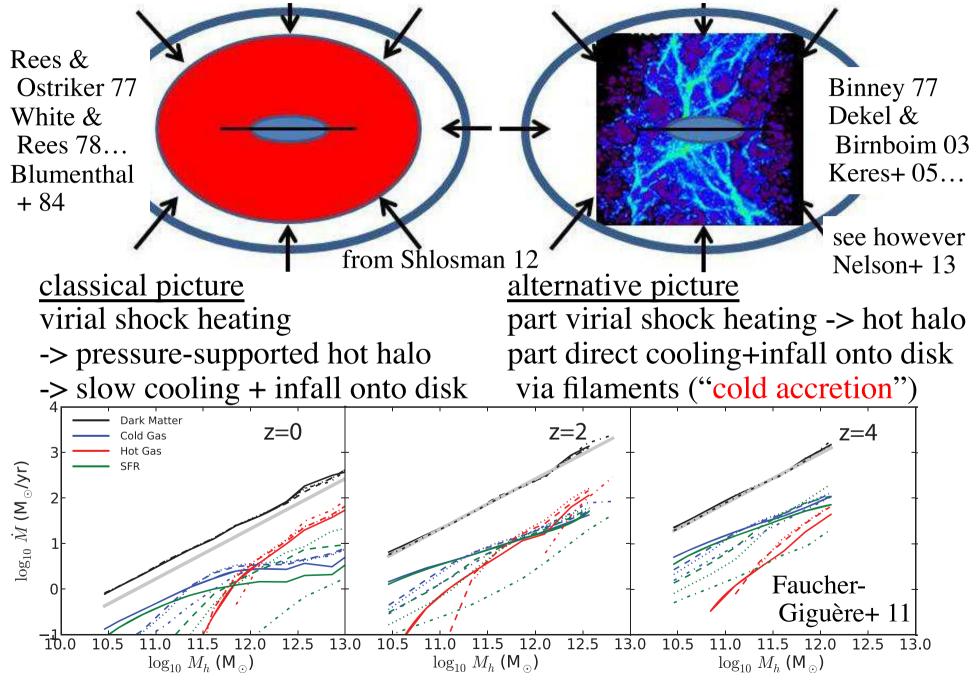
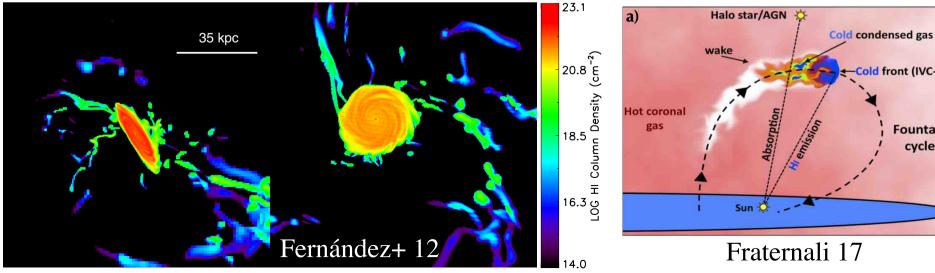
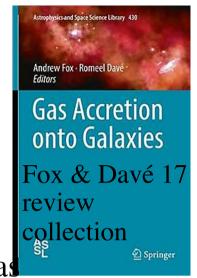

Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the outer Galactic disk

Susumu Inoue (RIKEN) in collaboration with


Yasunobu Uchiyama, Masanori Arakawa (Rikkyo) Matthieu Renaud (Montpellier), Keiichi Wada (Kagoshima)

ApJ, close to accepted arXiv:1708.08574 cool gas accretion onto Milky Way disk

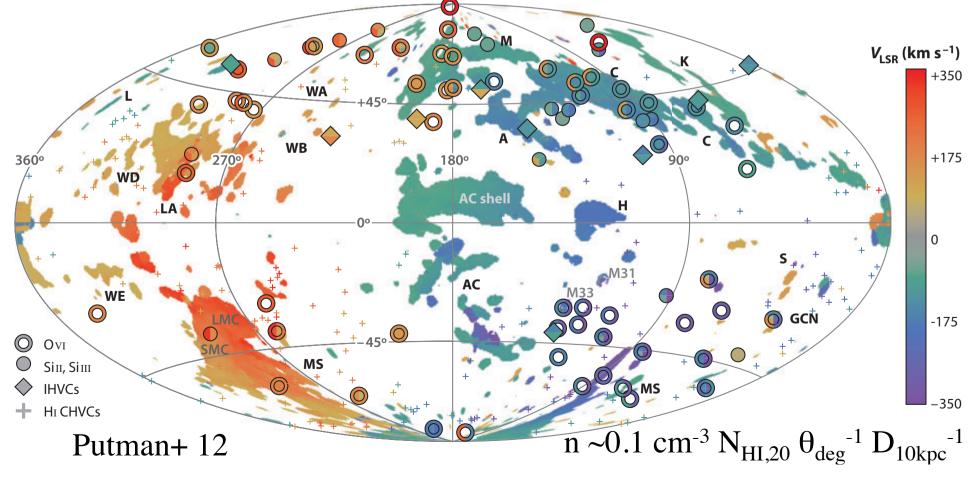

formation+evolution of disk galaxies: theory

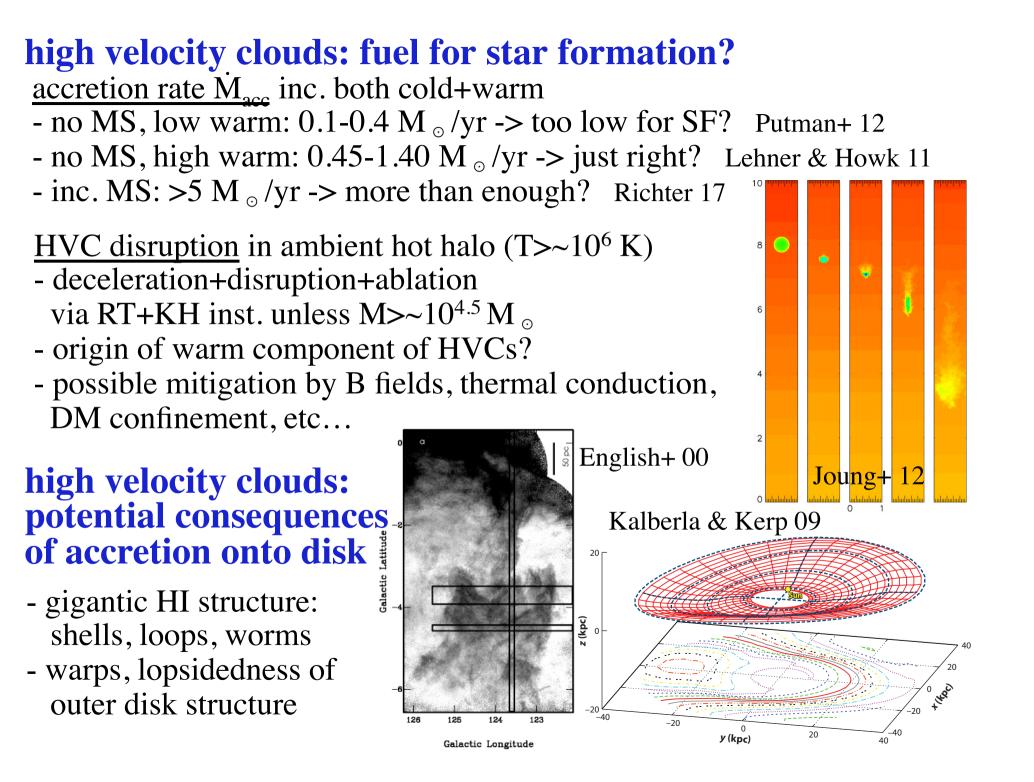


gas accretion onto disk galaxies

observational requirements

- $-\dot{M}_{acc} \sim 1-3 M_{\odot}/yr$ to sustain star formation for >Gyr
- Z/Z_{\odot} ~0.1 to explain stellar metallicity distribution potential sources
- filamentary accretion from IGM
- gas stripped from satellites
- SN(SMBH)-driven fountains/outflows mixed with halo gas
- destination: primarily outer galaxy
- larger target area
- higher angular momentum of accreting gas relative to disk
- survival against disruption in hot halo or outflows from disk
- subsequent radial inflow due to e.g. mergers

