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Introduction to the anomaly

Overview (4) Derivation (10) Application (7) String theory (b)




We want to understand the QF Ts.

« Known facts
« Weak coupling theories are understood by the perturbation theory. (e.g. QED)
 Strong coupling theories are very difficult. (e.g. QCD)

 Even though we know the Lagrangian of the theory in high energy(UV), it is
difficult to understand it in low energy(IR).

« Some (relevant) couplings become to larger values in the renormalization
group flow (from UV to IR).

« e.g. QCD, condensed matter theories, etc...

are useful tools to understand the IR theories!
* 't Hooft anomaly matching
—|R effective theories (EFT) need to have the same anomalies of UV theories.
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What is “anomaly”?

An classical action has some symmetries, but sometimes these
symmetries disappear in quantum theory.

iysa(x)
 e.g.) U(1), anomaly (x) —e (),
* In QCD, there is a U(1), symmetry in classical. n T ivs ()
« However, U(1), is not a symmetry in quantum theory. w(‘r) %w(w)e
« U(1), current is not conserved through the triangle diagram. ju
-5
Ju
Ju

« 't Hooft anomaly = “Anomaly of the global symmetry”
 Invariant from the RG flow.

Introduction (2/9) Overview (4) Derivation (10) Application (7) String theory (b)




't Hooft anomaly matching (1)

In particular, the anomalies are important to the ground state
theories!
 Let us take the IR limit.

 There are two possibilities.

(1)Gapped theory (The theory has a mass gap.)
(2)Gapless theory (The theory has NO mass gap.)
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't Hooft anomaly matching (2)

(1)Gapped theory
* In IR limit, there is no propagating modes. There is only the ground state.

 [f UV theory have some 't Hooft anomalies, IR theory becomes the topological
field theory(TQFT).

@V\/%Y% @V}W\/}”?)/
e
g [ st excited stote

Mocs P AN

\4 %voww( atate

MoES QAP N—> <7

—\/ %raww( atate (TQFT)
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't Hooft anomaly matching (3)

(2)Gapless theory

e In IR limit (on the IR fixed point), ej@@rg?/
the theory becomes the conformal
field theory(CFT). /
 There are some massless
propagating modes. \
e If UV theory have some anomalies, _____ﬂl CET
IR theory (near the IR fixed point)
need to have some topological
terms.
Some EFTs

with topological terms

—>
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e.g. massless QCD (1)

An example of the 't Hooft anomaly matching
» UV Lagrangian is known. (SU(N,) Yang-Mills + N massless quarks)

S=]d* . — tr|F*E,, | + Yiy*(9, + A,)
« In classical theory, UV theory has U(Nf)L X U(Nf)R global symmetry.

U(Ng), xU(Nf),

U(1)a
« U(1), is not symmetry in the quantum theory, because of the (ABJ-type) anomaly.

P(x) —e M (),
U(x) —i(x)e )

* In quantum, UV theory has global symmetry.

« U(1), transformation is:

* [IR theory is highly non-trivial, because of the confinement.
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e.g. massless QCD (2)

* IR theory should be gapless, because QCD has chiral SSB.

. CU(Ng) xU(Ng),
+ Chiral SSB : —— 2 ——" - U(Ny),

« There should be massless NG bosons (pions) : massless propagating modes.
« IR EFT is written by the pions : w(x)
U(Nr), x U(Nr)

U(1)4 x U(Ny),

- From the SSB pattern, the IR pion effective field theory is SU(Nf) nonlinear
sigma model.

U= exp(in(x)) € SU(Nf) ~

fi

S=J d4thr[6ﬂU6”UT]

ir(x)

U=exp( 3

) € SU(Nf), fr :the pion decay constant (~QCD scale — Not CFT)
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e.g. massless QCD (3)

't Hooft anomaly matching
« UV anomaly is known — IR EFT need to have the same anomaly.

 From the 't Hooft anomaly matching, the topological term is needed.
* SU(Ny), Wess-Zumino-Witten(WZW) term

« Coupling between the pion and U(Nf)L X U(Nf)R background gauge fields.
—IR EFT : SU(N¢) non-linear sigma model + WZW term

S:/ :L‘f;tr[c’?uUé”“Uq — kgig;Qtr[(UdUT)ﬂ

+(coupling to the background gauge fields)
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e.g. massless QCD (4)

Why is this EFT important?

