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What is “anomaly”? (1)

An classical action has some symmetries, but sometimes
these symmetries disappear in quantum theory. Ju

Ju

e.g.) n° - 2y
« In massless QCD, there is a chiral symmetry SU(Nf)L X SU(Nf)R.

N¢: # of tlavors
* |If there is NO anomaly, ° never decays.
- However, ¥ decays into 2y, because of an anomaly!
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Theories what we want to think (1)

et us consider 4dim action contain fermions.

S = / d*zpi Py = / d*zapiny* (0, + AL )
« This action is massless, so it has a chiral symmetry U(Nf)L X U(Nf)R.
« There also be a U(1),, anomaly.

« Add mass term S = / d* 1) (’Llﬁ + m>7,b

 Mass term breaks the chiral symmetry.

» Let the mass depend on the spacetime. g / d* ) (’[,D + m(:l:))?,b

« This mass is almost same as the Higgs field.
« How change the symmetry and the anomaly?

Introduction (3/5) Derivation (10) Application (7) Index theorem (5) String theory (5)



The spacetime dependent mass

T - 7 m(x)

What is “the spacetime dependent mass”? ot
. e.g.) Domain wall fermions

« One way to realize chiral fermions on the lattice.

« Consider bdim spacetime, and realize 4dim
fermions on m(x) = 0 subspace.

> X

x: the fifth
direction

« Chiral anomalies with Higgs fields

 [f Higgs fields change as bifundamental under the
U(Nf X U(Nf) chiral symmetry, the action is
invariant for the symmetry.

[t is known that chiral anomalies are not changed
by adding Higgs fields.

« See Fujikawa-san’s text book. S = / d433‘775 (zD -+ h(i??))@b
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The spacetime dependent mass

. . m(x)
What is ‘dassstacatizaadependent mass™? ot
+ e.2.) Don[BREREE
° One Wi Path Integrals and nions on the - maEeEE sy
. ConSid Quantum Anomalies d realize 4d| i
fermiol ce. ﬁ%ﬁ%ﬁg 1 x: the fifth
YRR EED 4L direction
KAZUO FUJIKAWA Path Integral and Quantum Anomalies T Mo
HIROSHI SUZUKI
e Chiral an: elds
. 8 132 3
- If Higg ndamental |JRediiliie
U(N; etry, the act
Invaria
e [tis kn lies are not «
gLl o '
« See FUREEEEEEEEE - S R 2E+h(a:))¢
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Theories what we want to think (2)

How about the spacetime dependent mass?

« Deference between Higgs and mass

+ Higgs field : bounded S = / ddzaf (zlﬁ + m(a:'))w

« Spacetime dependent mass : unbounded

 |If the mass diverges at some points, it contributes to
the anomaly.

« This contribution might be unknown.
« We can find the anomaly in any dimension.
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T
« The anomaly can be written by “superconnection.” A4 = ( Ap il )
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3. Application (7)
« Kink, vortex
« With boundary

2. Derivation (10)

« How to calculate anomalies
 The anomaly for massless case
« The anomaly for massive case

e Superconnection 5. String theory (5)
 The result .
« Tachyon condensation

4. Index theorem (5)

e Index for massive case
« APS index theorem

6. Conclusion (1)

Introduction (5) Derivation (10) Application (7) Index theorem (5) String theory (5)



How to calculate anomalies ['79 Fujikawal
Z[A] = / DyDipe™ "

 There are several ways to calculate

anomalies. U(z) —e@y(z)
« Today, we focus on the Fujikawa iriﬁs'?gf‘r'ngtﬁ?nv — — —ia(x)
method. Y(x) —(x)e

« Consider path integral for fermions. _ - _
. Anomaly = Jacobian comes from path DYDY =Dy Dy’ = TDYDY

integral measure

. A _
 We only consider perturbative — e i) xa(m)A(w)prw
anomalies.
anomaly
 We calculate for anomalies in
the last part of this talk. log J = —i / d4$(1{(33)./4($)
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Chiral symmetry

Anomalous symmetries we - U(Ny) flavor symmetry

calculate « For dimension
* No perturbative anomaly as usual.

