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Abstract

In this thesis we discuss various aspects of type II superstring theory in NSNS

Melvin background. This model can be described by an exactly solvable conformal

field theory. First we show that this background includes the orbifolds C/ZN in type

II and type 0 theory. Then we construct the model which corresponds to a higher

dimensional Melvin background and show that it can be supersymmetric for the

particular values of its parameters. In particular, it includes ALE orbifolds C2/ZN .

Next we discuss D-branes in these models by constructing their boundary states.

As a result we find two kinds of interesting D-branes, which are T-dual equivalent

to each other. One of them wraps the geodesic line of the Melvin background

spirally. The other is a bound state of D-branes whose world-volume is given by

a topologically trivial torus. The latter is stabilized by the presence of the H-flux

and the quantized gauge flux. We also show the relation between these D-branes

and fractional D-branes in orbifold theories.
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1 Introduction

String theory often requires the modified notion of geometry. One reason of this is

that the string world-sheet has a finite length scale. Another is that there exist various

background flux (RR-flux and B-flux) in string theory in addition to the background

metric.

In open string theory its geometry has been essentially regarded as a noncommuta-

tive one [1]. In the presence of constant B-field this nature is enhanced and we have a

noncommutative gauge theory on a D-brane [2]. However, we have limited knowledge of

D-branes on curved manifolds with a non-constant B-field1 , where more general treat-

ment of noncommutative geometry will be required.

Next we would like to consider closed string theory. At present there seems to be

no unified idea of closed string geometry even though stringy corrections to standard

geometry in particular background such as Calabi-Yau manifolds have been discussed in

detail (see e.g.[4]). We can expect that the geometry will be changed in the presence of

B-flux or RR-flux2 . For example, let us consider orbifold theories [6]. The geometry of

orbifold in the standard sense possesses singularities. Nevertheless the world-sheet theory

remains non-singular because of the B-field on the vanishing cycles [7]. Note that in this

example the field strength H = dB is zero and the value of dilaton field is constant.

In this thesis we would like to discuss the geometry of string theory in flux backgrounds

whose field strength does not vanish. In order to see how such backgrounds are non-

trivial and thus interesting, let us consider D0-branes in the string theory with non-zero

H-flux. One may think that D0-branes can be used to probe the geometry. However,

in the presence of H-flux the dilaton field takes non-constant values in the spacetime.

Thus a D0-brane can stay only at particular points where the dilaton gradient vanishes.

This shows that we have a very strange geometry if we use the D0-brane probe in this

background. Another intriguing effect of H-flux is the existence of D-branes which wrap

topologically trivial cycles. This implies that the notion of a ‘cycle’ in string theory is

different from the ordinary one. We will see this phenomenon explicitly in our particular

model.

A well-studied example of this kind is the string theory in group manifolds such as

1 For recent development of noncommutative geometry of D-branes in H-flux see e.g. [3].
2 A sort of a noncommutativity in closed string theory without any flux was also proposed in [5].

4



SU(2) WZW-model. This gives a solvable model in the curved background with H-flux

and its D-brane spectrum has been discussed [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In

order to cancel the ghost central charge we should add an extra Liouville field [18, 19, 20]

and then the string theory is known to describe the geometry near NS5-branes. The

presence of Liouville field shows that the theory is singular and indeed the model is T-

dual equivalent to singular ALE space [19, 20]. Thus the computation of various physical

quantities sometimes becomes subtle.

Here we would like to consider a smooth curved background with H-flux and investi-

gate string theory in (NSNS) Melvin background [21, 22, 23, 24, 25] including its some

generalizations [26, 27] as an example. Originally, Melvin background [28] is a flux tube

solution in classical 4D Einstein-Maxwell theory. Its explicit metric and flux are given as

follows

ds2 = (1 + q2ρ2)2
(
−dt2 + dz2 + dρ2

)
+

ρ2

(1 + q2ρ2)2
dϕ2,

Fρϕ =
qρ

2(1 + q2ρ2)2
. (1.1)

What we will consider are flux tube backgrounds in string theory, where we have non-

trivial flux of the Kaluza-Klein gauge field and B-field.

The string theory in Melvin background is also interesting for other reasons. First this

model is known to be exactly solvable [23, 24]. Thus we can compute the mass spectrum

or the partition function exactly. As we will see later, we can also investigate D-branes

in this theory by constructing boundary states explicitly.

Another reason is the fact that the magnetic flux break supersymmetry and that the

theory generically includes closed string tachyons. Thus it gives a useful example to study

closed string tachyon condensation (for recent discussions see e.g [29, 30, 31, 32, 33, 34,

35, 27, 36, 37, 38, 39, 40, 41]).

It is also known that for particular values of parameters this model connects type 0

theory and type II theory [42, 30]. The similar observation can also be applied to string

theory in RR Melvin background (fluxbrane) [43, 44, 45, 46, 30, 47, 31, 32, 48, 49, 50,

51, 52, 53, 54, 55], where the flux is due to RR-fields. It is argued that the RR Melvin

background in type II string is dual to another RR Melvin background in type 0 string

theory [30]. Furthermore, later we will see that the orbifolds in type 0 and type II theory

are also included in the ‘moduli space’ of NSNS Melvin background. In this sense we can

view the background as a generalization of orbifold theory.
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In this way the string theory in Melvin background presents many interesting aspects

and thus we would like to discuss these from the viewpoint of both closed string and open

string below.

This thesis is organized as follows. In section two we review RR Melvin background

(fluxbrane) in string theory or M-theory. We also give a brief review of type 0 string theory.

In section three we review and examine the detailed structure of closed string theory in

NSNS Melvin background. This model can be rewritten in terms of free fields. In section

four we investigate the relation between the Melvin background and orbifolds C/ZN

by using the explicit partition function. We also discuss instability due to closed string

tachyons. In section five we construct a higher dimensional generalization of NSNS Melvin

background which preserves partial supersymmetry. In section six we study boundary

states in this model by using the free field representation and consider the relation to

fractional D-branes in orbifold theories. In section seven we discuss the mechanism of

stabilization of expanded D-branes which are found in the previous section.
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2 Review of String/M-theory in Melvin Background

In this section we would like to review some recent useful results on string theoretic

generalizations of the Melvin background (1.1) and their interpretations in M-theory. In

order to realize them, we consider the classical solutions of type II supergravity with non-

trivial flux and dilaton field. Historically, we would like to refer to [56, 57] for the original

literature on the Melvin solution in dilatonic gravity theories and to [43, 44, 45, 46] for

important further investigations of this subject.

2.1 Fluxbrane

In this setup there are two possibility of flux: NSNS flux or RR flux. In particular, the

latter has been recently called fluxbranes[46, 47, 31, 48]. Even though our main arguments

in this thesis are for the former (NSNS Melvin background), we would like to review useful

results on fluxbranes first. This is because they give us an important motivation as we

will see. The simplest and well-studied example is flux 7-branes (F7-branes) in type IIA

string theory [30, 31].

This background is easily constructed if we lift the system to M-theory. Let us consider

M-theory compactification on S1 with the twisted identification

(x11, ϕ̌) ∼ (x11 + 2πR, ϕ̌ + 2πRq), (x11, ϕ̌) ∼ (x11, ϕ̌ + 2π), (2.1)

where x11 and (ρ, ϕ̌) stand for the polar coordinate of the circle S1 (radius R) and its

transverse two dimensional plane R2, respectively. Then we obtain the well-defined coor-

dinate

ϕ = ϕ̌− qx11, (2.2)

which satisfies the usual periodicity. The flat metric in M-theory with this twisted iden-

tification (2.1) is rewritten in terms of ϕ as follows (see fig.1)

ds2
M = dρ2 + ρ2dϕ̌2 + dx2

11 +
7∑

µ=0

dxµdxµ,

= dρ2 + (1 + q2ρ2)

(
dx11 +

qρ2

1 + q2ρ2
dϕ

)2

+
ρ2

1 + q2ρ2
dϕ2 +

7∑
µ=0

dxµdxµ. (2.3)
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By applying the identification of type IIA string as the Kaluza-Klein compactification of

M-theory, we obtain the following classical solution in type IIA theory

ds2
IIA =

√
1 + q2ρ2


 7∑

µ=0

dxµdxµ + dρ2


 +

ρ2

√
1 + q2ρ2

dϕ2,

Aϕ =
qρ2

1 + q2ρ2
, e4/3φ = 1 + q2ρ2, (2.4)

where Aϕ and φ denote the RR 1-form and dilaton. This solution represents 7-brane

background with RR 1-form flux and is called F7-brane.

90 000

x11
0 2πR

ϕ
ϕ

2πqR

Identified

Figure 1: The twisted identification in M-theory.

This new type “brane” in string theory is difficult to get any conformal field theoretic

definition in contrast with a D-brane. Instead it is known that we can regard the F7-brane

solution as a D6 − D6 system in a certain limit[54]. See also [50] for a relation between

non-extremal black holes and fluxbranes.

One of the important properties of F7-brane is its non-perturbative structure. The

dilaton expectation value of (2.4) shows that the system should be strongly coupled if we

go away from the origin. Thus the above classical treatment may be corrected substan-

tially.

Another interesting property is that this background breaks thirty two supersymme-

tries completely by a rather simple mechanism. This gives the most important motivation

to consider it. If a fermion field ψ(x11) in this background is moved by the parallel trans-
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portation around the circle S1 once, then it will obtain the phase factor as follows

ψ(x11 + 2πR) = +e2iπqRJψ(x11) or − e2iπqRJψ(x11), (2.5)

where J is the spin of the fermion in the direction ϕ. The sign factors of (2.5) represent the

two possible spin structures. Since we recover supersymmetric type IIA theory for q = 0,

we should choose + sign. The above result shows that there is no massless fermion unless

qR ∈ even and thus the supersymmetry is completely broken. This can be regarded as the

Scherk-Schwarz mechanism in M-theory. Furthermore, if we take the limit R → 0, then

all fermions become infinitely massive and we will obtain a purely bosonic ten dimensional

string theory3 . What kind of string theory is it? Then the reader may think the type

0 string theory [58, 59, 60, 61] as a candidate. Before we see the related conjecture by

[42, 30], we would like to review type 0 string theories in the next subsection.

It is also possible to consider fluxbranes in curved spaces [52]. Let us assume the

eleven dimensional classical solution R × X10, where X10 is any ten dimensional metric

with U(1) isometry parameterized by ϕ̌. The explicit form of the metric is written in the

following form

ds2
M = dx2

11 + f(x)(dϕ̌ + fµ(x)dxµ)2 + gµνdx
µdxν . (2.6)

After the twisted compactification (2.1), we obtain the following F7-brane background,

ds2
IIA = (1 + q2f(x))−

1
2 (dϕ+ f(x)µdx

µ)2 + (1 + q2f(x))
1
2gµνdx

µdxν ,

A =
qf(x)

1 + q2f(x)
(dϕ+ f(x)µdx

µ), e4/3φ = 1 + q2f(x), (2.7)

Up to now we have discussed F7-branes. We can also consider Fp-branes (p �= 7) which

couple to (8-p)-form RR field. Singular solutions of Fp-branes have been obtained exactly

and smooth solutions have been analyzed numerically in [47, 31, 48]. Some interesting

applications of fluxbrane-like solutions have also been recently discussed. For example,

see [48, 49, 51] and [49, 62] for classical solutions of the dielectric-brane [63] and the

supertube [64].

2.2 Type 0 String Theory

If we require the world-sheet N = (1, 1) supersymmetry, well-defined OPEs and

modular invariance, we have type IIA(B) string theory or type 0A(B) string theory as

3 Here we ignore the particular case 3qR ∈ Z.
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shown in e.g. [61]. Type 0A(B) string theory [58, 59, 60, 61] is defined by the diagonal

GSO projection and consists of the following sectors in the world-sheet theory

0A : (NS+,NS+) (NS−,NS−) (R+,R−) (R−,R+),

0B : (NS+,NS+) (NS−,NS−) (R+,R+) (R−,R−) (2.8)

where the signs ± stand for the world-sheet fermion numbers (−1)FL and (−1)FR . There

is T-duality relation between type 0A and 0B theory in the same way as in type II theory.

As we can see from (2.8), the theory contains no fermions and double RR-fields C
(1)
RR

and C
(2)
RR. What is more important is the presence of the oppositely GSO projected sector

(NS+,NS+), which includes a tachyon field. Thus it is natural to consider that type 0

string theory is unstable and should decay into tachyon-less string theory. However, even

today no complete result on its decay has not been obtained (some discussions will be

shown later in this thesis and see also [31, 39]).

We can also regard type 0A(B) string theory as a Z2 twist of type IIA(B) theory by

the operator (−1)FS , where FS denotes the spacetime fermion number. More generally,

we can show the following ‘T-duality relation’ between type 0 and type II string theory

[58, 60, 42]

IIA(B) on S1 (radius 2R) / (−1)FSσ1/2 �
0B(A) on S1 (radius 1/R) / (−1)FRσ1/2, (2.9)

where σ1/2 represents the half shift operator along S1. This relation can be shown if we

write down each spectrum. The spectrum of the IIA theory (radius 2R) is given by

Untwisted : (NS+,NS+), (R+,R−), PL,R = n/R ± 2wR/α′,

(R+,NS+), (NS+,R−), PL,R = (n+ 1/2)/R± 2wR/α′,

Twisted : (R−,NS−), (NS−,R+), PL,R = (n+ 1/2)/R± (2w + 1)R/α′,

(NS−,NS−), (R−,R+), PL,R = n/R ± (2w + 1)R/α′, (2.10)

where PL,R denotes the (left-moving and right-moving) momentum along S1 and we have

also defined n,w ∈ Z. The reason for the appearance of oppositely GSO projected sectors

in the twisted sectors is explained by the spectral flow of the boundary condition for

fermions (see e.g. [61]). For more detail see the more general arguments by using the

partition function in Green-Schwarz formalism in section 3. On the other hand, the
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spectrum (2.10) can also be interpreted as that in the type 0B theory if we perform the

T-duality procedure PR → −PR. Similarly we can do the same thing for type IIB and

type 0A. In this way we have shown the relation (2.9). It would be also interesting to

note that fermions appear in the twisted sector of the type 0 theory.

In this model the limit R → 0 corresponds to the ten dimensional type 0B(A) theory,

while the limit R → ∞ to type IIA(B) theory. Thus the model connects type 0 and type

II theory. Later we will see a generalization of the interpolation in the examples of string

theory on Melvin background (see fig.2).

We would also like to see D-branes in type 0 theory [65, 66, 67], which will be useful for

later arguments. Since there are two kinds of RR fields, there are two kinds of Dp-branes

for fixed p. We call these an electric Dp-brane and a magnetic Dp-brane. Let us see

their boundary states in order to know the coupling of the branes with closed string. A

boundary state |B〉 represents the D-brane boundary condition of the world-sheet from

the viewpoint of closed string theory (for a review see [68]). The boundary condition of

Dp-branes is defined by

Neumann :


 ∂τX

µ|τ=0|B〉 = 0 ↔ (αµ
n + α̃µ

−n)|B〉 = 0,

(ψµ
L − εψµ

R)|τ=0|B〉 = 0 ↔ (ψµ
r − iεψ̃µ

−r)|B〉 = 0,
(2.11)

Dirichlet :


 ∂σX

i|τ=0|B〉 = 0 ↔ (αi
n − α̃i

−n)|B〉 = 0,

(ψi
L + εψi

R)|τ=0|B〉 = 0 ↔ (ψi
r + iεψ̃i

−r)|B〉 = 0,
(2.12)

Here we have assumed the coordinate of its world-volume is given by xµ (0 ≤ µ ≤ p)

and the transverse coordinate by xi (p + 1 ≤ i ≤ 9). The world-sheet bosonic and

(left-moving, right-moving) fermionic fields are denoted by Xµ,i and ψµ,i
L,R, where their

left-moving and right-moving oscillators are represented by αµ,i
n , ψµ,i

r and α̃µ,i
n , ψ̃µ,i

r (for

more detail see appendix B.). The sign ε = ± corresponds to the two different boundary

condition for fermions. We also denote the coordinate of world-sheet by (τ, σ). In the

flat background it is possible to solve the above condition (2.12) exactly. The explicit

expression of this in more general background will be given in section 6. Then we obtain

the total boundary state for Dp-branes in type II string theory

|typeII Dp〉 =
Tp

4

(
(|B,+〉NSNS − |B,−〉NSNS) + (|B,+〉RR + |B,−〉RR)

)
,

(2.13)

where we defined Tp =
√
π(2π

√
α′)3−p so that Tp/κ (κ is the gravitational coupling con-

stant) is equal to the tension of type II Dp-brane. This explicit value Tp is computed by

11



requiring that the vacuum cylinder amplitude between two D-branes in open string theory

should be equal to that calculated by using the two boundary states. This condition is

called Cardy’s condition [69] and we will see the explicit calculations later. Note also that

the GSO projection (1+(−1)FL )(1+(−1)FR )
4

restricts the linear combination of |B,+〉NSNS,RR

and |B,−〉NSNS,RR to the above form and allowed values of p to p = even for type IIA

(p = odd for type IIB).

On the other hand, in type 0 string theory we impose the ‘diagonal GSO projection’
1+(−1)FL+FR

2
and thus we have the following two different kinds of D-branes

|electric〉 =
Tp

2
√

2
(|B,+〉NSNS + |B,+〉RR) ,

|magnetic〉 =
Tp

2
√

2
(−|B,−〉NSNS + |B,−〉RR) . (2.14)

Then we can easily see that the tension of these type 0 D-branes is 1/
√

2 times as large

as that of type II theory. We can also verify that an electric one couples to the RR-field

C
(1)
RR +C

(2)
RR and a magnetic one to C

(1)
RR −C

(2)
RR. Allowed values of p are the same as those

in type II theory.

It would be also useful to know about the open string spectrum of these D-branes in

type 0 theory. If we consider open string between two D-branes of the same type, then we

have only purely bosonic spectrum from the NS-sector with the ordinary GSO projection.

However, if we consider two different D-branes, then we have purely fermionic spectrum

from the R-sector. Note that this is the only fermionic excitation in type 0 theory which

appears perturbatively.

2.3 Type II/Type 0 duality and Instability

Now we return to the relation between F7-branes and type 0 string theory and explain

the conjecture given by [42, 30]. This conjecture is obtained by identifying another spin

structure in (2.5) (minus sign) with type 0A theory. For q′ = 0 (here we add the symbol

’ to distinguish type 0 case with type II case), we have the ordinary ten dimensional type

0A theory and for non-zero q′ we have a type 0A theory in RR-flux background. Even

though the spectrum includes fermions for non-zero R, they will disappear for R = 0 (

weak coupling limit) and this is consistent with the perturbative spectrum of type 0A

theory. In this way we obtain the following novel conjecture [30]

type IIA (q) � type 0A (q − 1/R). (2.15)
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If we set q = 1/R, the above conjecture (2.15) argues that M-theory compactified on

the small circle with the antiperiodic boundary condition for fermions is equivalent to

type 0A theory [42]. Furthermore let us compactify the theory on another small circle

with the ordinary boundary condition and exchange the two circles (‘9 − 11′ flip). Then

we reproduce the previous result that IIA on the circle twisted by (−1)FSσ1/2 leads to

type 0B theory in the small radius limit (2.10).

However, there are obviously many problems about this identification (2.15). The

background should be treated non-perturbatively because the string coupling is generically

strong at large ρ. The analysis of this in the world-sheet theory requires the quantization

of string theory with RR flux and is very difficult. Thus the explicit proof of this conjecture

seems to be impossible at present. We should also explain the instability of type 0A theory

from the viewpoint of type IIA or M-theory. Note also that the relation (2.15) implies

that there appear massive fermions non-perturbatively in type 0A theory. In the paper

[42] the relation between the fermions and the bound states of D0-branes was discussed.

Since the open string between an electric D0-brane and a magnetic D0-brane is purely

fermionic, the quantization of the zero-modes gives fermionic excitations in spacetime

from the bound state of them.

The instability of this background can be understood in supergravity theory. A kind of

deformation of Myers-Perry Kerr instanton in M-theory (5D Kerr black-hole and 6D flat

space) represents an instanton which describes the decay of it [45, 30]. There are two such

instantons corresponding to type 0A and type IIA. The former is a generalization of the

Witten’s bubble4 [70] (Euclidean Schwarzchild black hole). This instanton seems to be

interpreted as the existence of closed tachyon in type 0 theory if we take the weak coupling

limit. The latter instanton is interpreted5 as a Kaluza-Klein monopole/anti-monopole

pair in M-theory (D6−D6 in type IIA). Because the generation of this instanton reduces

the strength of RR-flux, it is natural to speculate that the system will eventually decay

into the supersymmetric vacuum (ordinary type IIA theory) [31].

4 Note that the instanton configuration of the Witten’s bubble allows a single spin structure [70] which

breaks supersymmetry. Therefore the instability does not occur in the case of type IIA theory.
5 More precisely, this interpretation is valid if we assume a compactification of the six dimension. In

the non-compact case we can instead regard it as a spherical D6-brane [30, 31].
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2.4 Supersymmetric Fluxbrane

Let us consider higher dimensional generalizations of the twisted compactification of

M-theory [46, 31, 52]. Namely, we can compactify S1 direction by the following identifi-

cation

(x11, ϕ̌a) ∼ (x11 + 2πR, ϕ̌a + 2πRqa), (x11, ϕ̌a) ∼ (x11, ϕ̌a + 2π), (2.16)

where we have defined (ρa, ϕ̌a), (a = 1, 2, · · ·, n) as the polar coordinate of R2n. Then

we have the well-defined coordinate ϕa = ϕ̌a − qax11 as before and the eleven dimensional

metric is given by

ds2
M = dx2

11 +
n∑

a=1

(
dρ2

a + ρ2
a(dϕa + qadx11)

2
)

+
9−2n∑
µ=0

dxµdxµ. (2.17)

After the Kaluza-Klein reduction, we have the following type IIA background (‘F(9-2n)-

brane’)

ds2
IIA =

√
Λ


9−2n∑

µ=0

dxµdxµ +
n∑

a=1

(dρ2
a + ρ2

aϕ
2
a)


−

n∑
a=1

q2
aρ

4
a√

Λ
(dϕa)

2,

Aϕa =
qaρ

2
a

Λ
, e4/3φ = Λ, (2.18)

where we have defined Λ = 1+
∑n

a=1 q
2
aρ

2
a. This kind of background can be more properly

said as an intersection of F7-branes [27].

