rプロセス元素の起源と高エネルギー天体現象: Origin of r-process nuclei in high-energy astrophysical phenomenon

<u>Talk plan</u>

- Astronomical origin of the r-process
 - Basics
 - The r-process in NS-NS mergers
- The r-process in peculiar Supernovae?
 - Magneto-driven Supernovae
 - Indication to other observables
- <u>Summary</u>

https://www.quantamagazine.org/

Astronomical Origin of the r-process

Collaboration with

<u>S. Wanajo</u> (Sophia U), <u>Y. Sekiguchi</u> (Toho U), <u>S. Fujibayashi</u>, K. Kiuchi, M. Shibata (Kyoto U), K. Kyutoku (KEK); H. Sawai (RIST), T. Takiwaki, T. Tsujimoto(NAOJ), S. Yamada (Waseda), F.-K. Thielemann (Basel)

Origin of gold (beyond iron)

- <u>Nuclear Physics</u>
 - n-capture and β -decay; produces Eu, Pt, Au, U etc.
- Astronomical Observation
 - Solar/metal-poor stars; Galactic chemical evolution;
- Astronomical Origin (undetermined)
 - core-collapse SN or NS-NS/BH-NS mergers?

"The Elements" T. Gray

"The Elements" T. Gray

Sneden+ (2008) (Möller+ 1997)

Similar pattern in r-process observation

Sneden+ (2008) ARAA

- many r-rich Galactic halo stars show agreement with solar pattern
- r-process has happened from the early Galaxy
- astrophysical models
 reproduce this common
 pattern (Z>40; A>90)
 - → suggests existence
 CS 22892-052: Sneden et al. (2003)
 HD 115444: Wedin et al. (2002)
 BD-117*324817: Coven et al. (2002)
 CG 31082-001: Hill et al. (2002)
 HD 221170: Ivans et al. (2005)
 HE 1523-0901: Frebal et al. (2007)
 Produces between 2nd and 3rd peak
 but not for ALL metal-poor stars; e.g. Honda stars

Physical condition for r-process

high T and p

 $\begin{array}{l} Y_e: electron\ fraction \\ Y_e = Y_p \\ \sim N_p \ / \ (N_n + N_p) \\ (low\ Y_e = neutron\ rich) \end{array}$

(low Y_e = neutron rich) (2) seed formation A~100 (T > 0.5 MeV) quasi-NSE, α -cap. " α -process": $\alpha + \alpha + n \rightarrow {}^{9}Be$ ${}^{9}Be + \alpha \rightarrow {}^{12}C$

(4) decay (β and fission) decay to stable isotopes

(1) neutronization (low Y_e) by e-cap. ($p + e^- \rightarrow n + v_e$) (T > 1 MeV) NSE (n, p, & α are predominant)

> ③ rapid-n cap. (high n/Seed > 100) (n, γ) is faster than β -decay

> > low T and p

8

SNe and PNS winds

Physical condition for r-processcondition for r-process nuclei (A=200), 3rd peak:n/seed > 100 in appropriate time scale $(\alpha + \alpha + n \rightarrow {}^{9}Be)$ Meyer 1997

 $f_{200} = \frac{(S/230 \, k_{\rm B} \, \rm{nucleon}^{-1})}{(Y_{\rm e}/0.40)(\tau/20 \, \rm{ms})^{1/3}} \gtrsim 1, \quad 0.38 \lesssim Y_{\rm e} \lesssim 0.46 \qquad \text{Wanajo 2013}$ (Hoffman 1997)

Neutron-star mergers as r-process sites

from NAOJ Website (Tsujimoto & Shigeyama)

Coalescence of two NSs

- eject neutron-rich matter
- \cdot sources of
 - •GWs
 - · Kilonovae/Macronovae
 - (short) GRBs

Galactic chemical evolution

- lower event rate, a large amount r-process nuclei
- problem: can explain rprocess enrichment in early galaxies?

"Classical" model: only heavy r-process nuclei?

Freiburghaus, Rosswog & Thielemann (1999)

tidal ejection of "pure" n-rich matter with Ye << 0.1

 $Y_e \approx N_p/(N_n + N_p)$ if only nucleon

Korobkin+ 2012 (e.g., Goriely+ 2011, Rosswog+ 2013)

r-process mass ejection scenario

However, there are still problems must be solved.

