)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)ˆ2
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(2)*a(3)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)ˆ2
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(2)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(3)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(2)*a(3)
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(1)*a(2)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(2)ˆ2
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(2)*a(3)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(3)
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- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(2)ˆ2
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(2)*a(3)
+ 1/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(1)ˆ2
- 2/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(3)ˆ2
- 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(2)
+ 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(2)*a(3)
- 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(3)ˆ2
)

...

Putting these coefficients into MuPAD, we find that coefficients of all terms yield 0 after a simplify
command.
>> - 1/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(1)ˆ2

+ 2/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(2))/(b(1) - b(3))*a(2)ˆ2
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)ˆ2
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(2))*a(2)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)ˆ2
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(1) - b(3))*a(2)*a(3)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)ˆ2
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(2)
+ 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(3)
- 1/(b(1) - b(2))/(b(1) - b(3))/(b(2) - b(3))*a(2)*a(3)
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(1)*a(2)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(1)*a(3)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(2)ˆ2
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(2))*a(2)*a(3)
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(2)
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(3)
- 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(2)ˆ2
+ 1/(b(1) - b(2))/(b(2) - b(3))/(b(1) - b(3))*a(2)*a(3)
+ 1/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(1)ˆ2
- 2/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(3))/(b(1) - b(3))/(b(2) - b(3))*a(3)ˆ2
- 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(2)
+ 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(1)*a(3)
+ 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(2)*a(3)
- 1/(b(1) - b(3))/(b(2) - b(3))/(b(1) - b(3))*a(3)ˆ2

2 2
a(1) a(2)

---------------------------- - ---------------------------- +
2 2

(b(1) - b(2)) (b(1) - b(3)) (b(1) - b(2)) (b(1) - b(3))

2 2
a(1) a(2)

---------------------------- + ---------------------------- -
2 2

(b(1) - b(3)) (b(2) - b(3)) (b(1) - b(2)) (b(2) - b(3))

2
a(1)

----------------------------------------- -
(b(1) - b(2)) (b(1) - b(3)) (b(2) - b(3))

2
a(2)

----------------------------------------- -
(b(1) - b(2)) (b(1) - b(3)) (b(2) - b(3))

a(1) a(2) a(1) a(2)
---------------------------- + ---------------------------- -

2 2
(b(1) - b(2)) (b(1) - b(3)) (b(1) - b(2)) (b(1) - b(3))

a(1) a(2) a(1) a(3)
---------------------------- - ---------------------------- -

2 2
(b(1) - b(2)) (b(2) - b(3)) (b(1) - b(2)) (b(1) - b(3))

a(1) a(3) a(1) a(2)
---------------------------- - ---------------------------- +

2 2
(b(1) - b(2)) (b(1) - b(3)) (b(1) - b(3)) (b(2) - b(3))

a(1) a(3) a(2) a(3)
---------------------------- + ---------------------------- +

2 2
(b(1) - b(2)) (b(2) - b(3)) (b(1) - b(2)) (b(1) - b(3))
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a(2) a(3) a(1) a(3)
---------------------------- - ---------------------------- -

2 2
(b(1) - b(2)) (b(1) - b(3)) (b(1) - b(3)) (b(2) - b(3))

a(2) a(3) a(2) a(3)
---------------------------- + ---------------------------- +

2 2
(b(1) - b(2)) (b(2) - b(3)) (b(1) - b(3)) (b(2) - b(3))

2 a(1) a(2)
-----------------------------------------
(b(1) - b(2)) (b(1) - b(3)) (b(2) - b(3))

>> simplify(%)

0
>>

In this way, we can check that also the other terms vanish.

C.4.3 Commutativity of the first two KdV flows

Following the procedure in the case of N -wave hierarchy, we developed this FORM program to
check the commutativity of the first two flows of the KdV hierarchy which we obtained from the
pre-sdYM hierarchy. In contrast to the case of N -wave, we do not need to put the output from
FORM into MuPAD to check whether all coefficients vanish.

*
* KdV_check.frm

*
* u has two slots which contain

* the number of partial derivatives

* with respect to y and t.