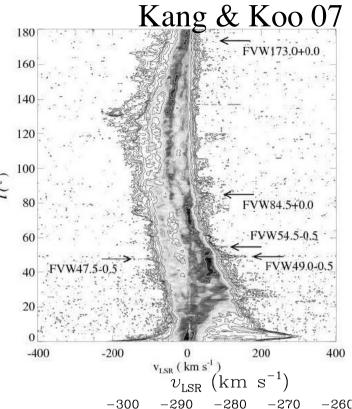

Cold front (IVC-like)

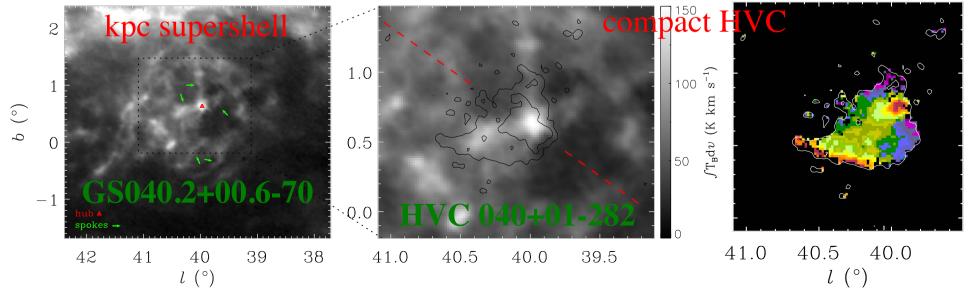

Fountain

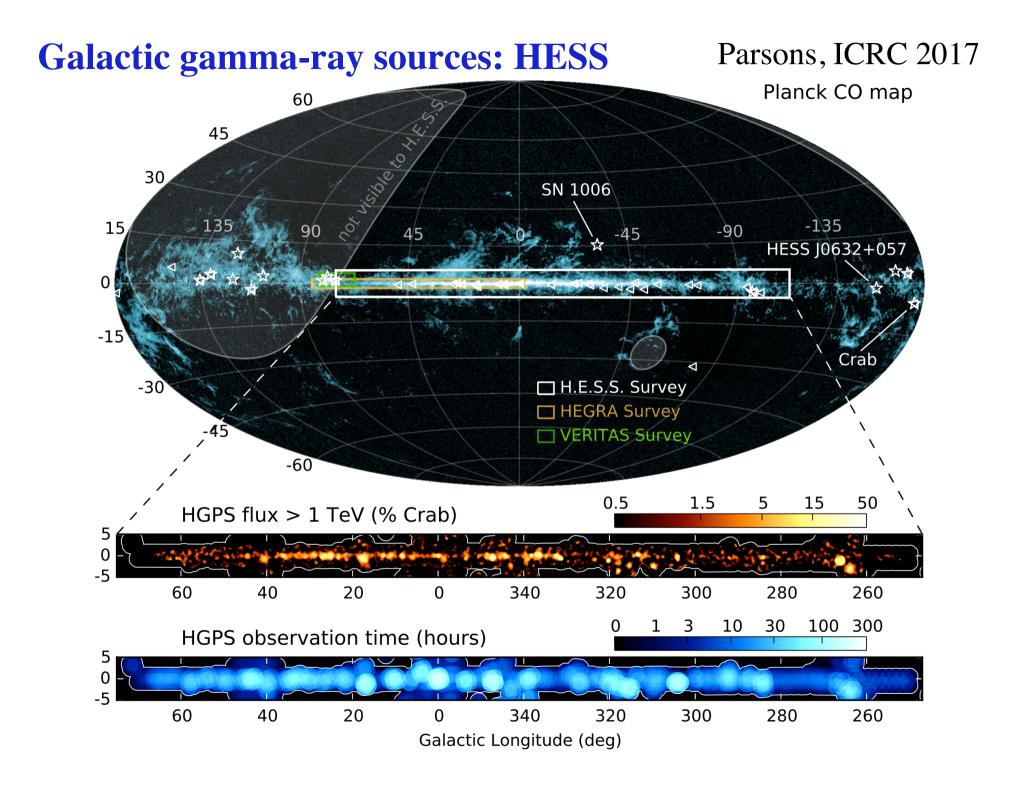
cycle

high velocity clouds in the Milky Way

- HI emission (and/or absorption, T~<10⁴ K), $N_{HI} \sim 10^{17}$ - 10^{20} cm⁻²
- large deviations from Galactic rot. $|V_{LSR}| > 90 \text{ km/s}, v_{3D} \sim \text{few 100 km/s}$
- HVC complexes: D~2-15 kpc, $M_{HI} \sim 10^{-5} 5 \times 10^{6} M_{\odot}$, Z~0.1-0.5 Z $_{\odot}$
- Magellanic Stream: D>~55 kpc, M_{HI} ~3×10⁸ M $_{\odot}$ D_{55kpc}², Z~0.1-0.3 Z $_{\odot}$
- compact HVCs: θ~<2°
- associated warm ionized gas (T~ 10^4 - 10^5 K), likely dominant in mass

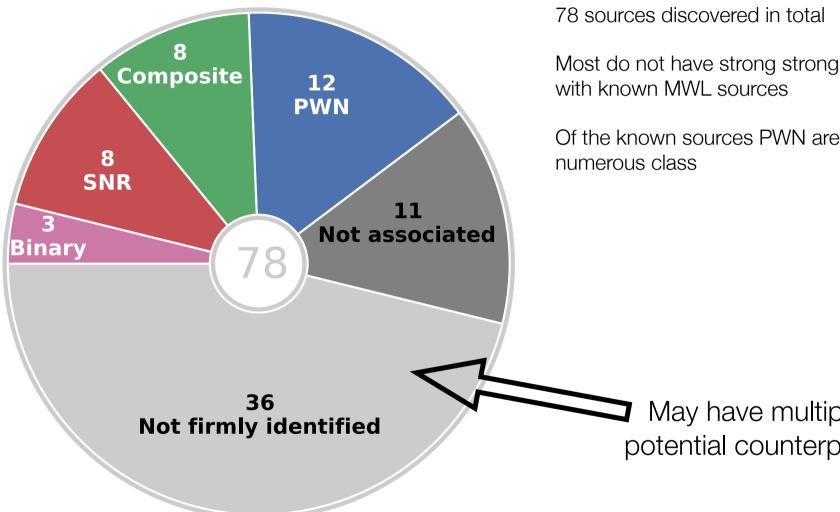




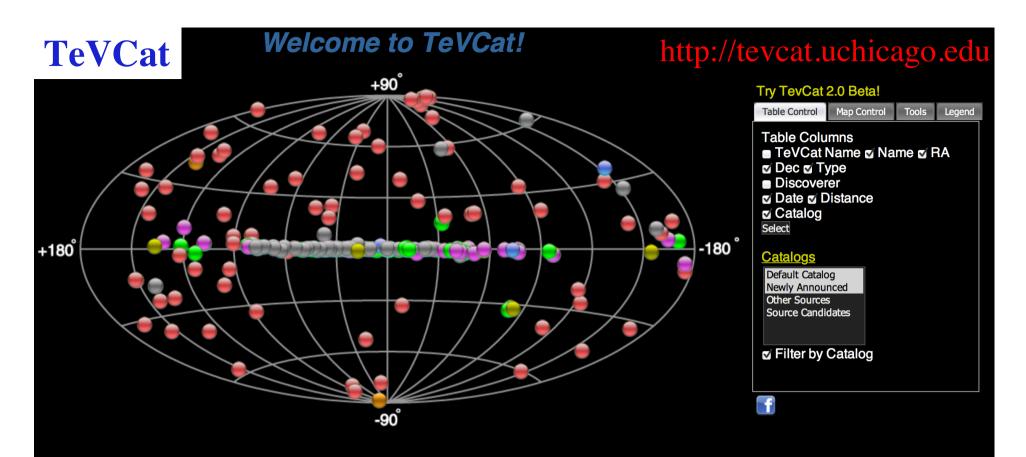

forbidden velocity wings (FVWs)

