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Discovery	  of	  the	  polarized	  Hα	  emission	  from	  SNR	

electron–proton equilibration at the shock front, with β< 0.07.
They also conclude that the Lyβ optical depth is low,
τ(Lyβ)∼ 0.5.

Morlino et al. (2012) consider Balmer emission from
collisionless shocks in a partially ionized medium. For a shock
velocity of 3000 km s−1, they find that the ratio of flux from the

Figure 2. Upper, co-added spectra showing total intensity after basic reductions, and lower, same after subtraction of sky background showing strong Balmer
dominated shock spectrum. Lines visible are, right to left, Hα, Hβ, and Hγ.

Figure 3. Un-normalized spectra for Stokes I, Q, and U, each the total across a 2.5 arcsec spatial window centered on the bright filament rim and averaged over 18
individual sequences. Hence the total counts are ≈18× the y axis values. The Q and U plots have been lightly smoothed with a Gaussian of σ ≈ 0.37 nm.

Table 1
Polarimetry Results for Cores of Hα and Hβ Lines in the SN 1006 Remnant

SN 1006 Stokes I Q U p, pn
a θ

Hα 52201.2 663.4 +/−147.7 −64.9 +/−139 0.0128 +/−0.0028 143.7 +/−6.3
0.0197 +/− 0.0043

Hβ 12522.1 217.6 +/−107 −79.8 +/−107 0.0185 +/−0.0086 131.4 +/−13.2

Note.
a The polarization of the total narrow-line core is p, and the estimated polarization of the narrow component only, pn, assuming the broad component is unpolarized.
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ü Recently,	  Sparks	  et	  al.	  (2015)	  discovered	  
the	  polarized	  Hα	  emission	  in	  northern	  
east	  region	  of	  SN	  1006.	  

ü The	  polariza>on	  degree	  is	  2.0±0.4%.	

are used to yield a complete set of linear Stokes polarization
spectra. Our observations used half-wave plate rotation angles
of 0°, 22°.5, 45°, and 67°.5. The spectral window includes the
first three lines of the Balmer series, Hα (656.3 nm), Hβ
(486.1 nm), and Hγ (434.1 nm), Figure 2.

Observations were obtained in VLT service mode on the
nights of 2013 April 12/13 (6 sequences), 2013 April 19/20 (8
sequences), and 2013 May 8 (4 sequences), for a total of 18
sequences, each sequence comprising a 305 s exposure for each
of four retarder settings, yielding a total exposure time on target
of 6.1 hr. Both polarized and unpolarized standard star
observations were provided by ESO, using the same observing
procedure.

The data were debiassed, flat-fielded using a pixel sensitivity
flat field, corrected for image shear following Sparks et al.
(2014), and co-added to result in a final set of (ordinary) o- and
(extraordinary) e-beam pairs for each of the four retarder
settings. A simple cosmic-ray rejection algorithm was applied
during the co-addition by comparing each frame, normalized
by the median in the spatial direction, to a median of all 18
similar spectra. The cosmic rays were identified in a mask
image, and omitted during the subsequent averaging of like-
frames. To derive the polarization information, we used the flux
ratio method (Miller et al. 1987). The normalized Stokes
parameters are given by q R R1 1q q( ) ( )� � � , where
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frames were derived without sky subtraction, which resulted in
a clean set of q and u images since sky lines are unpolarized,
and a Stokes I image, which includes the sky. The normalized q
and u data were converted to polarized intensities Stokes Q and
U by multiplying q and u by Stokes I. We then subtracted a sky
estimate from the Stokes I image by averaging the spectra
below the bright Hα rim seen in Figure 2 (to the lower left in
Figure 1), and subtracting it from Stokes I. This worked well,
as is evident from the lower panel of Figure 2. To measure the

line emission polarization, we took the 2.5 arcsec wide region
covering the bright rim (the entire filament structure is
≈10 arcsec across), and derived a spatially integrated spectrum
for I, Q, and U, Figure 3. We integrated the section from 653.6
to 658.6 nm for Hα and 483.6 to 488.6 for Hβ, after subtracting
“continuum” regions on either side, 619.6–649.6 nm and
662.6–692.6 nm for Hα and 449.6–479.6 and
492.6–522.6 nm for Hβ. The continuum baseline subtraction
served to remove any zero point offsets from the I, Q, and U
intensity spectra. The mean values for baseline subtracted Q
and U were divided by the mean of the sky subtracted, baseline
subtracted Stokes I to derive new, final normalized Stokes
parameters qf and uf, and hence polarization degree
p q uf f

2 2� � , and position angle U Qtan1
2

1( )R G� �� ,
where f includes the instrument rotation on the sky to slit
position angle −35° and the retarder offset calibration provided
by ESO.3 The rms dispersion of Q and U about the baseline fits
provided the uncertainty estimates used for Table 1.