¥ - 2y
- ¥ is unstable particle in the real world : decay into 2y.
* SU(N¢) non-linear sigma model cannot predict this decay:.

« However, WZW term includes coupling between 7% and y.
« SM gauge fields correspond to the background gauge fields.

. U(Nf)L X U(Nf)R 5 SU(2); x U(D)y

» Because of the anomaly, n° becomes unstable!
e [t is hard to find pions in our daily lives!
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4. Application (7+5)
« Kink, vortex
« With boundary

2. Our work (Overview)(4)
3. Derivation (10) 5. String theory (5)

 How to calculate anomalies - Tachyon condensation

 The anomaly for massless case

» The anomaly for massive case 6. Conclusion (1)
e Superconnection

* The result
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2. Our work (Overview)
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Introduction (9)




Relation between the our work and QCD

In our work, we focus on the chiral symmetry.
» We consider free fermion theory with N¢ flavors.

* This theory has some global symmetries.
. U(Nf)L X U(Nf)R symmetry for even dimension
» U(N;) symmetry for odd dimension

« Basically, we consider the 't Hooft anomaly for these theories.
* Free fermions couple to the background gauge fields for each symmetries.

« What is the new point?
— \We focus on the with these symmetries.

Introduction (9) Overview (1/4) Derivation (10) Application (7) String theory (b)




Theories what we want to think (1)

et us consider 4dim action contain fermions.

S = / d*zpi Py = / d*zapiny* (0, + AL )
« This action is massless, so it has a chiral symmetry U(Nf)L X U(Nf)R.
« There also be a U(1),, anomaly.

« Add mass term S = / d* 1) (’Llﬁ + m>7,b

 Mass term breaks the chiral symmetry.

» Let the mass depend on the spacetime. g / d* ) (’[,D + m(:l:))?,b

« This mass is almost same as the Higgs field.
« How change the symmetry and the anomaly?
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The spacetime dependent mass

T - 7 m(x)

What is “the spacetime dependent mass”? ot
. e.g.) Domain wall fermions

« One way to realize chiral fermions on the lattice.

« Consider bdim spacetime, and realize 4dim
fermions on m(x) = 0 subspace.

> X

x: the fifth
direction

« Chiral anomalies with Higgs fields
 [f Higgs fields change as bifundamental under the
U(Nf X U(Nf) chiral symmetry, the action is
invariant for the symmetry.

[t is known that chiral anomalies are not changed
by adding Higgs fields.

« See Fujikawa-san’s text book. S = / d433‘775 (zD -+ h(i??))@b
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The spacetime dependent mass

. . m(x)
What is ‘dassstacatizaadependent mass™? ot
+ e.2.) Don[BREREE
° One Wi Path Integrals and nions on the - maEeEE sy
. ConSid Quantum Anomalies d realize 4d| i
fermiol ce. ﬁ%ﬁ%ﬁg 1 x: the fifth
YRR EED 4L direction
KAZUO FUJIKAWA Path Integral and Quantum Anomalies T Mo
HIROSHI SUZUKI
e Chiral an: elds
. 8 132 3
- If Higg ndamental |JRediiliie
U(N; etry, the act
Invaria
e [tis kn lies are not «
gLl o '
« See FUREEEEEEEEE - S R 2E+h(a:))¢
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Theories what we want to think (2)

How about the spacetime dependent mass?

« Deference between Higgs and mass

+ Higgs field : bounded S = / ddzaf (zlﬁ + m(a:'))w

« Spacetime dependent mass : unbounded

 |If the mass diverges at some points, it contributes to
the anomaly.

« This contribution might be unknown.
« We can find the anomaly in any dimension.

Derivation (10) Application (7) String theory (b)

T
« The anomaly can be written by “superconnection.” A4 = ( Ap il )
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3. Derivation
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How to calculate anomalies ['79 Fujikawal
Z[A] = / DyDipe™”

 There are several ways to calculate

anomalies. U(z) —e@y(z)
« Today, we focus on the Fujikawa iriﬁs'?gf‘r'ngtﬁ?nv — — —ia(x)
method. Y(x) —(x)e

« Consider path integral for fermions. _ - _
. Anomaly = Jacobian comes from path DYDY =Dy Dy’ = TDYDY

integral measure

. A _
 We only consider perturbative — e i) xa(m)A(w)prw
anomalies.
anomaly
 We calculate / for anomalies in
the last part of this talk. log J = —i / d4$(1{(33)./4($)
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Chiral symmetry

Anomalous symmetries we - U(Ny) flavor symmetry

calculate « For dimension
* No perturbative anomaly as usual.

