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Motiation

We want to understand the QFTs.
• Known facts

• Weak coupling theories are understood by the perturbation theory. (e.g. QED)

• Strong coupling theories are very difficult. (e.g. QCD)

• Even though we know the Lagrangian of the theory in high energy(UV), it is 
difficult to understand it in low energy(IR).
• Some (relevant) couplings become to larger values in the renormalization 

group flow (from UV to IR).

• e.g. QCD, condensed matter theories, etc...

• The anomalies are useful tools to understand the IR theories!
• ’t Hooft anomaly matching

→IR effective theories (EFT) need to have the same anomalies of UV theories.
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What is “anomaly”?
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Anomaly (Quantum Anomaly)

An classical action has some symmetries, but sometimes these 
symmetries disappear in quantum theory.
• e.g.) 𝑈 1 𝐴 anomaly

• In QCD, there is a 𝑈 1 𝐴 symmetry in classical.
• However, 𝑈 1 𝐴 is not a symmetry in quantum theory.
• 𝑈 1 𝐴 current is not conserved through the triangle diagram.

’t Hooft anomaly
• ’t Hooft anomaly = “Anomaly of the global symmetry”

• Invariant from the RG flow.
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’t Hooft anomaly matching (1)

In particular, the anomalies are important to the ground state 
theories!
• Let us take the IR limit.

• There are two possibilities.

(1)Gapped theory  (The theory has a mass gap.)

(2)Gapless theory  (The theory has NO mass gap.)
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’t Hooft anomaly matching (2)

(1)Gapped theory

• In IR limit, there is no propagating modes. There is only the ground state.

• If UV theory have some ’t Hooft anomalies, IR theory becomes the topological 
field theory(TQFT).

IR limit

(TQFT)
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’t Hooft anomaly matching (3)

(2)Gapless theory

• In IR limit (on the IR fixed point), 
the theory becomes the conformal 
field theory(CFT).

• There are some massless 
propagating modes.

• If UV theory have some anomalies, 
IR theory (near the IR fixed point) 
need to have some topological 
terms.

CFT

→IR theory is almost determined by the UV anomalies!

Some EFTs
with topological terms
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e.g. massless QCD (1)

An example of the ’t Hooft anomaly matching

• UV Lagrangian is known. (𝑆𝑈(𝑁𝑐) Yang-Mills + 𝑁𝑓 massless quarks)

𝑆 = න𝑑4𝑥 −
1

2𝑔2
tr 𝐹𝜇𝜈𝐹𝜇𝜈 + ത𝜓𝑖𝛾𝜇 𝜕𝜇 + 𝐴𝜇 𝜓

• In classical theory, UV theory has 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

global symmetry.

• In quantum, UV theory has 
𝑈 𝑁𝑓 𝐿

×𝑈 𝑁𝑓 𝑅

𝑈 1 𝐴
global symmetry.

• 𝑈 1 𝐴 is not symmetry in the quantum theory, because of the (ABJ-type) anomaly.

• 𝑈 1 𝐴 transformation is : 

• IR theory is highly non-trivial, because of the confinement.
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e.g. massless QCD (2)

• IR theory should be gapless, because QCD has chiral SSB.

• Chiral SSB : 
𝑈 𝑁𝑓 𝐿

×𝑈 𝑁𝑓 𝑅

𝑈 1 𝐴
→ 𝑈 𝑁𝑓 𝑉

• There should be massless NG bosons (pions) : massless propagating modes.

• IR EFT is written by the pions : 𝜋 𝑥

𝑈 = exp 𝑖𝜋 𝑥 ∈ 𝑆𝑈 𝑁𝑓 ∼
𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅

𝑈 1 𝐴 × 𝑈 𝑁𝑓 𝑉

• From the SSB pattern, the IR pion effective field theory is 𝑆𝑈(𝑁𝑓) nonlinear 
sigma model.

𝑆 = ∫ 𝑑4𝑥
𝑓𝜋
2

4
tr 𝜕𝜇𝑈𝜕

𝜇𝑈†

𝑈 = exp
𝑖𝜋 𝑥

𝑓𝜋
∈ 𝑆𝑈(𝑁𝑓),   𝑓𝜋 : the pion decay constant (～QCD scale → Not CFT)

Introduction (7/9)



Introduction (9) Overview (4) Derivation (10) Application (7) String theory (5)

e.g. massless QCD (3)

’t Hooft anomaly matching
• UV anomaly is known → IR EFT need to have the same anomaly.