3. RESULTS

Figure 3 illustrates the data used to derive the polarimetric
results presented in Table 1. For the narrow core of the
dominant Hα line, polarization is detected at a level ≈4.5σ,
p≈ 0.0128 polarization degree (i.e., 1.3% polarization) and
position angle at 143°.7, only 1°.3 from the perpendicular to the
filament. The Hβ polarization is barely significant, at an≈ 2σ
level, though the values are consistent within the uncertainties
with those for Hα, at position angle 13° +/−13° from the
filament perpendicular. The Hα results form the basis of our
assertion that polarized line emission has been discovered in
the SN 1006 remnant. We estimated that the intensity of the
narrow component In to that of the broad component Ib, within
the spectral range of the narrow component only, is In/Ib≈ 1.9
(cf. Nikolić et al. 2013). Hence if only the narrow component is
contributing to the polarization, the implied corrected polariza-
tion degree of the narrow component is pn≈ 0.0197, i.e.,
≈2.0% orthogonal to the filament direction.

4. DISCUSSION

Laming (1990) predicted emission line polarization due to
the highly anisotropic impact of energetic protons and
electrons. Specifically, Laming (1990) considers strong shocks
in a pure hydrogen plasma. For the range of shock parameters
he considers, he finds that the polarization vector should be
normal to the plane of the shock front. His analysis gives
predicted values of the polarization of the narrow Hα
component as seen in a plane perpendicular to the direction
of motion of the shock front, for various values of the shock
velocity and of the ratio β=Te/Ti of the electron to proton
post-shock temperatures. He also gives two sets of values,
depending on whether the Lyβ transition is optically thin (Case
A) or optically thick (Case B). The difference here is that if
Lyα photons are absorbed and then re-emitted at Hα, then
those Hα photons would have essentially zero net polarization.
Ghavamian et al. (2002) model the optical spectra of SN

1006. They observe essentially the same filament section as we
do. From their analysis, they conclude that the shock velocity is
2890+/−100 km s−1, and they require a low degree of

Figure 1. Location of 22 arcsec polarization slit segment on the Hubble Space
Telescope (HST) image of the SN 1006 remnant. North is up, east is to the left;
the SNR filament is in position angle ≈55°.

3 http://www.eso.org/sci/facilities/paranal/instruments/fors/inst/
pola.html
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The	  Hα	  filament	  of	  the	  northern	  
west	  region	  of	  SN	  1006.	



The	  polarized	  line	  emission	
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The	  polarized	  line	  emission	

a)	  The	  hydrogen	  atoms	  
entering	  the	  shock	  will	  
collide	  with	  the	  
downstream	  plasma	  
par>cles.	

b)	  Resul>ng	  from	  the	  collision,	  	  
the	  bound	  electron	  of	  the	  
hydrogen	  atom	  obtains	  an	  energy	  
and	  an	  orbital	  angular	  
momentum.	

c)	  By	  the	  conserva>on	  of	  the	  
angular	  momentum,	  the	  
radiated	  line	  emission	  can	  
be	  linearly	  or	  circularly	  
polarized.	  	  	

hits	

Excita>on	

Spontaneous	  
transi>on	

p  If	  the	  colliding	  plasma	  par>cle	  has	  the	  anisotropic	  velocity	  distribu>on	  in	  the	  hydrogen	  atom	  
rest	  frame,	  the	  orbital	  angular	  momentum	  direc>on	  obtained	  by	  the	  atomic	  electrons	  is	  
polarized.	  

p  The	  anisotropic	  orbital	  angular	  momentum	  distribu>on	  can	  yield	  the	  polarized	  line	  emission.	



e.g.)	  Experiment	  of	  the	  polarized	  Hα 	
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The modulated cross-beam technique has been used to measure the excitation function
and the polarization of the Balmer-n line of atomic hydrogen excited by electron impact.
Normalization of the H excitation function to the Born approximation above 300 eV pro-
vides cross sections in the energy range from the threshold up to 350 eV. The polariza-
tion of the Hz line shows an abrupt decrease, which is contrary to the "normal" behav-
ior of increasing polarization up to the threshold observed for the alkali atom resonance
line.