* u((number of derivatives with respect of y),

* (number of derivatives with respect to t))

Functions dy, dz2, dz3;
Functions u, y, t;
Symbols i, j, k;

* first hierarchy equation of KdV hierarchy in Sec.4.4.2
Local Uz2 = u(3, 0, 0)/4 - 3*u(1, 0, 0)*u(1, 0, 0)/2;

* differentiation with respect of dz3
Global expr1 = dz3*Uz2;

Local F1 = (u(5, 0, 0) - 10*(u(3, 0, 0)*u(1, 0, 0)
+ u(1, 0, 0)*u(3, 0, 0) + u(2, 0, 0)*u(2, 0, 0))
+ 40*u(1, 0, 0)*u(1, 0, 0)*u(1, 0, 0))/16;
Local F2 = dy*F1;
Local F3 = dy*F2;
Local F4 = dy*F3;
Local F5 = dy*F4;
Local F6 = dy*F5;
Local F7 = dy*F6;
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Local F8 = dy*F7;

repeat;

* definitions of differentiation with respect to y and dz3
id dz3*u(i?, j?, k?) = u(i, j, k+1) + u(i, j, k)*dz3;
id dy*u(i?, j?, k?) = u(i+1, j, k) + u(i, j, k)*dy;
endrepeat;

id dy = 0;
id dz3 = 0;

.sort

repeat;
id u(0, 0, 1) = F1;
id u(1, 0, 1) = F2;
id u(2, 0, 1) = F3;
id u(3, 0, 1) = F4;
id u(4, 0, 1) = F5;
id u(5, 0, 1) = F6;
id u(6, 0, 1) = F7;
id u(7, 0, 1) = F8;
endrepeat;

print +s expr1;

.store
Functions dy, dz2, dz3;
Functions u, y, t;
Symbols i, j, k;

* second hierarchy equation of KdV hierarchy in Sec.4.4.2
Local Uz3 = (u(5, 0, 0) - 10*(u(3, 0, 0)*u(1, 0, 0)
+ u(1, 0, 0)*u(3, 0, 0) + u(2, 0, 0)*u(2, 0, 0))
+ 40*u(1, 0, 0)*u(1, 0, 0)*u(1, 0, 0))/16;

* differentiation with respect of dz2
Global expr2 = dz2*Uz3;

Local G1 = u(3, 0, 0)/4 - 3*u(1, 0, 0)*u(1, 0, 0)/2;
Local G2 = dy*G1;
Local G3 = dy*G2;
Local G4 = dy*G3;
Local G5 = dy*G4;
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Local G6 = dy*G5;
Local G7 = dy*G6;
Local G8 = dy*G7;

repeat;

* definitions of differentiation with respect to y and dz2
id dz2*u(i?, j?, k?) = u(i, j+1, k) + u(i, j, k)*dz2;
id dy*u(i?, j?, k?) = u(i+1, j, k) + u(i, j, k)*dy;
endrepeat;

id dy = 0;
id dz2 = 0;
.sort

repeat;
id u(0, 1, 0) = G1;
id u(1, 1, 0) = G2;
id u(2, 1, 0) = G3;
id u(3, 1, 0) = G4;
id u(4, 1, 0) = G5;
id u(5, 1, 0) = G6;
id u(6, 1, 0) = G7;
id u(7, 1, 0) = G8;
endrepeat;

print +s expr2;

.store

* If the flows commute, diff = 0.
Local diff = expr1 - expr2;
print +s diff;
.end

The output of this program yields 0,

> ./form -l kdv_check.frm

diff = 0;
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C.4.4 Commutativity of the nonlinear Schrödinger flows

In this subsection we present two FORM programs. One is developed for the commutativity check
between first and second flow, the other is for the commutativity check between second and third
flow of the NLS hierarchy we obtained. As mentioned in Sec.3.4.1 and 3.4.3, we obtained from
the reduced pre-sdYM hierarchy the following results,

• first hierarchy equation : NLS equation,

• second hierarchy equation : complex mKdV equation,

• third hierarchy equation : second hierarchy equation of NLS hierarchy.

Apparently, it is not clear whether these equations are symmetries of each other, so that the reduced
pre-sdYM hierarchy would be a hierarchy . The first FORM program checks the commutativity
between NLS equation and complex mKdV equation (note that we did not rstrict a and r to a =
1
2
, r = ±q∗).

Commutativity check between the first and second flow.