The most important property of these generalized fluxbranes is the fact that we can

preserve partial supersymmetry for particular choice of the parameters qa. For example,

if we assume n = 2 and q1 = ±q2, then we have the background (supersymmetric F5-

brane [31]) which preserves half supersymmetry. The reason of this can be understood

by considering the boundary condition for fermions like (2.5). In this case we obtain the

phase factor e2πiR(q1J1+q2J2) and thus we can preserve half supersymmetry for q1 = ±q2.
For more comprehensive analysis see [55].
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3 Closed Strings in NSNS Melvin Background

The main purpose of this paper is to investigate the string theory in NSNS Melvin

Background. As we have seen before, the F7-brane (or equally RR Melvin) background

is highly nonperturbative with RR-flux and thus is difficult to investigate the world-sheet

sigma model quantitatively. Thus we would like to perform a U-dual transformation of

F7-brane so that the string coupling can be small enough and the sigma model includes

only NSNS flux. Such a transformation is given by the interchange of x9 and x11 direction

(so called 9 − 11 flip) in M-theory and is represented in terms of type II string theory as

follows.

IIA IIB IIB IIA
T-dual S-dual T-dual

RR1-form(q)

NSNS2-form(β)

RR2-form

Metric

NSNS2-form

Metric

Metric

NSNS2-form

Here we can add the NSNS B-field to the background and we have two magnetic

parameters q and β. The target space of this model has the structure of Kaluza-Klein

theory and has the topology M3 × R1,6. The three dimensional manifold M3 is given by

S1 fibration over R2. We write the coordinate of R2 and S1 by ρ, ϕ (polar coordinate)

and y (with radius R). The non-trivial fibration is due to two Kaluza-Klein gauge fields

Aϕ and Bϕ (see (3.1)) which originate from Kaluza-Klein reduction of metric Gϕy and

B-field Bϕy, respectively. In the most of the discussions below, we will neglect the trivial

flat part R1,6.

The explicit metric and other NSNS fields before the Kaluza-Klein reduction are given

as follows

ds2 = dρ2 +
ρ2

(1 + β2ρ2)(1 + q2ρ2)
dϕ2 +

1 + q2ρ2

1 + β2ρ2
(dy +Aϕdϕ)2,

= dρ2 +
1

(1 + β2ρ2)

(
dy2 + ρ2(dϕ+ qdy)2

)
,

Aϕ =
qρ2

1 + q2ρ2
, Bϕy ≡ Bϕ = − βρ2

1 + β2ρ2
, e2(φ−φ0) =

1

1 + β2ρ2
, (3.1)

where q, β are the magnetic parameters which are proportional to the strength of the two

gauge fields and φ0 is the constant value of the dilaton φ at ρ = 0.
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In this section we would like to mainly review and discuss the sigma model of this

background (3.1) in type II superstring. Interestingly, this model is exactly solvable as

shown in [24, 25] (see also [21, 22, 23] for such a model in bosonic string theory). This

gives one interesting example of a solvable string theory in a non-trivial background.

It would also be useful to note that if β = 0, we get a locally flat metric with the zero

curvature tensor

ds2 = dρ2 + dy2 + ρ2(dϕ+ qdy)2. (3.2)

This background is globally non-trivial because the angle ϕ is compactified such that its

period is 2π. For example, its geodesic lines6

ϕ+ qy = constant, (3.3)

are spiral and do not return to the same point for irrational qR if one goes around the

circle S1. As we will see later in section 6, this geometry rules the D-brane spectrum [71].

3.1 Sigma Model Description and Its Free Field Representation

At first sight the above background (3.1) for general q, β does not seem to be tractable

in the description of the two dimensional sigma model. However, with appropriate T-

duality transformations which we will review in appendix A (see also [72]) one can solve

this sigma model in terms of free fields [23, 24]. In this paper we define the coordinate of

world-sheet as z = σ1 + iσ2 and the derivatives as ∂ = 1
2
(∂1 − i∂2), ∂̄ = 1

2
(∂1 + i∂2).

The sigma model for the background (3.1) is given7 by (we show only the bosonic

part)

S =
1

πα′

∫
d2σ

[
∂̄ρ∂ρ +

(1 + q2ρ2)

(1 + β2ρ2)
(∂̄Y +

qρ2

1 + q2ρ2
∂̄ϕ)(∂Y +

qρ2

1 + q2ρ2
∂ϕ)

+
ρ2

(1 + β2ρ2)(1 + q2ρ2)
∂̄ϕ∂ϕ− βρ2

1 + β2ρ2
(∂̄Y ∂ϕ− ∂Y ∂̄ϕ)

]

=
1

πα′

∫
d2σ

[
∂̄ρ∂ρ + ∂̄Y ∂Y +

ρ2

1 + β2ρ2
(∂̄ϕ + (q − β)∂̄Y )(∂ϕ+ (q + β)∂Y )

]
,

(3.4)

6 For non-zero β the geodesic lines in (3.1) are given by ϕ+ (q ± β)y =const.
7 The background eq.(3.1) satisfies the equation of motion even if we take α′ corrections into account

[21] as can be shown by using the general arguments in [73].
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where we have omitted the term of the dilaton coupling for simplicity. We have also

abbreviated the fermion terms since it is easily obtained if we use the superfield. They

are easily incorporated if we use the N = 1 world-sheet superfield formulation8 .

First let us perform the T-duality which transforms the field ϕ into the new one ϕ̃ (for

more explanations see the appendix A). The result is given by

S =
1

πα′

∫
d2σ

[
∂̄ρ∂ρ + (∂̄Y + β∂̄ϕ̃)(∂Y + β∂ϕ̃) + q(∂̄ϕ̃∂Y − ∂̄Y ∂ϕ̃) +

1

ρ2
∂̄ϕ̃∂ϕ̃

]
.

(3.5)

After we define the field Y ′ by

Y ′ = Y + βϕ̃, (3.6)

we can again take the T-duality along ϕ̃ into ϕ′. Then we obtain

S =
1

πα′

∫
d2σ

[
∂̄ρ∂ρ+ ∂̄Y ′∂Y ′ + ρ2(∂̄ϕ′ + q∂̄Y ′)(∂ϕ′ + q∂Y ′)

]
. (3.7)

From this expression it is easy to see that one can describe the sigma model by free fields

X ′ and X̄ ′ which are defined by

X ′ = ρeiϕ′′
, X̄ ′ = ρe−iϕ′′

, (3.8)

where

ϕ′′ = ϕ′ + qY ′. (3.9)

Here we will examine the relation between the free fields X ′, X̄ ′ and the fields X =

ρ eiϕ, X̄ = ρ e−iϕ which represent the original plane R2 ∈ M3 in (3.1). Applying the

relation (A.6) to the above two different T-duality transformations9 , we can obtain

∂ϕ = ∂ϕ′′ − q∂Y − β∂Y ′, ∂̄ϕ = ∂̄ϕ′′ − q∂̄Y + β∂̄Y ′. (3.10)

This shows that the field ϕ is rewritten as

ϕ(z, z̄) = ϕ′′(z, z̄) − qY (z, z̄) + β (Y ′
R(z̄) − Y ′

L(z)) , (3.11)

8 To do this one has only to replace the derivatives ∂, ∂̄ with Dθ = ∂θ + θ∂, Dθ̄ = ∂θ̄ + θ̄∂̄ and a

bosonic field X with X(z, z̄) = X(z, z̄) + iθψL(z) + iθ̄ψR(z̄) + · · ·.
9 The same result can be obtained by performing the T-duality about Y once if we regard ϕ̌ ≡ ϕ+ qY

and Y as fundamental fields in the sigma model. In this subsection we have used the T-duality about ϕ

for the convenience of the explanation.
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where Y ′
L(z) (Y ′

R(z̄)) is the left(right)-moving part of Y ′. Therefore from this the relation

between X ′, X̄ ′ and X, X̄ is represented as

X(z, z̄) = e−iqY (z,z̄)+iβY ′
R

(z̄)−iβY ′
L
(z)X ′(z, z̄). (3.12)

It is easy to generalize the above results into those in the supersymmetric case since we

can use N = 1 world-sheet superfield formulation. Then the above equation (3.12) does

hold as a superfield and we can also define the free fields (ψ′
L,R, ψ̄

′
L,R) as the partners of

(X ′, X̄ ′).

Since we have the free field representation (Y ′, η′L,R), (X ′, ψ′
L,R) and (X̄ ′, ψ̄′

L,R), the

quantization of the Melvin background can be performed. Before that, we have to examine

the boundary condition of the field Y ′. From the relations (A.7) one obtains

∂ϕ̃ = −ρ2∂ϕ′′ + iψ′
Lψ̄

′
L ≡ iα′jL,

∂̄ϕ̃ = ρ2∂̄ϕ′′ − iψ′
Rψ̄

′
R ≡ −iα′jR, (3.13)

and the conservation law of the above current jL,R follows directly. Notice also the useful

relation

ρ2∂ϕ′′ =
1

2i
(X̄ ′∂X ′ −X ′∂X̄ ′). (3.14)

Then we can define the angular momentum operators ĴL, ĴR in (X ′, X̄ ′) ∈ R2 directions

as follows10

ĴL =
1

2πi

∮
dz jL(z), ĴR = − 1

2πi

∮
dz̄ jR(z̄). (3.15)

Then we can see from (3.13) and (3.15) how the boundary condition of ϕ̃ should be twisted

ϕ̃(τ, σ + 2π) = ϕ̃(τ, σ) − 2πα′Ĵ , (3.16)

where we have defined the total angular momentum operator as Ĵ = ĴR + ĴL and the

new world-sheet coordinates τ, σ as z = exp (τ + iσ). Moreover notice that the original

coordinate Y satisfies

Y (τ, σ + 2π) = Y (τ, σ) + 2πRw. (3.17)
10 Note the operator product expansions (OPE) jL(z)∂X′(w) ∼ 1

2(z−w)∂X
′(w) + 1

2(z−w)2X
′(w),

jL(z)ψ′
L(w) ∼ 1

z−w
ψ′

L(w), jL(z)ψ̄′
L(w) ∼ − 1

z−w
ψ̄′

L(w) and similar results for the right-moving sec-

tor. Here we have used the relation (3.13), (3.14) and OPE for free fields normalized such that

X ′(z)X̄ ′(w) ∼ −α′ ln(z − w) and ψ′
L(z)ψ̄′

L(w) ∼ α′
z−w . Thus we can find that the operators ψ′

L,R and

∂X′, ∂̄X′ have charges ĴL,R = 1 and on the other hand ψ̄′
L,R and ∂X̄ ′, ∂̄X̄ ′ have charges ĴL,R = −1.
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After all from (3.6), (3.16) and (3.17) the periodicity of the field Y ′ is given by

Y ′(τ, σ + 2π) = Y ′(τ, σ) + 2πRw − 2πα′βĴ. (3.18)

On the other hand, the canonical momentum of Y is

PY =
1

2πα′

∫
dσ(q∂̄ϕ̃− q∂ϕ̃ + ∂Y ′ + ∂̄Y ′)

= qĴ +
1

2
(P ′

L + P ′
R), (3.19)

where the first line is obtained from (3.5) and (3.6). Therefore from the quantization of

PY as PY = n
R

(n ∈ Z) the quantized zero modes of Y ′ are obtained as follows

P ′
L + P ′

R = 2(
n

R
− qĴ), P ′

L − P ′
R = 2(

Rw

α′ − βĴ). (3.20)

Next we turn to the quantization of the free fields X ′, X̄ ′ and ψ′
L,R, ψ̄

′
L,R. They obey

the following twisted boundary conditions which can be obtained from (3.12), (3.17) and

(3.20),

X ′(τ, σ + 2π) = e2πiγX ′(τ, σ),

ψ′
L(τ, σ + 2π) = e2πiγψ′

L(τ, σ), ψ′
R(τ, σ + 2π) = e2πiγψ′

R(τ, σ), (3.21)

where γ ≡ qRw + βα′(
n

R
− qĴ). (3.22)

Note that there are no zero-modes for X ′, X̄ ′ if γ is not an integer. This fact will be

crucial when we consider D-branes in this model later.

The above boundary conditions are similar to those in orbifold theories and therefore

it is straightforward to perform the mode expansion and its canonical quantization. We

summarize these results in the appendix B.

3.2 Mass Spectrum

We have explained that the sigma model of the Melvin background can be solved in

terms of free fields (X ′, X̄ ′, Y ′). Thus it is straightforward to compute the mass spectrum

of this model in the NS-R formalism, which can be obtained from L0, L̃0 in (B.4). If we

define N̂R,L and ĴL,R as the (left or right-moving) occupation number operator and the

angular momentum in the ϕ′′ direction both of which include the zero point energy (±1
2
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for NS-sector and 0 for R-sector). For explicit formula see (B.5) and (B.6). Then the

result [24, 25] is given by

α′M 2

2
=

α′

2R2
(n− qRĴ)2 +

R2

2α′ (w − α′

R
βĴ)2 + N̂R + N̂L − γ̂(ĴR − ĴL),

where γ̂ ≡ γ − [γ], (3.23)

with the level matching constraint

N̂R − N̂L − nw + [γ]Ĵ = 0, (3.24)

where [γ] denotes the integer part of γ. Moreover the GSO-projection for type II theory

restricts the above spectrum, which causes a little subtlety [24, 25, 26]. For 2n ≤ γ <

2n+1 (n ∈ Z) it is the standard type II GSO-projection and the allowed spectra are those

which give N̂L,R the integer values for NSNS-sector. However, for 2n+1 ≤ γ < 2n+2 it is

the reversed one, where N̂L,R takes half-integer values for NSNS-sector. This fact can be

seen from the one-loop partition function Z(R, q, β) [24, 25, 26] of the Melvin background

by comparing the result in the NS-R formalism with that in the Green-Schwarz formalism,

where GSO-projection is not needed. In fact the spectrum (3.23) and (3.24) are the same

as those obtained in the Green-Schwarz formalism [24, 25, 26] as we will see in the next

subsection.

Before we proceed let us see interesting symmetries of the string model. First one is

the T-duality symmetry11 . The spectrum is invariant under the exchange of q,n and R

for β,w and 1/R and the partition function satisfies

Z(R, q, β) = Z

(
α′

R
, β, q

)
. (3.25)

This represents the T-duality in S1 direction which interchanges the metric Gϕy and

B-field Bϕy. Another one is the periodicity with respect to q and β

Z(R, q, β) = Z (R, q + 2n1/R, β + 2n2R/α
′) . (3.26)

Note that the observed periodicity is consistent with that for F7-brane discussed in section

2.

11 Note that this T-duality is involved with S1 and has nothing to do with those used in section 3.1.
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3.3 Green-Schwarz Formulation and Partition Function

In order to compute the one-loop partition function with the correct GSO projection,

it is more convenient to use Green-Schwarz formulation [24, 25].

On the world-sheet in the light-cone Green-Schwarz formulation, there are eight (real)

bosonic fields ρ, ϕ, Y,Xi (i = 2, 3, · · ·, 6) and eight left-moving and right-moving fermionic

fields Sa
L, S

a
R (a = 1, 2, · · ·, 8). The fermionic fields are divided into two groups Sr

L,R and

S̄r
L,R (r = 1, 2, 3, 4) according to the angular momenta ĴL,R = 1

2
and −1

2
in the (X ′′, X̄ ′′)

plane, where we defined U(1)-charge such that X = ρeiϕ and X̄ = ρe−iϕ also have the

charge ĴL = ĴR = 1 and −1 as in [23, 25].

Now let us see the calculation of the partition function. Introducing the auxiliary

vector fields V, V̄ , we rewrite the world-sheet action as follows12

S =
1

πα′

∫
(dσ)2

[
∂̄ρ∂ρ+ (1 + β2ρ2)V V̄ + V (∂̄Y + βρ2∂̄(ϕ+ qY ) +

iβ

2
S̄r

RS
r
R)

−V̄ (∂Y − βρ2∂(ϕ+ qY ) +
iβ

2
S̄r

LS
r
L) + ρ2∂(ϕ + qY )∂̄(ϕ+ qY )

+ S̄r
R(∂ +

iq

2
∂Y )Sr

R + S̄r
L(∂̄ − iq

2
∂̄Y )Sr

L

]

=
1

πα′

∫
(dσ)2

[
(∂ + iβV + iq∂Y )X(∂̄ − iβV̄ − iq∂̄Y )X̄

+S̄r
R(∂ +

iβ

2
V +

iq

2
∂Y )Sr

R + S̄r
L(∂̄ − iβ

2
V̄ − iq

2
∂̄Y )Sr

L

+V V̄ − V̄ ∂Y + V ∂̄Y
]
. (3.27)

Here we abbreviate the bosonic parts which come from the trivial directions R1,6. Note

that if we neglect the fermionic fields, then we can obtain the (bosonic) sigma model for

the Melvin background (3.1) after we integrate out the auxiliary fields V, V̄ .

Next we would like to integrate out the (non-zero mode part of) field Y . Then the

equation of motion (3.27) for Y shows ∂̄V − ∂V̄ = 0 if we use also other equations of

motion. Therefore we can write V as

V = C + ∂Ỹ , V̄ = C̄ + ∂̄Ỹ , (3.28)

12 For the related analysis of the curved backgrounds in Green-Schwarz formalism (light-cone gauge) see

[74]. In principle it is possible for the world-sheet action in the formalism to include other terms higher

than quartic in the fermions. However, our specific models are expected to have no higher terms since

the free field representation is possible as shown by the T-duality. We thank A.A.Tseytlin for showing

us this observation.
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where C is the constant part; Ỹ is a bosonic field which has no zero-modes (thus we have∫
∂Ỹ = 0). Finally we obtain (we show only bosonic parts)

S =
1

πα′

∫
(dσ)2

[
CC̄ − C̄∂Y + C∂̄Y + ∂Ỹ ∂̄Ỹ

+(∂ + iβC + iβ∂Ỹ + iq∂Y )X · (∂̄ − iβC̄ − iβ∂̄Ỹ − iq∂̄Y )X̄

+S̄r
R(∂ + i

β

2
C + i

β

2
∂Ỹ + i

q

2
∂Y )Sr

R + S̄r
L(∂̄ − i

β

2
C̄ − i

β

2
∂̄Ỹ − i

q

2
∂̄Y )Sr

L

]
.(3.29)

Note that the terms which include ∂Y and ∂̄Y in the above action contain only the zero-

mode part of Y . This is because we have only integrated out the non-zeromode part of

Y to get the result (3.28).

This result (3.29) shows that X, Sr
R can also be written in terms of free field X ′′, S′′r

R

such that

X(z, z̄) = e−iβ(Cz+C̄ z̄)−iβỸ −iqY X ′′(z, z̄),

Sr
R(z, z̄) = e−iβ

2
(Cz+C̄z̄)−iβ

2
Ỹ −i q

2
Y S′′r

R (z, z̄),

Sr
L(z, z̄) = eiβ

2
(Cz+C̄z̄)+iβ

2
Ỹ +i q

2
Y S′′r

L (z, z̄). (3.30)

Note also that the terms 1
πα′

∫
(dσ)2(−C̄∂Y + c.c.) involve only zero-mode parts of Y .

Since the field Y has the periodicity Y ∼ Y + 2πR, its zero-mode part is quantized in

terms of winding numbers w,w′ ∈ Z as follows

Y (σ1, σ2) = σ1wR+ σ2(w
′ − wτ1)R/τ2, (3.31)

where the coordinate of the torus (σ1, σ2) follows the periodicity

(σ1, σ2) ∼ (σ1 + 2π, σ2) ∼ (σ1 + 2πτ1, σ2 + 2πτ2). (3.32)

Then it is easy to perform the path-integral13 and the result is as follows [24]

Z(R, q, β) = (2π)−7V7R(α′)−5
∫

(dτ)2

(τ2)6

∫
(dC)2

∑
w,w′∈Z

|θ1(
χ
2
|τ )|8

|η(τ)|18|θ1(χ|τ )|2

× exp
[
− π

α′τ2
(4CC̄ − 2C̄R(w′ − wτ) + 2CR(w′ − wτ̄))

]
, (3.33)

where we have defined

χ = 2βC + qR(w′ − τw), χ̄ = 2βC̄ + qR(w′ − τ̄w). (3.34)

13 Here we have redefined C, C̄ such that C → iC̄/τ2, C̄ → −iC/τ2.
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The last exponential factor comes from zero modes of Y . The theta-function terms

originate from the following path-integral of non-zero modes

det′(∂ − χ̄/(2τ2)) det′(∂̄ − χ/(2τ2))

det′(∂) det′(∂̄)
=

∏
(n,n′) �=(0,0)

(n′ − τn + χ)(n′ − τ̄n+ χ̄)

(n′ − τn)(n′ − τ̄n)

= e
π(χ−χ̄)2

2τ2

∣∣∣∣∣ θ1(χ|τ )χθ′1(0|τ )

∣∣∣∣∣
2

. (3.35)

In this way we can obtain the one-loop partition function in the Green-Schwarz for-

mulation. It is easy to check its modular invariance using theta-function formulas (C.2).