• From the ’t Hooft anomaly matching, the topological term is needed.

• 𝑆𝑈 𝑁𝑓 1
Wess-Zumino-Witten(WZW) term

• Coupling between the pion and 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

background gauge fields.

→IR EFT : 𝑆𝑈(𝑁𝑓) non-linear sigma model + WZW term

+(coupling to the background gauge fields)
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e.g. massless QCD (4)

Why is this EFT important?

𝜋0 → 2𝛾
• 𝜋0 is unstable particle in the real world : decay into 2𝛾.

• 𝑆𝑈(𝑁𝑓) non-linear sigma model cannot predict this decay.

• However, WZW term includes coupling between 𝜋0 and 𝛾.
• SM gauge fields correspond to the background gauge fields.

• 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

⊃ 𝑆𝑈 2 𝐿 × 𝑈 1 𝑌

• Because of the anomaly, 𝜋0 becomes unstable!
• It is hard to find pions in our daily lives!

The anomaly is very strong tool to understand QFTs.
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2. Our work (Overview)
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Relation between the our work and QCD

In our work, we focus on the chiral symmetry.

• We consider free fermion theory with 𝑁𝑓 flavors.

• This theory has some global symmetries.

• 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

symmetry for even dimension

• 𝑈 𝑁𝑓 symmetry for odd dimension

• Basically, we consider the ’t Hooft anomaly for these theories.
• Free fermions couple to the background gauge fields for each symmetries.

• What is the new point?

→ We focus on the massive theory with these symmetries.

Overview (1/4)



Introduction (9) Overview (4) Derivation (10) Application (7) String theory (5)

Theories what we want to think (1)

Let us consider 4dim action contain fermions.

• This action is massless, so it has a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

• There also be a 𝑈 1 𝐴 anomaly.

• Add mass term
• Mass term breaks the chiral symmetry.

• Let the mass depend on the spacetime.
• This mass is almost same as the Higgs field.

• How change the symmetry and the anomaly?
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The spacetime dependent mass

𝑥: the fifth 
direction

What is “the spacetime dependent mass”?
• e.g.) Domain wall fermions

• One way to realize chiral fermions on the lattice.
• Consider 5dim spacetime, and realize 4dim 

fermions on 𝑚 𝑥 = 0 subspace.

• Chiral anomalies with Higgs fields
• If Higgs fields change as bifundamental under the 
𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry, the action is 

invariant for the symmetry.
• It is known that chiral anomalies are not changed 

by adding Higgs fields.
• See Fujikawa-san’s text book.
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Theories what we want to think (2)

How about the spacetime dependent mass?
• The chiral anomaly is changed by the mass!!

• Deference between Higgs and mass
• Higgs field : bounded

• Spacetime dependent mass : unbounded

• If the mass diverges at some points, it contributes to 
the anomaly.
• This contribution might be unknown.

• We can find the anomaly in any dimension.

• The anomaly can be written by “superconnection.”
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3. Derivation
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How to calculate anomalies

Fujikawa method
• There are several ways to calculate 

anomalies.

• Today, we focus on the Fujikawa 
method.
• Consider path integral for fermions.
• Anomaly = Jacobian comes from path 

integral measure
• We only consider perturbative 

anomalies.

• We calculate log𝒥 for anomalies in 
the last part of this talk.

[’79 Fujikawa]

anomaly

e.g.) local 𝑈 1 𝑉

transformation
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Chiral symmetry

Anomalous symmetries we 
calculate
• 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry

• For even dimension

• Because chirality operators exist 
only even dimensions.

• Weyl fermions couple to 𝑈 𝑁𝑓 𝐿
background gauge field 𝐴𝜇𝐿 and 
𝑈 𝑁𝑓 𝑅

background gauge field 𝐴𝜇𝑅.

• 𝑈(𝑁𝑓) flavor symmetry
• For odd dimension

• No perturbative anomaly as usual.

• Dirac fermions couple to 𝑈(𝑁𝑓)
background gauge field.

For odd dimension

For even dimension
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The anomaly for massless cases

e.g.) fermions in 4dim
• Mass less case

• With 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral sym.

• 𝑈 1 𝑉 anomaly is written 
by the field strengths.

• With a Higgs field
• With 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral sym.

• The 𝑈 1 𝑉 anomaly is 
same for massless case.

