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Motivation

QFTを理解したい
• 知っていること

• 弱結合の理論(例:QED)は摂動論で理解できる

• 強結合の理論(例:QCD)は良く分からない

• 高エネルギー(UV)の作用が分かっている理論でも、低エネルギー(IR)で強結合
の場合、IRでどのような理論になるのか非自明
• QCD

• 物性理論

• アノマリー(量子異常)はIRの理論を理解するために使える!
• ’t Hooft anomaly matching

→UVの理論の持つアノマリーをIRの理論(有効作用、EFT)は再現しないとならない

→IRの理論の形を強く制限する

Introduction (1/5)
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What is “anomaly”? (1)
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Anomaly (Quantum Anomaly)

An classical action has some symmetries, but sometimes 
these symmetries disappear in quantum theory.

e.g.) 𝜋0 → 2𝛾

• In massless QCD, there is a chiral symmetry S𝑈 𝑁𝑓 𝐿
× 𝑆𝑈 𝑁𝑓 𝑅

.

𝑁𝑓: # of flavors

• If there is NO anomaly, 𝜋0 never decays.

• However, 𝜋0 decays into 2𝛾, because of an anomaly!
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Theories what we want to think (1)

Introduction (3/5)

Let us consider 4dim action contain fermions.

• This action is massless, so it has a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

• There also be a 𝑈 1 𝐴 anomaly.

• Add mass term
• Mass term breaks the chiral symmetry.

• Let the mass depend on the spacetime.
• This mass is almost same as the Higgs field.

• How change the symmetry and the anomaly?
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The spacetime dependent mass

Introduction (4/5)

𝑥: the fifth 
direction

What is “the spacetime dependent mass”?
• e.g.) Domain wall fermions

• One way to realize chiral fermions on the lattice.
• Consider 5dim spacetime, and realize 4dim 

fermions on 𝑚 𝑥 = 0 subspace.

• Chiral anomalies with Higgs fields
• If Higgs fields change as bifundamental under the 
𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry, the action is 

invariant for the symmetry.
• It is known that chiral anomalies are not changed 

by adding Higgs fields.
• See Fujikawa-san’s text book.
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Theories what we want to think (2)

Introduction (5/5)

How about the spacetime dependent mass?
• The chiral anomaly is changed by the mass!!

• Deference between Higgs and mass
• Higgs field : bounded

• Spacetime dependent mass : unbounded

• If the mass diverges at some points, it contributes to 
the anomaly.
• This contribution might be unknown.

• We can find the anomaly in any dimension.

• The anomaly can be written by “superconnection.”



Introduction (5) Derivation (10) Application (7) Index theorem (5) String theory (5)

Plan

1. Introduction (5)
• What is anomaly?

• Theories what we want to think

2. Derivation (10)
• How to calculate anomalies

• The anomaly for massless case

• The anomaly for massive case

• Superconnection

• The result

3. Application (7)
• Kink, vortex

• With boundary

4. Index theorem (5)
• Index for massive case

• APS index theorem

5. String theory (5)
• Tachyon condensation

6. Conclusion (1)



Introduction (5) Derivation (10) Application (7) Index theorem (5) String theory (5)

How to calculate anomalies

Fujikawa method
• There are several ways to calculate 

anomalies.

• Today, we focus on the Fujikawa 
method.
• Consider path integral for fermions.
• Anomaly = Jacobian comes from path 

integral measure
• We only consider perturbative 

anomalies.

• We calculate log𝒥 for anomalies in 
the last part of this talk.

[’79 Fujikawa]

anomaly

e.g.) local 𝑈 1 𝑉

transformation

Derivation (1/10)
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Chiral symmetry

Anomalous symmetries we 
calculate
• 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry

• For even dimension

• Because chirality operators exist 
only even dimensions.

• Weyl fermions couple to 𝑈 𝑁𝑓 𝐿
background gauge field 𝐴𝜇𝐿 and 
𝑈 𝑁𝑓 𝑅

background gauge field 𝐴𝜇𝑅.