Now one may ask how to interpret the above result in the NS-R formulation. If one

uses the Jacobi identity (C.4)

θ3(0|τ )3θ3(χ|τ )− θ2(0|τ )3θ2(χ|τ )− θ4(0|τ )3θ4(χ|τ ) = 2θ1(
χ

2
|τ )4, (3.36)

then this explicitly represents the path-integral in the NS-R formulation with type II GSO-

projection. The above partition function does not vanish generically and this implies the

spacetime supersymmetry breaking as we will discuss later. Note also that the GSO

projection in the NS-R formulation is completely determined by the calculation (3.33) in

the Green-Schwarz formalism.

Next we would like to relate the previous result to the mass spectrum in the operator

formulation. Let us assume that the theta-functions are all expanded such that each term

is an eigen state of the angular momentum operators ĴR, ĴL. Here we have defined the

operators ĴR, ĴL of the term such that it includes the factor (see (C.1))

e2πiχĴR+2πiχ̄ĴL. (3.37)

Then by using the Poisson resummation formula

∑
n∈Z

exp(−πan2 + 2πibn) =
1√
a

∑
m∈Z

exp(−π(m − b)2

a
) (3.38)

we can show ∫
(dC)2

∑
w,w′∈Z

exp

[
− π

α′τ2
(4CC̄ − 2C̄R(w′ − wτ) + 2CR(w′ −wτ̄))

+2πiχĴR + 2πiχ̄ĴL + 2πiτN̂R − 2πiτ̄ N̂L

]

=

√
(α′τ2)3

4R

∑
m,w∈Z

exp(−πα′τ2M 2 + 2πτ1i(N̂R − N̂L − nw)). (3.39)
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Then the mass spectrumM 2 reproduces the previous result (3.23) in the NS-R formulation

by shifting the oscillator moding such that γ → γ̂.

3.4 Closed String Tachyons in Melvin Background

As we can see the explicit expression of partition function (3.33) and the formula (3.36),

the background breaks supersymmetry completely except the trivial case (qR, βα′/R) ∈
(2Z, 2Z). Note that the particular cases (qR, βα′/R) ∈ (2Z + 1, 2Z) or (2Z, 2Z + 1) are

equivalent to the previous model (2.9), which connects type II and type 0 theory.

The reason of supersymmetry breaking can also be explained in supergravity. To make

matters simple let us assume β = 0. If one goes around the circle S1, then all of spin 1/2

fermions receive the phase factor e±iπqR (see (3.30)) as in the previous section. Since this

is not equal to one in general, there are no Killing spinor. Thus only for qR ∈ 2Z the

supersymmetry is preserved.

In this way the string theory in Melvin background is non-supersymmetric and there-

fore one may expect the existence of closed string tachyons. For simplicity let us assume

β = 0 and examine the tachyons briefly. Consider the mass spectrum (3.23) with zero

momentum n = 0 and non-zero winding number 0 < qRw < 1. If we note the relations

ĴR ≤ N̂R + 1/2 and −N̂L − 1/2 ≤ ĴL, we can see that in order to realize the smaller

(mass)2 we must take ĴR = N̂R + 1/2 and ĴL = −N̂L − 1/2. Then by using the level

matching condition (3.24) we have N̂R = N̂L(= N). Thus the mass spectrum is given by

α′M 2

2
= 2N +

R2

2α′w
2 − qR(2N + 1)w, (3.40)

and at least one tachyon appears if

q >
4N + w2R2/α′

(4N + 2)wR
. (3.41)

Since we have assumed 0 < qRw < 1 (the other cases can be treated in the same way), we

must require wR <
√

2α′. Then the lowest bound of q is realized for N = 0 and we have

α′q > R/2. Thus we can conclude that if we choose the radius so that R <
√

2α′, then the

tachyons exist for any sufficient large values of q [24]. For generic values of (qR, βα′/R)

it can be shown that there exist tachyons for any small values of q and β [24].

In particular if we set qR = k
m

(k ∈ 2Z + 1, m ∈ Z), we have the following mass

α′M 2

2
= −1 +

m2R2

2α′ (3.42)
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corresponding to the lightest state with the winding number w = m. When the radius

is enough small, this mode becomes tachyonic. This is a example of ‘bulk tachyon’ field

which spreads over the space infinitely because of the existence of zeromodes (see 3.21).

However note that for many other values of w we have ‘localized tachyons’, which is

localized at the origin.

Thus the string theory in Melvin background includes various closed string tachyons

and the analysis of tachyon condensation will be important. We will return to this point

in the last of next section.
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4 Melvin Background and Orbifold Theory

Since we have given an exactly solvable string model, we would like to know the

relation to more familiar solvable theories. As we will show below, the string theory in

NSNS background can be regarded as a generalization of that in orbifold theories. In

particular if we take appropriate limits, the model becomes equivalent to two dimensional

orbifolds C/ZN in type II or type 0 theory [26].

4.1 Orbifold C/ZN from Melvin Background

It is interesting to examine the small radius (or large radius in the T-dualized picture)

limit of the Melvin backgrounds for various values of parameters q, β since it is expected

to produce some non-trivial decompactified ten-dimensional theories after T-duality. In-

spired by this motivation let us consider the limit R → 0 and βα′
R

→ 0 with the rational

value qR = k
N

, where k and N are coprime integers. Note that this limit is T-dual to

R → ∞ and qR → 0 with βα′
R

= k
N

by using (3.25). In the former picture the redefined

world-sheet fields (3.30) are twisted as follows

X ′′(σ1 + 2π, σ2) = e2πi k
N

wX ′′(σ1, σ2),

S′′r
R (σ1 + 2π, σ2) = eπi k

N
wS′′r

R (σ1, σ2),

Y (σ1 + 2π, σ2) = Y (σ1, σ2) + 2πRw. (4.1)

Thus we can see that this string model is equivalent to a ZN freely acting orbifold14 if

we divide the winding number w into the new winding number β ∈ Z and the internal

quantum number m = 0, 1, · · ·, N − 1 such that w = Nβ +m. The value of m represents

the m-th twisted sector of the orbifold theory. Furthermore we can speculate that the

limit R → 0 may be related to the orbifold C/ZN , where the action g ∈ ZN is defined

by the action g : X ′′ → e2πi k
NX ′′ (equally we can say g = e2πi k

N
Ĵ). In order to show the

exact relation we should investigate the one-loop partition function. The calculation in

the Green-Schwarz formalism is useful since in this formalism the flip of GSO-projection

is automatically included due to spectral flow[24], which is crucial to determine that the

theory is type 0 or type II.

14 Here ‘freely acting’ means that the orbifold action does not have any fixed points. For earlier discus-

sions of the related Scherk-Schwarz compactification in string theory see for example [58, 60, 75, 76].
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The partition function (3.33) in this limit is given as follows15 by using the identity

(3.36) and the quasi-periodicity of theta-functions (C.3)

lim
R→0

Z(R, q, β) = (2π)−7V7R(α′)−4
∫

(dτ)2

4(τ2)5

N−1∑
l,m=0

∑
α,β∈Z

(
lim
R→0

e
−πN2R2

α′τ2
|α−βτ |2

)

×|θ3(νlm|τ )θ3(τ)
3 − (−1)kαθ2(νlm|τ )θ2(τ)

3 − (−1)kβθ4(νlm|τ )θ4(τ)
3|2

4|η(τ)|18|θ1(νlm|τ )|2 , (4.2)

where we have defined νlm = lk
N
−mk

N
τ and integers l, m, α, β are given as w′ = Nα+l, w =

Nβ +m (l,m = 0, 1, · · ·, N − 1).

If k is an even integer, then the sign factors in front of the theta-functions are all plus

and we obtain

Z(0, q, β) = V1V7

∫
(dτ)2

4(τ2)
(4π2α′τ2)−4

×
N−1∑
l,m=0

|θ3(νlm|τ )θ3(τ)
3 − θ2(νlm|τ )θ2(τ)

3 − θ4(νlm|τ )θ4(τ)
3|2

4N |η(τ)|18|θ1(νlm|τ )|2 , (4.3)

where the divergent factor V1 is also given by V1 = limR→0
2πα′
NR

and this corresponds

to the volume of the noncompact direction. This value of radius α′
NR

is consistent with

that expected from the boundary condition (4.1) by T-duality. The sums over l and

m in this expression (4.3) should be regarded as the ZN projection 1
N

∑N−1
l=0 gl (g =

exp(2πi k
N
Ĵ)) and the sum over twisted sectors, respectively. Therefore the model in this

limit is identified with the orbifold C/ZN [77] in type II string theory. Note that for a

fixed value of N the orbifold theories with different even integers k define the same theory.

These orbifolds were discussed in the context of closed tachyon condensation [33].

Next let us turn to the case where k is an odd integer. The result is

Z(0, q, β) = V ′
1V7

∫
(dτ)2

4(τ2)
(4π2α′τ2)−4

N−1∑
l,m=0

×|θ3(νlm|τ )θ3(τ)
3|2 + |θ2(νlm|τ )θ2(τ)

3|2 + |θ4(νlm|τ )θ4(τ)
3|2

2N |η(τ)|18|θ1(νlm|τ )|2 , (4.4)

where we have defined16 V ′
1 = V1/2. Thus this model is equivalent to the orbifold C/ZN

15 If lk/N and mk/N are both integers, then θ1(νlm|τ ) does vanish and the partition function will be

divergent. This is due to the appearance of the zero modes of (X′′, X̄ ′′) ∈ R2 and one should extract

this divergence as the volume factor V2.
16 The extra factor 1/2 in comparison with the case of even k is understood if one notes that the ‘GSO-

projection’ in type 0 is the diagonal Z2 projection (1 + (−1)FL+FR)/2, while in type II theory it is given

by the Z2 × Z2 projection (1 + (−1)FL )(1 + (−1)FR)/4.
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in type 0 string theory with radius α′
2NR

→ ∞. The above results are summarized in Fig.2.

This identification can also be seen from the mass spectrum (3.23). In the limit of

R → 0 we have the constraint n = k
N
Ĵ . This gives the correct ZN orbifold projection. The

shift of the energy −γ̂(ĴR − ĴL) = −( k̂m
N

)(ĴR − ĴL) corresponds to the shift of modings

in twisted sectors. If k is even, then Ĵ can be half integer and the NS-R and R-NS sector

are allowed (remember that Ĵ is the total angular momentum.). On the other hand if k

is odd, then those sectors are not allowed. This fact gives the difference between type II

and type 0 string theory. One can also read off the mass of lightest state for each twisted

sectors. The result is given by for even k (type II)

α′M 2

2
=


 −µ̂ if [µ] ∈ even

µ̂− 1 if [µ] ∈ odd
, (4.5)

and for odd k (type 0)

α′M 2

2
= min{µ̂− 1,−µ̂}, (4.6)

where we have defined µ = km
N

. The reason that the mass (4.5) depends on whether [µ]

is even or odd is due to the ‘flip’ of the sign of GSO projections by the spectral flow [24].

From the above results we can conclude that in the type II orbifolds the tachyon appears

in all twisted sectors while in type 0 orbifolds it does in untwisted sectors as well as in

twisted sectors.

Now we would like to consider equivalence between the Melvin background with qR =
k
N
, β = 0 for the finite radius and the freely acting orbifold (4.1) in detail. By applying

the Poisson resummation on α to the partition function (4.2) without taking the limit we

obtain

Z(R, q, β = 0)

= V7

∫
(dτ)2

4τ2
(4π2α′τ2)−

7
2

N∑
l,m=1

∑
α̃,β∈Z

exp

[
−πτ2

{
N2R2

2α′ (β +
m

N
)2 +

α′

2N2R2
(α̃− ε

2
)2]

}

− 2πiτ1(α̃− ε

2
)(β +

m

N
) + 2πi

{
l

N
(α̃− ε

2
) +

ε′

2
β

}]
× |θ1

(
νlm

2
|τ
)
|8

4N |η(τ)|18|θ1(νlm|τ )|2 , (4.7)

where we have defined ε = 0, 1 and ε′ = 0, 1 as follows. In the sector which includes

(−1)kα (or (−1)kβ) factor when we expand the theta function term as in (4.2) the value

of ε (or ε′) is given by 1. For example, if we assume that k is even, then we always have
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ε = ε′ = 0. From the expression (4.7) it is easy to see that the twisted sectors correspond

to the non-zero values of m and the summation over l is regarded as a ZN projection

as before. Note that in this case we have also nontrivial twist in the S1 direction at the

same time. Thus we can conclude that this special background is equivalent to the ZN

orbifold IIA(B)/σ 1
N
· g (here we define g = exp(2πi k

N
Ĵ)) with radius NR (for even k) or

Z2N orbifold IIA(B)/σ 1
2N

· g with radius 2NR (for odd k). Here the operators σ 1
N

and

σ 1
2N

mean 1
N

and 1
2N

shift along S1. The latter case is T-dual to the Z2 × ZN orbifold

0B(A)/{(−1)FR ·σ 1
2
, σ̃ 1

N
· g} with radius 1

NR
, where the operator σ̃ 1

N
is the T-dual to σ 1

N
.

For the special case N = k = 1 these results are reduced to the results in [42, 30] if we

note the relation gN = (−1)FS for odd k. We summarize these results in Table 1.

k type II orbifold (radius) T-dualized orbifold (radius)

even IIA(B)/σ1/N · g (NR = Nα′
R̃

) IIB(A)/σ̃1/N · g ( α′
NR

= R̃
N

)

odd IIA(B)/σ1/2N · g (2NR = 2Nα′
R̃

) 0B(A)/{(−1)FR · σ1/2, σ̃1/N · g} ( α′
NR

= R̃
N

)

Table 1: The equivalence of the IIA(B) Melvin background for qR = k
N
, β = 0 with freely

acting orbifolds. The operators g = exp (2πi k
N
Ĵ), σ 1

N
and σ̃ 1

N
represent the projection

operator, 1
N

-shift operator in the circle and its dual operator, respectively.

Finally let us discuss the limit R → 0 with irrational values of qR. The mass spectrum

(3.23) shows the constraint n−qRĴ = 0 again and this is satisfied if n = Ĵ = 0 (thus purely

bosonic). Remarkably, we can not divide this system into a kind of a two dimensional

orbifold and one dimensional non-compact space. This may also be regarded as a large

N limit of ZN orbifold if we are reminded that any irrational number can be infinitely

approximated by rational numbers. Note that taking this limit needs one extra dimension

and the non-trivial background is given by the non-compact three dimensional space. In

any case we have to say that there are such unfamiliar non-compact string backgrounds,

which interpolate the previous ZN orbifolds.

A little analysis of the mass spectrum in this ‘irrational’ model shows that tachyon

fields appear in the sectors w �= 0 and there exist tachyon fields whose mass is given by

−1 < α′M2

2
< −1 + ε for any infinitesimal ε.

In this way the limits of the Melvin backgrounds depend very sensitively on whether

the value of the magnetic flux is rational or irrational. The existence of two remarkably

different kinds of limits can also be seen in the D-brane spectrums in such backgrounds

as we will discuss later [71].
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Figure 2: Moduli space of the string models in type IIA Melvin backgrounds with β = 0.

4.2 Comments on Closed String Tachyon Condensation

Before we finish the investigation of closed strings in Melvin background, we would

like to discuss very roughly the instability due to closed string tachyons employing some

recently known results. In general, closed tachyon condensation is difficult to analyze

unlike open string tachyon condensation [78]. One reason of the difficulty is due to the

c-theorem [79]. If we conventionally identify the world-sheet RG flow due to relevant

perturbations with tachyon condensation (see e.g. [80]), then the perturbation should

reduce the value of central charge c following the c-theorem. Then the ghost anomaly

cancellation in the world-sheet theory seems to be violated. A possible resolution of

this problem is to consider non-critical string identifying one of the spacetime coordinate

as a Liouville field (some relevant discussions see e.g.[81, 29]). However, the complete

argument about the decay of type 0 theory or bosonic string due to its bulk tachyon field

has not been known 17 .

17 Here the author would like to point out the difference between tachyon in type 0 theory and in

bosonic string. The c-theorem tells us that the flow of the central charge is proportional to the two point

function of vertex operators which correspond to the tachyonic perturbation. In type 0 theory we must

perform picture change (from −1 to 0 picture) and then we naively find that there is no contribution

from the constant tachyon field in the leading order. However in bosonic string we have a non-trivial

contribution and we find that the condensation of constant tachyon field reduces the value of the central

charge. This viewpoint is closely related to the absence of tachyon potential in the sigma model approach
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Another reason will be the intricacy of closed string field theory. For example the

closed string field theory of [83] includes infinitely many terms of string fields and seems

not so tractable as the open string field theory [1]. Furthermore, we have a doubt that

an off-shell closed string theory exists against the holography [84], which relates on-shell

closed string theory and off-shell open string theory.

In spite of these difficulties, recently in the papers [33, 36, 37], some results about

condensation of ‘localized tachyons’ in orbifold theories such as C/ZN were obtained.

The term ‘localized tachyons’ means tachyon fields which can take non-zero values only

in a very small region ∼ α′ and they typically appear in twisted sectors. The important

fact is that we cannot apply the c-theorem to localized tachyons and the value of c does

not change [37, 33] in many examples. In Melvin background we also have localized

tachyons18 . Let us follow the conjecture in [37] that the function gcl, which is an analog

of g-function [85] in open string theory, should decrease along the RG flow from UV

to IR. The function gcl is defined as the coefficient of density of localized bosonic state

ρ(E)localized for high energy E and is equivalently19 defined by the partition function for

localized sectors as follows

Zlocalized(τ2 → 0) ∼ gcl exp(πc/6τ2). (4.8)

In particular in the case of the orbifold C/ZN , gcl is computed20 in [37] and the result is

gcl =
1

N

N−1∑
s=1

1

(2 sin πs/N)2
=

1

12
(N − 1/N). (4.9)

Thus we can speculate that after the tachyon condensation the value of N will decrease

[37]. This result is supported by the analysis using D-brane probe [33] and by the analysis

of linear sigma model [36]. Another quantity which should decrease after tachyon con-

densation will be tachyon (mass)2. This is because the leading quantity which determines

the stability will be the one-loop amplitude (or cosmological constant). Even though this

value is IR divergent in the general parameter region, this divergence can be estimated

(or ‘BSFT’)[82]
18 It should also be noted that bulk tachyon fields exist in specific Melvin background as we have

observed in (3.42).
19 Note the relation Zlocalized =

∫∞
0 dE ρ(E)localized e

−βE (β = τ2).
20 Recently the more refined version of gcl has been proposed in [40]. The result will not change

substantially if we use this second definition.
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by the tachyon (mass)2 whose absolute value is largest. This consideration also leads to

the same result as before if we remember the explicit tachyon mass (4.5) as discussed21 in

[26]. We would like to note that in this process which reduces the value of N the topology

of the space does change. For example, let us note that the Witten index of the orbifold

C/ZN , which is given by trRR(−1)F = N , actually depends on N .

If we apply this argument to the string theory in the Melvin background qR = k
N

and β = 0, then we have the same value gcl as the above (4.9) as can be seen from the

expression (4.7). Thus we can again speculate that after the tachyon condensation the

value of N will decrease in Melvin background. This result is consistent with the result

obtained in [39] by using the linear sigma model description [36].

Finally we would like to mention the decay processes of the orbifold C/ZN by on-

shell deformations. Then we have no tree level potential 22 . If we are reminded of the

‘moduli space’ (see Fig.2 or Fig.3) of Melvin background, we find many decay routes.

The most straightforward way is to decay into the ordinary type II string vacuum by the

spontaneous (de)compactification of Y direction. Another possibility is the shift of the

magnetic parameter. However the infinitesimal shift will make the value of qR irrational.

Since such a background is more tachyonic (see (4.5)) and has an infinite value of gcl,

this decay route is not preferable. On the other hand, the decay mode from C/ZN into

C/ZN−2 discussed in [33, 36, 37] is more favorable because the absolute value of tachyon

(mass)2 decreases.

21 Quite recently, a similar analysis was made in more general orbifolds [41].
22 This viewpoint may be supported by the observed absence of tree level tachyon potential [82, 32].
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5 Higher Dimensional Melvin Background and ALE

spaces

The closed string backgrounds we have discussed above do not preserve any super-

symmetry in general. However, there are many cases where supersymmetric background

is favored. For example, if we would like to discuss D-brane charges, it will be more

desirable to consider those in supersymmetric backgrounds. As we will see below, we can

realize exactly solvable string theories in supersymmetric backgrounds [26] (see also the

independent and overlapping paper [27]) if we consider higher dimensional generalizations

of NSNS Melvin background (3.1).

In particular these models include the 9−11 flip of supersymmetric fluxbranes (F5,F3

and F1-brane) discussed in section 2.

The construction of the higher dimensional generalizations is more transparent in

Green-Schwarz formulation than in NS-R one. Thus we first study the Green-Schwarz

formulation of the sigma model. After that we will return to the NS-R formulation.

5.1 Green-Schwarz Formulation

Let us consider a background of the form M5×R1,4, where M5 is a fibration of S1 � Y

over R2 × R2 � (X1, X̄1) × (X2, X̄2). At the sigma model level this is possible if one

assumes the higher dimensional generalizations of (3.27):

S =
1

πα′

∫
(dσ)2

[
(∂ + iβ1V + iq1∂Y )X1(∂̄ − iβ1V̄ − iq1∂̄Y )X̄1

+(∂ + iβ2V + iq2∂Y )X2(∂̄ − iβ2V̄ − iq2∂̄Y )X̄2 + V V̄ − V̄ ∂Y + V ∂̄Y
]
, (5.1)

where we have omitted the fermion terms. The explicit metric of this model is somewhat

complicated and is given in the appendix D. The special case β1 = β2 = 0 corresponds to

the following simplified metric

ds2 = dρ2 + dr2 + ρ2(dϕ+ q1dy)
2 + r2(dθ + q2dy)

2, (5.2)

where we have defined X1 = ρeiϕ and X2 = reiθ. This background can be regarded as the

9 − 11 flip of the F5-brane [31, 52]. The free field representation is again possible almost

in the same way as before.