) U(Nf)L X U(Nf)R chiral symmetry » Dirac fermions couple to U(N)

* For dlr.ner}smn _ background gauge field.
« Because chirality operators exist _ _
only even dimensions. B For dimension
» Weyl fermions couple to u(n;) S = / (Zda;t;iqf“{ay + A, }U
background gauge field 4% an
U(Ny), background gauge field AZ.
For dimension
= - = . 0 oH At 0
S =/ddwwﬂ{au + AP, +Af;P_}¢ — /ddm(wL,wg)z( DT ) {au + ( J AL ) } ( Zif )
— [ afinio" @+ Ao + dric 0, + ALy} p, = Lt
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The anomaly for massless cases

e.g.) fermions in 4dim

- AL 0
| A
- Mass less case o _/d x@bw“{au i ( 0 Al ) }10
» With u(ny), x U(Ny), i = o o o .
chiral sym. :/d ${¢R%0“ (Ou + A )YR + Yric” (0, +AM)¢L}

- U(1), anomaly is written
by the field strengths. ;

« With a Higgs field log J ~ 39,2 /dém(f‘f)eﬁwm“ Fun oo — F Fpg ]
» With u(ny), x U(Ny), B

chiral sym. T ]2

« The u(1), anomaly is

/a(;r)tr [FEANFE — FE AR

same for massless case. S Z/d‘lm@(ilﬁ + h(x))w
. How?about the massive :/d%{&ma“m[}m +Yrict Dy + Yrhg + &Rth}
case’
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The anomaly for massive case (1)

Let us consider spacetime dependent mass!
- The action for general even dim with u(n;) xU(Ny), symmetry is,

I AR 0 ' 0
S :/ddmb {w“‘{a“ + ( O’“’ AL ) }+ ( zmo(:c) im! (z) )}19
= / dda:{wRio“TDf@bR + IZLZ'U“ijwL +rim(z)yYr + wR’i’mT(ZU)@DL}

= / Az Dy

« We assume this . is the Dirac op. for massive case.
D is non-Hermitian.

« For odd dim case, there is only U(Nf) sym, we put 4, = A} = A, and m = m/.
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The anomaly for massive case (2)

Calculate the U(1), anomaly for this action by Fujikawa method.

e m(z')] = oo (J27| = o0)

| denotes some directions which m(x) changes its values.
 If m(x) does not diverge, the anomaly is same for the massless case.

DT D DD

« We use the heat kernel regularization. e A%, e A

 We set a UV cut-off for the eigenvalues of D™D and DDT. s the UV cut-off.

* Generalizations
 [tis easy to get the anomaly for any dimension.

+ Itis also easy to get the anomaly for U(N;) x U(Ny) , not only for U(1)y.
Application (7) String theory (5)
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The anomaly for massive case (3)

e.g.) In 4dim case, the U(1), anomaly is, m =m/A ~Sihe Y cutol

comes from heat

7 , 1 kernel
log J = (2? )2 /d4;ra(;r)Tl‘ VPO { g (FﬁjFpRg - Fﬁ%prﬁr) regularization.
T
1 . s
—+ E (DpﬁzTDyﬁlFfi — DM-ﬁsz-ﬁszj’g + FiDpﬁ?{ D.m

— FLD p-ﬁzDg-ﬁ?T — D,mF B D om + D, mT FE Dg?ﬁ)

LV vp vp

7 7 ! ¥ ~ ~ T ~ - R
(D'u mTD“ mD Pml Dym — D v mD, '?'n.] meDg?ﬂT) } c

L]
24

* This result seems very complicated...
« Can we rewrite it more simple way? — !
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Superconnection (1) (85 Quillen]

« We define the superconnections for even and odd dimensions.
« This is made by Quillen, who is a mathematician, in 198b.
Even dimension

e Superconnection A : U(’Vf)R sauge field (1-form)