In this paper we report on studies which pro-
vide Balmer-e cross sections by normaliza-
tion to the Born approximation at high energies.
The excitation of the Balmer-z line by elec-
tron impact has already been reported in pre-
vious papers. '
We define the cross section of the Balmer-

n line, excited from the ground state, as fol-
lows: o (1S,H ) = o (1S,3S) + 0.12o (1S,SP) + o (1S,
SD). This is the sum of the cross sections
for the excitation of the 3$ state, of the 3P
state multiplied by the branching ratio of the
3P-2S transition, and of the 3D state. In or-
der to measure the excitation function and po-
larization, we utilized the modulated crossed-
beam technique. The atomic-beam technique
used was similar to that of Hils, Kleinpoppen,
and Koschmieder. ' The electron beam of a
Pierce-type electron gun with an energy spread
of about 0.5 eV was crossed by the collimat-
ed atomic H beam produced by thermal disso-
ciation in a multichannel tungsten oven.
One of the main problems in the measurement

of the H~ excitation process was separation
of background from the H signal. By modu-
lating the intensity of the H beam by a mechan-
ical chopper, one should be able to separate
the signals of the H line excitation from back-
ground signals. However, the oven is a very
intense source of visible light; since it had
to be heated to a temperature of approximate-
ly 2700'K, a lot of background light is scattered
into the multiplier used for the detection of
the H intensity. In order to reduce the mod-Q'
ulated background signal of the oven light, the
blades of the mechanical chopper were made
of glass. The special mechanical chopper re-
duced the modulated signal from the oven by

a factor of at least 20. With this technique the
excitation signal was proportional to the

difference of the lock-in signal with a.nd with-
out the current of the electron gun. We sepa-
rated the H~ line from other lines by an inter-
ference filter with a half width of about 100 A.
The polarization defined in the usual way (re-
lated to the direction of the incoming electrons)
was measured by means of a polaroid filter.
Figure 1 shows the results for the H~ polar-

ization as a function of the electron energy.
The errors quoted are twice the rms error
plus a small estimated error arising from the
entrance aperture of the observed light detec-
tor. This new polarization measurement agrees
with the earlier one, ~ but now the polarization
data obtained closer to the threshold energy
show an abrupt decrease which is contrary to
that "normal" behavior of increasing polariza-
tion up to the threshold as observed for the
alkali atom resonance lines. ~'

Figure 2 shows the cross section 0(1S,H )
for the H line. This cross section was obtained
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The	  polariza>on	  degree	  of	  Hα	  resul>ng	  from	  the	  collision	  between	  
electron	  beam	  and	  hydrogen	  atoms	  （Kleinpoppen	  	  &	  Kraise	  1968）.	  

ü  The	  polariza>on	  is	  directed	  along	  the	  
incident	  electron	  beam.	  

ü  For	  SNR,	  the	  charge	  par>cles	  hit	  
hydrogen	  atoms	  from	  various	  
direc>ons	  in	  the	  downstream	  region.	  

ü  In	  the	  rest	  frame	  of	  hydrogen	  atoms,	  
the	  colliding	  par>cles	  are	  seen	  as	  a	  
“mildly-‐collimated	  beam”	  due	  to	  a	  
finite	  temperature.	  

ü  This	  anisotropy	  eventually	  causes	  the	  
net	  polariza>on	  with	  the	  degree	  of	  a	  
few	  %.	  
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The	  polariza>on	  degree	  of	  Hα	  resul>ng	  from	  the	  collision	  between	  
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ü  The	  polariza>on	  is	  directed	  along	  the	  
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ü  For	  SNR,	  the	  charge	  par>cles	  hit	  
hydrogen	  atoms	  from	  various	  
direc>ons	  in	  the	  downstream	  region.	  

ü  In	  the	  rest	  frame	  of	  hydrogen	  atoms,	  
the	  colliding	  par>cles	  are	  seen	  as	  a	  
“mildly-‐collimated	  beam”	  due	  to	  a	  
finite	  temperature.	  