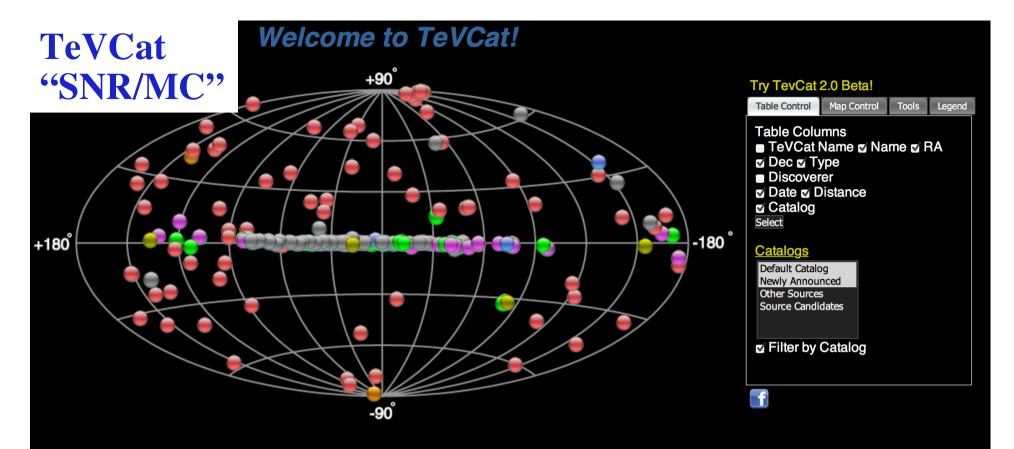
- localized HI structure in Gal. plane, deviations from Gal. rotation ldv|>20 km/s
- 87 objects, nature of most unknown discovery of direct HVC accretion event Park+16

- high res. HI obs. of FVW 40.0+0.5 -> kpc-scale supershell + CHVC at center
- favored distance D~20kpc (R~15 kpc)
- CHVC size 210 x 320 pc, M_{HI} ~6x10³ M $_{\odot}$
- inferred pre-collision:
 - $v_{rel} \sim 240 \text{ km/s}, E_{kin} \sim 7 \times 10^{52} \text{ erg}, M \sim 6 \times 10^4 \text{ M}_{\odot}$



Galactic gamma-ray sources: HESS

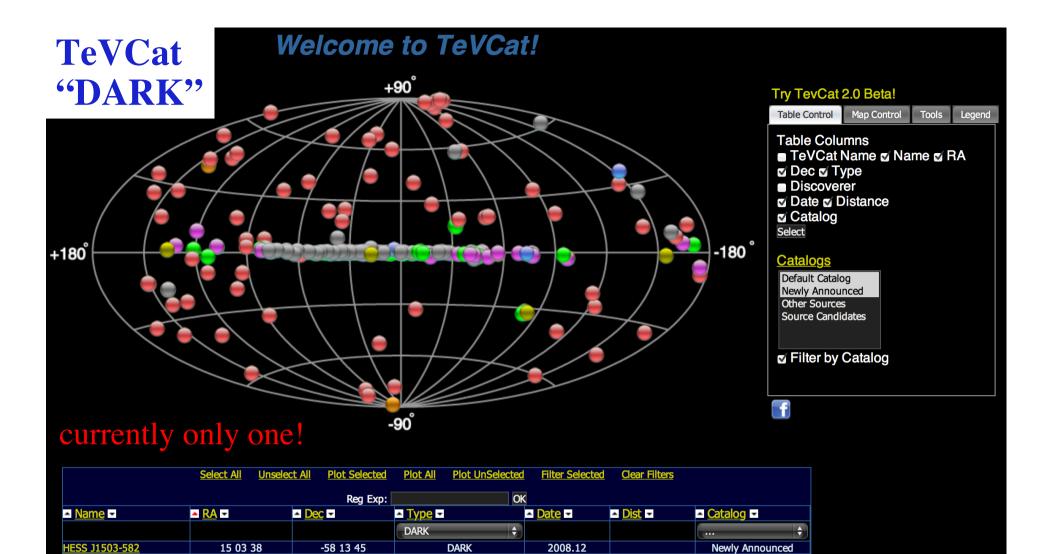

Parsons, ICRC 2017


Most do not have strong strong associations

Of the known sources PWN are the most

May have multiple potential counterparts

	Select All Unsele	ct All Plot Selected	Plot All Plot UnSelected	Filter Selected	Clear Filters	
		Reg Exp:	Ok	3		
▲ <u>Name</u> ◄	▲ <u>RA</u> ▼	■ Dec ■	▲ <u>Type</u> 교	▲ <u>Date</u> ◄	≏ <u>Dist</u> -	▲ <u>Catalog</u>
			···· 🗘			• • • • • • • • • • • • • • • • • • •
<u>CTA 1</u>	00 06 26	+72 59 01.0	PWN	2011.10	1.4 kpc	Default Catalog
SHBL J001355.9-185406	00 13 52.0	-18 53 29	HBL	2010.11	z = 0.095	Default Catalog
Tycho	00 25 21.6	+64 07 48	Shell	2010.05	3.5 kpc	Default Catalog
KUV 00311-1938	00 33 34.2	-19 21 33	HBL	2012.07	z = 0.61	Newly Announced
<u>1ES 0033+595</u>	00 35 16.8	+59 47 24.0	HBL	2011.10	z = 0.467	Default Catalog
NGC 253	00 47 34.3	-25 17 22.6	Starburst	2009.07	2500 kpc	Default Catalog
<u>S2 0109+22</u>	01 12 05.8	+22 44 39	IBL	2015.07		Newly Announced
<u>RGB J0136+391</u>	01 36 32.5	+39 06 00	HBL	2012.07		Newly Announced
RGB J0152+017	01 52 33.5	+01 46 40.3	HBL	2008.02	z = 0.08	Default Catalog
<u>3C 58</u>	02 05 31	+64 51 00	PWN	2014.05	2 kpc	Default Catalog
<u>S3 0218+35</u>	02 21 05.5	+35 56 14	FSRQ	2014.07	z = 0.954	Default Catalog
<u>3C 66A</u>	02 22 41.6	+43 02 35.5	IBL	1998.03		Default Catalog
MAGIC J0223+403	02 23 12	+43 00 42	UNID	2009.02		Default Catalog
1ES 0229+200	02 32 53.2	+20 16 21	HBL	2006.12	z = 0.1396	Default Catalog
<u>LS I +61 303</u>	02 40 34	+61 15 25	Binary	2006.06	2 kpc	Default Catalog
PKS 0301-243	03 03 23.49	-24 07 35.86	HBL	2012.07	z = 0.2657	Default Catalog