) U(Nf)L X U(Nf)R chiral symmetry » Dirac fermions couple to U(N)

» For dir.ner}sion _ background gauge field.
« Because chirality operators exist _ _
only even dimensions. B For dimension
» Weyl fermions couple to u(n;) S = / (Zda;t;iqf“{ay + A, }U
background gauge field 4% an
U(Ny), background gauge field AZ. .
For imension
R
S:/ddww{aﬁAﬁa +Af;P_}¢ — /ddm(@L,zﬁR)i( o ) {aﬁ ( A b ) } ( Zf;f )
i
:/dd:c{zﬂmo”(au + Aff)lDR + Yriot (9, + Aﬁ)w,;} P, — 1= Yd+1
2
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The anomaly for massless cases

e.g.) fermions in 4dim

- AL 0
| A
- Mass less case o _/d x@bw“{au i ( 0 Al ) }10
» With u(ny), x U(Ny), i = o o o .
chiral sym. :/d ${¢R%0“ (Ou + A )YR + Yric” (0, +AM)¢L}

- U(1), anomaly is written
by the field strengths. ;

- _ 4 D\ UV PO 4, R R oL oL
. With a Higgs field log J =55 f d o)t [Fl Fyp — Fu Fp

» With u(ny), x U(Ny), i
chiral sym. T ]2

« The u(1), anomaly is )
same for massless case. S Z/d‘lw(ilﬁ + h(x))w

/a(;r)tr [FEANFE — FE AR

. How?about the massive :/d%{&ma“m[}m +Yrict Dy + Yrhg + &Rth}
case”
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The anomaly for massive case (1)

Let us consider spacetime dependent mass!
- The action for general even dim with u(n;) xU(Ny), symmetry is,

I AR 0 ' 0
S :/ddmb {w“‘{a“ + ( O’“’ AL ) }+ ( zmo(:c) im! (z) )}19
= / dda:{wRio“TDf@bR + IZLZ'U“ijwL +rim(z)yYr + wR’i’mT(ZU)@DL}

= / Az Dy

« We assume this . is the Dirac op. for massive case.

D is non-Hermitian.
« For odd dim case, there is only U(Nf) sym, we put 4, = A} = A, and m = m/.
Derivation (4/10)
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The anomaly for massive case (2)

Calculate the U(1), anomaly for this action by Fujikawa method.

e m(z')] = oo (J27| = o0)

| denotes some directions which m(x) changes its values.
 If m(x) does not diverge, the anomaly is same for the massless case.

DT D DD

« We use the heat kernel regularization. e A%, e A

 We set a UV cut-off for the eigenvalues of D™D and DDT. s the UV cut-off.

* Generalizations
 [tis easy to get the anomaly for any dimension.

+ Itis also easy to get the anomaly for U(N;) x U(Ny) , not only for U(1)y.
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The anomaly for massive case (3)

e.g.) In 4dim case, the U(1), anomaly is, m =m/A ~Sihe Y cutol

comes from heat

7 , 1 kernel
log J = (2? )2 /d4;ra(;r)Tl‘ VPO { g (FﬁjFpRg - Fﬁ%prﬁr) regularization.
T
1 . s
—+ E (DpﬁzTDyﬁlFfi — DM-ﬁsz-ﬁszj’g + FiDpﬁ?{ D.m

— FLD p-ﬁzDg-ﬁ?T — D,mF B D om + D, mT FE Dg?ﬁ)

LV vp vp

7 7 ! ¥ ~ ~ T ~ - R
(D'u mTD“ mD Pml Dym — D v mD, '?'n.] meDg?ﬂT) } c

L]
24

* This result seems very complicated...
« Can we rewrite it more simple way? — !
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Superconnection (1) (85 Quillen]

