Predicting neutron-star mergers by numerical relativity

Masaru Shibata

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University

Center for Gravitational Physics Yukawa Institute

Outline of this talk

- **1. Introduction**
- 2. The standard scenario of NS mergers:
 - Gravitational waves
 - Mass ejection and EM counterparts
- 3. More details are required

I Introduction: Why NS merger is important ?

Galactic compact binary neutron stars observed

		Orbital period Eccentricity			Each	lifetime	
	PSR	$\hat{P}(day)$	е	$M(M_{\rm sur})$) M_1	M_2	$T_{\rm GW}$
1.	B1913+16	0.323	0.617	2.828	1.441	1.387	3.0
2.	B1534+12	0.421	0.274	2.678	1.333	1.345	27
3.	B2127+11C	0.335	0.681	2.71	1.35	1.36	2.2
4.	J0737-3039	0.102	0.088	2.58	1.34	1.25	0.86
5.	J1756-2251	0.32	0.18	2.57	1.34	1.23	17
6.	J1906+746	0.166	0.085	2.57	1.29	1.32	3.1
7.	J1913+1102	0.206	0.090	2.875	1.65	1.24	~5
8.	A24	0.184	0.606	2.74	1.35	1.39	~0.75
							1.08

Galactic merger rate ~ 1/10⁴⁻⁵ yrs (e.g. Kalogera et al. 2007, Kim et al. 2015) → Merger rate ~ 0.4-4/yr/(100Mpc)³

 $\times 10^8$ yrs

Why NS merger is important ?

A. Most promising sources of gravitational waves for advanced LIGO/VIRGO/KAGRA

Why NS merger is important ?

- A. Most promising sources of gravitational waves for advanced LIGO/VIRGO/KAGRA
- **B.** Laboratory for high-density nuclear matter

Gravitational waves from NS mergers are likely to tell us how large NS is .

Why NS merger is important ?

- A. Most promising sources of gravitational waves for advanced LIGO/VIRGO/KAGRA
- **B.** Laboratory for high-density nuclear matter
- **C.** Promising origins of short-hard GRBs

Why NS merger is important ?

- A. Most promising sources of gravitational waves for advanced LIGO/VIRGO/KAGRA
- **B.** Laboratory for high-density nuclear matter
- **C.** Promising origins of short-hard GRBs
- **D.** Possible site for heavy elements produced by rapid neutron-capture process (r-process)

Origin of heavy elements?

Origin of r-process elements (gold, silver, platinum) **?**

- Until quite recently, people believed that core-collapse supernovae (CCS) would be the production site for the r-process elements (textbooks say usually so)
- Latest CCS simulations indicate *negative answer*
- **NS merger is another potential candidate** (Lattimer & Schramm 74)

For radioactive (macronova) scenario (Li-Paczynski '98)

 $3 \times 10^{41} \text{ ergs/s} \iff M = -15.0 \text{ mag} \implies m = 21.5 \text{ mag} @ 200 \text{Mpc}$

Bright in near-infrared for 1 week after the merger

Many unsolved issues could be solved by observing gravitational waves & electromagnetic signals from neutron star mergers (statement on 18th Nov. 2016 @AEI)

Many unsolved issues are being solved by observing gravitational waves & electromagnetic signals from neutron star mergers

2 Standard scenario for NS-NS merger

- Constraints from radio-telescope observations:
- Approximately 2 solar-mass neutron stars exist
 → equation of state (EOS) for NS has to be stiff
- 2. Typical total mass of binary neutron stars $\rightarrow \sim 2.6$ —2.8 solar mass (exception is found)
- Merger results in high-mass neutron stars (not BH) (Shibata et al. 2005, 2006, Hotokezaka et al. 2011, 2013...)
- Difference in EOS is reflected in gravitational waves emitted from the late inspiral to merger phases (Shibata et al. 2005, Hotokezaka et al. 2011, 2013...)
- During the merger, neutron-rich matter is ejected with mass of 0.001—0.02 solar mass (Hotokezaka et al. 2013, Sekiguchi et al. 2015...)

All EOSs satisfy $M_{\rm max} > 2M_{\rm sun}$

H4: *R*=13.6km

MS1: *R*=14.5km

×(km) H4: *R*=13.6km

× (km) MS1: R=14.5km

Dependence on EOS and total mass

Possible fates of NS-NS mergers

I.e., irrespective of EOS, threshold mass $> 2.8 M_{sun}$

Gravitational waves from binary NS-NS

Gravitational waveform from NS-NS: hybrid waveform (1.35-1.35 solar mass)

Mass ejection, nucleosynthesis, and shine (kilonova/macronova scenario)

≻ Merger

→ Neutron-rich, high-entropy, dense ejecta

$$\tau_{n-\text{capture}} < \tau_{\beta-\text{decay}}$$

- → r-process nucleosynthesis (Lattimer-Schramm '74, Symbalisty-Schramm '82)
- \rightarrow Production of unstable heavy nuclei
- → β-decay (fission)
- → Heating ejected material
- → UV ~ IR emission (Li-Paczynski '98)

How much mass ? How high neutron-richness ?

