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Young massive clusters (super star clusters)

As dense and massive as globular clusters
As young as open clusters

Portegies Zwart et al. (2010)
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Dynamical interactions
form compact binaries in
star clusters
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As a host of compact binaries

Evolution of isolated massive binaries
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(Tanikawa et al. 2012)
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Expected BBH mass distribution

Different mass distributions of merging BBHs are expected

Belczynski et al.
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Of course, these results depend on stellar evolution models and initial binary distribution



Dynamical Evolution of
Globular Clusters



Age ~ 10 Gyr

Mass ~ 10°°Msun

Size ~ 10 pc

Located in the Galactic halo

Old, massive, and dense star clusters

The densest environment in the MW
except for the Galactic center

NASA, The Hubble Heritage Team, STScl, AURA -

The formation process is still unclear
Core of dwarf galaxy? (Omega Cen)
Accreted with dwarf galaxies?



Internal dynamical evolution of clusters

Core collapse: The core shrinks on the relaxation timescale

Mass segregation: Massive stars concentrates on the cluster core due to the
energy equipartition

Binary formation: Three-body encounters form hard binaries

Post-collapse evolution (expansion): Tidal radius
Cluster expands after the core-collapse i
due to the energy flux from hard binaries 10.00 E
Globular clusters host hard binaries - “Half-mass radius |
of massive objects such as black holes = o ‘/’\
and neutron stars 2
k: ; :
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Simulation of M4-like globular cluster

Including tidal effect (Giersz & Heggie 2008)

Figure from Gieles et al. (2011)

Stellar evolution (incl. evolution of binaries)



N-body simulation of star clusters

-~ O

Direct N-body simulations
(N~10°) for 10 Gyr including
binaries are still not easy.



Difficulties

Hard (tight) binaries
Massive stars form hard binaries
BH-BH, NS-BH, NS-NS... these cause problems...

Long simulation time up to 10Gyr
Compared to the time scale of binaries (days or less),
globular cluster life time is too long

Relatively large N for direct summation of the gravity
Direct method O(N?)
Close encounters require high accuracy



Algorithm

(KS) Regularization
A method to treat hard binaries
Transform the coordinates in addition to time
NBODY6 (Aarseth)

Tree and Direct Hybrid method
Use tree method (approximate force

for distant particles) "3
O(N logN) T4
P3T: Iwasawa+ (2015) 27
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Hardware

GRAPE
Special purpose hardware for N-body problem

CPU clusters

GPU clusters
NBODY6++GPU

Parallelization is not so efficient, especially after core collapse
Binaries decide the minimum step size



Wang+(2016): DRAGON simulation
N=10°
Star-by-star
NBODY6++GPU

BUT, the cluster density is
relatively low
-> Not many BBHs formed

Dense run is up to 1Gyr

Hard binaries always cause problem!



Monte-Carlo simulations

The evolution of E, J (AE, AJ) of particles is analytically
computed using two-body relaxation theory

3-body encounters are directly solved

Some parameters are tuned compared with direct N-body
simulations

These treatments depend on codes
Less computational resources than direct N-body

Two- or a few-body encounters (strong interactions) may not be
correct

Rodriguez’s group use this method



NBBH,esc,tot

NBBH,esc,tot

Tanikawa (2013)
Performed N-body simulations with different N

The results are scaled by thermodynamical time
(which depends on N)
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Distribution of BBHs formed in star clusters is
modeled as a function of thermodynamical time



Distribution of
Merging BBHs formed
in Star Clusters



Tanikawa (2013)

Timescale for merger Eccentricity distribution Mass-ratio distribution
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Using the results of N-body simulations, Tanikawa (2013) constructed a model
for BBH merger history per cluster

But, maximum mass of BH is 20Msun

We can generate a merger history of BBHs for a cluster



Tanikawa (2013)

Modelling BBH merger history based on the results of N-body simulation
Assuming number density of star clusters, they estimate the mass

function of observed BBHs
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All globular clusters ware assumed to be born 10 or 12 Gyr ago



Younger massive clusters?

Cosmic Star-Cluster formation history

Fujii, Tanikawa, and Makino (2017)
Use BBH model of Tanikawa (2013)

But add
Cosmic Star-Cluster formation history
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MF of mergmg BBHs (from model) Chlrp MF of merglng BBHSs (model)
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With natal kicks
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Retention fraction proportional to the BH mass
0.1—1.0 for 3—20Msun (1.0 for >20Msun)
The total retention fraction was ~0.7
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After most of BHs are ejected,

NS-NS merger starts

The expected NS-NS merger
rate is an order of magnitude
lower than that of BH-BH

Later dynamical evolution
than BH-BH

Natal kick
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Bae et al. (2014)

t.: relaxation time
Typically a few hundred Myr



Future plans

- M tallicity evolution of the Uni
Update stellar evolution model can metallicity evolliiion ot the Lniverse

Massive stars T | |
Metallicity (O to Solar)
Especially Z<104

Binary evolution due to common
envelope evolution

How dynamical evolution works?

1 . new: mean metallicity (standard)
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Investigate the formation rate of
BBHs and their mass function From Belczynski et al. (2016)

For each metallicity and cluster
mass etc.



Summary

Massive clusters (globular clusters) are a host of merging BBHs

The distribution of merging BBHs (mass ratio, eccentricity) is
different from that of isolated binaries (common envelope
evolution, only)

Future N-body simulations will answer the merger rate of BBHs
in star clusters and the mass distribution for different metallicity,
mass, density of star clusters