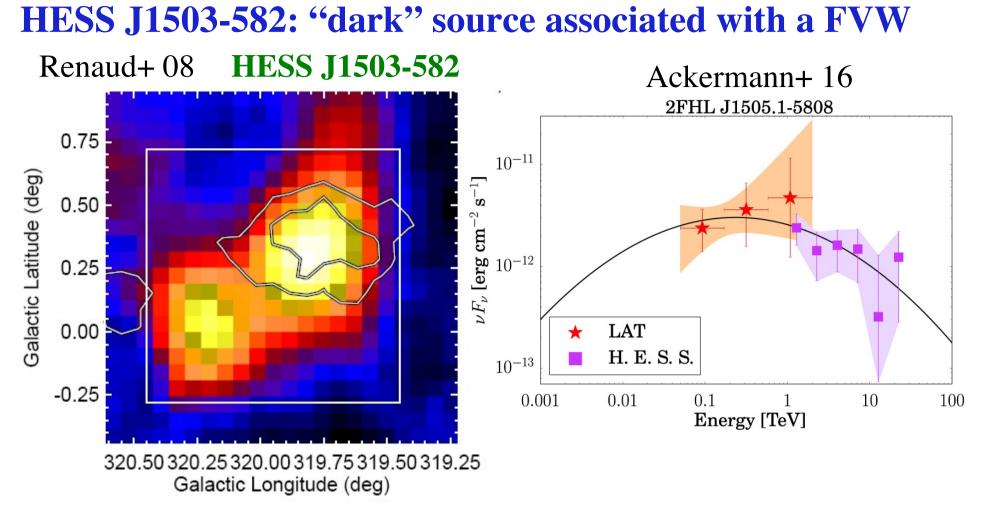


	Select All Unsele	ct All Plot Selected	Plot All Plot UnSelected	Filter Selected	Clear Filters	
		Reg Exp:	O	K		
▲ Name ◄	▲ <u>RA</u> 🕶	▲ <u>Dec</u> ▼	▲ <u>Type</u> -	▲ Date	^ <u>Dist</u> -	🗠 <u>Catalog</u> 📼
			SNR/Molec. Cloud 🗘			···· 🗘
LMC N132D	05 25 02.20	-69 38 39.0	SNR/Molec. Cloud	2014.10	50 kpc	Default Catalog
SNR G318.2+00.1	14 57 46	-59 28 00	SNR/Molec. Cloud	2010.12		Newly Announced
<u>CTB 37A</u>	17 14 19	-38 34 00	SNR/Molec. Cloud	2008.11	7.9 kpc	Default Catalog
SNR G349.7+00.2	17 17 57.8	-37 26 39.6	SNR/Molec. Cloud	2013.07	11.5 kpc	Default Catalog
HESS J1745-303	17 45 02.10	-30 22 14.00	SNR/Molec. Cloud	2006.01		Default Catalog
HESS J1800-240C	17 58 51.6	-24 03 07.2	SNR/Molec. Cloud	2008.04	2 kpc	Source Candidates
HESS J1800-240B	18 00 26.4	-24 02 20.4	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
<u>W 28</u>	18 01 42.2	-23 20 06.0	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
HESS J1800-240A	18 01 57.8	-23 57 43.2	SNR/Molec. Cloud	2008.04	2 kpc	Default Catalog
<u>W 49B</u>	19 11 07.3	09 09 37.0	SNR/Molec. Cloud	2010.12		Default Catalog
<u>W 51</u>	19 22 55.2	+14 11 27.6	SNR/Molec. Cloud	2008.10	4.3 kpc	Default Catalog
1-11						

TeVCat	Select All Unsele	ct All Plot Selected	Plot All Plot UnSelected	Filter Selected	Clear Filters	
IevCat		Reg Exp:	ОК	1		
"PWN"	▲ <u>RA</u> ►			≏ <u>Date</u> -	<mark>∽ <u>Dist</u> -</mark>	- <u>Catalog</u> -
			PWN 🗘			···· 🔶
<u>CTA 1</u>	00 06 26	+72 59 01.0	PWN	2011.10	1.4 kpc	Default Catalog
<u>3C 58</u>	02 05 31	+64 51 00	PWN	2014.05	2 kpc	Default Catalog
Crab	05 34 31.1	+22 00 52	PWN	1989.07	2 kpc	Default Catalog
LHA 120-N 157B	05 37 44	-69 09 57	PWN	2012.01	50 kpc	Default Catalog
0FGL J0631.8+1034	06 31 49.22	+10 34 12.7	PWN	2009.04	6.55 kpc	Source Candidates
Geminga	06 32 28	+17 22 00	PWN	2009.04	0.169 kpc	Default Catalog
Vela X	08 35 00	-45 36 00	PWN	2006.03	0.29 kpc	Default Catalog
HESS J1018-589 B	10 16 31	-58 58 48	PWN	2010.08		Default Catalog
HESS J1026-582	10 26 38.4	-58 12 00	PWN	2011.01	2.3 kpc	Default Catalog
SNR G292.2-00.5	11 19 00	-61 24 00	PWN	2009.07	5 kpc	Newly Announced
HESS J1303-631	13 02 48.0	-63 10 39	PWN	2005.09	6.6 kpc	Default Catalog
HESS J1356-645	13 56 00	-64 30 00	PWN	2008.12	2.4 kpc	Default Catalog
Kookaburra (Rabbit)	14 18 04	-60 58 31	PWN	2006.09	5.6 kpc	Default Catalog
Kookaburra (PWN)	14 20 09	-60 45 36	PWN	2006.09	5.6 kpc	Default Catalog
HESS J1458-608	14 58 09.6	-60 52 38	PWN	2012.04		Newly Announced
<u>MSH 15-52</u>	15 14 07	-59 09 27	PWN	2005.05	5.2 kpc	Default Catalog
SNR G327.1-01.1	15 54 36	-55 05 05	PWN	2012.01	9 kpc	Newly Announced
HESS J1616-508	16 16 24.0	-50 54 00	PWN	2005.03	6.5 kpc	Default Catalog
HESS J1632-478	16 32 09.6	-47 49 12	PWN	2006.01		Default Catalog
HESS J1640-465	16 40 43.2	-46 31 48	PWN	2005.03	8.6 kpc	Default Catalog
HESS J1708-443	17 08 11	-44 20 00	PWN	2009.07	2.3 kpc	Default Catalog
HESS J1718-385	17 18 07	-38 33 00	PWN	2007.09	4.2 kpc	Default Catalog
SNR G000.9+00.1	17 47 23.2	-28 09 06	PWN	2005.03	8.5 kpc	Default Catalog
HESS J1813-178	18 13 36.0	-17 50 24	PWN	2005.03	4.7 kpc	Default Catalog
HESS J1825-137	18 25 41	-13 50 20	PWN	2005.03	3.9 kpc	Default Catalog
HESS J1831-098	18 31 25	-09 54 00	PWN	2011.10		Newly Announced
HESS J1833-105	18 33 32.5	-10 33 19	PWN	2007.10	4.8 kpc	Newly Announced
HESS J1837-069	18 37 38.4	-06 57 00	PWN	2005.03	6.6 kpc	Default Catalog
HESS J1846-029	18 46 24.1	-02 58 53	PWN	2007.10	6.3 kpc	Newly Announced
IGR J18490-0000	18 49 01.63	-00 01 17.2	PWN	2008.07	7 kpc	Newly Announced
MAGIC J1857.2+0263	18 57 13.0	02 37 31	PWN	2014.11		Default Catalog
SNR G054.1+00.3	19 30 32	+18 52 12	PWN	2009.07	6.2 kpc	Default Catalog
0FGL J1958.1+2848	19 58 07.61	+28 48 11.9	PWN	2009.04		Source Candidates
MGRO J2019+37	20 18 35.03	+36 50 00.0	PWN	2007.03		Default Catalog
0FGL J2021.5+4026	20 21 35.77	+40 26 20.8	PWN	2009.04		Source Candidates
<u>TeV J2032+4130</u>	20 32 07	+41 30 30	PWN	2002.10	1.8 kpc	Default Catalog
<u>Boomerang</u>	22 28 44	+61 10 00	PWN	2009.04	0.8 kpc	Default Catalog
1-37						