A = ( AR oAl ) Ay : U(Ny), gauge field (1-form)

A AL T U(Nf)L X U(Nf)R bifundamental scalar field (0-form)
 Field strength « Supertrace
F =dA + A? a b
R _ i DT Str ( . d ) = tr(a) — tr(d)

B ( DT FL—TT1

Derivation (7/10) Application (7) String theory (b)
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Superconnection (2) (85 Quillen]

Odd dimension

e Superconnection ( A

A = 11 ) A : U(Ny) gauge field (1-form)

A T : U(Ny) adjoint scalar field (0-form)

. Field strength  F =dA + A?
[ F-T2 DT
- 1 DT F —T?

« Supertrace -
Str( Do ) = \/2itr(b)

We apply superconnection to write the anomaly.
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The result (1)

« We can rewrite the U(1), anomaly by superconnection.

N m=m/A
, [/
logJ = —i | — /a(m)Str e’ ] F=dA+ A
27 I form  _ [ FE-TiT DT
—( DT FE—TT1 )
r_ ( FF—mim  i(Dm) o
= iDm FL _ mmT Str( . d ) = tr(a) — tr(d)

- For odd dimension case, put 4, = Aﬁ = Aﬁ and m = mT. Then, we get U(1)

anomaly.
e In odd dimension, the definition of Str is different from the even dim case.

Str( Z Z ) = V/2itr(b)

Derivation (9/10) Application (7) String theory (b)
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The result (2)

o d
Y S F FR—mtm  i(Dm)t
log J = —1 (2W> /a(a:)Str e’ ] F ( )

iDm FL — mml
d—form

* In this formula, m(x) appears only as mi(x). 7, — m/A
« Ais the UV cut-off comes from the heat kernel regularization.

 If m(x) is finite, the mass dependence disappears because we need to take
A — oo,

« The A dependence (or the regulator dependence) of the anomaly disappears
after we integrate Str[e”] over the spacetime.

* |t is easy to check this anomaly is consistent with 4dim massless case.
)

log J =2— /a(a:)tr FEANFT—FEAFPY]
T
Application (7) String theory (5)
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3. Application
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How can we apply this anomaly?

Mass means a wall for some cases!

. e.g.) Domain wall
« Can we make domain walls by this m(x)?
—Yes!

 We can make some systems with boundaries.
« Kink, vortex and general codimension case
« With boundary

 We also discuss about some index theorems.
« APS index theorem

Application (1/7) String theory (b)
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Mass kink for our set up m(y)

 For example, let's consider bdim case.
* In our set up, “kink” means this mass configuration.
-y
m(y) _ uy y — af;5 U E R (fifth direction)
* This “mass” diverges at y -» t+oo.
» 5dim fermions with U(N¢) sym, and the mass depends on only y direction.
« The U(1) anomaly is, )
2 log J =)= [ alx)tr [F'AF
87
e Recall 4dim U(]_)V anomaly, Corres‘ponds to the sign of u.
()
log J =33 /a/(a;')tr FYANFY — FY A FY
i

Application (2/7) String theory (b)
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What is the meaning of the anomaly? m(y)
« 4dim Weyl fermions are localized at y = 0. /

« u > 0 corresponds to chirality + (right-handed) .y
fermion, and u < 0 corresponds to chirality — ith direction)
(left-handed) fermion.

Domain wall fermion mOT"
* This Weyl fermions correspond to domain wall /
fermions.
> X

« But the regularization is different, so that | don’t
know the correspondence in detail.
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Next, we check codim-2 case.

« Vortex is 2dim topological object.

« Let us consider 2r + 2 dim. Z =
* m(z) depends on 2 directions, and it is complex valued “mass”.
* This mass diverges at |z| — oo.

« For simplicity, we put 4; = Ay in 2r 4+ 2dim.

« The U(1), anomaly is, i\
log J = —i (—) /a(w)Str e ]
2T

e This is 2rdim U(1) anomaly with U(Nf)R gauge field.
e If you want to get chirality — (left-handed) result, use m(2) = uz, instead.

m(z) =uzlyxn
m,u:Q'r—l—l o ,&-x,u:er'—l—Q

2r—tform
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General defects

We can apply this formula to general codimension cases.

« When we think d dim system with n dim topological defects, we getd — n
dim U(1) anomalies.

e [f d —nis odd, we get nothing because odd dim mass less fermions are
anomaly-free.