• 𝑈(𝑁𝑓) flavor symmetry
• For odd dimension

• No perturbative anomaly as usual.

• Dirac fermions couple to 𝑈(𝑁𝑓)
background gauge field.

For odd dimension

Derivation (2/10)

For even dimension
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The anomaly for massless cases

e.g.) fermions in 4dim
• Mass less case

• With 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral sym.

• 𝑈 1 𝑉 anomaly is written 
by the field strengths.

• With a Higgs field
• With 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral sym.

• The 𝑈 1 𝑉 anomaly is 
same for massless case.

• How about the massive 
case?

Derivation (3/10)
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The anomaly for massive case (1)

Let us consider spacetime dependent mass!
• The action for general even dim with 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
symmetry is,

Derivation (4/10)

• We assume this 𝒟 is the Dirac op. for massive case.
• 𝒟 is non-Hermitian.

• For odd dim case, there is only 𝑈(𝑁𝑓) sym, we put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†.
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The anomaly for massive case (2)

Calculate the 𝑈 1 𝑉 anomaly for this action by Fujikawa method.

• We take 𝒎(𝒙) divergent.

• 𝐼 denotes some directions which 𝑚(𝑥) changes its values.

• If 𝑚(𝑥) does not diverge, the anomaly is same for the massless case.

• We use the heat kernel regularization.
• We set a UV cut-off for the eigenvalues of 𝒟†𝒟 and 𝒟𝒟†.

• Generalizations
• It is easy to get the anomaly for any dimension.

• It is also easy to get the anomaly for 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

, not only for 𝑈 1 𝑉.

Derivation (5/10)

Λ is the UV cut-off.
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The anomaly for massive case (3)

e.g.) In 4dim case, the 𝑈 1 𝑉 anomaly is,

• This result seems very complicated...

• Can we rewrite it more simple way?  →  Superconnection!

Λ is the UV cut-off 
comes from heat 

kernel 
regularization.

Derivation (6/10)
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Superconnection (1)

• We define the superconnections for even and odd dimensions.

• This is made by Quillen, who is a mathematician, in 1985.

Even dimension
• Superconnection

• Field strength

[’85 Quillen]

𝐴𝑅 : 𝑈 𝑁𝑓 𝑅
gauge field (1-form)

𝐴𝐿 : 𝑈 𝑁𝑓 𝐿
gauge field (1-form)

𝑇 : 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

bifundamental scalar field (0-form)

• Supertrace

Derivation (7/10)
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Superconnection (2)

Odd dimension
• Superconnection

• Field strength

• Supertrace

We apply superconnection to write the anomaly.

[’85 Quillen]

𝐴 : 𝑈(𝑁𝑓) gauge field (1-form)

𝑇 : 𝑈(𝑁𝑓) adjoint scalar field (0-form)

Derivation (8/10)
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The result (1)

• We can rewrite the 𝑈 1 𝑉 anomaly by superconnection.

• For odd dimension case, put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†. Then, we get 𝑈(1)
anomaly.
• In odd dimension, the definition of Str is different from the even dim case.

Derivation (9/10)
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The result (2)

• In this formula, 𝑚(𝑥) appears only as ෥𝑚(𝑥).
• Λ is the UV cut-off comes from the heat kernel regularization.

• If 𝑚(𝑥) is finite, the mass dependence disappears because we need to take 
Λ → ∞. 

• The Λ dependence (or the regulator dependence) of the anomaly disappears 
after we integrate Str[eℱ] over the spacetime.

• It is easy to check this anomaly is consistent with 4dim massless case.

Derivation (10/10)
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3. Application

Application (7)
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How can we apply this anomaly?

Mass means a wall for some cases!
• e.g.) Domain wall

• Can we make domain walls by this 𝑚(𝑥)?

→Yes!