ü  This	  anisotropy	  eventually	  causes	  the	  
net	  polariza>on	  with	  the	  degree	  of	  a	  
few	  %.	  shock	  tangen>al	  direc>on	

shock	  normal	  direc>on	

•  Velocity	  distribu>on	  of	  electrons	  in	  
hydrogen	  atom	  rest	  frame	



The	  polarized	  Hα	  line	  emission	  from	  
the	  SNR	  shock	

ü  The	  downstream	  velocity	  distribu>on	  func>on	  of	  the	  (thermal)	  plasma	  par>cle	  “q”	  
in	  the	  hydrogen	  atom	  rest	  frame.	

ü Laming	  (1990)	  predicted	  the	  polarized	  Hα	  emission	  from	  the	  
SNR	  shock	  without	  CR	  accelera>on.	
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Figure 4. The cross section for direct excitation to n = 4 level
by proton impact (open squares) and electron impact (closed
squares), B4l,n′l′σ4l,q . The black squares are σtot,q !!Qn (Hβ ) .

were derived by the direct numerical simulations by
Tseliakhovich, Hirata & Heng (2012). Besides, we assume
that the cross section for proton impact excitation in
the range vp >∼ 4000 km s−1 is the same as that of the
electron impact excitation. Indeed, the proton impact
cross section for n = 3 approaches to the electron’s one for
vq >∼ 3000 km s−1 (e.g. Janev & Smith 1993). The fitting
functions of these data are provided by Heng & Sunyaev
(2008) and Tseliakhovich, Hirata & Heng (2012). The data
for n = 4 are unavailable for the range vp <∼ 1000 km s−1.
We treat the cross section for proton impact to be zero in
this range. The data for electron impact and their fitting
functions are provided by International Atomic Energy
Agency (https://www-amdis.iaea.org/ALADDIN/).

The time scale of the spontaneous transition
of the hydrogen atom from the excited state to
the ground state, ∼ 10−8-10−1 s, is usually much
shorter than the mean collision time of particle q,
∼ 108 s

( nq
1 cm−3

)−1 (
σ

1016 cm2

)−1 ( vq
108 cm s−1

)−1
for SNR

shocks. Therefore, we assume that all the hydrogen atoms
are excited from the ground state (e.g. van Adelsberg et al.
2008).

2.4 Lyman Line Trapping

A part of hydrogen atoms in the states n > 2 emit Lyman-
series photons (e.g. 3p → 1s). If the system is optically
thick for the Lyman photon, the emitted Lyman photons
are absorbed by the ground-state hydrogen atoms and even-
tually converted to other series as Balmer, Paschen and so
on (e.g. Heng 2010). In such a situation, for instance, the
branching ratio in Eq. (13) is effectively B3p,2s ≈ 1 (e.g.
van Adelsberg et al. 2008). It is called “Case B”. On the
other hand, for optically thin limit (known as “Case A”),

we can use the values of the branching ratio summarized in
Table 1.

In this paper, we assume that the Balmer photons emit-
ted by the absorption of Lyman photons are unpolarized.
Therefore, for Case B, the branching ratios concerning I are
approximately

B3p,2s = 1,
B4p,2s = 1 − B4p,3s − B4p,3d,

B4p,3s = 1 − B4p,2s − B4p,3d.

2.5 Polarization from the Shock Wave

Using the atomic data given in previous sections, we calcu-
late the Stokes parameters for an arbitrary velocity distri-
bution of the particle q, fq (vq, u2). The velocity distribution
function of particle q is set to a Maxwellian as

fq (vq, u2) =
(

mq

2πkTq

) 3
2

exp "#−
mq (vq − u2)2

2kTq
$
% , (18)

where mq and k are respectively the mass of particle q and
Boltzmann constant, Tq is the downstream temperature of
particle q. Substituting Eq. (18) into Eqs. (5)-(6), and inte-
grating 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π, we derive

Qn = 4πnHE2 sin2 χ
∑
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and
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(20)

where

Dq =
mq

2kTq
,

αq = 2Dqu2vq,

u2 = |u2 |.
When χ = π/2, Eqs. (19) and (20) coincide with Eqs. (8)
and (9) of Laming (1990). In particular, when χ = π/2
and Dqu22 = 0, we obtain Qn = 0 and In ∝

∫ ∞
0 (σ0,q +

2σ1,q )e−Dqvq 2
vq

3dvq , that is, the observed emission is unpo-
larized due to the almost isotropic collisions. On the other
hand, when Dqu22 → ∞ leading to extremely anisotropic
collisions, the observed emission is polarized as Qn/In =∑

(σ0,q − σ1,q )/(σ0,q + σ1,q ).
When we observe the shock from right in front (i.e. χ =

0), the observed emission is unpolarized due to the isotropic
collisions between the particle q and the hydrogen atom.