Neutrino-radiation hydrodynamics simulation

SFHo (R~11.9 km): 1.30-1.40 M_{sun}

Rest-mass density

Sekiguchi et al. 2016

Sekiguchi et al. (2016)

28

Dynamical evolution of neutron richness

Electron fraction profile: Broad

Broad distribution of Y_e irrespective of EOS

Expected light curves @ 200Mpc

Subaru-class telescope will discover macronova associated with gravitational-wave events

Tanaka & Hotokezaka 2013; see also Barnes & Kasen 2013, 2016

3 More details are required

- Post merger process would be determined primarily by **magneto-hydrodynamcis** (MHD)
- MHD instabilities, Kelvin-Helmholtz and magneto rotational instabilities, are keys → By them, turbulence will be developed and determine the transport an dissipation processes
- To date, no simulations in realistic setting have fully resolved them
 - → They are NOT MHD simulations in reality
 - \rightarrow We have to pursue this
- Viscous hydrodynamics could be approximate alternative effective treatment

High-resolution GRMHD for NS-NS

Kelvin-Helmholtz instability

- → Magnetic fields are amplified by winding
- → Turbulence ? Quick angular momentum transport ?

Magnetic energy: Resolution dependence

B field would be amplified in $\Delta t \ll 1 \text{ ms} \rightarrow \text{turbulence}$?

Purely hydrodynamics/radiation hydrodynamics /low-resolution MHD

are likely to be inappropriate for this problem

→ Turbulence → Turbulent viscosity
→ Effectively viscous fluid (likely)

For post-merger dynamics,

- Obviously more resolved MHD simulation is needed

 → But it is not feasible due to the restriction of the computational resources (in future we have to do)
 "Current GRMHD simulations for NS mergers are not GRMHD simulations"
- One alternative for exploring the possibilities is viscous hydrodynamics (Radice '17, Shibata et al. '17)

✓ Note that we do not know whether our viscous hydrodynamics can precisely describe turbulence fluid

Vise
(S.
$$\tau_v \approx \frac{R^2}{v} = \frac{1}{\alpha_v \Omega_e} \frac{\left(R\Omega_e\right)^2}{c_s^2} \sim 10 \left(\frac{\alpha_v}{0.01}\right)^{-1}$$
 ms onth)

Employ covariant & causal GR viscous hydrodynamics (Israel & Steward, '79, Shibata+ '17) Initial condition: Merger remnant of $1.35-1.35M_{\odot}$ NS-NS at 50 ms after the merger Alpha viscosity: $v = \alpha_v c_s^2 \Omega^{-1}$ with $\alpha_v = 0.01$ Equation of state: DD2 ($R_{NS} = 13.2$ km, stiff) \rightarrow Dynamical ejecta mass ~ 0.001 M_{\odot} Axis symmetric simulation

Wide $1500 \times 1500 \text{ km}$ $300 \times 300 \text{ km}$ Density in x-z plane

Evolution of angular velocity

Early viscous ejecta

3D viscous hydrodynamics simulation for remnant of binary neutron star merger

(Shibata & Kiuchi PRD June 2017)

- Merger remnant is used as initial condition
- ✓ H4 EOS (stiff EOS)
- \checkmark Mass = 1.35-1.35 solar mass
- Simulation is started at \sim 5ms after the onset of merger
- v is set to be $\alpha_v c_s^2 \Omega^{-1} \sim \alpha_v c_s X (X \sim 10 \text{ km})$: α model
- α parameter = 0.01—0.02 taking into account the latest MHD simulation results for accretion disks (such as Jim Stone and his colleagues have been doing)

See also recent work by Radice (2017)

Gravitational waveforms

Amplitude of gravitational waves

Spectrum

Summary

- ★ Typical scenarios for NS-NS merger: NS-NS → HMNS
 or MNS → Long-term evolution by viscous process
- Gravitational waves from late inspiral phase is the primary target for constraining the NS EOS
- There are likely to be a few mass ejection processes:
- 1. For the presence of a long-lived MNS: dynamical mass ejection ($Y_e=0.05-0.5$) + early viscous ejection ($Y_e > 0.2$) + disk wind ($Y_e > 0.3$)
- 2. For the BH formation: dynamical mass ejection $(Y_e=0.05-0.5) + \text{disk wind } (Y_e=0.1-0.5)$
- For both, ejecta mass ~ 0.01 solar mass or more

Clear correlation between peak and radius

