光球面放射の数値シミュレーションから明らかにする米徳関係の起源

伊藤裕貴 理化学研究所

<u> 共同研究者</u>

松本 仁 (理化学研究所) 長瀧 重博 (理化学研究所) Don Warren (理化学研究所) Maxim Barkov (Perdue Univ.) 米徳 大輔 (金沢大学)

simulation by Dr. Jin Matsutmoto

@ 高エネルギー宇宙物理学研究会 2017/9/5

Gamma-Ray Burst Most luminous explosion in the universe

 $\begin{array}{l} \mathsf{L}_{\mathsf{p}} \sim 10^{50} \text{ - } 10^{54} \, \text{erg/s} \\ \hline \textbf{duration} \\ t_{\mathsf{dur}} \sim 10 \text{ms} - 100 \text{s} \\ \hline \textbf{rapid variability} \\ \delta t \sim \text{ms} \end{array}$

non-thermal spectrum

broken power law with sharp peak

 $E_{p} \sim 10^{2} - 10^{3} \text{ keV}$

Emission mechanism unetablished

Yonetoku Relation Tight correlation between E_p - L_p

Models for Emission Mechanism

Internal Shock Model

rapid time variability
non-thermal spectrum

- radiation efficency
- hard spectra at low energy
 - sharp spectral peak

Photospheric Emission Model

- radiation efficiency
- hard spectra at low energy
- sharp spectral peak

- •non-thermal spectrum
- soft spectra at low energy

Yonetoku relation & Internal shock model

Poor predictability due to too many parameters

Optically thin synchrotron

$$\begin{split} \mathbf{E}_{\mathrm{p}} & \propto \quad \Gamma \gamma_{\mathrm{p}}^{2} \mathbf{B} \\ & \gamma_{\mathrm{p}} & \propto \quad \Gamma_{\mathrm{sh}} \, \varepsilon_{\mathrm{e}} \, m_{\mathrm{p}} / \, m_{\mathrm{e}} \\ & \mathbf{B} & \propto \quad \Gamma_{\mathrm{sh}} \, [\varepsilon_{\mathrm{B}} \, \mathrm{nm}_{\mathrm{p}}]^{1/2} \\ \end{split}$$

Properties of outflow and physics of collisionless shock must be specified

Self-regulation among various parameters is necessary to reproduce the relation

e.g., Zhang & Meszaros 2002

Yonetoku relation & Photospheric model

Theoretical prediction is (relatively) solid

Optically thick thermal radiation

Cluster of $E_p \sim 10^2 - 10^3$ MeV naturally achieved Correlation in outflow properties is necessary to reproduce the relation e.g., Fan + 2012, Ito + 2013

assumption: 1D steady spherical outflow

Photospheric Emission in GRB jet

Dynamics of Jet have significant effect on the radiation signature

<u>Dynamics</u> of Jet and <u>Radiation transfer</u> must be solved

Previous Studies

steady outflow or 1D model

Pe'er +2005,2006,2011; Giannios 2008; Beloborodov 2010,2011; Vurm+2011,2016; Lundman+2013,2014, Ito+2013,2014, Chhotray 2015

approximated treatment for radiation

Lazzati+2009,2011,2013; Mizuta+2011;Nagakura+2011; Lopez-Camara+2014

This Study

Radiation transfer calculation based on 3D hydrodynamical simulation

See also Lazzati 2016, Parsotan + 2017

3D relativisitic hydrodymaical simulation

Calculation of relativistic jet breaking out of massive progenitor star

Radiative transfer calculation

Propagation of photons are calculated until they reach optically thin region

fiducial model $L_j = 10^{50} \text{ erg/s}$

fiducial model $L_i = 10^{50} \text{ erg/s}$

 E_{p} & L_{p} decline as Θ_{obs} increases

Dependence on jet power

Ito + 2017, submitted

L_p & E_p are systematically higher for higher L_j

Yonetoku relation

Evidence of photospheric emission as dominant radiation process

Origin of viewing angle dependence

Lateral structure developed during propagation

polarization

High polarization (>10%) at off-axis regions

Summary

Yonetoku relation is an inherent feature of photospheric emission

Lateral structure of jet developed during propagation is an origin of the correlation between Ep & Lp

This relation holds *regardless* of the jet power

Compelling evidence of photospheric emission as a dominant radiation mechanism for GRBs

Prediction of high polarization at large viewing angle