TeVCat "UNID" ~55 at lbl<10°

Name	ARA 🗖	A Dec 🖬	🖪 Туре 🗖	🔺 Date 🚽	- Dist -	Catalog
			UNID \$			÷
2HWC J0700+143	07 00 28.8	14 19 12	UNID	2017.02		Newly Announced
2HWC J0819+157	08 19 55.2	+15 47 24	UNID	2017.02		Newly Announced
2HWC J1040+308	10 40 52.8	+30 52 12	UNID	2017.02		Newly Announced
2HWC J1309-054	13 09 14.4	-05 29 24	UNID	2017.02		Newly Announced
2HWC J1829+070	18 29 21.6	+07 01 48	UNID	2017.02		Newly Announced
2HWC J1852+013*	18 52 02.4	+01 22 48	UNID	2017.02		Newly Announced
2HWC J1902+048*	19 02 02.4	+04 51 36	UNID	2017.02		Newly Announced
2HWC J1907+084*	19 07 09.6	+08 30 00	UNID	2017.02		Newly Announced
2HWC J1914+117*	19 14 43.2	+11 43 12	UNID	2017.02		Newly Announced
2HWC J1921+131	19 21 12	+13 07 48	UNID	2017.02		Newly Announced
<u>2HWC J1928+177</u>	19 28 36	+17 46 48	UNID	2017.02		Newly Announced
2HWC J1938+238	19 38 58	+23 48 36	UNID	2017.02		Newly Announced
2HWC J1949+244	19 49 40.8	+24 27 36	UNID	2017.02		Newly Announced
2HWC J1953+294	19 53 02.4	+29 28 48	UNID	2017.02		Newly Announced
2HWC J1955+285	19 55 19.2	+28 35 24	UNID	2017.02		Newly Announced
2HWC J2006+341	20 06 12	+34 10 48	UNID	2017.02		Newly Announced
MAGIC J1746.4-2853	17 46 25	-28 52 55	UNID	2016.11		Newly Announced
1HWC J1904+080c	19 04 24	08 00 00	UNID	2015.09		Source Candidates
<u>1HWC J1842-046c</u> HESS J1813-126	18 42 00 18 13 21.66	-04 36 00 -12 41 13.6		2015.09 2015.08		Source Candidates Newly Announced
VER J1746-289	17 46 19.71	-28 57 58.4	UNID	2015.08		Newly Announced
HESS J1826-130	18 26 00.2	-13 02 00.0	UNID	2015.07		Newly Announced
HESS J1828-099	18 28 58.72	-09 59 33.8	UNID	2015.07		Newly Announced
HESS J1832-085	18 32 31.75	-08 30 35.4	UNID	2015.07		Newly Announced
HESS J1844-030	18 44 41.22	-03 05 34.6	UNID	2015.07		Newly Announced
HESS J1746-285	17 46 23.86	-28 52 33.4	UNID	2015.07		Default Catalog
MAGIC J1857.6+0297	18 57 35.6	02 58 02	UNID	2014.11		Default Catalog
VER J2019+368	20 19 25	+36 48 14	UNID	2014.04		Default Catalog
ARGO J1910+0720	19 10 36	+07 21 00	UNID	2013.11		Source Candidates
ARGO J0409-0627	04 09 24	-06 27 00	UNID	2013.11		Source Candidates
HESS J1641-463	16 41 02.1	-46 18 13	UNID	2012.10		Default Catalog
HESS J1808-204	18 08 37.3	-20 25 36.3	UNID	2012.07		Default Catalog
VER J2016+371	20 16 02	37 11 52	UNID	2011.08		Default Catalog
HESS J1852-000	18 52 13	-00 00 23	UNID	2011.08		Newly Announced
HESS J1729-345 HESS J1507-622	17 29 35 15 06 52.8	-34 32 22 -62 21 00.0	UNID	2011.05 2009.12		Default Catalog Default Catalog
VER J2019+407	20 20 04.8	+40 45 26	UNID	2009.12		Default Catalog
0FGL J1844.1-0335	18 44 08.87	-03 35 21.4	UNID	2009.04		Source Candidates
0FGL J1900.0+0356	19 00 02.21	+03 56 48.3	UNID	2009.04		Source Candidates
MAGIC J0223+403	02 23 12	+43 00 42	UNID	2009.02		Default Catalog
HESS J1741-302	17 41 00	-30 12 00	UNID	2008.07		Newly Announced
HESS J1843-033	18 43 00	-03 18 00	UNID	2008.07		Newly Announced
HESS J1809-193	18 10 31	-19 18 00	UNID	2007.09	3.7 kpc	Default Catalog
MGRO J1908+06	19 07 54	+06 16 07	UNID	2007.08		Default Catalog
MGRO J2031+41	20 28 43.2	+41 18 36	UNID	2007.08		Default Catalog
HESS J1626-490 HESS J1427-608	16 26 04	-49 05 13	UNID	2007.07		Default Catalog
HESS J1427-608 HESS J1841-055	14 27 52 18 40 55	-60 51 00 -05 33 00	UNID	2007.07		Default Catalog Default Catalog
HESS J1857+026	18 57 11	+02 40 00	UNID	2007.07		Default Catalog
HESS J1858+020	18 58 20	+02 05 24	UNID	2007.07		Default Catalog
Galactic Centre Ridge	17 45 39.6	-29 00 22	UNID	2006.02	8.5 kpc	Default Catalog
HESS J1634-472	16 34 57.6	-47 16 12	UNID	2006.01	8.6 kpc	Default Catalog
HESS J1702-420	17 02 44	-42 00 57	UNID	2006.01		Default Catalog
HESS J1708-410	17 08 24	-41 05 24	UNID	2006.01		Default Catalog
MilagroDiffuse	20 20 00	+38 00 00	UNID	2005.12		Default Catalog
HESS J1804-216	18 04 31.2	-21 42 00	UNID	2005.03	6 kpc	Default Catalog
HESS J1834-087	18 34 45.6	-08 45 36	UNID	2005.03	4 kpc	Default Catalog
Galactic Centre	17 45 39.6	-29 00 22	UNID	2004.05	8.5 kpc	Default Catalog
Vela Region	08 33 39	-45 00 10	UNID	1997.09		Other Sources
1-59						

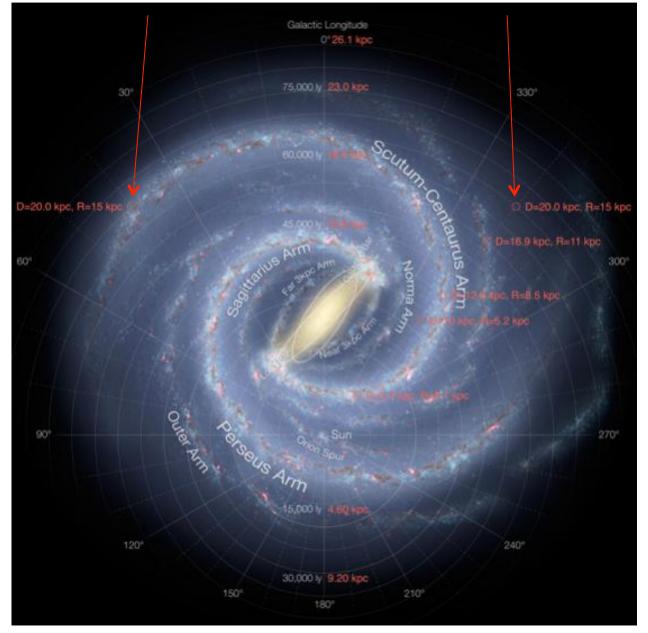


[What's New?] [TeVCat FAQ] [TeV Astrophysics] [Bug Report or Feature Request] [Admin]

TeVCat is brought to you by Scott Wakely And Deirdre Horan and is partially supported by NASA and the NSF --- Best Viewed with Current Catalog Version: 3.400 Read the <u>TeVCat Terms and Conditions</u>

1-1

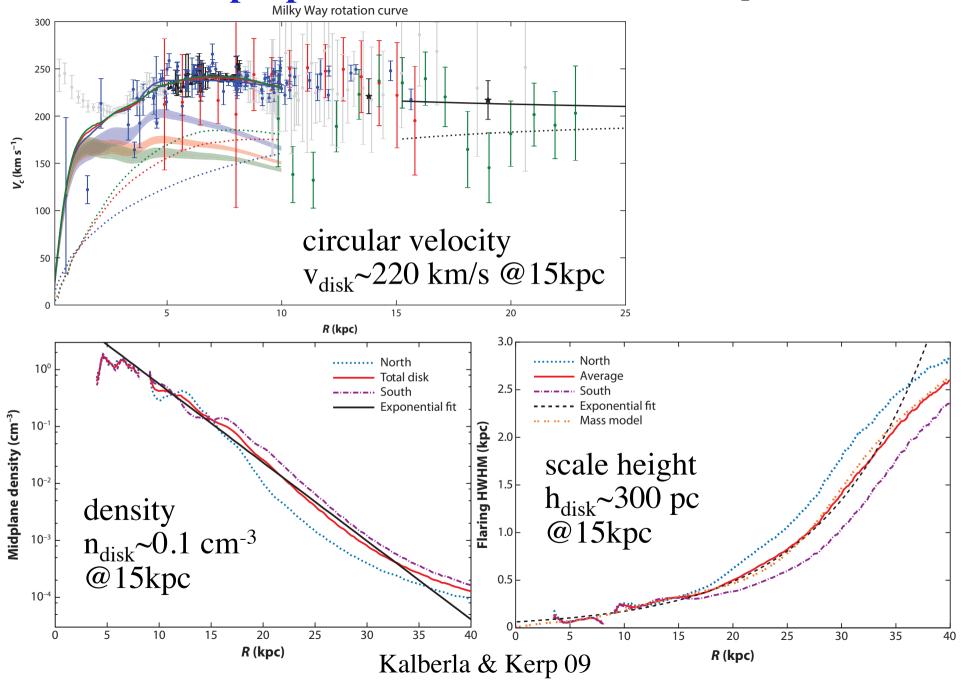
The Tooltip code used on this page is from dyn-web.com