- more sophisticated hydro simulations
- dependence on EoS (physical uncertainty) and the NS mass ratio (astronomical properties)

or nuclear physics uncertainty, e.g. fission play a role? (see, Goriely+2013, Eichler+ 2015, <u>Shibagaki+ 2016</u>)

A new mechanism of dynamical ejecta

Wanajo, Sekiguchi, NN+2014 (w/ Kyoto GR-hydro Group)

(see, also, Goriely+2015 by MPA group)

Details: NS masses & EoS in 3D hydro

r-process study using simplified model (Wanajo+2014) Y_e evolution, based on 3D hydro (Sekiguchi+2015)

Tidal disruption

Shock & neutrino

Details: NS masses & EoS in 3D hydro

Wanajo, NN+ in prep.; NN+ in prep.

Late-phase evolution: nu-driven ejecta

neutrino-heating + pair annihilation + viscosity

Late-phase evolution: nu-driven ejecta

Fujibayashi et al. in prep 2017

Lanthanide-free ejecta shows higher luminosity.

See also, D. Martin et al., ApJ, 2015

Highlight importance of RI-isotopes

International symposium on RI beam physics in the 21st century: 10th anniversary of RIBF

4-5 December 2017 RIKEN

RIBF@RIKEN

Magneto-rotational Supernovae

Collaboration with: H. Sawai (RIST), T. Takiwaki (NAOJ), S. Yamada (Waseda) F.-K. Thielemann (Basel U) T. Tsujimoto (NAOJ)

Based on

- <u>NN</u>, Takiwaki & Thielemann, ApJ 810 (2015) 109
- Tsujimoto & <u>NN</u>, ApJL 811 (2015) L10
- <u>NN</u>, Podolyák, Fang & Suzuki, PLB 756 (2016) 273
- <u>NN</u>, Sawai, Takiwaki et al., ApJL 836 (2017) L21

<u>cc-SNe as a long-expecting r-process site</u> Since B2FH (1957), core-collapse supernovae have been expected as the r-process sites. However, …

temperature for the r-process to proceed. <u>Perhaps ejection by a</u> jet (LeBlanc and Wilson 1970) could alter these results but that remains to be demonstrated. It may even be that <u>the</u> r-process, if indeed there is a single 'r-process', <u>does not occur</u> <u>predominantly in supernovae</u>! Recent work by Cowan, Cameron and Truran (1981) suggests that the r-process may occur during an off-centre helium core flash in a low mass star (following the mixing of hydrogen into the helium core by 2-dimensional instability). These interesting speculations point out just how uncertain the true nature of the r-process really is.

> Proceedings of "Supernovae: A Survey of Current Research" "Theoretical models for Supernovae" Woosely & Weaver 1981

- <u>"Prompt explosion</u>" (e.g., Hillebrandt+1987; Sumiyoshi+2001)
 —> ONeMg SNe of 8-9Msun stars (with less neutrino heating)
- Neutrino-driven proto-neutron star wind

(e.g. Woosley&Hoffman 1992; Meyer+1992; Howard+1993)

<u>cc-SNe as a long-expecting r-process site</u>

Wanajo 2013

Magneto-rotationally driven (MR) SNe and magnetars

r-process studies

•2D MHD-SNe

- •NN et al. (2009, 2012)
- •Fujimoto, NN and Hashimoto 2008
- (Collapsar: central Black-Hole and disk)
- <u>3D MHD-SNe with neutrino</u>
 - •Winteler et al. 2012

3D MHD simulation Winteler et al. (2012)

hypernova/jet-like SN

•<u>Magnetar</u>

•strong magnetic field $\sim 10^{15}$ G

(\sim 1 % of all neutron stars)

- •<u>Magneto-driven Supernovae?</u>
 - •GRB central engine
 - •Hypernovae
 - •Super luminous SNe

r-process in high entropy GRB jets??