In the Green-Schwarz formulation, the four of eight (light-cone gauge) spinor fields

do not suffer from the phase factor when σ1 is shifted by 2π if q1 = q2, β1 = β2 or
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q1 = −q2, β1 = −β2. Therefore we can conclude that in these cases half of thirty two

supersymmetries are preserved23 . From the supergravity viewpoint, we can see this as

follows. For simplicity, let us set β1 = β2 = 0. Then if we go around the circle S1,

the spinor fields obtain the phase eiπ(±q1±q2)R. Thus if q1 = q2 or q1 = −q2, there are

sixteen Killing spinors. We would also like to mention that similar arguments can also be

generalized into seven or nine dimensional background M7 and M9 which are fibrations

of S1 � Y over R2×R2×R2 and R2×R2×R2 ×R2. The ‘9-11’ flip of these will include

the supersymmetric F3-brane, F1-brane (see also [52, 27]).

Another proof of the existence of the supersymmetry is to check the vanishing of the

partition function, which is equivalent to the Bose-Fermi degeneracy. In the path-integral

formulation of Green-Schwarz string one can compute this as before. The result is given

by

Z(R, q1, q2, β1, β2) = (2π)−5V5R(α′)−4
∫

(dτ)2

(τ2)5

∫
(dC)2

∑
w,w′∈Z

|θ1(
χ1+χ2

2
|τ )θ1(

χ1−χ2

2
|τ )|4

|η(τ)|12|θ1(χ1|τ )θ1(χ2|τ )|2

× exp
[
− π

α′τ2
(4CC̄ − 2C̄R(w′ − wτ) + 2CR(w′ − wτ̄))

]
, (5.3)

where we have defined

χ1 = 2β1C + q1R(w′ − τw), χ2 = 2β2C + q2R(w′ − τw). (5.4)

Thus it is easy to see the vanishing of Z(R, q1, q2, β1, β2) if χ1 = χ2 or χ1 = −χ2, which

is equivalent to q1 = q2, β1 = β2 or q1 = −q2, β1 = −β2.

If one wants the partition function in NS-R formalism, then one has only to note the

Jacobi identity (C.4) again

2θ1 (χ1/2 + χ2/2|τ)2 θ1 (χ1/2 − χ2/2|τ)2 (5.5)

= θ3(χ1|τ )θ3(χ2|τ )θ3(0|τ )2 − θ2(χ1|τ )θ2(χ2|τ )θ2(0|τ )2 − θ4(χ1|τ )θ4(χ2|τ )θ4(0|τ )2.

Then the above partition function does correctly reproduce the mass spectrum com-

puted in the free field representation in NS-R formulation discussed in the next subsection.

23 The mechanism of preserving supersymmetry in our model is closely related to the compactified

model discussed in [76].
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5.2 NS-R Formulation

If we consider the higher dimensional generalization of (3.4) which is consistent with

the previous Green-Schwarz formulation (5.1), its world-sheet action is given as follows

S =
1

πα′

∫
d2σ

[
∂̄ρ∂ρ + ∂̄r∂r + ρ2∂̄ϕ̌∂ϕ̌ + r2∂̄θ̌∂θ̌

+(1 + β2
1ρ

2 + β2
2r

2)−1(∂̄Y + β1ρ
2∂̄ϕ̌ + β2r

2∂̄θ̌)(∂Y − β1ρ
2∂ϕ̌− β2r

2∂θ̌)
]
,(5.6)

where we have defined ϕ̌ = ϕ + q1Y, θ̌ = θ + q2Y . After T-duality of Y into Ỹ ′24 , we

obtain

S =
1

πα′

∫
d2σ

[
∂̄ρ∂ρ + ∂̄r∂r + ∂̄Ỹ ′∂Ỹ ′ + ρ2∂̄ϕ′′∂ϕ′′ + r2∂̄θ′′∂θ′′

]
, (5.7)

where ϕ′′ ≡ ϕ̌− β1Ỹ ′, θ′′ ≡ θ̌ − β2Ỹ ′ are the higher dimensional generalization25 of ϕ′′

which appeared in (3.10). The T-dual of Ỹ ′ is equivalent to Y ′ in (3.7). The zero-mode

of Y ′ is quantized in the same way as (3.20)

P ′
L + P ′

R = 2
(
n

R
− q1Ĵ1 − q2Ĵ2

)
, P ′

L − P ′
R = 2

(
Rw

α′ − β1Ĵ1 − β2Ĵ2

)
, (5.8)

where the angular momenta Ĵ1 = Ĵ1L + Ĵ1R and Ĵ2 = Ĵ2L + Ĵ2R are defined for each R2

as done in (3.15).

From (5.7) the bosonic fields X1′ = ρeiϕ′′
, X2′ = reiθ′′ and their superpartners

ψ1′
L , ψ

1′
R , ψ

2′
L , ψ

2′
R become free fields and they obey the following boundary conditions for

each i = 1, 2

X i′(τ, σ + 2π) = e2πiγiX i′(τ, σ),

ψi′
L(τ, σ + 2π) = e2πiγiψi′

L(τ, σ), ψi′
R(τ, σ + 2π) = e2πiγiψi′

R(τ, σ), (5.9)

where γ̂i ≡ γi − [γi], γi ≡ qiRw + βiα
′(
n

R
− q1Ĵ1 − q2Ĵ2). (5.10)

Then we can obtain the mass spectrum as follows

α′M 2

2
=

α′

2R2
(n− q1RĴ1 − q2RĴ2)

2 +
R2

2α′ (w − α′

R
β1Ĵ1 − α′

R
β2Ĵ2)

2

+N̂R + N̂L −
2∑

i=1

γ̂i(ĴRi − ĴLi), (5.11)

24 Here we take the different process of T-duality from that in section 2.
25 This correspondence can be shown if one notes that the relations (A.6) are rewritten as −∂Ỹ ′ =

∂Y − β1ρ
2∂ϕ′′ − β2r

2∂θ′′ and ∂̄Ỹ ′ = ∂̄Y + β1ρ
2∂̄ϕ′′ + β2r

2 ∂̄θ′′.
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with the level matching constraint

N̂R − N̂L − nw +
2∑

i=1

[γi]Ĵi = 0, (5.12)

where N̂L,R is defined in the same way as (B.5). From the above expression we can find

the T-duality symmetry qi ↔ βi, R ↔ α′
R

if q1β2 = q2β1. Note that the supersymmetric

model (q1 = ±q2, β1 = ±β2) satisfies this condition.

In the supersymmetric case we have found the Bose-Fermi degeneracy. Therefore this

system should have no tachyons. Let us show this explicitly using the mass spectrum

(5.10). We can assume 0 < γ1 = γ2 < 1 without any loss of generality since there are

no flip of GSO-projection if γ1 = γ2. Taking the GSO-projection into consideration, we

obtain the inequalities Ĵ1R + Ĵ2R ≤ N̂R and −N̂L ≤ Ĵ1L + Ĵ2L. Then it is easy to see in

the NSNS sector

α′M 2

2
= (N̂R − γĴ1R − γĴ2R) + (N̂L + γ1Ĵ1L + γ2Ĵ2L) +

α′

4
(P 2

R + P 2
L) ≥ 0. (5.13)

It is also easy to see from the spectrum (5.13) that if n1 +n2, n1−n2 ∈ 2Z, we obtain

the following periodicity

Z(R, q1, q2, β1, β2) = Z(R, q1 +
n1

R
, q2 +

n2

R
, β1, β2), (5.14)

and the periodicity for βi can be also obtained by the T-duality.

5.3 ALE Orbifold from Higher Dimensional Melvin Background

Now we would like to discuss the relation between the above models and orbifolds.

We consider both supersymmetric and non-supersymmetric cases. Let us take the limit

R → 0 with β1α′
R

→ 0 and β2α′
R

→ 0, and assume that q1R and q2R are fractional. We

can write26 them as q1R = k1

N
and q2R = k2

N
. Then the partition function in this limit

becomes as in the previous calculations

lim
R→0

Z(R, q1, q2, β1, β2)=(2π)−5V5R(α′)−3
∫

(dτ)2

16(τ2)4


 lim

R→0

∑
α,β∈Z

e
−πN2R2

α′τ2
|α−βτ |2


|η(τ)|−12

×
N−1∑
l,m=0

∣∣∣θ3(ν
1
l,m|τ )θ3(ν

2
l,m|τ )θ3(τ)

2 − (−1)(k1+k2)αθ2(ν
1
l,m|τ )θ2(ν

2
l,m|τ )θ2(τ)

2

26 Here we assume that there is no positive integer other than one which divides all of the three integers

N, k1 and k2.

36



−(−1)(k1+k2)βθ4(ν
1
l,m|τ )θ4(ν

2
l,m|τ )θ4(τ)

2
∣∣∣2 · ∣∣∣θ1(ν1

l,m|τ )θ1(ν
2
l,m|τ )

∣∣∣−2
,

(5.15)

where we have defined ν1
l,m = k1

N
(l −mτ) and ν2

l,m = k2

N
(l −mτ).

If k1 + k2 is even, then we get the result

Z(0, q1, q2, β1, β2) = V1V5

∫
(dτ)2

4τ2
(4π2α′τ2)−3

N−1∑
l,m=0

×|θ3(ν
1
l,m|τ )θ3(ν

2
l,m|τ )θ3(τ)

2 − θ2(ν
1
l,m|τ )θ2(ν

2
l,m|τ )θ2(τ)

2 − θ4(ν
1
l,m|τ )θ4(ν

2
l,m|τ )θ4(τ)

2|2
4N |η(τ)|12|θ1(ν

1
l,m|τ )θ1(ν

2
l,m|τ )|2

.

(5.16)

Thus we have the abelian non-compact four dimensional orbifolds C2/ZN in type II string

theory. The ZN action is defined as follows

g ∈ ZN : (X1′, X2′) → (e2πi
k1
N X1′, e2πi

k2
N X2′). (5.17)

These include both the supersymmetric and non-supersymmetric orbifolds. The former

correspond to the values k1 = ±k2 and it is easy to see that for fixed N the partition

functions (5.16) for each k1, k2 give the same value. This represents the AN−1-type ALE

space (for a review see [86]) in the orbifold limit.

The other orbifolds are all non-supersymmetric and the tachyon can appear only in

the twisted sectors. These include the examples discussed in [33], where the specific non-

supersymmetric orbifolds are argued to decay into ALE spaces. Our results show that

both such non-supersymmetric orbifolds and supersymmetric ALE orbifolds (including

the type II string in flat space N = 1) are connected in the ‘moduli space’ of solvable

superstring models if we compactify one direction.

Next we turn to the case where k1 + k2 is odd. The partition function is given by

Z(0, q1, q2, β1, β2)=V ′
1V7

∫
(dτ)2

4τ2
(4π2α′τ2)−3

N−1∑
l,m=0

×|θ3(ν
1
l,m|τ )θ3(ν

2
l,m|τ )θ3(τ)

2|2+|θ2(ν
1
l,m|τ )θ2(ν

2
l,m|τ )θ2(τ)

2|2+|θ4(ν
1
l,m|τ )θ4(ν

2
l,m|τ )θ4(τ)

2|2
2N |η(τ)|12|θ1(ν

1
l,m|τ )θ1(ν

2
l,m|τ )|2

.

(5.18)

This explicitly shows that the systems now considered are equivalent to the non-

compact four dimensional orbifolds C2/ZN in type 0 string theory27 . The above result

27 Such orbifolds were considered in the context of D-branes in [67].
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shows that orbifolds in type 0 theory are connected to those in type II theory. In particular,

this shows that various orbifolds in type 0 theory can be regarded as non-supersymmetric

backgrounds in type II string theory.

In this way we have shown that the various orbifolds both non-supersymmetric and

supersymmetric are included in the ‘moduli space’ of the higher dimensional Melvin back-

ground (see Fig.3).

Then let us discuss the tachyons in these orbifolds. The mass of the lightest state is

given by for even k1 + k2 (type II)

α′M 2

2
=


 −|µ̂1 − µ̂2| if ([µ1], [µ2]) ∈ (even,even) or (odd,odd)

µ̂1 + µ̂2 − 1 if ([µ1], [µ2]) ∈ (even,odd) or (odd,even)
, (5.19)

and for odd k1 + k2 (type 0)

α′M 2

2
= min{µ̂1 + µ̂2 − 1,−|µ̂1 − µ̂2|}, (5.20)

where we have defined µ1 = k1m
N

and µ2 = k2m
N

. These results show that in both orbifolds

some of the twisted sectors will contain tachyon and in type 0 orbifolds tachyon also

appears in the untwisted sector. The type II string theory on ALE orbifolds k1 = ±k2

are only examples of tachyon less orbifolds.

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx

type II on ALE

type 0 on
non-SUSY          
orbifold 

type II type 0
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

type II on
non-SUSY 
orbifold

Figure 3: Moduli space of the string models in the higher dimensional Melvin background.

Finally, if we turn to the small radius limit with irrational values of q1R and q2R, we

obtain the ‘irrationally orbifolded’ noncompact space (or a kind of a ‘large N limit of the

orbifolds C2/Z∞’) as in the original Melvin background. For specific values q1 = ±q2 this

background preserves the half of thirty two supersymmetries and is connected to ALE

spaces.
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It will be also interesting to consider the brane picture of the general supersymmetric

backgrounds with β1,2 �= 0, which include the previous orbifolds as special examples by

T-duality. These models have the non-trivial H-flux and dilaton gradient. We left its

relation to NS5-branes as a future problem.

Even though the examples we have examined are two and four dimensional orbifolds

C/ZN , C2/ZN , our results will be easily generalized into much higher dimensional orb-

ifolds Cn/ZN , n = 3, 4. Other abelian orbifolds such as Cn/ZN1
× ZN2

× · · · × ZNK
can

also be obtained if we replace S1 with K dimensional tori. Non-abelian orbifolds (e.g.

D,E type) will deserve future study.
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6 Boundary States in Melvin Background

In this section we consider D-branes in Melvin background (3.1) from the viewpoint of

the world-sheet theory following the paper [71] (see also the independent and overlapped

paper [87]). In the previous section we have seen that the nonlinear sigma model in the

Melvin background can be exactly solved. By applying the T-duality in the curved space

and by redefining appropriate target space variables, the nonlinear sigma model can be

rewritten by the free fields with the nontrivial boundary conditions, and we can quantize

this action in the same way as that in the flat space.

With regard to open strings the quantization process can be also performed by the

usual method. By changing the boundary conditions of open strings we can obtain the

various D-branes28 in the Melvin background, while the several constraints which can

not be seen in the flat space arise due to the nontriviality of the Melvin geometry. In

this section we define a Dp-brane as the D-brane which has p + 1 Neumann boundary

conditions and (9−p) Dirichlet boundary conditions in terms of the free fields (X ′, X̄ ′, Y ′),

not the original fields (X, X̄, Y ) (see Table 2). Then we will find two types of D-branes.

One is pinned at the origin ρ = 0, while the other is movable.

The interpretation of such a D-brane in the original coordinate (X, X̄, Y ) of the Melvin

background (3.1) is very nontrivial (see Table 3 in the next section). We will find several

kinds of D-branes which wrap the nontrivial ‘cycle’ in the Melvin geometry. Note that for

some of them the meaning of ‘cycle’ is different from the ordinary one due to the presence

of H-flux. Such an example will be explained by the phenomenon of flux stabilization

later in the next section.

There is another motivation to consider D-branes in the Melvin background. As we

have seen in the previous section, by tuning magnetic parameters qR and βα′
R

such that

they take fractional values, the various ten dimensional backgrounds (type II, type 0 in

flat space and their abelian orbifolds C/ZN) can be realized [26]. Therefore, if we consider

D-branes in the Melvin background, we can understand how the D-branes in the above

various backgrounds are connected with each other.

In orbifold theories there exist two types of D-branes which are called the fractional

D-brane and the bulk D-brane [89, 90, 91] ( for a brief review see the appendix F of this

28 For β = 0 case the D-brane systems we discuss below are closely related to the D-branes in toroidal

compactification of freely acting orbifolds [88].
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thesis). What we will find is that the fractional D-branes and bulk D-branes correspond

to the pinned and movable D-branes which we have mentioned, respectively. Moreover,

these D-branes prove to naturally correspond not only to the D-branes in type II theory

in flat space but also to a system of an electric D-brane and a magnetic D-brane in type

0 theory (for D-brane in type 0 string see the review in section 2.2). We can verify this

identification by the calculation in the boundary state formalism.

6.1 Boundary State in Melvin Background

In order to investigate D-branes in general conformal field theories, it is convenient to

use the boundary state formalism. The boundary state is one way representing D-branes

in the closed string Hilbert space and thus from this we can investigate the interactions

between two D-branes and between a D-brane and closed strings as we have already seen

in section 2.2.

From previous sections we know that the action for the Melvin background reduces to

that written by free fields. Therefore the construction of the boundary state is similar to

that in the flat space (see [68] and references there in), or more precisely to that in orbifold

theories [67, 92, 93, 94] even though the D-branes which we will construct have various

new intriguing structures. Below we will omit the trivial oscillators in R1,6 directions on

the world-sheet. One can use either the light-cone or covariant formulation.

In the compactified direction Y ′, the usual Neumann and Dirichlet boundary condi-

tions are both allowed

Neumann :


 ∂τY

′|τ=0|B〉 = 0 ↔ ( n
R
− qĴ)|B〉 = 0, (βm + β̃−m)|B〉 = 0,

(η′L − εη′R)|τ=0|B〉 = 0 ↔ (ηr − iεη̃−r)|B〉 = 0,
(6.1)

Dirichlet :


 ∂σY

′|τ=0|B〉 = 0 ↔ (Rw
α′ − βĴ)|B〉 = 0, (βm − β̃−m)|B〉 = 0,

(η′L + εη′R)|τ=0|B〉 = 0 ↔ (ηr + iεη̃−r)|B〉 = 0,
(6.2)

where |B〉 is the boundary state and the parameter ε takes the values ±1 which come

from open string boundary conditions for world-sheet fermions. Note that the zero mode

for Y ′ is given by (3.20). For the directions X ′, X̄ ′ the allowed boundary conditions are

Neumann-Neumann :




∂τX
′|τ=0|B〉 = 0 ↔ (αm−γ + α̃−m+γ)|B〉 = 0,

∂τX̄
′|τ=0|B〉 = 0 ↔ (ᾱm+γ + ¯̃α−m−γ)|B〉 = 0,

(ψ′
L − εψ′

R)|τ=0|B〉 = 0 ↔ (ψr−γ − iεψ̃−r+γ)|B〉 = 0,

(ψ̄′
L − εψ̄′

R)|τ=0|B〉 = 0 ↔ (ψ̄r+γ − iε ¯̃ψ−r−γ)|B〉 = 0,

(6.3)
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Dirichlet-Dirichlet :




∂σX
′|τ=0|B〉 = 0 ↔ (αm−γ − α̃−m+γ)|B〉 = 0,

∂σX̄
′|τ=0|B〉 = 0 ↔ (ᾱm+γ − ¯̃α−m−γ)|B〉 = 0,

(ψ′
L + εψ′

R)|τ=0|B〉 = 0 ↔ (ψr−γ + iεψ̃−r+γ)|B〉 = 0,

(ψ̄′
L + εψ̄′

R)|τ=0|B〉 = 0 ↔ (ψ̄r+γ + iε
¯̃
ψ−r−γ)|B〉 = 0,

(6.4)

where γ is given by (3.22)29 . Here we have to note that the Neumann-Dirichlet or

Dirichlet-Neumann boundary conditions can be defined only if γ takes integer or half-

integer values. In this thesis we will not consider these cases in detail, though we will

mention them at the end of next subsection.

We would also like to stress that in the above arguments we have defined the Dirich-

let or Neumann boundary conditions with respect to the free fields (X ′, X̄ ′, Y ′). These

boundary conditions are not always equivalent to the Dirichlet or Neumann boundary

conditions with respect to the original fields (X, X̄, Y ) in the Melvin sigma model (3.4)

as we will see later.

From these conditions and from (B.3) and (B.4) we can verify that the boundary state

defined by (6.1) ∼ (6.4) satisfies the N = 1 superconformal invariance

(Lm − L̃−m)|B〉 = 0,

(Gr + iεG̃−r)|B〉 = 0. (6.5)

Moreover from (6.3) and (6.4) we can verify

Ĵ |B〉 = (ĴL + ĴR)|B〉 = 0, (6.6)

where the mode expansions of ĴL and ĴR are given by (B.6). This shows that these D-

branes (NN or DD boundary condition) preserve the rotational symmetry on the plane

R2 as expected30 .

29 At this stage we can take the more general boundary conditions for complex fermions (ε can take

U(1) complex values and can be unequal to ε in (6.1) and (6.2)). However, if we consider the N = 1

superconformal invariance (6.5), such boundary conditions are not allowed.
30 More precisely, one should take into account the bosonic zero-mode contribution to the angular

momentum Ĵ0 = i
√

2
α′ (x0ᾱ0 − x̄0α0) if γ takes an integer value. However, we can neglect this if the

D-brane obeys the Neumann-Neumann (NN) boundary condition for (X′, X̄ ′) or if the D-brane obeys

the Dirichlet-Dirichlet (DD) boundary condition located at ρ = 0. Even if we consider a D-brane with

the DD boundary condition and move it away from the origin ρ = 0, we can choose n or w such that

( n
R − qĴ0)|B〉 = 0 or (Rw

α′ − βĴ0)|B〉 = 0, respectively. We will return to this point in section 6.2.