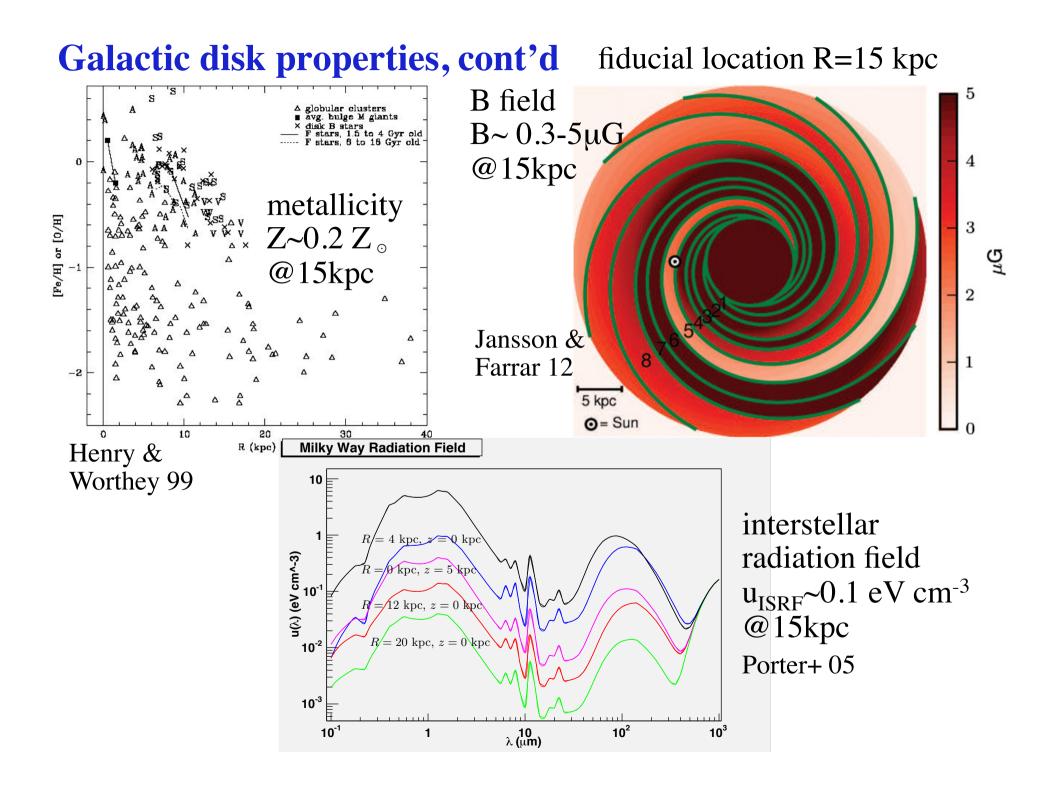


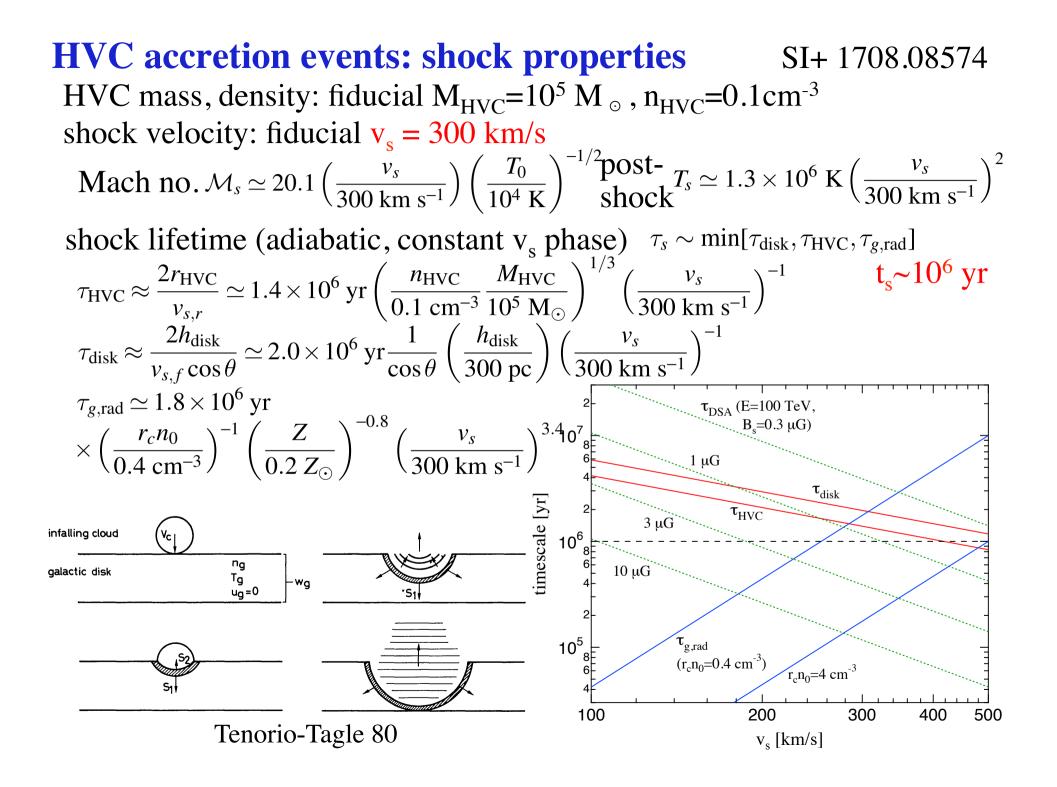
- no obvious counterparts in radio, IR or X only "dark" source in TeVCat
- 2FHL (50 GeV 2 TeV) counterpart
- potential association with FVW 319.8+0.3 of unknown nature
- -> direct HVC accretion event?

Galactic Plane geography

HVC 040+01-282

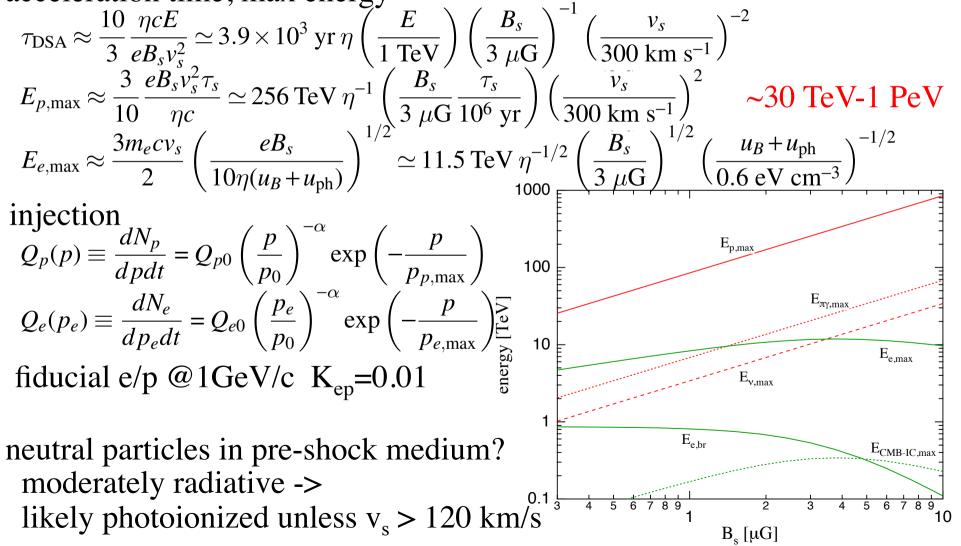

HESS J1503-582?