« We define the superconnections for even and odd dimensions.
« This is made by Quillen, who is a mathematician, in 198b.
Even dimension

e Superconnection A : U(’Vf)R sauge field (1-form)

A = ( AR oAl ) Ay : U(Ny), gauge field (1-form)

A AL T U(Nf)L X U(Nf)R bifundamental scalar field (0-form)
 Field strength « Supertrace
F =dA + A? a b
R _ i DT Str ( . d ) = tr(a) — tr(d)

—< DT FL—TT1 )
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Superconnection (2) (85 Quillen]

Odd dimension

e Superconnection ( A

A = 11 ) A : U(Ny) gauge field (1-form)

A T : U(Ny) adjoint scalar field (0-form)

- Field strength  F =dA + A?
[ F-T2 DT
o 1 DT F —T?

« Supertrace -
Str( Do ) = \/2itr(b)

We apply superconnection to write the anomaly.
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The result (1)

« We can rewrite the U(1), anomaly by superconnection.

.\ 4 m=m/A
, [/
logJ = —i | — /a(m)Str e’ ] F=dA+ A
2T I form  _ [ FE-TiT DT
—( DT FE—TT1 )
r_ ( FF—mim  i(Dm) -
= iDm FL _ mmT Str( . d ) = tr(a) — tr(d)

- For odd dimension case, put 4, = Aﬁ = Aﬁ and m = mT. Then, we get U(1)

anomaly.
e In odd dimension, the definition of Str is different from the even dim case.

Str( Z Z ) = V/2itr(b)

Index theorem (5) String theory (5)
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The result (2)

o d
Y S F FR—mtm  i(Dm)t
log J = —1 (2W> /a(a:)Str e’ ] F ( )

iDm FL — mml
d—form

* In this formula, m(x) appears only as mi(x). 7, — m/A
« Ais the UV cut-off comes from the heat kernel regularization.

 If m(x) is finite, the mass dependence disappears because we need to take
A — oo,

« The A dependence (or the regulator dependence) of the anomaly disappears
after we integrate Str[e”] over the spacetime.

* |t is easy to check this anomaly is consistent with 4dim massless case.
)

log J =2— /a(a:)tr FEANFT—FEAFPY]
7i8
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3. Application
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How can we apply this anomaly?

Mass means a wall for some cases!

. e.g.) Domain wall
« Can we make domain walls by this m(x)?
—Yes!

 We can make some systems with boundaries.
« Kink, vortex and general codimension case
« With boundary

 We also discuss about some index theorems.
« APS index theorem
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Mass kink for our set up m(y)

 For example, let's consider bdim case.
* In our set up, “kink” means this mass configuration.
>y
m(y) _ uy y — af;5 U E R (fifth direction)
* This “mass” diverges at y -» t+oo.
» 5dim fermions with U(N¢) sym, and the mass depends on only y direction.
« The U(1) anomaly is, )
2 log J =)= [ alx)tr [F'AF
87
e Recall 4dim U(]_)V anomaly, Corresponds to the sign of u.
(
log J =33 /a/(a;')tr FYANFY — FY A FY
708
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What is the meaning of the anomaly? m(y)
« 4dim Weyl fermions are localized at y = 0. /
« u > 0 corresponds to chirality + (right-handed) .y
fermion, and u < 0 corresponds to chirality — ith hrection)
(left-handed) fermion.

Domain wall fermion

* This Weyl fermions correspond to domain wall
fermions.

« But the regularization is different, so that | don’t
know the correspondence in detail.

> X
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Next, we check codim-2 case.

« Vortex is 2dim topological object.

« Let us consider 2r + 2 dim. Z =
* m(z) depends on 2 directions, and it is complex valued “mass”.
* This mass diverges at |z| — oo.

« For simplicity, we put 4; = Ay in 2r 4+ 2dim.

