A Variety of Tidal Disruptions Events of a WD by a BH

Kojiro Kawana (U. Tokyo)

Collaborators Ataru Tanikawa, Naoki Yoshida (U. Tokyo)

arXiv:1705.05526

High Energy Astrophysics 2017

Introduction

Tidal Disruption Event (TDE)

When a star passes close to a black hole (BH), if

the tidal force > the star's self gravity,

the star will be disrupted.

Introduction Sequence of WD–BH TDE

Introduction

Sequence of WD–BH TDE

Introduction

Sequence of WD–BH TDE

Introduction Sequence of WD–BH TDE

Introduction Sequence of WD–BH TDE

Characteristics of WD–BH TDE

MacLeod+ (2016)

Introduction

Interests of WD–BH TDE

Observational status

Future surveys would detect ~100 WD TDEs

Optical : ZTF, LSST

X-ray : LOFT, Einstein Probe

radio : SKA

GW : DECIGO, BBO, (Advanced LIGO, KAGRA)

• How about the variety of observational signals?

Methods

Description of our simulations

- Parameter study varying $M_{\rm BH}$, $M_{\rm WD}$, and β
- \rightarrow study the nucleosynthesis in the TDEs
- 3D SPH simulations coupled with nuclear reactions
- Nuclear reactions: α -Chain Network from ⁴He to ⁵⁶Ni (13 species)
- BH : static gravity source (Schwarzschild BH)
- WD: self-gravity fluid
 represented with ≈800,000 SPH particles

3 Types of WD-BH TDE

High Energy Astrophysics 2017

Introduction

Interests of WD–BH TDE

- Nuclear explosion occurs if WD is extremely compressed
 → Ia SN-like transients?

1: TDE w/o explosive nuclear reactions

High Energy Astrophysics 2017

1: TDE w/o explosive nuclear reactions

2: TDE w/ explosive nuclear reactions

High Energy Astrophysics 2017

2: TDE w/ explosive nuclear reactions

High Energy Astrophysics 2017

2: TDE w/ explosive nuclear reactions $M_{\rm BH} = 1000 M_{\odot}, M_{\rm WD} = 0.6 M_{\odot}, \beta = 5.0$

High Energy Astrophysics 2017

3: TDE w/ immediate self-intersection

 $M_{\rm WD} = 0.2 M_{\odot}, \ M_{\rm BH} = 10^{1.5} M_{\odot}, \ \beta = 4.5$

\rightarrow promote formation of accretion disk

2017/9/5

High Energy Astrophysics 2017

3: TDE w/ immediate self-intersection

 $M_{\rm WD} = 0.2 M_{\odot}, \ M_{\rm BH} = 10^{1.5} M_{\odot}, \ \beta = 4.5$

2017/9/5

High Energy Astrophysics 2017

Calcium-rich gap transients: tidal detonations of white dwarfs?

P. H. Sell,¹* T. J. Maccarone,¹ R. Kotak,² C. Knigge³ and D. J. Sand¹

Characteristics of Ca-rich gap transients

- Similar to Type Ia SNe
- Fainter
- Faster evolution
- Large calcium abundances
- High velocity (6000 - 11000 km/s)
- Occur in the outskirts of galaxies

Outcome of nucleosynthesis from pure He

He WD TDEs as Ca-rich gap transients? → Our results deny!

Discussion

He WD TDEs as Ca-rich gap transients?

High Energy Astrophysics 2017

Summary

- WD-BH TDEs are interesting transients; nuclear reactions, good probe to study IMBH.
- We performed parameter study using 3D SPH simulations coupled with nuclear reactions.
- The TDEs are categorized into the 3 groups.
 We derive boundaries of these groups in the parameter space.
- Type 3 TDEs involve immediate self-intersection.
- He WD TDEs are not the origin of Ca-rich gap transients

This research was supported by CREST, JST.

additional pages

Discussion

Problem: Unconvergence on numerical resolution

Tanikawa+ (2017)

High Energy Astrophysics 2017

Discussion

Problem: Unconvergence on numerical resolution

TDE of WD – IMBH

MacLeod+ (2016)

Methods

Other settings

- SPH: Wendland C2 kernel, vanilla-ice equations
- Optimization: FDPS (Framework for Developing Particle Simulator)
- Solving EoS and nuclear reactions: FLASH
- EoS of WD: HELMHOLTZ EoS
- WD has no spin
- Oribit: e = 1 (parabolic) in Newtonian gravity
- At t = 0, the distance between WD and IMBH is 2 or 4 R_t
- The compositions of WDs

$$M_{\rm WD} = \begin{cases} 0.2 \ M_{\odot} \ (^{4}\text{He } 100\%) \\ 0.6 \ M_{\odot} \ (^{12}\text{C } 50\% \ ^{16}\text{O } 50\%) \\ 1.2 \ M_{\odot} \ (^{16}\text{O } 60\% \ ^{20}\text{Ne } 35\% \ ^{24}\text{Mg } 5\%) \end{cases}$$

The nuclear reactions

α -chain network reaction of 13 species

http://cococubed.asu.edu/

$M_{\rm WD}$ dependence

He WD TDEs as Ca-rich gap transients?

GW emission

High Energy Astrophysics 2017

Introduction

Previous research: Rosswog+ (2009)

Run	$M_{ m wd}$	$M_{ m BH}$	β	Grav.	SPH Particles	$\log(E_{burn})$	"Fe" (M_{\odot})	Comments
1	0.2	1000	12	Ν	4034050	50.46	0.025	Expl.
2	0.2	1000	12	PW	4034050	50.44	0.034	Expl.
3	0.2	1000	12	PW	200452	50.44		$\Gamma = 5/3$ -polytrope
4	0.2	100	5	PW	100027	49.57	$< 10^{-10}$	Explore BH influence, expl.
5	0.2	500	5	PW	100027	49.64	$< 10^{-10}$	Explore BH influence, expl.
6	0.2	1000	5	PW	100027	49.76	$< 10^{-10}$	Explore BH influence, expl.
7	0.2	5000	5	PW	100027	49.93	$< 10^{-10}$	Explore BH influence, expl.
8	0.6	500	5	Ν	502479	50.68	0.18	Expl.
9	0.6	500	5	Ν	502479	50.62	0.13	Hot, initial WD
10	0.6	1000	0.9	Ν	1006446	0.00	0.	No nuclear burning
11	0.6	1000	5	PW	502479	50.43	3×10^{-4}	
12	0.6	10000	1.5	PW	502479	45.07	$< 10^{-10}$	
13	1.2	100	3.5	Ν	100027	51.01	0.58	Expl.
14	1.2	500	2.6	PW	502479	51.16	0.66	Expl.
15	1.2	1000	1.5	PW	502479	49.63	0.014	-
16	1.2	1000	3.0	Ν	502479	51.10	0.63	Expl.

 Table 1

 Summary of the Performed Runs

He WD TDEs as Ca-rich gap transients?

highly compressed so that heavier elements are synthesized...

High Energy Astrophysics 2017

 $M_{\rm WD} = 0.2 M_{\odot}, \ M_{\rm BH} = 10^2 M_{\odot}$

 $\beta = 5.0$