fiducial location R=15 kpc

Galactic disk properties

fiducial location R=15 kpc



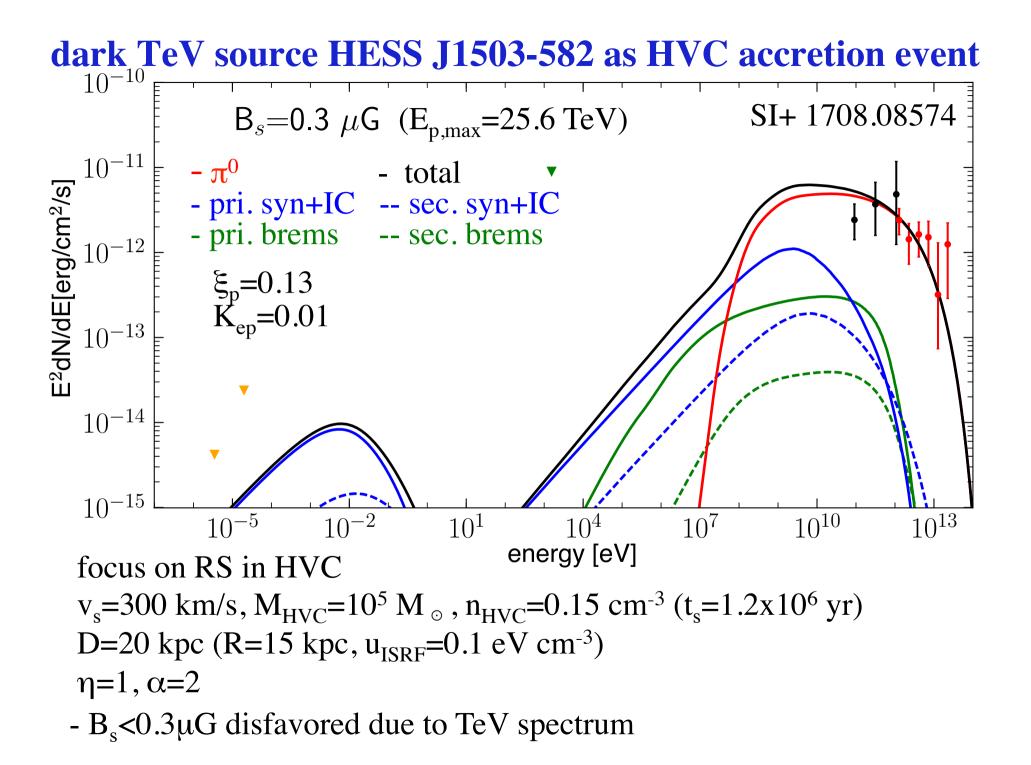
HVC accretion events: particle acceleration SI+ 1708.08574 B fields

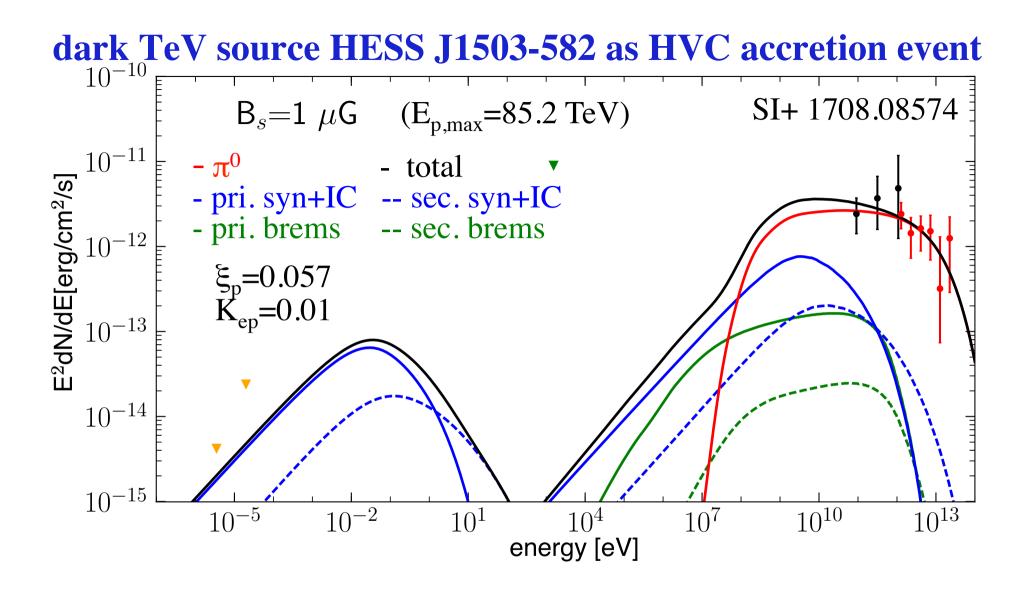
disk: B~0.3-5µG? HVC: ? c.f. B~6-8µG measured in 2 HVCs post-shock magnetic field: fiducial $B_s=3\mu G (0.3-10\mu G)$ $B_{eq}\sim14 \mu G$ acceleration time, max energy

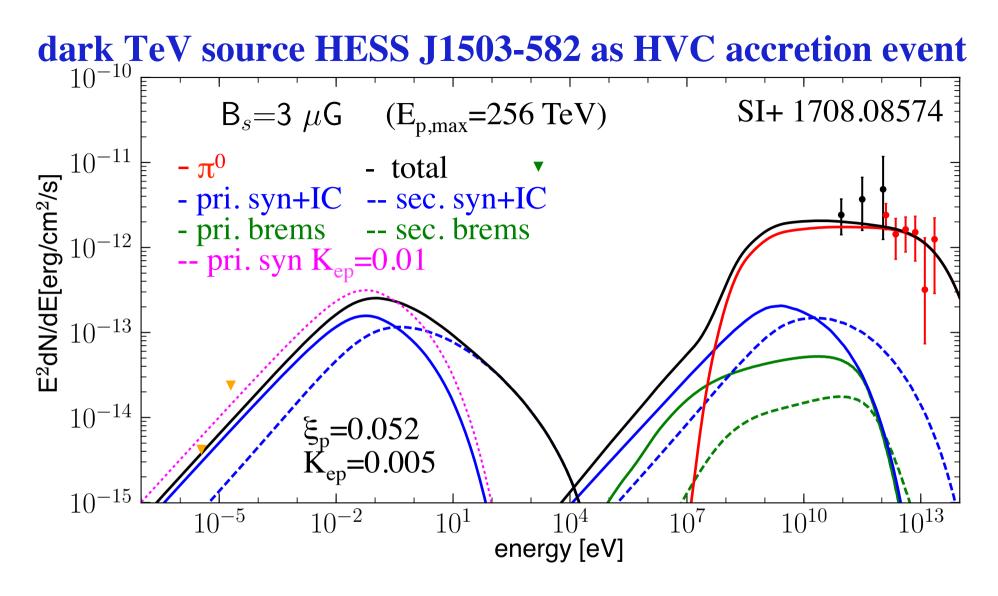
HVC accretion events: energetics, number SI+ 1708.08574

HVC kinetic energy
$$\mathcal{E}_{\text{HVC}} = \frac{1}{2} M_{\text{HVC}} v_{\text{HVC}}^2 \simeq 9.0 \times 10^{52} \text{ erg} \left(\frac{M_{\text{HVC}}}{10^5 \text{ M}_{\odot}}\right) \left(\frac{v_{\text{HVC}}}{300 \text{ km s}^{-1}}\right)^2$$