« The U(1), anomaly is, i\
log J = —i (—) /a(w)Str e ]
2T

e This is 2rdim U(1) anomaly with U(Nf)R gauge field.
e If you want to get chirality — (left-handed) result, use m(2) = uz, instead.

m(z) =uzlyxn
m,u:Q'r—l—l . ,&-x,u:er'—l—Q

2r—tform

Index theorem (5) String theory (5)
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General defects

We can apply this formula to general codimension cases.

« When we think d dim system with n dim topological defects, we getd — n
dim U(1) anomalies.

e [f d —nis odd, we get nothing because odd dim mass less fermions are
anomaly-free.

 The mass configurations for general codimension is,

- I I ")/I ZFI (?’L ZOdd)
m(x) = u E [z I
I=1 Y = ( Tt )Cﬂ =even)

* This results correspond to “tachyon condensation” in string theory.
« We will discuss about it in section b.
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With boundary (1)

Let us make some boundaries. m(y)
 Fermions are massive = boundary

Odd dimension (2r dim)

« We realize localized fermions at [0,L].
 The bulk is anomaly-free.
« The anomaly is, m(y)

logj—m_/ oz[ch(F)}errer/
y=0 y

=L 1 1 ,
fo = =sgn(u), Ky = =sgn(u)
2 2
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With boundary (2)

Even dimension u'(y — L)g(z) (L <vy)
it m(x) = p(y)g(r) = 0 (0<y<L)

e uyg(z) (y <0)

« The anomaly is,

10gj = —1 / Y |iC—11(F_}_) — Ch(F_)}Qr — 1 / Y {w}gr_l + 1 / Oc’{wbr_l
JOo<y<L y=L J y=0

* w is Chern-Simons form.
 Anomaly from bulk + CS
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4. Index theorem
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Index for massive Dirac op. (1)

« We will discuss index theorems for the massive Dirac operator D.
« We just consider flat spacetime.

porrfo+ (4 SV (0 ) S = [ (@it

Ind(D) = dim ker(D) — dim ker(DT)
Chern character

« We need to define Chern character for the superconnection.
« The Chern character for massive case is,

k
i\ 3 S PR s
ch(F) = Z (%> Str [e Hk_form F = ( iD;z m Fi(_”%?m )

k>0
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Index for massive Dirac op. (2)

« We can write the U(1) anomaly by the Chern character.

logJ =—1 (%) /a(az)Str {GF} = —i/a(ﬂf)Ch(F)

d—form

 The index for the massive Dirac operator is, Ind(D) _ /Ch(f)

« For closed manifolds, this is Atiyah-Singer index theorem.

|

 Let us consider 2r dimensional system with boundary. m(y)
 We can make the boundary with the mass. t
« The index will be Atiyah-Patodi-Singer(APS) index. yio =1
e Let’s check the index! y
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APS index theorem (1) ['75 Atiyah-Patodi-Singer]

APS index theorem

« APS index is the index for open manifold with boundaries.
« APS index = bulk index + n-invariant on the boundaries
* In APS paper, they introduce APS boundary condition, which is non-local
boundary condition for fermions.
It is known that APS index is realized with local boundary condition.
 ["17 Fukaya-Onogi-Yamaguchi]| [hep-th/1710.03379]

 |f you use domain walls for boundaries, you can use local boundary condition

for fermions.
m(y)

yF0 y=L/:y
* Let us consider both boundary conditions in our set up.
 We can realize boundaries by mass; this is very similar to DW set up.
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APS index theorem (2)

APS index in our set up |
* The index is, d(D) = fim [ [eh(F) + 5l Y
A— o0 y_<y<y, 2 y=y-
« This is the APS index theorem for the massive Dirac operators in 2r dim with
boundaries at y = y,.
« We just consider m(x) depends on only one direction y.