42



Now we can write down the boundary state explicitly. From (6.1) ∼ (6.4) its explicit

form is almost the same as that in the flat space [68], except the shift of oscillator indices

by γ̂ and the GSO-projection. For example, the NSNS sector of the boundary state for a

D0-brane at ρ = 0 is given by

|B, γ, ε〉NSNS = exp

[ ∞∑
m=1

m−1β−mβ̃−m

]
|n, 0〉 ⊗ exp


−iε ∞∑

r=1/2

η−rη̃−r


 |0〉

⊗ exp

[ ∞∑
m=0

(m+ γ̂)−1α−m−γ̂
¯̃α−m−γ̂ +

∞∑
m=1

(m− γ̂)−1ᾱ−m+γ̂α̃−m+γ̂

]
|0〉γ̂

⊗ exp


−iε ∞∑

r=1/2

{ψ−r−γ̂
¯̃
ψ−r−γ̂ + ψ̄−r+γ̂ψ̃−r+γ̂}


 |0〉γ̂+ 1

2
, (6.7)

where γ is equal to βα′n
R

(n ∈ Z) as can be seen from (3.22) and (6.2), and γ̂ is defined

in (3.23)31 . In the above expression we have suppressed the trivial part which comes

from the other directions than X ′, X̄ ′ and Y ′. Boundary states for D-branes which obey

other boundary conditions can be obtained similarly. The total boundary state is given

by |B〉 = |B〉NSNS ± |B〉RR. The plus (minus) sign corresponds to a D-brane (an anti

D-brane).

Next we have to consider the closed string GSO-projection. This is somewhat nontriv-

ial because as we said in the lines below (3.24) the GSO-projection for 2n ≤ γ < 2n+1 (n ∈
Z) is the usual projection for type II theory, while for 2n + 1 ≤ γ < 2n + 2 (n ∈ Z) it is

the projection with an additional minus sign. Thus, the GSO-invariant boundary state is

represented by

|B〉NSNS =
1

2πR

∞∑
n=−∞

fγ
1 + (−1)[γ](−1)FL

2

1 + (−1)[γ](−1)FR

2
|B, γ,+〉NSNS ,

=
1

2(2πR)

∞∑
n=−∞

fγ

[
|B, γ,+〉NSNS − (−1)[γ]|B, γ,−〉NSNS

]
,

|B〉RR =
1

2πR

∞∑
n=−∞

fγ
1 + (−1)[γ](−1)FL

2

1 ∓ (−1)[γ](−1)FR

2
|B, γ,+〉RR,

=
1

2(2πR)

∞∑
n=−∞

fγ

[
|B, γ,+〉RR + (−1)[γ]|B, γ,−〉RR

]
,


∓ =


 − for IIA,

+ for IIB,




(6.8)

31 We have assumed the specific range 0 < γ̂ < 1/2. The extension of this expression to the other range

of γ̂ and to RR-sector is straightforward.
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where [γ] is the Gauss symbol which picks up the maximal integer part of γ, and constants

fγ in (6.8) are determined by the Cardy’s condition (or open-closed duality) [69]. This

is the consistency condition that the vacuum amplitude between two D-branes computed

in the closed string sector by using the boundary state should be equal to the cylinder

amplitude of open string.

Therefore we would like to calculate the vacuum amplitude by using the above bound-

ary state. For a D0-brane we obtain the following result32 by using the explicit form of

L0 and L̃0 in (B.4) for the closed string propagator

∆ =
1

2

∫ ∞

0
ds e−s(L0+L̃0), (6.9)

and employing the quasi periodicity of theta functions (C.3)

A = 〈B|∆|B〉
=

α′

8πR
V0

∑
γ∈Z

|fγ|2
∫ ∞

0
ds (2πα′s)−4 exp

(
−sα

′n2

2R2

)
(η(τ))−12

× [(θ3(0|τ ))4 − (−1)γ(θ4(0|τ ))4 − (θ2(0|τ ))4]

+
iα′

8πR
V0

∑
γ /∈Z

(−1)[γ] |fγ|2
∫ ∞

0
ds (2πα′s)−3 exp

(
−sα

′n2

2R2

)
(η(τ))−9(θ1(ν|τ ))−1

× [(θ3(0|τ ))3(θ3(ν|τ )) − (θ4(0|τ ))3(θ4(ν|τ )) − (θ2(0|τ ))3(θ2(ν|τ ))], (6.10)

where τ = is
π
, ν = iγs

π
. The volume factor for the time-direction is denoted by V0. By

replacing s with π
t

and using the modular transformations for theta functions (C.2) we

can obtain the following result

A =
πα′

(8πR)(2π2α′)4
V0

∑
γ∈Z

|fγ|2
∫ ∞

0

dt

t2
exp

(
−πα

′n2

2R2t

)
(η(it))−12

× [(θ3(0|it))4 − (−1)γ(θ2(0|it))4 − (θ4(0|it))4]

+
πα′

(8πR)(2π2α′)3
V0

∑
γ /∈Z

(−1)[γ] |fγ|2
∫ ∞

0

dt

t2
exp

(
−πα

′n2

2R2t

)
(η(it))−9(θ1(γ|it))−1

× [(θ3(0|it))3(θ3(γ|it)) − (θ2(0|it))3(θ2(γ|it)) − (θ4(0|it))3(θ4(γ|it))]. (6.11)

32 Note that we have divided γ into the integer part and the other part, because if γ takes an integer

value the naive calculation of the vacuum amplitude by using (6.7) diverges. This can be seen in the

third line of (6.10) if we notice the relation θ1(ν|τ ) = 0 (γ ∈ Z) by using (C.3). This divergence is due to

the reappearance of the zero modes of X ′, X̄ ′, which can be seen from (3.21) and (B.1). Therefore, the

expression of the boundary state such as (6.7) is not correct for integer γ, and we have to redefine its

bosonic part for X ′, X̄ ′.
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On the other hand the vacuum amplitude can be obtained also from the open string

one-loop calculation

ZO =
∫ ∞

0

dt

2t
TrNS−R

[
1 + (−1)F

2
qHO

]
(q ≡ e−2πt), (6.12)

where we have defined TrNS−R = TrNS −TrR, where the trace includes the factor two due

to the Chan-Paton factor. The operator HO denotes the open string Hamiltonian

HO = α′p2 + α′
(
Rw

α′ − βĴ
)2

+ N̂ , (6.13)

where N̂ and Ĵ represent the occupation number operator including the zero point energy

(−1/2 for NS-sector and 0 for R-sector) and the angular momentum generator in R2 plane

both of which are the open string analog of (B.5) and (B.6), respectively. The shift of the

winding mode is obtained in the same way as in closed string theory (3.23). The different

points from closed string spectrum is that the indices of modes for X ′, X̄ ′, Y ′ and their

superpartners take the integer or half-integer (for NS-sector) values because the boundary

conditions of open strings obey usual Neumann or Dirichlet conditions, not twisted ones

(3.21). The mode expansion of Ĵ by open string NS-modes is

Ĵ =
i√
2α′ (x0ᾱ0 − x̄0α0) +

∞∑
n=1

1

n
(α−nᾱn − ᾱ−nαn) +

∞∑
r=1/2

(ψ−rψ̄r − ψ̄−rψr), (6.14)

where x0 and x̄0 are the zero modes for X ′ and X̄ ′, respectively33 . For R-sector the

indices of ψ and ψ̄ run integer values, and its zero mode contribution 1
2
[ψ0, ψ̄0] should be

added. Therefore we can see that the eigenvalues of Ĵ take integer values for NS-sector

and half-integer values for R-sector being consistent with the spin-statistics relation.

Now let us apply the Cardy’s condition [69]. By using the Poisson resummation

formula the open string amplitude (6.12) becomes

A =
2πα′

R

∫ ∞

0

dt

2t
(8π2α′t)−

1
2

×TrNS−R

[
1 + (−1)F

2
qα′p2+N̂

∞∑
n=−∞

exp

(
− πα′

2R2t
n2 + 2πi

βα′

R
nĴ

)]
. (6.15)

By requiring the equality between (6.11) and (6.15) we obtain

fγ =




1
2
T0 (γ ∈ Z),

1√
2
( | sin πγ|

2π2α′ )
1
2T0 (γ /∈ Z),

(6.16)

33 Especially for D0-branes which we are considering here the orbital angular momentum part Ĵ0 =
i√
2α′ (x0ᾱ0 − x̄0α0) should be neglected due to the absence of the open string zero mode.
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where we have defined Tp =
√
π(2π

√
α′)3−p and Tp/κ (κ is the gravitational coupling

constant) is equal to the tension of an ordinary type II Dp-brane in flat space.

For more general Dp-branes the computations can be performed in the same way. Its

open string Hamiltonian is the same as in (6.13) except the reappearance of the zero

modes for D-branes which obey the Neumann-Neumann boundary condition in X ′, X̄ ′

directions. In this case the nontrivial relation is the trace formula which comes from the

open string zero modes of X ′ and X̄ ′ as follows

Tr exp
[
−2πα′tp2 + 2πiγĴ0

]
=


 (2 sin πγ)−2 (γ /∈ Z),

V2 (8π2α′t)−1 (γ ∈ Z),

where Ĵ0 = i√
2α′ (x0ᾱ0 − x̄0α0) is the orbital angular momentum, and V2 is the volume

factor for (X ′, X̄ ′) ∈ R2 plane. Such a trace is familiar in orbifold theories (see for

example [95]). Then the value of fγ is given by

fγ =




1
2
Tp (γ ∈ Z),

1√
2
( | sin πγ|

2π2α′ )∓
1
2Tp (γ /∈ Z).

(6.17)

The sign factors ∓ take − for Dp-branes with the Neumann-Neumann boundary condition

for X, X̄ ′ directions, + for Dp-branes with the Dirichlet-Dirichlet boundary condition for

those directions.

The above results for γ ∈ Z show that a Dp-brane in the Melvin background has the

same tension as that in the flat space. We would also like to note that no open string

tachyonic modes appear on these Dp-branes in contrast with the closed string theory.

6.2 Structure of D-branes for the Rational Parameters

As we have said in section two, the nature of the Melvin background depends sensitively

on whether the (dimensionless) magnetic parameters qR and βα′
R

take the rational or

irrational values. Especially in the former case with qR = k
N

, β = 0 (or βα′
R

= k
N

, q = 0)

this background is equivalent to the freely acting orbifold34 , and under the limit R → 0

(R → ∞) it is reduced to the abelian orbifold C/ZN in type II (for even k) or in type 0

(for odd k) [26].

34 The discussion includes the N = 1 case which is equivalent to the type 0 theory with Z2 twist

(−1)FR · σ [42]. For earlier discussions on the D-branes in this special case see [96, 97].

46



In this section we consider D-branes in the Melvin background with the rational

parameters35 . As we will see below even for the finite radius a single D-brane and a

system of N D-branes have similar properties to a fractional D-brane and a bulk D-brane

in orbifold theories, respectively. For a brief review of D-brane in orbifold theories see the

appendix F. Therefore, from now on, we will often call these two types of D-branes in the

Melvin background the fractional D-brane and the bulk D-brane.

6.2.1 Fractional D0-branes

Let us first discuss a D0-brane, which has the Dirichlet boundary condition in both

R2 and S1 direction. As can be seen from its boundary state (6.7), its behavior depends

only on γ = βα′
R
n. Moreover we can find in (6.7) that there are no zero-modes in X ′, X̄ ′

directions unless γ takes an integer value. We can equally say that this D0-brane can not

leave from X ′ = X̄ ′ = 0 unless βα′
R

∈ Z, and thus the D0-brane is expected to become a

fractional D0-brane [89, 90, 91, 92] on the orbifolds C/ZN in the limit R → ∞, βα′
R

= k
N

and qR → 0. To verify this we begin with the analysis of this orbifold limit.

First we take this limit for the boundary state (6.8). Here we reparameterize the

momentum number as n = Nα + l (α ∈ Z, l = 0, 1, · · · , N − 1). Here note that the

radius from the viewpoint of the orbifold theories is given by R/N not R (see Table 1 and

(6.18)). In the limit the NSNS-sector of the boundary state (6.8) becomes

lim
R→∞

1

2(2πR)

N−1∑
l=0

∑
α∈Z

eiy′
R

(Nα+l)fγ

[
|B, kl

N
,+〉NSNS − (−1)kα+[kl/N ]|B, kl

N
,−〉NSNS

]

=




δ(y′)
2

N−1∑
l=0

f ′
l

[
|B, kl

N
,+〉NSNS − (−1)[

kl
N

]|B, kl
N
,−〉NSNS

]
(even k),

δ(y′)
2

N−1∑
l=0

f ′
l |B,

kl

N
,+〉NSNS −

δ(y′ − πR
N

)

2

N−1∑
l=0

(−1)[
kl
N

]f ′
l |B,

kl

N
,−〉NSNS (odd k),

(6.18)

where f ′
l =




1
2N
T0 (l = 0),

1√
2N

( | sin πkl/N |
2π2α′ )

1
2T0 (l �= 0),

(6.19)

and the RR-sector of the boundary state can be obtained in the same way. Note that

here we extract the α dependent factor from the boundary state (6.7) which comes only

from the zero mode contribution of Y ′ as |n, 0〉 = exp
(
i n
R
y′
)
|0〉.

35 Note that our open string results here hold if either qR or βα′
R is rational and another is arbitrary. In

general the closed string theory with these values can not be identified with the freely acting orbifold[26].
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For even k this is just the boundary state for a fractional D0-brane in the type II

orbifold C/ZN
36 . Indeed we can identify the summation over l as the contribution from

one untwisted sector and N − 1 twisted sectors. Moreover the coefficient f ′
l in (6.19) is

1/N times of fγ in (6.16) and this shows the fractional nature of this D-brane explicitly.

For odd k the boundary state is a little more complicated than for even k. The most

important result is that two kinds of D-branes appear each at y′ = 0 (the first term in

(6.18)) and at y′ = πR/N → ∞ (the second term). In this case we have observed that the

closed string theory approaches the type 0 orbifold in the limit. Then let us remember

the result of D-branes in type 0 theory [65, 66, 42, 67] reviewed in section 2. There are

two kinds of D-branes: electric D-branes and magnetic D-branes. This is because we have

twice as many RR-fields in type 0 theory as in type II theory. Now we can understand our

result (6.18). The former corresponds to an electric fractional D0-brane and the latter

a magnetic fractional D0-brane in the orbifold C/ZN of type 0 theory (see Fig.4). For

example, let us set N = 1 for simplicity. Then the untwisted sector (l = 0) only remains,

and if we divide it into one with δ(y′) and another with δ(y′−πR) those boundary states

are given by as follows

|electric〉 =
T0

4
(|B, 0,+〉NSNS + |B, 0,+〉RR) ,

|magnetic〉 =
T0

4
(−|B, 0,−〉NSNS + |B, 0,−〉RR) . (6.20)

These are just the boundary states for an electric D0-brane and a magnetic D0-brane in

the type 0 theory37 (2.14).

The identification with fractional D-branes can also be shown explicitly by examining

the vacuum amplitude (6.15). By taking the orbifold limit, the summation part of NS-

sector in (6.15) becomes

lim
R→∞

N−1∑
l=0

∑
α∈Z

exp

[
− πα′

2R2t
(Nα+ l)2 + 2πi

k

N
(Nα + l)Ĵ

]
,

36 Note that in (6.18) we have not used the necessary condition qR → 0 to realize the orbifolds C/ZN

since the boundary state (6.18) does not depend on the value of q. This is different from the closed string

theory which depends on both of the parameters q, β.
37 Strictly speaking the coefficient of the boundary state is a little different. The correct coefficient of

the boundary state for a type 0 D-brane is
√

2 times as large as one in (6.20). This mismatch is due to

the same reason as the appearance of the factor 1/2 of V ′
1 in (4.4). Therefore the most simplified way to

understand the coefficient
√

2 is to regard the electric and magnetic D-brane on the circle of radius R as

an electric (or magnetic) D-brane on the circle of radius R/2.
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Figure 4: D0-branes

= R
∫ ∞

−∞
dp exp

(
−πα

′N2

2t
p2

)
N−1∑
l=0

exp

[
2πi

k

N
lĴ

]
=

R

2πα′ (8π
2α′t)

1
2

∑N−1
l=0 gl

N
.(6.21)

where g = exp[2πi k
N
Ĵ ]. Here we have used the fact that for NS-sector the eigenvalues of

Ĵ take integers. On the other hand for R-sector Ĵ takes the half-integers, and the phase

factor exp (2πikαĴ) = (−1)kα appears in the summation
∑

α∈Z. From this we can see that

the amplitude in the R-sector becomes zero for odd k. Therefore the vacuum amplitude

(6.15) under the orbifold limit becomes∫ ∞

0

dt

2t
TrNS−R

[
1 + (−1)F

2

∑N−1
l=0 gl

N
qH′

O

]
(for even k),

∫ ∞

0

dt

2t
TrNS

[
1 + (−1)F

2

∑N−1
l=0 gl

N
qH′

O

]
(for odd k), (6.22)

where H ′
O = α′p2 + N̂ is the open string Hamiltonian. This is just the open string

amplitude of a fractional D0-brane in type II for even k and that in type 0 for odd k.

Note the absence of R-sector for the type 0 reviewed in section 2. Although the R-sector

in type 0 can appear from the open strings between an electric D-brane and a magnetic

D-brane, these two D-branes in (6.18) are infinitely far away from each other and its

spectrum is neglected.

Let us return to the case of the finite radius R. From the above arguments the D-

branes are expected to be similar to the fractional D0-branes in the orbifold theories.

Indeed it is easy to see that a single D0-brane should be stuck at the point (X ′=X̄ ′=0)

since there are no zero-modes of X ′, X̄ ′ for non-integer γ = βα′
R
n = k

N
n (see (3.21), (B.1)).
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Up to now we have not considered the U(1) phase in the coefficient fγ (6.16) of

the boundary state (6.8). We can consider the freedom of the translation of D0-branes

in the compactified Y ′ direction and this effect can be included in the boundary state

(6.8) by replacing fγ with fγ exp (i n
R
y′0) (0 ≤ y′0 < 2πR). To consider its meaning in

the orbifold picture, let us again regard the radius of S1 as R
N

and reparameterize y′0 as

y′0 = ỹ′0 + 2πR
N
a (0 ≤ ỹ′0 <

2πR
N
, a = 0, 1, · · · , N − 1). Then its boundary state is written

by

|Ba, ε〉NSNS,RR =
∑
n∈Z

ei n
R

ỹ′
0+2πi a

N
n|B, γ, ε〉NSNS,RR (ε = ±1). (6.23)

If we take the orbifold limit R → ∞, the boundary state (6.23) becomes (6.18) except

that δ(y′) and f ′
l are replaced by δ(y′− ỹ′0) and f ′

l exp (2πi a
N
l). Then if we remember that

the fractional D-branes in an orbifold theory are labeled by irreducible representations

of its discrete group [89, 91] (see appendix F), we can see that these boundary states

(a = 0, 1 · · ·N − 1) represent the N types of fractional D0-branes in the orbifold C/ZN .

Moreover, we can see that the translation of the D0-brane by 2πR
N

in the Y ′ direction is

equivalent to changing the types of the fractional D0-brane in the orbifold picture since

this manipulation is equivalent to a → a + 1 in (6.23). This can be equally said that in

the orbifold picture with the radius R
N

the N types of fractional D0-branes are put at the

same point Y ′ = ỹ′0, and receive the monodromy to change their types into each other if

they go around S1 (see Fig.5).

a-type D0

(a+1)-type D0

R/N

Y’

Figure 5: A fractional D0-brane receives the monodromy which changes its type.

Let us see the mass spectrum of open strings between a a-type and a b-type D0-brane
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(we set ỹ′0 = 0 for simplicity)

α′M 2 =
R2

N2α′
(
Nw − (kĴ − a+ b)

)2
+ N̂ . (6.24)

For odd k the energy in NS-sector due to winding modes in (6.24) can vanish for the

appropriate values of w and Ĵ , while for R-sector it cannot because Ĵ takes the half-integer

values and there remains non-zero minimal energy ( R
2Nα′ )

2. This implies that a something

like a system of an electric and a magnetic D0-brane exists in the Melvin background,

being the finite distance πR
N

away from each other as we have already speculated from

(6.18) in the limit (see also Fig.4).

Finally we would like to mention another orbifold limit R → 0 with qR = k
N

and

β = 0. In this case we again obtain the orbifold C/ZN . However, the boundary state

(6.7) represents a bulk D0-brane in this orbifold limit since it depends only on β. Thus

one may ask whether there exists a D0-brane for finite R which is reduced to a fractional

D0-brane in the limit R→ 0. Such a D0-brane, if it exists, should have a non-zero winding

number w �= 0 and violates the Dirichlet boundary condition (6.2) for Y ′. Therefore we

must consider the boundary state which breaks the U(1) current algebra symmetry. We

will leave this as a future problem.

6.2.2 Bulk D0-branes

The fractional D0-branes are the most fundamental D0-branes in orbifold theories,

and other D0-branes can be constructed by the linear combinations of them. In general

these D0-branes can not leave from the fixed point ρ = 0, while if we collect N different

types of fractional D0-branes they can move as a unit such that ρ �= 0. The latter can

be regarded as another type of the D0-brane in the orbifold theories which is called a

bulk D0-brane, and it is known that the Chan-Paton bundle on this D0-brane obeys the

regular representation for the discrete group ZN [89].