 The mass configurations for general codimension is,

- I I ")/I ZFI (?’L ZOdd)
m(x) = u E [z I
I=1 Y = ( Tt )Cﬂ =even)

* This results correspond to “tachyon condensation” in string theory.
« We will discuss about it in section b.
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With boundary (1)

Let us make some boundaries. m(y)
 Fermions are massive = boundary

Odd dimension (2r dim)

« We realize localized fermions at [0,L].
 The bulk is anomaly-free.
« The anomaly is, m(y)

logj—m_/ oz[ch(F)}errer/
y=0 y

=L 1 1 ,
Ko = §sgn(u) R ngn(u)
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With boundary (2)

Even dimension u'(y — L)g(z) (L <vy)
it m(x) = p(y)g(r) = 0 (0<y<L)

e uyg(z) (y <0)

« The anomaly is,

10gj = —1 / Y |iC—11(F_}_) — Ch(F_)}Qr — 1 / Y {w}gr_l + 1 / Oc’{wbr_l
JOo<y<L y=L J y=0

* w is Chern-Simons form.
 Anomaly from bulk + CS
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5. String theory
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String theory

Let us check the relation between this anomaly and string
theory.

« Consider type |IA or [IB string theory with D-branes.
* Open strings have their ends on D-branes.
« Excitation modes of these open strings — Fields on D-branes
* Open strings on D,-branes — QFT inp + 1 dim

* In some cases, excitation modes of the strings have tachyon modes.
 Lowest excitation modes are m? < 0. (Tachyon mode)
 Non-BPS states have tachyons.

« This tachyonic modes are unstable. —
« See Sen’s review [hep-th/9904207].
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Tachyon condensation (1)

« Tachyonic modes are unstable, so the tachyons have non-zero VEV.

* Non-trivial configuration of tachyon is also realizable.
V(T) T(x)

e.g.) D-brane and anti D-brane (D-brane) system
 Non-BPS state

« Tachyonic modes appear in D — D string. E
. Tt =
. The shape of tachyon potential is known. V(T') =e
* If tachyon configuration is trivial, the D-branes disappear. :
0
Introduction (9) Overview (4) Derivation (10) Application (7) String theory (2/5)




Tachyon condensation (2)

Kink on tachyon in D, — D,, system
« Tachyonic kinks for this system is,

I
T@=u)ral ()

» We get D,,_,,-branes from this tachyon.

» It D,,_,,-branes are non-BPS, tachyons still exist on the D-branes.
 In this case, tachyon condensation occur again.

D,-branes  D,-branes D,_n-branes
— —
U(N) x U(N)
symmetry U(N) symmetry
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Tachyon condensation (3)

* The superconnection is used in the context of tachyon condensation.
e This structure comes from RR-coupling of D-branes.

cf.) ['98 Witten] [hep-th/9810188]
'99 Kennedy-Wilkins] [hep-th/9905195] S = Tho /C A Qtp @27 iF
’01 Kuraus-Larsen] [hep-th/0012198]

'01 Takayanagi-Terashima-Uesugi] [hep-th/0012210]

« The tachyon configuration is given by ['98 Witten].

 In this paper, relation between tachyon condensation and is
discussed.

 This tachyon configuration comes from ['64 Atiyah-Bott-Shapiro]

T(x) = UZFI:UI
I=1
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Relation between the anomaly and string

* This tachyon configuration is same for the mass defect in section 3!
T(:C)ZUZFIZCI m(a:):uZFIxI
I=1 I=1

« This anomaly can be understood from string theory.
 Fermions are found where D-branes intersect.
« This is similar to flavor symmetry on holographic QCD model.
(Sakai-Sugimoto model)

Dp-brafrlej r_JDHp—branes Dp—nr‘_k?f”es
fermion
4 N N\
U(N) x U(N)
| symmetry U(N) symmetry
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Conclusion

« We discussed about perturbative anomaly with
 If value of the mass , non-trivial contribution of the mass appears.

« The anomaly can be written by

log J = —i (%) /oz(x)Str o] ,

d—form

FE_—mim  i(Dm)f
iDm FL —mml

 There are some applications.

« Kink, vortex, ...
« With boundary
* Index theorem
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