• We can make some systems with boundaries.
• Kink, vortex and general codimension case

• With boundary

• We also discuss about some index theorems.
• APS index theorem

• Callias type index theorem

Application (1/7)
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Kink (1)

Mass kink for our set up
• For example, let’s consider 5dim case.

• In our set up, “kink” means this mass configuration.

• This “mass” diverges at 𝑦 → ±∞.

• 5dim fermions with 𝑈(𝑁𝑓) sym, and the mass depends on only 𝑦 direction.

• The 𝑈(1) anomaly is,

• Recall 4dim 𝑈 1 𝑉 anomaly, Corresponds to the sign of 𝑢 .

Application (2/7)
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Kink (2)

What is the meaning of the anomaly?
• 4dim Weyl fermions are localized at 𝑦 = 0.

• 𝑢 > 0 corresponds to chirality + (right-handed) 
fermion, and 𝑢 < 0 corresponds to chirality –
(left-handed) fermion.

Domain wall fermion
• This Weyl fermions correspond to domain wall 

fermions.
• But the regularization is different, so that I don’t 

know the correspondence in detail.

Application (3/7)
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Vortex

Next, we check codim-2 case.
• Vortex is 2dim topological object.

• Let us consider 2𝑟 + 2 dim.
• 𝑚(𝑧) depends on 2 directions, and it is complex valued “mass”.

• This mass diverges at 𝑧 → ∞.

• For simplicity, we put 𝐴𝐿 = 𝐴𝑅 in 2𝑟 + 2dim.

• The 𝑈 1 𝑉 anomaly is,

• This is 2𝑟dim 𝑈(1) anomaly with 𝑈 𝑁𝑓 𝑅
gauge field.

• If you want to get chirality – (left-handed) result, use 𝑚 ҧ𝑧 = 𝑢 ҧ𝑧, instead.

Application (4/7)
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General defects

We can apply this formula to general codimension cases.
• When we think 𝑑 dim system with 𝑛 dim topological defects, we get 𝑑 − 𝑛

dim 𝑈(1) anomalies.
• If 𝑑 − 𝑛 is odd, we get nothing because odd dim mass less fermions are 

anomaly-free.

• The mass configurations for general codimension is,

• This results correspond to “tachyon condensation” in string theory.
• We will discuss about it in section 5.

Application (5/7)
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With boundary (1)

Let us make some boundaries.
• Fermions are massive = boundary

Odd dimension (2r dim)
• We realize localized fermions at [0,𝐿].

• The bulk is anomaly-free.

• The anomaly is,

Application (6/7)
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With boundary (2)

Even dimension

• The anomaly is,

• 𝜔 is Chern-Simons form.

• Anomaly from bulk + CS

Application (7/7)
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4. Index theorem

Index theorem (5)
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Index for massive Dirac op. (1)

• We will discuss index theorems for the massive Dirac operator 𝒟.
• We just consider flat spacetime.

Chern character
• We need to define Chern character for the superconnection.

• The Chern character for massive case is,

Index theorem (1/5)
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Index for massive Dirac op. (2)

• We can write the 𝑈(1) anomaly by the Chern character.

• The index for the massive Dirac operator is, 

• For closed manifolds, this is Atiyah-Singer index theorem.

• Let us consider 2𝑟 dimensional system with boundary.
• We can make the boundary with the mass.

• The index will be Atiyah-Patodi-Singer(APS) index.

• Let’s check the index!

Index theorem (2/5)
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APS index theorem (1)

APS index theorem
• APS index is the index for open manifold with boundaries.

• APS index = bulk index + 𝜂-invariant on the boundaries

• In APS paper, they introduce APS boundary condition, which is non-local 
boundary condition for fermions.

• It is known that APS index is realized with local boundary condition.
• [’17 Fukaya-Onogi-Yamaguchi]  [hep-th/1710.03379]

• If you use domain walls for boundaries, you can use local boundary condition 
for fermions.

• Let us consider both boundary conditions in our set up.
• We can realize boundaries by mass; this is very similar to DW set up.