Then it is natural to ask if such a D0-brane exists for the finite R. The answer is yes if

the parameter βα′
R

is rational, and the bulk D0-brane in the Melvin background is defined

as a bound state of N different fractional D-branes whose positions are at N different

points Y ′ = 0, 2πR
N
, · · ·, 2πR(N−1)

N
. Its boundary state is defined as follows

|Bbulk, ε〉NSNS,RR =
N−1∑
a=0

|Ba, ε〉NSNS,RR, (6.25)
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where |Ba, ε〉NSNS,RR is given by (6.23) (here we set ỹ′0 = 0). The explicit form of the

boundary state is obtained in the same way as (6.18) and the result is

|Bbulk, ε〉NSNS,RR=
T0/2

2(2πR/N)

∑
α∈Z

eiNy′
R

α
[
|B, 0,+〉NSNS,RR −(−1)kα|B, 0,−〉NSNS,RR

]
. (6.26)

We can see that its boundary state is exactly the same form as that for a usual D-brane

in type II string (for even k) or a system of an electric and a magnetic D-brane away from

each other by πR
N

in type 0 string (for odd k) on S1 with the finite radius R
N

(see Fig.4

again). Note that this boundary state does not have the twisted sectors l �= 0 but picks

up only the untwisted sector l = 0 (or n = Nα (α ∈ Z)). Thus the bosonic zero-modes

x0, x̄0 indeed exist and the D0-brane can move around such that ρ �= 0. To complete this

argument one should also examine the first condition in (6.2) carefully since the boundary

state with ρ �= 0 has a non-zero orbital angular momentum Ĵ0 in the zero-mode part. The

condition, which is equivalent to (w− k
N
Ĵ0)|B〉 = 0, can be satisfied if Ĵ0 is a multiple of

N . This requires that a bulk D-brane should consist of N fractional D-branes which are

located at the N different points X ′ = ρ ei(θ+2πka/N), (a = 0, 1, · · ·, N − 1) on the plane,

where θ is an arbitrary constant (see the most left figure in Fig.7). In this way we have

shown that a bulk D0-brane exists if βα′
R

∈ Q for any values of parameters38 q and R.

Next we consider its vacuum amplitude. The result is N times as large as (6.12) except

that the second term of the open string Hamiltonian (6.13) is modified as follows

(
R(w − kĴ)

Nα′

)2

→



( Rw
Nα′ )

2 (for NS-sector and R-sector with even k),(
R(w+1/2)

Nα′

)2
(for R-sector with odd k).

This is because the angular momentum operator Ĵ takes integer (half-integer) values in

NS-sector (R-sector) and we can erase the effect of Ĵ by the shift of w. If we take the

orbifold limit R → ∞, the vacuum amplitude is N times as large as (6.22) without the

orbifold projection
∑N−1

l=0 gl/N .

38 If the value of q is non-zero, the vacuum amplitude with non-zero ρ includes an extra term which

depends on q. This was shown in the case β = 0 (N = 1) in the paper [87]. In the case of rational βα′

R
= k

N

the open string Hamiltonian includes the extra contributions ∆HO = ρ2

π2α′ sin2(πqRw/N +πka/N). This

deviation represents the twisted identification due to non-zero q and can be understood from the open

string picture.
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6.2.3 D1-branes Wrapped on S1

As we have seen, D0-branes in the Melvin background with the rational parameter

are very similar to those in ZN orbifolds. On the other hand, a D1-brane wrapped on

S1 has an interesting structure which can not be explained intuitively from the viewpoint

of orbifold theories even though a D1-brane is formally transformed into a D0-brane by

T-duality.

Here we consider the Melvin background with the rational parameter qR = k
N

. The

boundary state of a D1-brane can be constructed in the same way as that of a D0-brane.

Then a single D1-brane is again pinned at the origin ρ = 0 (fixed point) in (3.1). However

if we consider N D1-branes so that boundary state includes only the restricted winding

sectors w ∈ NZ, this system (‘bulk’ D1-brane) can move around on the plane R2 in the

same way as in the previous case of D0-branes.

This behavior can be also explained geometrically as follows. Let us set β = 0 for

simplicity and assume that a single D1-brane is placed at ρ �= 0. Though this D1-brane

obeys the Dirichlet boundary condition along (X ′, X̄ ′) ∈ R2, in the original coordinate

(X, X̄) it is rotated by the angle 2πk
N

if it goes around S1 once, as shown in (3.12). Thus

it should wind N times around S1 in order to move around on the R2 plane (see Fig.6).

It is also useful to note that the geodesic lines along S1 are given by ϕ+ qy = const. from

(3.2) and agree with the world-volume of the D1-brane. This is a good tendency since it

will minimize the mass of the D-brane. More detailed treatment of boundary condition

for non-zero β will be given in the next section (see (7.17)).

The analysis of the orbifold limit R→ 0 with qR = k
N

and βα′
R

→ 0 can be performed

in the same way as before. A single D1-brane (below we reuse the coordinate (X ′, X̄ ′, Y ′))

which is stuck at the fixed point is identical to a fractional D0-brane in the limit by the

T-duality R → 1/R. On the other hand, the D1-brane winding N times around S1

corresponds to a bulk D0-brane which is made of N fractional D0-branes in the orbifold

C/ZN .

Let us consider the vacuum amplitude for a ‘bulk’ D1-brane. The momentum part of

the open string Hamiltonian (the T-dual picture of (6.13)) is given by

(
n− kĴ

NR

)2

→

 ( n

NR
)2 (for NS-sector and R-sector with even k),

(n+1/2
NR

)2 (for R-sector with odd k).

Note that for odd k case the obtained D1-brane is really a system which consists of an
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electric ‘bulk’ D1-brane and a magnetic ‘bulk’ D1-brane. They wind N times around S1

and there is also a Z2 Wilson line on either D1-brane.

In this way we have found that a D1-brane wrapped on S1 in the Melvin background

has the spiral structure (see Fig.6). This result is consistent with the notion of fractional

D-branes by T-duality.
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Figure 6: Spiral D1-branes

6.2.4 Other Dp-branes

The analysis of other D-branes can be done in the same way. We can assume that

the boundary condition of D-branes with respect to the seven dimensional flat spacetime

R1,6 is Dirichlet. Then both a D3-brane and a D2-brane which are extended in the X ′, X̄ ′

directions are also allowed (see the Table 2). Each of these becomes a ‘fractional’39

D2-brane on the space C/ZN in the orbifold limit (for D3-branes we take a T-duality

transformation in the Y ′ direction). This kind of D2-brane has the same tension as an

ordinary D2-brane almost in the same way as in orbifold theories [95]. If we prepare N

pairs of these branes, then we have a ‘bulk D-brane’ as before.

39 Usually in orbifold theories the Dp-brane (p ≥ 1) is not called fractional because its tension is not

divided by N . However in this thesis we denote ‘fractional’ Dp-branes as the ones which have the open

string vacuum amplitude with the orbifold projection in the orbifold limit such as (6.22) in order to

distinguish this from the ‘bulk’ Dp-brane without the orbifold projection.
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For the rational case there exists another D-brane which obeys the Neumann-Dirichlet

or Dirichlet-Neumann boundary conditions for X ′, X̄ ′ as we mentioned below (6.4). For

bulk D-branes we can define such boundary conditions because on such D-branes the

parameter γ which appears in the boundary states takes an integer value40 . Note that

these D-branes can not be defined as bound systems of N kinds of fractional D-branes

such as (6.25).

In this way we have obtained the several D-branes in Melvin background, thus we

summarize these results in the Table 2.

Y ′ X ′, X̄ ′ Existence Mobility Tension Form Orbifold Limit

D DD all Pinned T0 a D0-brane fractional D0

D DD βα′
R

= k
N

Movable NT0 N D0-branes bulk D0

D DN βα′
R

= k
N

Movable NT1 N D1-branes bulk D1

D NN all — T2 a D2-brane ‘fractional’ D2

N DD all Pinned T1 a D1-brane fractional D0

N DD qR = l
M

Movable MT1 M D1-branes bulk D0

N DN qR = l
M

Movable MT2 M D2-branes bulk D1

N NN all — T3 a D3-brane ‘fractional’ D2

Table 2: D-brane spectrum in the Melvin background. Here we define the boundary

condition of open strings in terms of free fields (X ′, X̄ ′, Y ′). Each pair of integers (k,N)

and (l,M) is coprime. Note that for odd k we regard a Dp in the above as a bound state

of an electric Dp and a magnetic Dp.

6.3 Structure of D-branes for the Irrational Parameters

As we have already mentioned, the D-brane spectrum for the irrational parameters

is remarkably different from the previous case of rational parameters. A single D-brane

can exist only at the origin ρ = 0 in (3.1) as before. However if one wants to put a

system of D-branes at the other points ρ �= 0, then one must prepare infinitely many

D-branes, which can be verified by calculating its tension in the same way as before. This

40 Remember that bulk D-branes do not have twisted sectors.
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fact matches the intuitive picture of the irrational case as a large N limit of the orbifold

C/ZN [26]. For example, let us consider a D1-brane wrapped on S1. In the irrational case

the D1-brane along the geodesic line cannot return to the original point even if it goes

around S1 arbitrary times. Thus the system will be a sort of a ‘foliation’ of the cylinder

ρ = const. and may be like a 2-brane.

Even though we cannot answer whether such systems can really exist, we can say that

the D-brane spectrum for the irrational case is more restricted than that for the rational

case. This will be an example of the geometry in string theory which is quite different

from ones in the ordinary mathematics.

6.4 Comments on World-Volume Theory

In the above we have constructed boundary states of various D-branes and have seen

their geometric interpretations. Here we would like to briefly discuss the world-volume

theory on these D-branes.

First note that the boundary states which have the Neumann (or Dirichlet) boundary

condition in the Y ′ direction depend only on the parameter qR (or βα′
R

) and not on another.

This fact is the reason why a D-brane in the background where one of the parameters is

rational is treated as if it was a fractional D-brane, even though this background is not

always equivalent to any freely acting orbifolds.

This fact will also lead to the intriguing property that the mass spectrum of open

string which obeys the Dirichlet boundary condition along S1 can show the Bose-Fermi

degeneracy ZO = 0 for β = 0 and q �= 0 even if the supersymmetry is completely

broken in the closed string sector41 . This mysterious phenomenon can be a relic of

the supersymmetry in type II theory, which is spontaneously broken [58] by the non-zero

value of q. In other words the Bose-Fermi degeneracy only on the point-like D-brane along

S1 implies the remaining local supersymmetry, while the degeneracy does not occur on

the D-brane wrapped on S1 because of the lack of global supersymmetry.

Next let us consider the relation to the quiver gauge theory [89]. In particular we take

a D0-brane as an example. Let us remember the open string mass spectrum (6.24). If

41 Note also that this fact may be correct only up to the one-loop order on the string coupling constant.

This is because the closed one-loop (open two loop) amplitude between two D-branes contains the two

point correlation function on the torus, and in this amplitude both parameters qR and βα′
R appear (see

[24, 26]).
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we take the orbifold limit R → ∞, then it is easy to see that the ZN projection of quiver

theory

kĴ − a+ b = Nw ∈ NZ, (6.27)

appears, which restricts the spectrum to g (= exp [2πi k
N
Ĵ ]) = exp [2πia−b

N
]. Thus the

world-volume theory on D0-branes in the Melvin background can be regarded as a de-

formation of the quiver theory whose ZN projection is softened. One can also see that

the opposite limit R → 0 leads to the mass spectrum of an ordinary D0-brane in type II

theory. Thus for a finite radius the world-volume theory is regarded as an interpolation

between them. In particular the massless fields are the same as those of the quiver gauge

theory of the orbifold C/ZN .

6.5 D-branes in Supersymmetric Higher Dimensional Models

The closed string backgrounds we have discussed above do not preserve any su-

persymmetry in general. If we would like to discuss D-brane charges, it will be more

desirable to consider those in supersymmetric backgrounds. Therefore in this subsection

we investigate D-branes in the higher dimensional generalization of the Melvin model

discussed in section 5, which includes the supersymmetric background [26, 27]. This

model has a background of the form M5 × R1,4, where M5 is a S1 � Y fibration over

R2 × R2 � (X1, X̄1, X2, X̄2).

We can consider D-branes in the higher dimensional Melvin model in the same way as

before. This is because the action is again rewritten by free fields and we can construct

the boundary states of D-branes. The boundary condition in the S1 direction is the same

as (6.1) and (6.2) except that the zero-mode part is changed as follows

Neumann:
(
n

R
− q1Ĵ1 − q2Ĵ2

)
|B〉 = 0,

Dirichlet:
(
Rw

α′ − β1Ĵ1 − β2Ĵ2

)
|B〉 = 0. (6.28)

In the R2 × R2 direction we have the trivial extension of (6.3) and (6.4). The explicit

forms of boundary states are almost the same as in (6.7) and (6.8).

By using such boundary states we can obtain the vacuum amplitude, for example, for

a D0-brane as follows
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A =
πα′V0

8πR

∫ ∞

0

dt

t2
×
[{ ∑

γ1∈Z,γ2∈Z

|fγ |2
(2π2α′)4

(η(it))−12

+
∑

γ1 /∈Z,γ2∈Z

(−1)[γ1]|fγ|2
(2π2α′)3

(η(it))−9(θ1(γ1|it))−1

+
∑

γ1∈Z,γ2 /∈Z

(−1)[γ2]|fγ|2
(2π2α′)3

(η(it))−9(θ1(γ2|it))−1

+
∑

γ1 /∈Z,γ2 /∈Z

(−1)[γ1]+[γ2]|fγ|2
(2π2α′)2

(η(it))−6(θ1(γ1|it))−1(θ1(γ2|it))−1
}

× exp

(
− πα′

2R2t
n2

)
(θ1(

γ1 + γ2

2
|it))2(θ1(

γ1 − γ2

2
|it))2

]
, (6.29)

where γi = βiα
′

R
n, and the summations should be performed about n ∈ Z such that the

conditions indicated below the symbol
∑

are satisfied. Note also that we have transformed

the result obtained in the NS-R formulation into that in the Green-Schwarz formulation

using the formula (C.4).

Such vacuum amplitude should be consistent with the Cardy’s condition and this

determines the coefficient fγ which appears as in (6.8). The result for a general Dp-brane

is given by

fγ =




1
2
Tp (γ1 ∈ Z, γ2 ∈ Z),

1√
2
( | sin πγ1|

2π2α′ )∓
1
2Tp (γ1 /∈ Z, γ2 ∈ Z),

1√
2
( | sin πγ2|

2π2α′ )∓
1
2Tp (γ1 ∈ Z, γ2 /∈ Z),

( | sin πγ1 |
2π2α′ )∓

1
2 ( | sin πγ2 |

2π2α′ )∓
1
2Tp (γ1 /∈ Z, γ2 /∈ Z),

(6.30)

where the sign factors ∓ in the exponent of | sinπγi| (i = 1, 2) take − for D-branes

with Neumann-Neumann boundary condition, + for D-branes with Dirichlet-Dirichlet

boundary conditions for X i′ , X̄ i′ directions. In the Neumann-Dirichlet case one can define

the boundary state in the same way only if γ is an integer or a half-integer. The above

result (6.30) shows that a Dp-brane in the background has the ordinary tension Tp.

The structures of these D-branes are almost similar to those in the original Melvin

background discussed in section 3. However, we notice a remarkable property in this

case: under the condition that the supersymmetry in the closed string theory is preserved

(β1 = ±β2 and q1 = ±q2), the open string one-loop amplitude (6.29) vanishes. Thus

the D-branes in this special background are stable BPS objects. In the orbifold limit42

42 Equivalently one can take the limit R→ 0, q1R = ±q2R = k
N , β1 = β2 = 0 by T-duality.
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R → ∞ with

β1α
′

R
= ±β2α

′

R
=

k

N
, q1 = q2 = 0, (6.31)

these D-branes are identified with BPS fractional D-branes [89, 91] in the supersymmetric

ALE orbifolds C2/ZN . More generally, if βiα
′

R
= ki

N
(i = 1, 2) and if k1 + k2 is even, the

D-brane in the limits becomes a fractional D-brane in type II (not necessarily supersym-

metric) orbifolds C2/ZN . On the other hand, if k1 +k2 is odd, it is divided into an electric

and a magnetic fractional D-brane [67] in type 0 orbifolds C2/ZN .

According to the parameter values qiR and βiα
′

R
(i = 1, 2) the D-brane spectrum

dramatically changes again. For the irrational values only the D-branes which are stuck

at the fixed point are allowed, while for the rational values there also exist the D-branes

which can move around. The latter are made of N ‘fractional’ D-branes, which can be

seen as a generalization of a bulk D-brane in the orbifold theory C2/ZN [89]. The detailed

arguments of these D-branes are almost the same as before and we omit this.

6.6 Comments on D-brane Charges

It is known that D-brane charges in type IIB and IIA theory are generally classified by

K-theory K0(X) and K1(X) [98, 99], where X represents the manifold of the spacetime

considered. First we assume that the parameters are given by (6.31). Then it is easy to

see that the number of massless RR-fields are given by one for finite R and by N for the

orbifold limit R → ∞. In the orbifold language each of these N RR-fields comes from

one untwisted sector and N − 1 twisted sectors. Naively one may think that the number

of different types of Dp-branes should be given by N in accordance with the N -types of

boundary states (6.23). However, one should remember that for finite R the type of a

fractional D-brane changes if it goes around the compactified circle. This shows that the

types of fractional D-branes (or twisted RR-charges) are not preserved unless we take the

limit R → ∞. Thus we conclude that the D-brane charge or equally the corresponding

K-group43 should be given by the rather trivial result K0(M5) = K1(M5) = Z for finite

R. On the other hand if we take the orbifold limit R → ∞, then the K-group should be

given by the equivariant K-theory K0
ZN

(R4) = ZN [98, 99, 100, 101], which corresponds to

the N -types of fractional D-branes on the orbifold C2/ZN . Thus the spectrum of D-brane

43 The T-duality of the Melvin background is represented in terms of K-group as K0(M5) = K1(M̂5),

where M̂5 is the T-dual of the five dimensional Melvin background M5.
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charges does not appear to be continuously connected in the orbifold limit even though

the masses of twisted RR-fields which couple D-branes continuously change. It would be

interesting for the above facts to be understood from the viewpoint of the K-theory with

H-flux like the twisted K-theory KH(X) discussed in [15, 17].

Next we would like to consider the case where βiα
′

R
is irrational with q1 = q2 = 0. Then

we find that in the limit R → ∞ (a ‘large N limit of the orbifold’ [26]) there seems to

be infinitely many massless RR-fields absorbing the zero-mode along the circle S1. Thus

we may have the ‘K-group’ K0(M5) = K1(M5) = Z∞ in this limit even though for the

irrational parameters the space M5 is no longer a smooth manifold nor a ‘good’ singular

manifold like ordinary orbifolds.

It may not be so nonsensical even to ask whether one can explain D-brane charges in

type 0 theory from the viewpoint of K-theory if one remembers that the type II Melvin

background includes type 0 theories in the appropriate limits.
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7 Flux Stabilization of D-branes in Melvin Background

As we have discussed in the previous section, the boundary states can be exactly

computed in the free field theory. Since we are interested in the string theory in Melvin

background, we would like to understand the geometrical aspects of D-branes which are

represented by these boundary states, from the viewpoint of Melvin background. For a

D1-brane in the free field theory this can be rather easy task as we have seen by intuitive

arguments in section 6.2.3. This D-brane is regarded as a spiral D1-brane in the sigma

model of Melvin background.

On the other hand, if we consider a bulk D0-brane discussed in section 6.2.2, this

geometrical picture is very non-trivial. First let us see how this D0-brane looks like in

terms of the original Melvin coordinate (X, X̄, Y ) in a heuristic way. Remember that

the coordinates (X ′, X̄ ′, Y ′) and (X, X̄, Y ) are related with each other by performing the

T-duality twice as ϕ′′ → ϕ̃ → ϕ (see section 3.1). After the first T-duality procedure on

ϕ′′, the D0-brane located at Y ′ = fixed, ρ = fixed(�= 0) and ϕ′′ = fixed will be changed

into a D1-brane wrapped on the circle 0 ≤ ϕ̃ < 2πα′. If we see this in terms of (Y, ϕ̃), the

D1-brane can be viewed as a spiral D-string wrapped N times on the circle 0 ≤ ϕ̃ < 2πα′

and k times on the circle 0 ≤ Y < 2πR because of the relation Y = Y ′ − βϕ̃ in (3.6) .

If we take the second T-duality on ϕ̃, then we obtain a D2-brane wrapped on the torus

T2 � (Y, ϕ) (see Fig.7). This D2-brane should be regarded as a bound state of k D2-branes

and N D0-branes as can be seen from the winding numbers of the spiral D-string.

In this way we have obtained a configuration of a D2-D0 bound state wrapping on

a torus which is topologically trivial. Furthermore, in the supersymmetric generalized

Melvin background discussed in section 5 we have a BPS D-brane with almost the same

property. Therefore one may wonder why such a non-topologically expanded D-brane

remains stable. We will answer this question below [102]. We will also briefly summarize

the interpretation of all other kinds of D-branes in Melvin background.

7.1 Flux Stabilization of D-branes in Melvin Background

Let us consider what kind of D-branes can exist in the Melvin background (3.1) before

we concentrate on the specific kind of D-branes. In the most part of this section we
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Figure 7: A bulk D0-brane can be regarded as a D2-D0 bound state in the Melvin back-

ground (3.1).

assume that the values of the magnetic parameters are rational such that

βα′

R
=

k

N
, qR =

l

M
, (7.1)

where (k,N) and (l,M) are pairs of coprime integers. In particular we are interested in

those D-branes which are localized in the ρ direction. Thus we assume that D-branes obey

the Dirichlet boundary condition along ρ. The other D-branes can also be investigated in

the same way as the arguments below and we summarize the results in Table 3.

First let us discuss a D0-brane. If we put it in the Melvin background, then we can see

that it can exist only at the origin ρ = 0 because of the non-trivial ρ dependence of the

dilaton φ in (3.1). This is easily understood if we remember the value of D0-brane mass

MD0 = e−φ(α′)−
1
2 , which takes its minimum value at ρ = 0. This somewhat strange fact

that a D0-brane cannot exist all points in the spacetime is typical in the presence of H-

flux. This is because the H-flux does not generally allow constant dilaton configurations

due to one of the equation of motions (see also appendix D)

−1

2
∇2φ+ ∇µφ∇µφ− 1

24
HµνρH

µνρ = 0. (7.2)

Next we consider a D2-brane whose world-volume is the torus ρ = const., 0 ≤ ϕ <

2π, 0 ≤ y < 2πR. However, it is easy to see that the mass of it is proportional to ρ (set

F to zero in (7.3)) as in the flat space. Thus it should be squashed and cannot exist.
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In this way we have observed that any D2-branes and D0-branes cannot exist at ρ �= 0.