• How about the massive 
case?

Derivation (3/10)
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The anomaly for massive case (1)

Let us consider spacetime dependent mass!
• The action for general even dim with 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
symmetry is,

• We assume this 𝒟 is the Dirac op. for massive case.
• 𝒟 is non-Hermitian.

• For odd dim case, there is only 𝑈(𝑁𝑓) sym, we put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†.

Derivation (4/10)
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The anomaly for massive case (2)

Calculate the 𝑈 1 𝑉 anomaly for this action by Fujikawa method.

• We take 𝒎(𝒙) divergent.

• 𝐼 denotes some directions which 𝑚(𝑥) changes its values.

• If 𝑚(𝑥) does not diverge, the anomaly is same for the massless case.

• We use the heat kernel regularization.
• We set a UV cut-off for the eigenvalues of 𝒟†𝒟 and 𝒟𝒟†.

• Generalizations
• It is easy to get the anomaly for any dimension.

• It is also easy to get the anomaly for 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

, not only for 𝑈 1 𝑉.

Λ is the UV cut-off.
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The anomaly for massive case (3)

e.g.) In 4dim case, the 𝑈 1 𝑉 anomaly is,

• This result seems very complicated...

• Can we rewrite it more simple way?  →  Superconnection!

Λ is the UV cut-off 
comes from heat 

kernel 
regularization.
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Superconnection (1)

• We define the superconnections for even and odd dimensions.

• This is made by Quillen, who is a mathematician, in 1985.

Even dimension
• Superconnection

• Field strength

[’85 Quillen]

𝐴𝑅 : 𝑈 𝑁𝑓 𝑅
gauge field (1-form)

𝐴𝐿 : 𝑈 𝑁𝑓 𝐿
gauge field (1-form)

𝑇 : 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

bifundamental scalar field (0-form)

• Supertrace

Derivation (7/10)



Introduction (9) Overview (4) Derivation (10) Application (7) String theory (5)

Superconnection (2)

Odd dimension
• Superconnection

• Field strength

• Supertrace

We apply superconnection to write the anomaly.

[’85 Quillen]

𝐴 : 𝑈(𝑁𝑓) gauge field (1-form)

𝑇 : 𝑈(𝑁𝑓) adjoint scalar field (0-form)

Derivation (8/10)
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The result (1)

• We can rewrite the 𝑈 1 𝑉 anomaly by superconnection.

• For odd dimension case, put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†. Then, we get 𝑈(1)
anomaly.
• In odd dimension, the definition of Str is different from the even dim case.
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The result (2)

• In this formula, 𝑚(𝑥) appears only as ෥𝑚(𝑥).
• Λ is the UV cut-off comes from the heat kernel regularization.

• If 𝑚(𝑥) is finite, the mass dependence disappears because we need to take 
Λ → ∞. 

• The Λ dependence (or the regulator dependence) of the anomaly disappears 
after we integrate Str[eℱ] over the spacetime.

• It is easy to check this anomaly is consistent with 4dim massless case.
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3. Application

Application (7)
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How can we apply this anomaly?

Mass means a wall for some cases!
• e.g.) Domain wall

• Can we make domain walls by this 𝑚(𝑥)?

→Yes!

• We can make some systems with boundaries.
• Kink, vortex and general codimension case

• With boundary

• We also discuss about some index theorems.
• APS index theorem

• Callias type index theorem

Application (1/7)
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Kink (1)

Mass kink for our set up
• For example, let’s consider 5dim case.

• In our set up, “kink” means this mass configuration.

• This “mass” diverges at 𝑦 → ±∞.

• 5dim fermions with 𝑈(𝑁𝑓) sym, and the mass depends on only 𝑦 direction.

• The 𝑈(1) anomaly is,

• Recall 4dim 𝑈 1 𝑉 anomaly, Corresponds to the sign of 𝑢 .
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Kink (2)

What is the meaning of the anomaly?
• 4dim Weyl fermions are localized at 𝑦 = 0.

• 𝑢 > 0 corresponds to chirality + (right-handed) 
fermion, and 𝑢 < 0 corresponds to chirality –
(left-handed) fermion.

Domain wall fermion
• This Weyl fermions correspond to domain wall 

fermions.
• But the regularization is different, so that I don’t 

know the correspondence in detail.

Application (3/7)
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Vortex

Next, we check codim-2 case.
• Vortex is 2dim topological object.