Index theorem (3/5)

[’75 Atiyah-Patodi-Singer]
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APS index theorem (2)

APS index in our set up
• The index is,

• This is the APS index theorem for the massive Dirac operators in 2r dim with 
boundaries at 𝑦 = 𝑦±.

• We just consider 𝑚(𝑥) depends on only one direction 𝑦.

• Let us consider APS index for 2r dim system in 
previous section.
• If you take 𝑦+ = 𝐿 and 𝑦− = 0, then you will get APS 

index with APS boundary condition.

• But in this case, mass does not work because the 
Dirac op. is massless in 0 < 𝑦 < 𝐿. 

Index theorem (4/5)
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APS index theorem (3)

APS index with mass
• Let us put 𝑦+ = ∞ and 𝑦− = −∞.

• Boundaries come from the mass.

• APS index is,

• This is APS index with “physicist-friendly” boundary condition. 
• cf. [’17 Fukaya-Onogi-Yamaguchi]

• In our set up, massive ≃ domain wall.

• To apply this form, we get a relation between eta invariant and Chern-
Simons form 𝜔.

Index theorem (5/5)
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5. String theory

String theory (5)
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String theory

Let us check the relation between this anomaly and string 
theory.
• Consider type IIA or IIB string theory with D-branes.

• Open strings have their ends on D-branes.

• Excitation modes of these open strings → Fields on D-branes

• Open strings on D𝑝-branes → QFT in 𝑝 + 1 dim

• In some cases, excitation modes of the strings have tachyon modes.
• Lowest excitation modes are 𝑚2 < 0. (Tachyon mode)

• Non-BPS states have tachyons.

• This tachyonic modes are unstable. → Tachyon condensation

• See Sen’s review [hep-th/9904207].

String theory (1/5)
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Tachyon condensation (1)

• Tachyonic modes are unstable, so the tachyons have non-zero VEV.
• Non-trivial configuration of tachyon is also realizable.

e.g.) 𝐷-brane and anti 𝐷-brane (ഥ𝐷-brane) system
• Non-BPS state

• Tachyonic modes appear in 𝐷 − ഥ𝐷 string.
• The shape of tachyon potential is known.

• If tachyon configuration is trivial, the 𝐷-branes disappear.

String theory (2/5)
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Tachyon condensation (2)

Kink on tachyon in 𝐷𝑝 − ഥ𝐷𝑝 system

• Tachyonic kinks for this system is, 

• We get 𝐷𝑝−𝑛-branes from this tachyon.

• If 𝐷𝑝−𝑛-branes are non-BPS, tachyons still exist on the 𝐷-branes.

• In this case, tachyon condensation occur again.

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (3/5)
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Tachyon condensation (3)

• The superconnection is used in the context of tachyon condensation.
• This structure comes from RR-coupling of D-branes.

cf.) [’98 Witten] [hep-th/9810188]

[’99 Kennedy-Wilkins] [hep-th/9905195]

[’01 Kuraus-Larsen] [hep-th/0012198]

[’01 Takayanagi-Terashima-Uesugi] [hep-th/0012210]

• The tachyon configuration is given by [’98 Witten].
• In this paper, relation between tachyon condensation and K-theory is 

discussed.

• This tachyon configuration comes from [’64 Atiyah-Bott-Shapiro]

String theory (4/5)
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Relation between the anomaly and string

• This tachyon configuration is same for the mass defect in section 3!

• This anomaly can be understood from string theory.
• Fermions are found where 𝐷-branes intersect.

• This is similar to flavor symmetry on holographic QCD model. 

(Sakai-Sugimoto model)

fermion

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (5/5)
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Conclusion

• We discussed about perturbative anomaly with spacetime dependent mass.
• If value of the mass diverge, non-trivial contribution of the mass appears.

• The anomaly can be written by superconnection.

• There are some applications.
• Kink, vortex, ...

• With boundary

• Index theorem