Then what happens if we consider D2-D0 bound states? We start with a D2-D0 bound

state which is made of p D2-branes and q D0-branes (p and q are coprime) and assume

that its world-volume is the same torus. The mass of this object is given by

Mp,q =
e−φ

4π2(α′)
3
2

∫
dy dϕTr

√
det(G +B + F )

=
e−φ0pR

(α′)
3
2

√
(Fβ − 1)2ρ2 + F 2, (7.3)

where F is the constant flux which generates q D0-branes and is quantized as usual44

F = α′R−1 q

p
. (7.4)

In order for this D-brane to exist at ρ �= 0, the ρ dependence of the energy should disappear

and we have the constraint F = 1/β. Since we assume the rational cases (7.1), this can

be satisfied if p = k, q = N . Furthermore the mass of the object for this particular value

of flux is given by

Mk,N = N T0 (T0 = e−φ0(α′)−
1
2 ), (7.5)

where T0 is the mass of a D0-brane at ρ = 0. This result (7.5) tells us an interesting

fact that the D2-brane part of the mass Mk,N is effectively zero (so called tensionless

brane). This is the reason why such an expanded D-brane is allowed which does not wrap

any nontrivial cycles. This mechanism may be related to the stabilization of spherical

D2-branes in SU(2) WZW-model (NS5-brane background) [10, 11, 12, 16, 103].

It is also interesting to examine the limit ρ → 0. Since the net D2-brane charge is

zero for this torus configuration, we have only N D0-branes localized at ρ = 0. This is

similar to the decay of a D2−D2 system due to tachyon condensation [78]. However, note

that our process ρ → 0 is an exactly marginal deformation of boundary conformal field

theory as we will see. If we say these results in the opposite way, N D0-branes with the

torus D2-brane can leave from the origin ρ = 0. This behavior is very similar to that of

fractional D-branes in ZN orbifolds [89, 91]. Indeed as we has been already seen before by

a heuristic argument of T-duality transformations (see Fig.7), we can identify the D2-D0

bound state in the original coordinate system (ρ, ϕ, Y ) with the system of N different

fractional D-branes in the other coordinate system (ρ, ϕ′′, Y ′) (see Fig.8). Let us see this

correspondence more explicitly.

44 Note that this value F is determined by the quantization law 1
4π2α′

∫
Tr F = q ∈ Z.
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Free field (Y ′, ρ, ϕ′′) Melvin (ρ, ϕ, Y ) Tension

D0* DDD D0 fixed at ρ = 0 T0

D0 DDD D2-D0 bound state (ρ, Y =fixed) NT0

D1 DND D3-D1 bound state NT1

D2* DNN D2 (Y =fixed) T2

D1* NDD D1 fixed at ρ = 0 T1

D1 NDD Spiral D1 (ρ, ϕ+ qY =fixed) MT1

D2 NND Spiral D2 (ϕ+ qY =fixed) MT2

D3* NNN D3 T3

Table 3: D-brane spectrum in the Melvin background with rational values of parameters

βα′/R = k/N, qR = l/M . We show how the D-branes defined in the free field representa-

tion (Y ′, ρ, ϕ′′) correspond to those in the original Melvin background. In the above table

the Neumann and Dirichlet boundary condition are denoted by N and D. The tension

Tp represents that of the standard Dp-brane. The D-branes marked by * are regarded

as fractional D-branes and even for irrational case they have finite tensions, while others

have infinite tensions for irrational case.

.Y’

D0-brane

O

     D2-D0 bound state
(original coordinate picture)

ϕ"

ϕ
ρ

Y

   N D0-branes
(free field picture)

ρ

Figure 8: The equivalence between N D0-branes in the free field theory and a D2-D0

bound state in the original sigma model of the Melvin background.
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The relation between the free fields and world-sheet fields in the original NSNS Melvin

background is given as follows

(1 + β2ρ2)∂ϕ′′ = ∂(ϕ+ qY ) + β∂Y,

(1 + β2ρ2)∂̄ϕ′′ = ∂̄(ϕ+ qY ) − β∂̄Y,

(1 + β2ρ2)∂Y ′ = ∂Y − βρ2∂(ϕ + qY ),

(1 + β2ρ2)∂̄Y ′ = ∂̄Y + βρ2∂̄(ϕ + qY ). (7.6)

These are derived from the relations in the appendix E, which represent the T-dual trans-

formations. The Dirichlet boundary conditions of D0-branes are ρ =const. and

∂2ϕ
′′ = 0, ∂2Y

′ = 0, (7.7)

at σ1 = 0, π (from now on we will define the boundary conditions in the open string

picture). If we rewrite the above equations from the viewpoint of the original Melvin

sigma model by using (7.6), they become ρ =const. and

i∂2(ϕ + qY ) − β∂1Y = 0,

i∂2Y + βρ2∂1(ϕ + qY ) = 0. (7.8)

Thus we have obtained mixed Neumann-Dirichlet boundary conditions. By comparing

this result (7.8) with the general formula of the boundary condition

Gµν∂1X
ν + i(Bµν + Fµν)∂2X

ν = 0, (7.9)

where Xµ denotes the world-sheet field, we obtain the non-trivial value of the flux

F = Fϕy =
1

β
= α′R−1 N

k
. (7.10)

This value does match with the previous value (7.4) if we set p = k, q = N . Therefore

we can conclude that N D0-branes at ρ �= 0 (a bulk D0-brane) in the free field picture

in (ρ, ϕ′′, Y ′) is T-dual equivalent to a bound state of N D0-branes and k D2-branes

wrapping around the torus (ϕ, Y ) with ρ �= 0 in the original coordinate picture. This

shows that expanding the D2-brane corresponds to moving the fractional D0-branes and

thus this is an exactly marginal deformation of boundary conformal field theory. It would

be also interesting that the quantization of flux F requires the rational values of βα′
R

. In
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the irrational cases we will have to require N → ∞ in order to move D0-branes, and the

bound state becomes infinitely massive.

Let us comment on the world-volume theory on a D2-D0 bound state. Because of the

presence of B-flux it becomes a noncommutative theory [104, 2]. Following the prescription

[2], it is easy to see that the noncommutativity θ of noncommutative torus Aθ is exactly

given for any value of ρ as follows

θ =
βα′

R
=

k

N
∈ Q. (7.11)

This shows that it is identified with the fuzzy torus which allows finite dimensional rep-

resentations.

Such a noncommutativity can be seen more explicitly from the analysis of the non-

abelian Dirac-Born-Infield (DBI) action of N D0-branes. The non-abelian DBI action is

already proposed in [105, 63] where its form was determined from the T-duality covariance

of DBI action. Especially the action of N D0-branes is written by

SDBI = −T0

∫
dt STr

[
e−φ

√
−P{E00 + E0i(Q

−1i
j − δi

j)E
jkEk0} det(Qi

j)
]
, (7.12)

where we defined Eµν and Qi
j as

Eµν = Gµν + Bµν (µ, ν = 0, · · · , 9),

Qi
j = δi

j + i[Φi, Φk]Ekj (i, j, k = 1, · · · , 9), (7.13)

and STr and P denote the symmetrized trace and the pull back onto the D0-brane world-

volume, respectively. Here we do not consider the time dependence of fields, thus we

can set dΦi

dt
to zero. Moreover since the transverse fluctuations for R1,6 directions are

irrelevant in this situation, we can also set such fields to zero. After all, the potential part

of the action becomes the following form

V = T0e
−φ0STr

[√
1 + ρ2 {i[Φϕ, ΦY ] + β}2

]
. (7.14)

Here we set Φρ to ρ because we want to consider the expanding of D0-branes into the

torus form of D2-branes with constant ρ (�= 0). From the above equation we can see

that the potential is always greater than NT0e
−φ0, which is the mass of N D0-branes. To

realize the lowest limit of the potential the condition [Φϕ, ΦY ] = iβ should be needed. If

we normalize coordinates as ΦY → R
2πα′ Φ

Y to make them dimensionless and to set these

periodicity to 2π, then we can get the following relation

[Φϕ, ΦY ] = 2πiθ. (7.15)
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This is exactly the algebra of noncommutative torus. However this relation holds only for

the infinite dimensional representation of Φϕ and ΦY , while here we consider the finite

dimensional (N ×N) representation. We can approximate by using N dimensional fuzzy

torus algebra, which is generated by eiΦϕ
= U and eiΦY

= V with the relation

UV = e−2πi k
N V U. (7.16)

Then the potential is not exactly equal to the mass of N D0-branes45 . Such a difference

comes from the 1
N

order correction which can be seen in other non-abelian world-volume

analysis [63, 106, 103]. Any way the noncommutative algebra of the torus (7.15) is a

good approximation for large N and we have seen the explicit noncommutativity on the

world-volume of the D2-brane.

Finally let us turn to a D1-brane in the Melvin background [87, 71]. As shown in [71],

this is equivalent to the previous D2-D0 bound state by the T-duality along Y ′, which

interchanges q and β [24, 26]. The boundary condition of a D1-brane in the free field

theory can be rewritten in terms of the fields (ρ, ϕ, Y ) and the result is

∂2(ϕ+ qY ) = ∂1Y = 0. (7.17)

This exactly represents a D1-brane wrapping the ‘geodesic line for D-branes’ ϕ + qY =

const., which is defined46 for the ‘D-brane metric’ e−2φ(ds)2.

As pointed out in the calculation of the boundary state [71], for rational values of

qR = l
M

the mass of the D1-brane is finite and it winds M times along Y and l times

along ϕ, while for irrational values it becomes infinite because the D1-brane should wind

infinitely many times. These facts are all consistent with the T-dual equivalence to the

previous D2-D0 bound state.

7.2 D-branes in Higher Dimensional Melvin Background

In previous section we considered D2-D0 bound states in the Melvin background.

However, in the presence of the flux this background breaks the target space supersymme-

try completely, and the D2-D0 bound system is not a BPS state. Thus we have neglected

45 Of course this relation exactly holds for the infinite number of D0-branes, however in that case the

potential value becomes infinite and this configuration may be singular. This consideration may be related

to the D-brane picture in the Melvin background with irrational magnetic parameters [71].
46 Note that the usual geodesic line for the metric (ds)2 is given by ϕ+ (q ± β)Y = const..
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quantum corrections without any explanation. Since we are interested in the stability of

D-branes, it will be more desirable to discuss BPS D-branes.

As we have already seen in section 5, we can extend the exactly solvable NSNS Melvin

background R1,6 × M3 to more higher dimensional ones R1,8−2n × M2n+1 [26, 27]. Then

we can construct BPS D-branes in these backgrounds. They are stable and the classical

analysis will be reliable.

Here we consider the example of D-branes in the supersymmetric higher dimensional

model (n = 2) analysed in section 6.5. We assume rational parameters βi = ki

N
(i = 1, 2),

where N , k1 and k2 are coprime integers. For simplicity we set qi (i = 1, 2) to zero. This

system becomes a BPS state [71] if the background keeps supersymmetry (k1 = ±k2). The

analysis is very similar to that in the previous section, while there appears one nontrivial

constraint which we will see.

First we examine the boundary condition of D2-D0 bound states in this supersymmet-

ric model. In this case we can transform the original coordinates (Y, ρ, ϕ, r, θ) in (5.6) into

the free fields (Y ′, ρ, ϕ′′, r, θ′′) by using T-duality and several field redefinitions. To analyze

this system quantitatively we transform the following boundary conditions of D0-branes

∂2ϕ
′′ = ∂2θ

′′ = ∂2Y
′ = 0, (7.18)

into those which are represented by the original coordinate (ϕ, θ, Y ). The relation between

these coordinates are obtained in the same way as (7.6). Then the result becomes

β2∂2ϕ− β1∂2θ = 0,

i∂2ϕ− β1∂1Y = 0,

i∂2Y + β1ρ
2∂1ϕ+ β2r

2∂1θ = 0. (7.19)

In these equations the first equation indicates that the following condition should be

satisfied on the world-volume of the D2-brane

β2ϕ = β1θ + const. (7.20)

This shows that the world-volume of the D2-brane is given by the torus {(ϕ, θ, Y ) | β2ϕ =

β1θ + const., 0 ≤ ϕ < 2πk1, 0 ≤ θ < 2πk2}47 . We can choose the coordinate of the

world-volume such that ξ1 = ϕ, ξ2 = Y (0 ≤ ξ1 ≤ 2πk1, 0 ≤ ξ2 ≤ 2πR).

47 This periodicity of ϕ and θ is effective one which is only available for the world-volume of a D2-brane.

68



Then by comparing the result (7.19) to the general formula of the boundary condition

(7.9) with an additional constraint (7.20), we can see the following flux on the world-

volume of D2-branes

β1Fξ1Y = 1. (7.21)

Then this flux is properly quantized on the world-volume of the D2-brane

1

4π2α′

∫
F =

1

4π2α′

∫
dξ1dξ2 Fξ1ξ2

= N, (7.22)

Thus we can see that this system represents a bound state of N D0-branes and one

D2-brane.

Moreover we can see the stabilization mechanism of the D2-brane by the analysis of

the Dirac-Born-Infeld theory in the same way as (7.3). The total mass turns out to be

equal to that of N D0-branes. Namely, the D2-brane part again becomes tensionless by

the total effect of the NSNS B-field and the magnetic flux F (7.21). The analysis from the

world-volume theory of D0-branes is the same as before. We can see the structure of the

fuzzy torus with the noncommutativity θ = 1
N

. Note that if we take the limit β2 → 0, we

have k1 D2-branes with N D0 charges wrapping in the ϕ direction. Then we can identify

the world-volume as a fuzzy torus with θ = k1

N
and this is consistent with the result in

the previous subsection.

7.3 U-dualization

Finally we would like to investigate how the above discussed D-branes look like in

U-dualized theories. Here we concentrate on the ordinary Melvin background (3.1) for

simplicity. The higher dimensional generalization will be straightforward.

First let us begin with type IIB NSNS Melvin background. We set the parameter q

to zero and assume the fractional value βα′/R = k/N . Then there exists a bound state

of k D3-branes and N D-strings which is expanded due to the NSNS B-field as we have

already seen. The world-volume of the bound state is given by T2 × R, where the torus

T2 is included in the Melvin geometry M3 (3.1) . We denote the coordinate of S1 in M3 by

x9 and R by x8. If we perform S-duality, then we will obtain a bound state of k D3-branes

and N F-strings in IIB RR Melvin background. Notice that it is expanded in the radial

direction due to the RR-2form flux. The instanton D1-brane charge is produced on the

D3-branes due to the electric flux (F-string).
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Further we can take T-duality in x9 direction and then the background becomes equiv-

alent to F7-brane (2.4). There we obtain a bound state k D2-branes and N F-strings.

This system is again stabilized by the RR (one form) flux. Another way to see this sta-

bilization in a non-perturbative way is to lift the system to M-theory. Then we can find

that the bound state is identified with a M2-brane which wraps k times around the circle

in the angular ϕ direction and N times in x11 direction and which also extends in x8

direction. In other words, the M2-brane wraps along the geodesic line ϕ + qx11 =const.

in the ‘twisted circle’ compatification defined by (2.1). This M2-brane is the 9 − 11 flip

of the spiral D1-brane discussed in section 6.2.3.
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8 Conclusions and Discussions

In this thesis we investigated the string theory in Melvin background. This background

depends on the radius R in the compactified direction and the two magnetic parameters

q and β. The individual effect of the two parameters is roughly as follows. The non-

zero value of q twists the plane R2 spirally along the circle S1, while the value of β

is proportional to the strength of H-flux. Most of our results depend on whether the

magnetic parameters qR and βα′
R

are rational or irrational.

In the first half we discussed its closed string theory. We showed that the theory

includes the orbifolds C/ZN in type 0 and type II theory as particular limits for rational

values of magnetic parameters. This result will give a new example of type II/type 0

duality relation. For the irrational parameters we encountered a sort of a ‘large N limit

of the orbifolds C/ZN ’.

In this background the supersymmetry is completely broken and generically there

exist closed string tachyons. We can generalize the model so that it preserves partial

supersymmetry by considering a higher dimensional case. Note that this model gives a

new example of supersymmetric background with H-flux. We also found that it includes

the ALE orbifolds C2/ZN in the rational case. This result may be related to the T-duality

relation between NS5-branes and ALE space [19]. It would be interesting to investigate

this further.

In the latter half of this thesis we studied D-branes in the string theory in Melvin

background. The boundary states can be constructed in terms of the free field represen-

tations which can be obtained by applying T-duality to the original sigma model of the

Melvin backgrounds. Then we can impose the ordinary Neumann or Dirichlet boundary

conditions on the free fields, though the resulting D-branes are geometrically non-trivial

in the Melvin backgrounds.

For the rational parameters the boundary states have the structure similar to orbifold

theories and indeed they become the fractional D-branes48 in the orbifolds Cn/ZN if we

take the large radius (or small radius in T-dual picture) limits. The difference between

the fractional D0-branes in the orbifolds and the D0-branes in the Melvin background

for finite radius is that in the latter case the N kinds of D0-branes which belong to the

48 More precisely, we have explicitly constructed D-branes in the Melvin background which are reduced

to fractional D0-branes (D1-branes) in one of the orbifold limits R → ∞ (R → 0) in section 6. We left

the discussion on the other limit as a future problem.
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different irreducible representations of ZN can be transformed into each other by the

monodromy if they go around the compactified circle. Even though a single (‘fractional’)

D-brane cannot move away from the fixed point (or the origin), a system of N different

kinds of ‘fractional’ D-branes can move around as a unit (a ‘bulk’ D-brane). In the case of

irrational parameters one needs the infinite number of the ‘fractional’ D-branes in order

to move away from the fixed point. Note also that if we take the limits which correspond

to type 0 orbifolds, we find a combined system of an electric fractional D-brane and a

magnetic fractional D-brane. Thus we can connect between type 0 D-branes and type II

D-branes. In the same way we can construct the boundary state of a D1-brane, which is

transformed into a D0-brane by T-duality.

The above discussion was based on the boundary state constructed by employing

the free field representation. We can also view the D-branes in terms of the original

sigma of Melvin background. Then we found that a bulk D0-brane at ρ �= 0 in terms

of the free fields (X ′, X̄ ′, Y ′) is interpreted as a D2-D0 bound state which wraps the two

dimensional torus (ρ = fixed) in the original Melvin background (3.1). In this nontrivial

interpretation the presence of H-flux plays the most essential role. The important point

is why the bound state is stabilized even though it wraps on a topologically trivial cycle.

We found the answer to this question by investigating the world-volume theory of the

D-brane: it is stabilized by the presence of flux of the gauge field on the world-volume.

This mechanism may be similar to the flux stabilization found in the context of D-branes

in group manifolds[10, 11, 12].

Interestingly, this two dimensional torus can be regarded as a non-commutative torus

Aθ with the noncommutativity θ = βα′
R

if we apply the argument in [2]. The observed

dependence of D-branes on the parameters can be now reinterpreted as that on the pa-

rameter of the non-commutative torus Aθ. The corresponding operator algebra K-theory

K(Aθ) = Z + θZ [107] shows the analogous difference between the rational and the ir-

rational case, where the value Z + θZ(∈ R) means the dimension of the corresponding

projective module. In the irrational case there are only infinitely dimensional represen-

tations of Aθ, while in the rational case (we set θ = k/N) there is a N dimensional

representation (fuzzy torus). The two Z charges in the K-group K(Aθ) represent the D2-

brane and the D0-brane charges as is clearly explained from the viewpoint of the tachyon

condensation in the open string theory [108]. It would also be interesting to examine

the noncommutative algebra on D3-branes wrapping the whole manifold by using the free
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field calculations since this background possesses non-zero H-flux (for a general discussion

on the relation between H-flux and noncommutative geometry see [3]).

On the other hand, a D1-brane in terms of the free field representation is interpreted

as a D1-brane which wraps the spiral geodesic line (see (3.2)) in the original Melvin

background.

It will also be an interesting result that the boundary states of D-branes depend only

on either of two parameters. This phenomenon leads to the strange Bose-Fermi degeneracy

on specific D-branes even in nonsupersymmetric string backgrounds. We pointed out an

interpretation of this as a remnant of the spontaneously broken supersymmetry.

Also we would like to note that we can apply the above results on the original Melvin

background (3.1) to its higher dimensional generalizations without any serious modifica-

tions as we have seen in section 6. For specific values of parameters the model preserves

some supersymmetries and the D-branes there become BPS states. Thus it would be

interesting to explore their supersymmetric world-volume theories.

Finally we would like to comment that our analysis of D-branes in Melvin background

may be useful for the investigation of closed string tachyon condensation considering a

D-brane as a probe in the sense of [33]. We have discussed closed tachyon condensation in

Melvin background and found a sign that the system will decay into flat space or another

Melvin background with the smaller magnetic parameter. The D-brane probe will give

us a good test of this speculation.
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A T-duality in Kaluza-Klein Background

The coordinate of world-sheet is z = σ1 + iσ2 and we define its partial derivative as

∂ = 1
2
(∂1 − i∂2), ∂̄ = 1

2
(∂1 + i∂2). Let us first consider the following bosonic sigma model

S =
1

πα′

∫
d2σ

[
(Gij(X) + Bij(X))∂X i∂̄X j +

1

4
α′R(2)φ(X)

]
. (A.1)

After substituting the Kaluza-Klein background like (3.1) we obtain

S =
1

πα′

∫
d2σ

[
(Gµν(X) + Bµν(X))∂̄Xν∂Xµ + e2σ(X)(∂̄Y +Aµ∂̄X

µ)(∂Y + Aµ∂X
µ)

+Bµ(∂̄Y ∂Xµ − ∂̄Xµ∂Y ) +
1

4
α′R(2)φ(X)

]
. (A.2)

Then we can perform T-duality along Y direction (S1 with radius R) since the fields

Gµν(X), Bµν(X), φ(X) do not depend on Y [72]. Introducing the auxiliary vector field

V, V̄ we can rewrite (A.2) as follows (we show only nontrivial parts)

S =
1

πα′

∫
d2σ

[
e2σ(X)(V̄ + Aµ∂̄X

µ)(V + Aµ∂X
µ) + Bµ(V̄ ∂Xµ − ∂̄XµV )

+(V̄ ∂Ỹ − ∂̄Ỹ V )
]
, (A.3)

where the new field Ỹ is compactified on a circle with the radius α′
R

. If we first integrate Ỹ ,

then we obtain ∂̄V −∂V̄ = 0 and the vector field V, V̄ can be written as V = ∂Y, V̄ = ∂̄Y .