* Nonlinear Schroedinger hierarchy

* check of commutativity of the

* first and second equation

**** PART 1 ****
nwrite statistics;
Functions r, q, eq2, dz3;
Symbols a, i, j, k;

* The function q, r have 3 sockets
which mean the differentiation

* with respect to y, z2, z3 respectively.

* e.g. r(y, z2, z3).

* computing derivative of

* rhs of first equation q_z2 = eq2

* with respect to z3
Global expr1 = dz3*eq2;

* definition the right hand side of the first equation
id eq2 =
(q(2, 0, 0) + 2*q(0, 0, 0)*r(0, 0, 0)*q(0, 0, 0))/(2*a);

repeat;

* definition of differentiation with respect to z3
id dz3*q(i?, j?, k?) =
q(i, j, k + 1) + q(i, j, k)*dz3;
id dz3*r(i?, j?, k?) =
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r(i, j, k + 1) + r(i, j, k)*dz3;
endrepeat;

id dz3=0;
.sort

repeat;
id q(0, 0, 1) = (q(3, 0, 0) +
3*q(1, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 3*q(0, 0, 0)*r(0, 0, 0)*q(1, 0, 0))/(4*aˆ2);
id q(1, 0, 1) =
(q(4, 0, 0) + 3*q(2, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 3*q(1, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 6*q(1, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 3*q(0, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 3*q(0, 0, 0)*r(0, 0, 0)*q(2, 0, 0))/(4*aˆ2);
id q(2, 0, 1) = (q(5, 0, 0)
+ 3*q(3, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 6*q(2, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 9*q(2, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 3*q(1, 0, 0)*r(2, 0, 0)*q(0, 0, 0)
+ 12*q(1, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 9*q(1, 0, 0)*r(0, 0, 0)*q(2, 0, 0)
+ 3*q(0, 0, 0)*r(2, 0, 0)*q(1, 0, 0)
+ 6*q(0, 0, 0)*r(1, 0, 0)*q(2, 0, 0)
+ 3*q(0, 0, 0)*r(0, 0, 0)*q(3, 0, 0))/(4*aˆ2);

id r(0, 0, 1) =
(r(3, 0, 0)

+ 3*r(1, 0, 0)*q(0, 0, 0)*r(0, 0, 0)
+ 3*r(0, 0, 0)*q(0, 0, 0)*r(1, 0, 0))/(4*aˆ2);
endrepeat;

print +s expr1;

.store

**** PART 2 ****
nwrite statistics;
Functions r, q, eq3, dz2;
Symbols a, i, j, k;

* computing the derivative of rhs

* of first equation q_z3 = eq3
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* with respect to z2
Global expr2 = dz2*eq3;

* defining the right hand side of the second equation
id eq3 = (q(3, 0, 0) + 3*q(1, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 3*q(0, 0, 0)*r(0, 0, 0)*q(1, 0, 0))/(4*aˆ2);

* definition of differentiation with respect to z2
repeat;
id dz2*q(i?, j?, k?) = q(i, j + 1, k) + q(i, j, k)*dz2;
id dz2*r(i?, j?, k?) = r(i, j + 1, k) + r(i, j, k)*dz2;
endrepeat;

.sort

id dz2=0;
repeat;
id q(0, 1, 0) =
(q(2, 0, 0)
+ 2*q(0, 0, 0)*r(0, 0, 0)*q(0, 0, 0))/(2*a);
id q(1, 1, 0) = (q(3, 0, 0)
+ 2*q(1, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 2*q(0, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 2*q(0, 0, 0)*r(0, 0, 0)*q(1, 0, 0))/(2*a);
id q(2, 1, 0) =
(q(4, 0, 0)
+ 2*q(2, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 4*q(1, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 4*q(1, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 2*q(0, 0, 0)*r(2, 0, 0)*q(0, 0, 0)
+ 4*q(0, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 2*q(0, 0, 0)*r(0, 0, 0)*q(2, 0, 0))/(2*a);
id q(3, 1, 0) =
(q(5, 0, 0)
+ 2*q(3, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 6*q(2, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 6*q(2, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 6*q(1, 0, 0)*r(2, 0, 0)*q(0, 0, 0)
+ 12*q(1, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 6*q(1, 0, 0)*r(0, 0, 0)*q(2, 0, 0)
+ 2*q(0, 0, 0)*r(3, 0, 0)*q(0, 0, 0)
+ 6*q(0, 0, 0)*r(2, 0, 0)*q(1, 0, 0)
+ 6*q(0, 0, 0)*r(1, 0, 0)*q(2, 0, 0)
+ 2*q(0, 0, 0)*r(0, 0, 0)*q(3, 0, 0))/(2*a);
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id r(0, 1, 0) =
(-r(2, 0, 0)
- 2*r(0, 0, 0)*q(0, 0, 0)*r(0, 0, 0))/(2*a);
endrepeat;

print +s expr2;