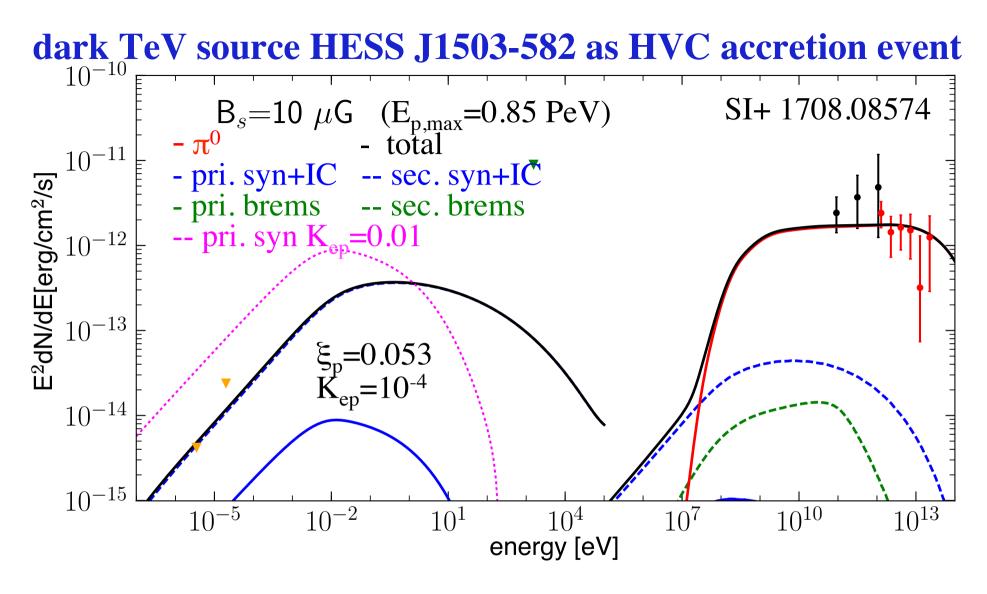
HVC accretion power


$$\mathcal{L}_{acc,HVC} \approx \frac{1}{2} f_{acc} \dot{M}_{acc,HVC} v_{acc}^2 \simeq 2.9 \times 10^{40} \text{ erg s}^{-1} f_{acc} \left(\frac{\dot{M}_{acc,HVC}}{1 \text{ M}_{\odot} \text{ yr}^{-1}}\right) \left(\frac{v_{acc}}{300 \text{ km s}^{-1}}\right)^2$$
vs SN power
$$\mathcal{L}_{SN} = \mathcal{E}_{SN} \mathcal{R}_{SN} \simeq 9.5 \times 10^{41} \text{ erg s}^{-1} \left(\frac{\mathcal{E}_{SN}}{10^{51} \text{ erg}} \frac{\mathcal{R}_{SN}}{0.03 \text{ yr}^{-1}}\right)$$


$$\mathcal{L}_{acc,HVC} \text{ fiducially } \sim <3\% \text{ of SN, optimistically } \sim <15\% \text{ of SN}$$


number of active adiabatic HVC shocks

$$N_s \approx f_{\rm s} (\dot{M}_{\rm acc,HVC}/M_{\rm HVC}) \tau_s \simeq 10 f_{\rm s} \left(\frac{\dot{M}_{\rm acc,HVC}}{1 \text{ M}_{\odot} \text{ yr}^{-1}} \frac{\tau_s}{10^6 \text{ yr}} \right) \left(\frac{M_{\rm HVC}}{10^5 \text{ M}_{\odot}} \right)^{-1}$$


fiducially $N_s \sim 10$ can be larger if: $M_{\rm HVC} < 10^5 M_{\odot}$ can survive radiative phase considered (acceleration to GeV energies?)

- X-rays from secondary sync. may be detectable by deeper observations

- B_s >10µG disfavored due to radio upper limits
- radio/X-rays from sec. sync. may be detectable by deeper observations
 -> constrain B_s

further observational tests

SI+ 1708.08574

HI observations

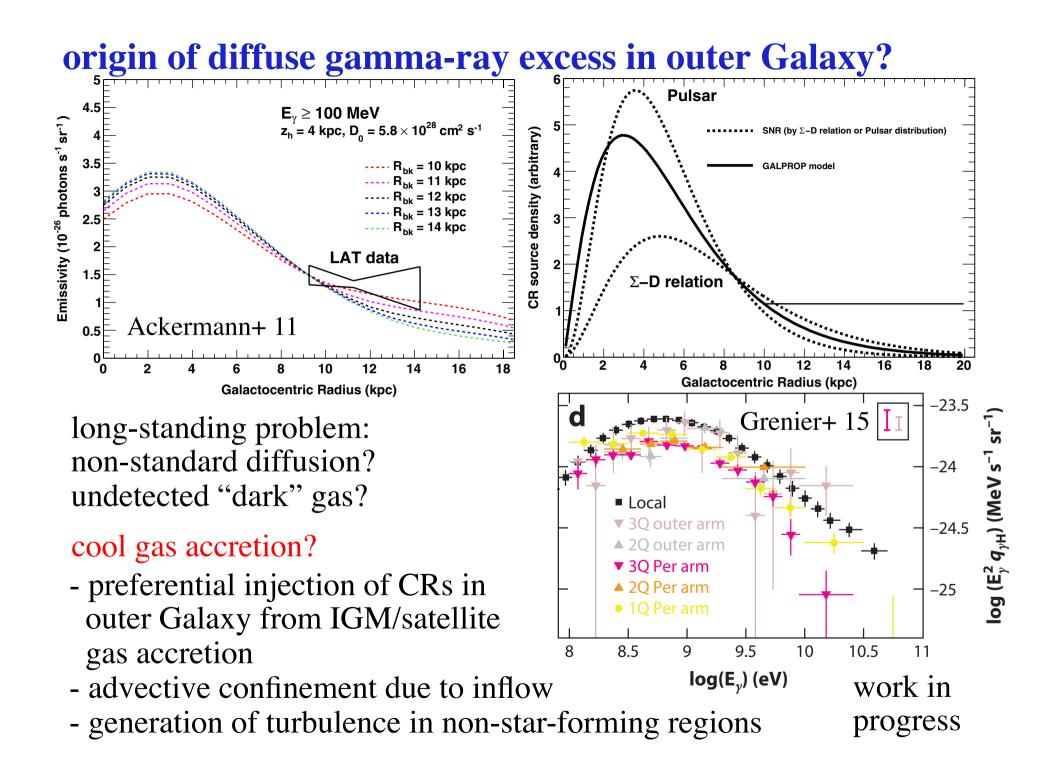
- morphology, kinematics: signs of HVC+disk interaction
- distance: larger energetics compared to SNR, PWNe
- location: weak, little, or opposite correlation with star forming regions IGM/satellite gas ignorant of disk conditions disruption due to SN-driven outflows from disk

<u>GeV-TeV:</u> sub-PeV cutoff, π^0 bump

non-thermal radio, X-ray

secondary electrons (indep. of K_{ep}): constrain B_s

thermal


 free-free continuum: heavily attenuated (e.g. N_H~1.5x10²² cm⁻² for HESS J1503-582), but possibly detectable if nearer sources exist

- emission lines from Fe, Si?

HE neutrinos: detectable by KM3NeT

search for more sources

- HESS, Fermi, HAWC... vs FVWs, HI shells...
- CTA: HVC accretion events in M31?

summary

observational facts

- ongoing accretion of low-metallicity gas onto Galactic disk at rate of order \dot{M}_{acc} ~1 M $_{\odot}$ /yr
- at least partly via direct accretion of HVCs with mass ${\sim}10^5$ M $_{\odot}$ and velocity few 100 km/s
- numerous unidentified GeV-TeV sources in Galactic Plane
- at least one "dark" source with no counterparts except FVW

plausible consequences

- with magnetic fields of order few μ G in HVC accretion shocks, acceleration of protons to sub-PeV, electrons to multi-TeV during 10⁶ yr lifetime -> π^0 gamma-ray emission (+ some IC)
- -> origin of dark unID GeV-TeV sources
- locations un- or anti-correlated with star formation
- testable with further observations in HI, radio, X-rays, neutrinos...

further implications

- origin of diffuse gamma excess in outer Galaxy?
- other observable effects?
- potential signposts illuminating gas accretion interface?