Indeed one can easily see that this field Y has the periodicity Y ∼ Y +2πR as expected49 .

On the other hand, it is straightforward to integrate out V first and one obtains

S =
1

πα′

∫
d2σ

[
· · · + e−2σ(X)(∂̄Ỹ + Bµ∂̄X

µ)(∂Ỹ + Bµ∂X
µ) + Aµ(∂̄Ỹ ∂Xµ − ∂̄Xµ∂Ỹ )

+
1

4
α′R(2)(φ(X)− σ(X))

]
, (A.4)

where the shift of the dilaton field can be determined from the condition of the conformal

invariance (vanishing beta-function) [72]. Thus we have obtained the following T-duality

transformation:

σ′(X) = −σ(X), A′
µ(X) = Bµ(X), B′

µ(X) = Aµ(X), φ′(X) = φ(X)− σ(X). (A.5)

49 To see this, one should note the relation dỸ =(closed form)+(non-trivial cohomology). The non-

trivial part is discretized due to the periodicity Ỹ ∼ Ỹ +2πα′
R

. Then the term ∼ ∫
dỸ ∧V in (A.3) leads

to the weight exp(i w̃
R

∫
C
V ), where w̃ is the winding number of the field Ỹ and C is a one-cycle of the

world-sheet. Since one should take a summation over w, the integration is quantized as
∫
C
V ∈ 2πRZ.

This shows that the period of Y is 2πR.

75



Note also that the equation of motion of (A.2) is equivalent to that of (A.4) via the

rule

∂Ỹ = −Bµ∂X
µ − e2σ(∂Y + Aµ∂X

µ),

∂̄Ỹ = −Bµ∂̄X
µ + e2σ(∂̄Y + Aµ∂̄X

µ). (A.6)

In this thesis we discuss superstring models and therefore we need the supersymmetric

generalization of the above arguments. The simplest way to do this is to use the N = 1

superspace formalism. One has only to replace ∂ and ∂̄ with the super covariant deriva-

tives Dθ = ∂θ + θ∂ and Dθ̄ = ∂θ̄ + θ̄∂̄ and replace the bosonic vector field V with the

fermionic vector super field W . The bosonic scalar field X(z, z̄) should also be changed

into X(z, z̄) = X(z, z̄) + iθψ′
L(z) + iθ̄ψ′

R(z̄) + · · ·. The calculations are almost the same

as before. For example, (A.6) is replaced with

DθỸ = −BµDθX
µ − e2σ(DθY + AµDθX

µ),

Dθ̄Ỹ = −BµDθ̄X
µ + e2σ(Dθ̄Y + AµDθ̄X

µ). (A.7)

Let us see a useful example: T-duality of the background (3.1). Utilizing the above

arguments we can transform q into β by T-duality. This fact is reconfirmed in the mass

spectrum (3.23).

B Mode Expansions

As we have seen in section 3, the theory can be represented by the free bosonic fields

X ′, X̄ ′, Y ′ and their superpartners ψ′
L,R, ψ̄

′
L,R, η

′
L,R with the boundary conditions (3.18),

(3.20) and (3.21). Thus we can find the following mode expansions

X ′(z, z̄) = X ′
L(z) +X ′

R(z̄) = i
√
α′ ∑

m

1

m− γ̂
αm−γ̂z

−m+γ̂ + i
√
α′∑

m

1

m + γ̂
α̃n+γ̂ z̄

−m−γ̂,

X̄ ′(z, z̄) = X̄ ′
L(z) + X̄ ′

R(z̄) = i
√
α′ ∑

m

1

m+ γ̂
ᾱm+γ̂z

−m−γ̂ + i
√
α′∑

m

1

m− γ̂
¯̃αm−γ̂ z̄

−m+γ̂,

ψ′
L(z) =

√
α′∑

r

ψr−γ̂z
−r+γ̂− 1

2 , ψ′
R(z̄) =

√
α′ ∑

r

ψ̃r+γ̂ z̄
−r−γ̂− 1

2 ,

ψ̄′
L(z) =

√
α′∑

r

ψ̄r+γ̂z
−r−γ̂− 1

2 , ψ̄′
R(z̄) =

√
α′ ∑

r

¯̃
ψr−γ̂ z̄

−r+γ̂− 1
2 ,

Y ′(z, z̄) = y′ − i
α′

2
P ′

L ln z − i
α′

2
P ′

R ln z̄ + i

√
α′

2

∑
m�=0

1

m
βmz

−m + i

√
α′

2

∑
m�=0

1

m
β̃mz̄

−m,

η′L(z) =
√
α′∑

r

ηrz
−r− 1

2 , η′R(z̄) =
√
α′∑

r

η̃rz̄
−r− 1

2 , (B.1)
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and (anti)commutation rules

[αm−γ̂ , ᾱn+γ̂ ] = (m− γ̂)δm,−n, [α̃m+γ̂ , ˜̄αn−γ̂] = (m+ γ̂)δm,−n,

{ψr−γ̂, ψ̄s+γ̂} = δr,−s, {ψ̃r+γ̂ ,
˜̄ψs−γ̂} = δr,−s,

[βm, βn] = mδm,−n, [β̃m, β̃n] = mδm,−n,

{ηr, ηs} = δr,−s, {η̃r, η̃s} = δr,−s. (B.2)

The N = 1 super-Virasoro generators Lm, L̃m, Gr, G̃r are obtained in the usual way

because the action is written by free fields

Lm = :
1

2

∑
k

βm−kβk +
∑
k

ᾱm−k+γ̂αk−γ̂

+
1

2

∑
r

(r − m

2
)ηm−rηr +

∑
r

(r − γ̂ − m

2
)ψ̄m−r+γ̂ψr−γ̂ : ,

Gr =
∑
k

(βkηr−k + αk−γ̂ψ̄r−k+γ̂ + ᾱk+γ̂ψr−k+γ̂), (B.3)

where :∼: is the normal ordering. For example for 0 < γ̂ < 1
2
, L0 for NS-sector becomes50

L0 =
α′

4
P ′2

L +
∞∑

k=1

β−kβk +
∞∑

k=1

ᾱ−k+γ̂αk−γ̂ +
∞∑

k=0

α−k−γ̂ᾱk+γ̂

+
∞∑

r=1/2

rη−rηr +
∞∑

r=1/2

(r − γ̂)ψ̄−r+γ̂ψr−γ̂ +
∞∑

r=1/2

(r + γ̂)ψ−r−γ̂ψ̄r+γ̂ +
γ̂

2
, (B.4)

where P ′
L is given by (3.20). Note that here we abbreviate the contributions from other

directions than Y ′, X ′ and X̄ ′. L0 for R-sector is almost the same except that r runs

integer values and that the zero point energy shifts. The antiholomorphic components

L̃m, G̃r is written in the same form.

For the later use, we define the operators N̂L, N̂R (we show the result only in NSNS

sector)

N̂L =
∞∑

k=1

k

k − γ̂
ᾱ−k+γ̂αk−γ̂ +

∞∑
k=1

k

k + γ̂
α−k−γ̂ᾱk+γ̂ +

∞∑
k=1

β−kβk

+
∞∑

r= 1
2

rψ̄−r+γ̂ψr−γ̂ +
∞∑

r= 1
2

rψ−r−γ̂ψ̄r+γ̂ − 1

2
,

N̂R =
∞∑

k=1

k

k − γ̂
α̃−k+γ̂

¯̃αk−γ̂ +
∞∑

k=1

k

k + γ̂
¯̃α−k−γ̂αk+γ̂ +

∞∑
k=1

β̃−kβ̃k

50 Note that if γ̂ is out of this region, the above L0 is not positive definite, therefore we have to redefine

the ground state correctly.

77



+
∞∑

r= 1
2

rψ̃−r+γ̂
¯̃ψr−γ̂ +

∞∑
r= 1

2

r ¯̃ψ−r−γ̂ψ̃r+γ̂ − 1

2
. (B.5)

The last constant term −1/2 is replaced by 0 for RR-sector.

The angular momentum operators ĴL, ĴR, are also defined to be (we show the result

for NSNS-sector with 0 < γ̂ < 1/2)

ĴL = −
∞∑

k=1

1

k − γ̂
ᾱ−k+γ̂αk−γ̂ +

∞∑
k=0

1

k + γ̂
α−k−γ̂ᾱk+γ̂ −

∞∑
r= 1

2

ψ̄−r+γ̂ψr−γ̂ +
∞∑

r= 1
2

ψ−r−γ̂ψ̄r+γ̂ +
1

2
,

ĴR =
∞∑

k=1

1

k − γ̂
α̃−k+γ̂

¯̃αk−γ̂ −
∞∑

k=0

1

k + γ̂
¯̃α−k−γ̂αk+γ̂ +

∞∑
r= 1

2

ψ̃−r+γ̂
¯̃
ψr−γ̂ −

∞∑
r= 1

2

¯̃
ψ−r−γ̂ψ̃r+γ̂ − 1

2
.

(B.6)

The last constant term for RR-sector is the same as the above.

C Identities of Theta-Functions

Here we summarize the formulae of theta-functions. First define the following theta-

functions

η(τ) = q
1
24

∞∏
n=1

(1 − qn),

θ1(ν|τ ) = 2q
1
8 sin(πν)

∞∏
n=1

(1 − qn)(1 − e2iπνqn)(1 − e−2iπνqn),

θ2(ν|τ ) = 2q
1
8 cos(πν)

∞∏
n=1

(1 − qn)(1 + e2iπνqn)(1 + e−2iπνqn),

θ3(ν|τ ) =
∞∏

n=1

(1 − qn)(1 + e2iπνqn− 1
2 )(1 + e−2iπνqn− 1

2 ),

θ4(ν|τ ) =
∞∏

n=1

(1 − qn)(1 − e2iπνqn− 1
2 )(1 − e−2iπνqn− 1

2 ), (C.1)

where we have defined q = e2iπτ .

Next we show the modular properties as follows

η(τ) = (−iτ)− 1
2 η(−1

τ
), θ1(ν|τ ) = i(−iτ)− 1

2 e−πiν2

τ θ1(ν/τ,−1

τ
),

θ2(ν|τ ) = (−iτ)− 1
2 e−πiν2

τ θ4(ν/τ | − 1

τ
), θ3(ν|τ ) = (−iτ)− 1

2 e−πiν2

τ θ3(ν/τ | − 1

τ
),

θ4(ν|τ ) = (−iτ)− 1
2 e−πiν2

τ θ2(ν/τ | − 1

τ
). (C.2)
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Their quasi periodicity is also given by

θ1(ν + τ |τ ) = −e−2πiν−πiτ θ1(ν|τ ),
θ2(ν + τ |τ ) = e−2πiν−πiτ θ2(ν|τ ),
θ3(ν + τ |τ ) = e−2πiν−πiτ θ3(ν|τ ),
θ4(ν + τ |τ ) = −e−2πiν−πiτ θ4(ν|τ ). (C.3)

It is also useful to note the Jacobi’s identity

4∏
a=1

θ3(νa|τ ) −
4∏

a=1

θ2(νa|τ )−
4∏

a=1

θ4(νa|τ ) +
4∏

a=1

θ1(νa|τ ) = 2
4∏

a=1

θ1(ν
′
a|τ ), (C.4)

where we have defined

2ν ′1 = ν1 + ν2 + ν3 + ν4, 2ν ′2 = ν1 + ν2 − ν3 − ν4,

2ν ′3 = ν1 − ν2 + ν3 − ν4, 2ν ′4 = ν1 − ν2 − ν3 + ν4. (C.5)

D Explicit Metric of the Higher Dimensional Model

Let us define the polar coordinates as X1 = ρeiϕ, X2 = reiθ. The metric (in string

frame) of the higher dimensional Melvin background described by the action (5.1) is given

by

(ds)2 = dρ2 + dr2 +
1 + β2

2r
2

F (r, ρ)
ρ2dϕ2 − 2

β1β2r
2ρ2

F (r, ρ)
dϕdθ +

1 + β2
1ρ

2

F (r, ρ)
r2dθ2

+
G(r, ρ)

F (r, ρ)
dy2 + 2

q1ρ
2(1 + β2

2r
2) − β1β2q2ρ

2r2

F (r, ρ)
dϕdy

+2
q2r

2(1 + β2
1ρ

2) − β1β2q1ρ
2r2

F (r, ρ)
dθdy,

=
G(r, ρ)

F (r, ρ)
(dy + Aϕdϕ+ Aθdθ)

2 − 2r2ρ2

G(r, ρ)F (r, ρ)
(β1β2 + q1q2F (r, ρ)) dϕdθ

+dρ2 +
ρ2

G(r, ρ)F (r, ρ)

(
1 + β2

2r
2 + q2

2r
2 + q2

2β
2
2r

4 + β2
1q

2
2ρ

2r2
)
dϕ2

+dr2 +
r2

G(r, ρ)F (r, ρ)

(
1 + β2

1ρ
2 + q2

1ρ
2 + q2

1β
2
1ρ

4 + β2
2q

2
1ρ

2r2
)
dθ2, (D.1)

where we have defined

F (r, ρ) ≡ 1 + β2
1ρ

2 + β2
2r

2, G(r, ρ) ≡ 1 + (β1q2 − β2q1)
2ρ2r2 + q2

1ρ
2 + q2

2r
2,

Aϕ =
q1ρ

2 + β2(q1β2 − q2β1)ρ
2r2

G(r, ρ)
, Aθ =

q2r
2 + β1(q2β1 − q1β2)ρ

2r2

G(r, ρ)
. (D.2)
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The B-field and the dilaton is

Bϕ = − β1ρ
2

F (r, ρ)
, Bθ = − β2r

2

F (r, ρ)
, e2(φ−φ0) =

1

F (r, ρ)
. (D.3)

One can check that the curvature of the above metric is not singular.

It is not so difficult to show that these satisfy the equations of motion in supergravity

Rµν + ∇µ∇νφ− 1

4
HµαβH

αβ
ν = 0,

−1

2
∇2φ+ ∇µφ∇µφ− 1

24
HµνρH

µνρ = 0,

∇ρH
ρ
µν − 2(∇ρφ)Hρ

µν = 0. (D.4)

It is also worth noting that we can relateBϕ,θ to Aϕ,θ by T-duality: R↔ α′
R

and qi ↔ βi

if (β1q2 − β2q1) = 0. This includes the supersymmetric cases q1 = ±q2, β1 = ±β2.

E Summary of World-Sheet Fields

Here we summarize various world-sheet fields which appear in this thesis and their

relations.

Melvin sigma model

The original Melvin sigma model (3.4) : (ρ, ϕ, Y ) or (X = ρeiϕ, X̄, Y ).

The second sigma model (3.5) : (ρ, ϕ̃, Y ).

The free field (third) sigma model (3.7) : (ρ, ϕ′, Y ′ = Y + βϕ̃)

or (X ′ = ρeiϕ′′
= ρei(ϕ′+qY ′), X̄ ′, Y ′).

The relations (A.6) of derivatives of world-sheet fields when we perform the T-dual

transformations are given by

∂ϕ̃ = − ρ2

1 + β2ρ2
∂(ϕ+ qY ) − βρ2

1 + β2ρ2
∂Y, ∂ϕ = −1 + β2ρ2

ρ2
(∂ϕ̃+

βρ2

1 + β2ρ2
∂Y ) − q∂Y,

∂̄ϕ̃ =
ρ2

1 + β2ρ2
∂̄(ϕ + qY ) − βρ2

1 + β2ρ2
∂̄Y, ∂̄ϕ =

1 + β2ρ2

ρ2
(∂̄ϕ̃+

βρ2

1 + β2ρ2
∂̄Y ) − q∂̄Y,

∂ϕ′ = − 1

ρ2
∂ϕ̃− q∂Y ′, ∂ϕ̃ = −ρ2∂(ϕ′ + qY ′) = −ρ2∂ϕ′′,

∂̄ϕ′ =
1

ρ2
∂̄ϕ̃− q∂̄Y ′, ∂̄ϕ̃ = ρ2∂̄(ϕ′ + qY ′) = ρ2∂̄ϕ′′. (E.1)
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Higher dimensional Melvin sigma model

The original Melvin sigma model (5.6) : (ρ, ϕ, r, θ) or (X1 = ρeiϕ, X̄1, X2 = reiθ, X̄2, Y ).

We define ϕ̌ = ϕ + q1Y, θ̌ = θ + q2Y .

The free field (third) sigma model (5.7) : (ρ, ϕ′′ = ϕ̌− β1Ỹ
′, r, θ′′ = θ̌ − β2Ỹ

′)

or (X1′ = ρeiϕ′′
, X̄1, X2′ = reiθ′′ , X̄2, Y ′).

The relations of derivatives are given by

−∂Y ′ = ∂Ỹ ′ = − 1

1 + β2
1ρ

2 + β2r2
∂Y +

β1ρ
2

1 + β2
1ρ

2 + β2r2
∂ϕ̌ +

β2r
2

1 + β2
1ρ

2 + β2r2
∂θ̌,

∂̄Y ′ = ∂̄Ỹ ′ = +
1

1 + β2
1ρ

2 + β2r2
∂̄Y +

β1ρ
2

1 + β2
1ρ

2 + β2r2
∂̄ϕ̌ +

β2r
2

1 + β2
1ρ

2 + β2r2
∂̄θ̌.

(E.2)

F Review of Fractional D-branes

Here we would like to briefly review basic facts on fractional D-branes in orbifold

theories and their boundary states. These are useful for the investigation of D-branes in

Melvin background as we see in section 6.

Let us consider noncompact abelian orbifolds Cn/ZN . The generator g of discrete

group ZN acts on the coordinate (X1, X2, · · ·, Xn) of Cn as follows

Xi → e2πi
ki
N Xi. (F.1)

If the group ZN is the subgroup of SU(n), then we have partial supersymmetries preserved.

The results below can be generalized to non-abelian orbifolds Cn/Γ (Γ is a discrete group)

without any difficulty (see e.g. [90, 92, 93, 94]).

The closed string theory in the orbifold consists of an untwisted sector and N − 1

twisted sectors [6]. The gm twisted sector (m = 1, 2, · · ·, N −1) is defined by the following

boundary condition (we show only the result for bosonic fields)

Xi(τ, σ + 2π) = e2πi
mki

N Xi(τ, σ). (F.2)

The open string spectrum is computed by defining the g ∈ Γ action on Chan-Paton

factors. Following the prescription in [89] the action is regarded as representations of ZN .

There are N different types of irreducible representations, which are all one dimensional
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and we denote these by ρa (0 ≤ a ≤ N − 1). Any representation ρ can be decomposed

into irreducible representations ρ = ⊕N−1
a=0 naρa (na ∈ Z). In other words we can classify

D-branes in the orbifold theory in terms of ρa. Thus there are N different types of funda-

mental D-branes corresponding to irreducible representations. These are called fractional

D-branes [91] and are labeled by the integers a. The other systems of D-branes in this

theory correspond to reducible representations. Then we can see that the Chan-Paton

factor Λ of open string between a system of D-branes (corresponding to ρ1) and another

one (ρ2) is acted by g ∈ ZN as follows

Λ′ = γρ1
(g) · Λ · γρ2

(g)−1, (F.3)

where the matrix γρ denotes the representation matrix in the ρ representation. The

explicit form of γρ for irreducible representations is given by γρa(g
m) = e2πiam

N . The open

string is projected by the ZN group in this way. The resulting gauge theories on D-branes

is known to be represented by the quiver diagram conveniently [89].

Next let us construct the boundary states of fractional D-branes. They should be

constructed so that they reproduces the correct cylinder amplitudes equivalent to the

open string spectrum given above (Cardy’s condition). The boundary states include all

of twisted sectors and each of them should satisfy the boundary conditions just like (6.3)

or (6.4). To be exact in our case we have n sets of the conditions of (6.3) or (6.4) and we

should regard each γ as kim/N . These boundary conditions can be easily solved like (6.7)

and we can obtain the complete boundary states as the appropriate linear combinations

of them satisfying the Cardy’s condition [67, 92, 93, 94] as follows

|Ba〉NSNS,RR =
N−1∑
m=0

e2πiam
N |B, gm〉NSNS,RR. (F.4)

The boundary state |B, gm〉NSNS,RR denotes the boundary state for gm twisted sector in

NSNS or RR sector.

We can also show that the fractional D-branes possess the fractional (1/N) tension

and RR-charges [91]. Another important property of fractional D-branes is that they

cannot move away from the origin Xi = 0. This is explained from the observation that

the boundary states (F.4) include the twisted sectors where there are no zero-modes.

Then one may ask whether one can construct movable D-branes. We can obtain such a

D-brane as the regular representation ρreg = ⊕N−1
a=0 ρa (N dimensional). The boundary
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state is given by

|Bbulk〉NSNS,RR =
N−1∑
a=0

|Ba〉NSNS,RR

= N |B0〉NSNS,RR. (F.5)

We can see that the D-brane have an ordinary tension and RR-charge. The absence of

twisted sectors show that it can move from the origin. Thus we have a movable D-brane

and call it a bulk D-brane.
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