• Let us consider 2𝑟 + 2 dim.
• 𝑚(𝑧) depends on 2 directions, and it is complex valued “mass”.

• This mass diverges at 𝑧 → ∞.

• For simplicity, we put 𝐴𝐿 = 𝐴𝑅 in 2𝑟 + 2dim.

• The 𝑈 1 𝑉 anomaly is,

• This is 2𝑟dim 𝑈(1) anomaly with 𝑈 𝑁𝑓 𝑅
gauge field.

• If you want to get chirality – (left-handed) result, use 𝑚 ҧ𝑧 = 𝑢 ҧ𝑧, instead.

Application (4/7)



Introduction (9) Overview (4) Derivation (10) Application (7) String theory (5)

General defects

We can apply this formula to general codimension cases.
• When we think 𝑑 dim system with 𝑛 dim topological defects, we get 𝑑 − 𝑛

dim 𝑈(1) anomalies.
• If 𝑑 − 𝑛 is odd, we get nothing because odd dim mass less fermions are 

anomaly-free.

• The mass configurations for general codimension is,

• This results correspond to “tachyon condensation” in string theory.
• We will discuss about it in section 5.
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With boundary (1)

Let us make some boundaries.
• Fermions are massive = boundary

Odd dimension (2r dim)
• We realize localized fermions at [0,𝐿].

• The bulk is anomaly-free.

• The anomaly is,

Application (6/7)
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With boundary (2)

Even dimension

• The anomaly is,

• 𝜔 is Chern-Simons form.

• Anomaly from bulk + CS

Application (7/7)



Introduction (9) Overview (4) Derivation (10) Application (7) String theory (5)

5. String theory

String theory (5)
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String theory

Let us check the relation between this anomaly and string 
theory.
• Consider type IIA or IIB string theory with D-branes.

• Open strings have their ends on D-branes.

• Excitation modes of these open strings → Fields on D-branes

• Open strings on D𝑝-branes → QFT in 𝑝 + 1 dim

• In some cases, excitation modes of the strings have tachyon modes.
• Lowest excitation modes are 𝑚2 < 0. (Tachyon mode)

• Non-BPS states have tachyons.

• This tachyonic modes are unstable. → Tachyon condensation

• See Sen’s review [hep-th/9904207].

String theory (1/5)
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Tachyon condensation (1)

• Tachyonic modes are unstable, so the tachyons have non-zero VEV.
• Non-trivial configuration of tachyon is also realizable.

e.g.) 𝐷-brane and anti 𝐷-brane (ഥ𝐷-brane) system
• Non-BPS state

• Tachyonic modes appear in 𝐷 − ഥ𝐷 string.
• The shape of tachyon potential is known.

• If tachyon configuration is trivial, the 𝐷-branes disappear.

String theory (2/5)
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Tachyon condensation (2)

Kink on tachyon in 𝐷𝑝 − ഥ𝐷𝑝 system

• Tachyonic kinks for this system is, 

• We get 𝐷𝑝−𝑛-branes from this tachyon.

• If 𝐷𝑝−𝑛-branes are non-BPS, tachyons still exist on the 𝐷-branes.

• In this case, tachyon condensation occur again.

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (3/5)
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Tachyon condensation (3)

• The superconnection is used in the context of tachyon condensation.
• This structure comes from RR-coupling of D-branes.

cf.) [’98 Witten] [hep-th/9810188]

[’99 Kennedy-Wilkins] [hep-th/9905195]

[’01 Kuraus-Larsen] [hep-th/0012198]

[’01 Takayanagi-Terashima-Uesugi] [hep-th/0012210]

• The tachyon configuration is given by [’98 Witten].
• In this paper, relation between tachyon condensation and K-theory is 

discussed.

• This tachyon configuration comes from [’64 Atiyah-Bott-Shapiro]

String theory (4/5)
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Relation between the anomaly and string

• This tachyon configuration is same for the mass defect in section 3!

• This anomaly can be understood from string theory.
• Fermions are found where 𝐷-branes intersect.

• This is similar to flavor symmetry on holographic QCD model. 

(Sakai-Sugimoto model)

fermion

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (5/5)
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Conclusion

• We discussed about perturbative anomaly with spacetime dependent mass.
• If value of the mass diverge, non-trivial contribution of the mass appears.

• The anomaly can be written by superconnection.

• There are some applications.
• Kink, vortex, ...

• With boundary

• Index theorem