MHD + neutrino heating jets; <u>S > 1000 k_B/baryon</u> (e.g., Nakamura, Kajino, Mathews et al. 2015 A&A)

not the r-process

(possibly the i-process in CEMP-i stars, Hampel et al. ApJ 2016)

Meyer 1997

MR-SNe as origin of r-process elements

NTT15: NN, Takiwaki & Thielemann, ApJ (2015)

- explosion models (Takiwaki+ 2009; 2011):
 - strong magnetic-fields & jet
 - relevant to GRBs, hypernovae, magnetars
- nucleosynthesis
 - can eject very neutron-rich matter

Jet-like explosions, driven by the strong magnetic pressure

Diversity of MR-SNe and r-process

Strong (prompt)-jet

 immediately ejects very n-rich (low Y_e) matter dredged from the SN core (strong e⁻-capture)

• Weaker (delayed) jet

only ejects surface of the PNS and suffers Y_e increase by neutrino absorption

Diversity of MR-SNe and r-process

NN+ 2015; with r-process in metal-poor stars

dimensionality: 2D or not 2D?

in 3D but polar-like jet

time: 0.031446

deformed jet by the Kink-instability

Mösta+ (2014)

Winteler+ (2012)

Question: How does it change r-process?

Multiple r-process sources in GCE?

Cescutti+ 2015, A&A 577

see also, B. Wehmeyer+ 2015: different event rates for MR-SNe

Tsujimoto & NN, ApJL (2015)

Chemical evolution models

<u>GCE models suggest:</u>

- rate event: 1/200 CC-SNe
- large Eu ejection: $\sim 10^{-5}$ Msun

agree with our MR-SN models

(e.g. Nishimura+ 2015)

by Wehmeyer+2017, based on inhomogeneous model (private communication)

Open questions

see, Winteler+2012; NN+(2015); Tsujimoto&NN (2015)

- Magnetically-driven polar-jets ("prompt jets") produce produce heavy r-process elements
 while weaker explosions ("delayed-jets") show weaker r-process (A < 130)
 mostly active in early galaxies (metal-poor stars); and no contribution to the (total) solar-abundances?
- Really need/exist such strong initial magnetic fields?
- the MRI (magneto-rotational instability) is key?
- MRI induced explosion models must have different nucleosynthesis signatures from canonical CC-SNe

Magneto-rotational instability in CC-SN

Sawai & Yamada (2014, 2016)

- MRI enhance B-fields of the core
- neutrino-heating also affects explosion

MRI-driven Jet; plasma-beta

MR-SNe driven by the MRI Nishimura+ (2017) simulated by <u>H. Sawai</u>

Nishimura+ (2015) simulated by <u>T. Takiwaki</u>

Need those strong initial B-fields?

Ye vs S of ejecta

Ye-S

Nucleosynthesis results

Nishimura+2017 (Sawai model)

Origin of diversity in metal-poor stars?

produces a wide range of nuclei (from Fe to r-process)
final abundances vary due to the effect of magnetic fields in explosion models

How the reality should be?

or www2.yukawa.kyoto-u.ac.jp/~nobuya.nishimura/mrsn/

<u>r-process: nuclear physics inputs</u>

 β -decay half-life, (γ ,n), and (γ ,n) are dominant

different nuclear physics theories (by MHD-SN)

Nishimura et al., ApJ (2006)

Nuclear physics uncertainty (beta-decay) New Half-live nuclear mass prediction measurements @RIKEN (FRDM) (a) Abundance $Y_{\text{th}}(A) \times Y_{\text{s}}(A=195)/Y_{\text{th}}(A=195)$ 0 0 $_{\text{e}^{-}}$ 0 0 $_{\text{e}^{-}}$ 0 0 $_{\text{e}^{-}}$ 0 1 0 0 $_{\text{e}^{-}}$ 0 1 0 0 0 Solar system abundance High-Entropy Wind, Ye=0.45, Vexp=7500 km/s, 120<S<280 10⁻¹ 10-2 (b) Solar system abundance FRDM(2012) FRDM(1992) r-Solar 200 100 120 180 10-1 140 160 Mass Number A Kratz+2014 10-2 Improvement of FRDM 120 200 80 100 140 160 180 220 240 Mass number A Lorusso+2015 (using high-entropy winds)

<u>Summary</u>

– <u>NS-NS mergers</u>

- no serious difficulty to produce heavy r-process nuclei
- more detailed analysis, based on different initial/input parameters (NS mass, EoS)
- but assuming only single r-process source has difficult to explain chemical evolution in early galaxies?
- <u>MR-SNe</u>
 - Several uncertainties and problems remain: hydrosimulations, initial rotation and B-fields etc.
 - a variety of "r-process" abundance patterns. How do we interpret in the GCE?; main source in early galaxies?
 - We can make some constraint on MR-SNe models by the comparison of several astronomical observation