.store

**** PART 3 ****
nwrite statistics;

* Let’s restrict to commuting objects
Functions r, q;
Symbols a;

Global diff12 = expr1 - expr2;
print +s diff12;

.sort

print +s diff12;

.end

Commutativity check between the second and third flow.

* Nonlinear Schroedinger hierarchy

* check of commutativity of the

* second and third equation

**** PART 1 ****
nwrite statistics;
Functions r, q, eq3, eq4, dz4, dy;
Symbols a, i, j, k;

* The functions q, r have 3 sockets

* which mean the differentiation

* with respect to y, z3, z4 respectively.

* e.g. r(y, z3, z4).

* computing derivative of rhs of first equation
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q_z3 = eq3 with respect to z3
Global expr1 = dz4*eq3;

* The differentiations of q_z4 with respect to y
Local qz4 = eq4;
Local qyz4 = dy*eq4;
Local qyyz4 = dy*qyz4;
Local qyyyz4 = dy*qyyz4;

* defining the right hand side of the first equation
id eq3 = (q(3, 0, 0) + 3*q(1, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 3*q(0, 0, 0)*r(0, 0, 0)*q(1, 0, 0))/(4*aˆ2);

id eq4 =
(q(4, 0, 0)
+ 4*q(2, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 2*q(1, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 6*q(1, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 2*q(0, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 4*q(0, 0, 0)*r(0, 0, 0)*q(2, 0, 0)
+ 2*q(0, 0, 0)*r(2, 0, 0)*q(0, 0, 0)
+ 6*q(0, 0, 0)*r(0, 0, 0)*q(0, 0, 0)

*r(0, 0, 0)*q(0, 0, 0))/(8*aˆ3);

repeat;

* definition of differentiation with respect to z4
id dz4*q(i?, j?, k?) =
q(i, j, k + 1) + q(i, j, k)*dz4;
id dz4*r(i?, j?, k?) =
r(i, j, k + 1) + r(i, j, k)*dz4;

* definition of differentiation with respect to y
id dy*q(i?, j?, k?) =
q(i + 1, j, k) + q(i, j, k)*dy;
id dy*r(i?, j?, k?) =
r(i + 1, j, k) + r(i, j, k)*dy;

endrepeat;

id dy = 0;
id dz4 = 0;
.sort
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repeat;
id q(0, 0, 1) = qz4;
id q(1, 0, 1) = qyz4;
id q(2, 0, 1) = qyyz4;
id q(3, 0, 1) = qyyyz4;
id r(0, 0, 1) =
-(r(4, 0, 0)
+ 4*r(2, 0, 0)*q(0, 0, 0)*r(0, 0 ,0)
+ 2*r(1, 0, 0)*q(1, 0, 0)*r(0, 0, 0)
+ 6*r(1, 0, 0)*q(0, 0, 0)*r(1, 0, 0)
+ 2*r(0, 0, 0)*q(1, 0, 0)*r(1, 0, 0)
+ 4*r(0, 0, 0)*q(0, 0, 0)*r(2, 0, 0)
+ 2*r(0, 0, 0)*q(2, 0, 0)*r(0, 0, 0)
+ 6*r(0, 0, 0)*q(0, 0, 0)*r(0, 0, 0)

*q(0, 0, 0)*r(0, 0, 0))/(8*aˆ3);
endrepeat;

print +s expr1;

.store

**** PART 2 ****
nwrite statistics;
Functions dy, r, q, eq3, eq4, dz3;
Symbols a, i, j, k;

* computing the derivative of

* rhs of first equation q_z4 = eq4

* with respect to z3
Global expr2 = dz3*eq4;