* Let us consider APS index for 2r dim system in
previous section.
* If you take y, = L and y_ = 0, then you will get APS
index with APS boundary condition. ’T1° - y

 But in this case, mass does not work because the
Dirac op. is masslessin 0 < y < L.

m(Ay)

Ind(Dlo.1]) = / ch(F,) — ch(F_)], — % {U(fwfrl)) B I](UD(%U)} y=L

J 0<y<L y=0
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APS index theorem (3)

APS index with mass me)

e Let us put y, = o0 and y_ = —oo. yLo y=1
« Boundaries come from the mass. Y
« APS index is,

na(p) = | () — c(F ), + / el - / o

« This is APS index with “physicist-friendly” boundary condition.
o cf. ['17 Fukaya-Onogi-Yamaguchi]
e |n our set up, massive =~ domain wall.

« To apply this form, we get a relation between eta invariant and Chern-
S- f . 1 . r— . r—
iImons Torm w /[W]2r—1 - (?7(’519(_2 1))_77(1193? 1))) (mod Z)
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5. String theory
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String theory

Let us check the relation between this anomaly and string
theory.

« Consider type |IA or [IB string theory with D-branes.
* Open strings have their ends on D-branes.
« Excitation modes of these open strings — Fields on D-branes
* Open strings on D,-branes — QFT inp + 1 dim

* In some cases, excitation modes of the strings have tachyon modes.
 Lowest excitation modes are m? < 0. (Tachyon mode)
 Non-BPS states have tachyons.

« This tachyonic modes are unstable. —
« See Sen’s review [hep-th/9904207].
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Tachyon condensation (1)

« Tachyonic modes are unstable, so the tachyons have non-zero VEV.

* Non-trivial configuration of tachyon is also realizable.
V(T) T(x)

e.g.) D-brane and anti D-brane (D-brane) system
 Non-BPS state

« Tachyonic modes appear in D — D string. E
. Tt =
. The shape of tachyon potential is known. V(T') =e
* If tachyon configuration is trivial, the D-branes disappear. :
0

Index theorem (5) EEEITRGULEII8 AVI4e)
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Tachyon condensation (2)

Kink on tachyon in D, — D,, system
« Tachyonic kinks for this system is,

I
T@=u)ral ()

» We get D,,_,,-branes from this tachyon.

» It D,,_,,-branes are non-BPS, tachyons still exist on the D-branes.
 In this case, tachyon condensation occur again.

D,-branes  D,-branes D,_n-branes
— —
U(N) x U(N)
symmetry U(N) symmetry
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Tachyon condensation (3)

* The superconnection is used in the context of tachyon condensation.
e This structure comes from RR-coupling of D-branes.

cf.) ['98 Witten] [hep-th/9810188]
'99 Kennedy-Wilkins] [hep-th/9905195] S = Tho /C A Qtp @27 iF
’01 Kuraus-Larsen] [hep-th/0012198]

'01 Takayanagi-Terashima-Uesugi] [hep-th/0012210]

« The tachyon configuration is given by ['98 Witten].

 In this paper, relation between tachyon condensation and is
discussed.

 This tachyon configuration comes from ['64 Atiyah-Bott-Shapiro]

T(x) = UZFI:UI
I=1
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Relation between the anomaly and string

* This tachyon configuration is same for the mass defect in section 3!
T(:C)ZUZFIZCI m(a:):uZFIxI
I=1 I=1

« This anomaly can be understood from string theory.
 Fermions are found where D-branes intersect.
« This is similar to flavor symmetry on holographic QCD model.
(Sakai-Sugimoto model)

Dp-brafrlej r_JDHp—branes Dp—nr‘_k?f”es
fermion
4 N N\
U(N) x U(N)
| symmetry U(N) symmetry
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Conclusion

« We discussed about perturbative anomaly with
 If value of the mass , non-trivial contribution of the mass appears.

« The anomaly can be written by

log J = —i (%) /oz(x)Str o] ,

d—form

FE_—mim  i(Dm)f
iDm FL —mml

 There are some applications.

« Kink, vortex, ...
« With boundary
* Index theorem
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