* The differentiations of

* q_z3 with respect to y
Local qz3 = eq3;
Local qyz3 = dy*eq3;
Local qyyz3 = dy*qyz3;
Local qyyyz3 = dy*qyyz3;
Local qyyyyz3 = dy*qyyyz3;

* defining the right hand side of the

* second equation
id eq3 =
(q(3, 0, 0)
+ 3*q(1, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
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+ 3*q(0, 0, 0)*r(0, 0, 0)*q(1, 0, 0))/(4*aˆ2);

id eq4 =
(q(4, 0, 0)
+ 4*q(2, 0, 0)*r(0, 0, 0)*q(0, 0, 0)
+ 2*q(1, 0, 0)*r(1, 0, 0)*q(0, 0, 0)
+ 6*q(1, 0, 0)*r(0, 0, 0)*q(1, 0, 0)
+ 2*q(0, 0, 0)*r(1, 0, 0)*q(1, 0, 0)
+ 4*q(0, 0, 0)*r(0, 0, 0)*q(2, 0, 0)
+ 2*q(0, 0, 0)*r(2, 0, 0)*q(0, 0, 0)
+ 6*q(0, 0, 0)*r(0, 0, 0)*q(0, 0, 0)

*r(0, 0, 0)*q(0, 0, 0))/(8*aˆ3);

* definition of differentiation with respect to z2
repeat;
id dz3*q(i?, j?, k?) =
q(i, j + 1, k) + q(i, j, k)*dz3;
id dz3*r(i?, j?, k?) =
r(i, j + 1, k) + r(i, j, k)*dz3;

* definition of differentiation with respect to y
id dy*q(i?, j?, k?) =
q(i + 1, j, k) + q(i, j, k)*dy;
id dy*r(i?, j?, k?) =
r(i + 1, j, k) + r(i, j, k)*dy;
endrepeat;

id dy = 0;
id dz3 = 0;
.sort

repeat;
id q(0, 1, 0) = qz3;
id q(1, 1, 0) = qyz3;
id q(2, 1, 0) = qyyz3;
id q(3, 1, 0) = qyyyz3;
id q(4, 1, 0) = qyyyyz3;
id r(0, 1, 0) =
(r(3, 0, 0)
+ 3*r(1, 0, 0)*q(0, 0, 0)*r(0, 0, 0)
+ 3*r(0, 0, 0)*q(0, 0, 0)*r(1, 0, 0))/(4*aˆ2);
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id r(1, 1, 0) =
(r(4, 0, 0)
+ 3*r(2, 0, 0)*q(0, 0, 0)*r(0, 0, 0)
+ 3*r(1, 0, 0)*q(1, 0, 0)*r(0, 0, 0)
+ 6*r(1, 0, 0)*q(0, 0, 0)*r(1, 0, 0)
+ 3*r(0, 0, 0)*q(1, 0, 0)*r(1, 0, 0)
+ 3*r(0, 0, 0)*q(0, 0, 0)*r(2, 0, 0))/(4*aˆ2);
id r(2, 1, 0) =
(r(5, 0, 0)
+ 3*r(3, 0, 0)*q(0, 0, 0)*r(0, 0, 0)
+ 6*r(2, 0, 0)*q(1, 0, 0)*r(0, 0, 0)
+ 9*r(2, 0, 0)*q(0, 0, 0)*r(1, 0, 0)
+ 3*r(1, 0, 0)*q(2, 0, 0)*r(0, 0, 0)
+ 12*r(1, 0, 0)*q(1, 0, 0)*r(1, 0, 0)
+ 9*r(1, 0, 0)*q(0, 0, 0)*r(2, 0, 0)
+ 3*r(0, 0, 0)*q(2, 0, 0)*r(1, 0, 0)
+ 6*r(0, 0, 0)*q(1, 0, 0)*r(2, 0, 0)
+ 3*r(0, 0, 0)*q(0, 0, 0)*r(3, 0, 0))/(4*aˆ2);
endrepeat;

print +s expr2;

.store

**** PART 3 ****
nwrite statistics;

* Let’s restrict to commuting objects
Functions r, q;
Symbols a;

Global diff12 = expr1 - expr2;
print +s diff12;

.sort

print +s diff12;

.end

The results of both programs are
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diff12 = 0;

Same as the commutativity check of the KdV flows, we do not need to put the output from FORM
into another computer algebra system such as MuPAD to check whether all coefficients vanish.
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