MNRAS 000, 1–15 (2017)

anisotropy	



The	  CR	  accelera>on	  efficiency	  at	  SNR	
The	  energy	  density	  of	  CR	  around	  the	  Earth	  is	  explained	  if	  ∼ 10	  %	  of	  SN	  kine=c	  
energy	  is	  used	  for	  CR	  accelera=on.	

Observa=ons	  of	  the	  northeastern	  region	  of	  the	  young	  SNR	  RCW	  86	  imply	  	  that	  
the	  efficiency	  is	  higher	  than	  ∼	  50	  %	  (Helder+	  09,	  13)!?	  

The	  Ηα	  image	  of	  RCW	  86,	  whose	  
radius	  is	  	  ∼10	  pc.	  

Simth	  1997	

NE	

ü  The	  measurement	  principle	  of	  the	  efficiency	

ü  The SNRs shock is loosing the energy due to the 
CR acceleration.	

ü  If the actual downstream temperature Tdown and 

the shock velocity Vsh can be measured 
individually, we get the CR acceleration efficiency 

as a missing thermal energy TRH-Tdown.	

Rankine-‐Hugoniot	  rela>ons:	  
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The	  polarized	  Hα	  line	  emission	  from	  
the	  SNR	  shock	

ü  The	  downstream	  velocity	  distribu>on	  func>on	  of	  the	  (thermal)	  plasma	  par>cle	  “q”	  
in	  the	  hydrogen	  atom	  rest	  frame.	

ü Laming	  (1990)	  predicted	  the	  polarized	  Hα	  emission	  from	  the	  
SNR	  shock	  without	  CR	  accelera>on.	

p When	  the	  SNR	  shock	  accelerates	  efficiently	  CRs,	  the	  downstream	  
temperature	  becomes	  lower	  than	  the	  adiaba>c	  shock	  case,	  that	  is,	  
the	  anisotropy	  of	  the	  velocity	  distribu>on	  becomes	  larger.	  

p A	  large	  anisotropy	  yields	  a	  large	  polariza>on	  degree.	  
p We	  calculate	  the	  polarized	  Hα	  emission	  from	  the	  SNR	  shock	  with	  CR	  

accelera>on.	  
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Figure 4. The cross section for direct excitation to n = 4 level
by proton impact (open squares) and electron impact (closed
squares), B4l,n′l′σ4l,q . The black squares are σtot,q !!Qn (Hβ ) .

were derived by the direct numerical simulations by
Tseliakhovich, Hirata & Heng (2012). Besides, we assume
that the cross section for proton impact excitation in
the range vp >∼ 4000 km s−1 is the same as that of the
electron impact excitation. Indeed, the proton impact
cross section for n = 3 approaches to the electron’s one for
vq >∼ 3000 km s−1 (e.g. Janev & Smith 1993). The fitting
functions of these data are provided by Heng & Sunyaev
(2008) and Tseliakhovich, Hirata & Heng (2012). The data
for n = 4 are unavailable for the range vp <∼ 1000 km s−1.
We treat the cross section for proton impact to be zero in
this range. The data for electron impact and their fitting
functions are provided by International Atomic Energy
Agency (https://www-amdis.iaea.org/ALADDIN/).

The time scale of the spontaneous transition
of the hydrogen atom from the excited state to
the ground state, ∼ 10−8-10−1 s, is usually much
shorter than the mean collision time of particle q,
∼ 108 s

( nq
1 cm−3

)−1 (
σ

1016 cm2

)−1 ( vq
108 cm s−1

)−1
for SNR

shocks. Therefore, we assume that all the hydrogen atoms
are excited from the ground state (e.g. van Adelsberg et al.
2008).

2.4 Lyman Line Trapping

A part of hydrogen atoms in the states n > 2 emit Lyman-
series photons (e.g. 3p → 1s). If the system is optically
thick for the Lyman photon, the emitted Lyman photons
are absorbed by the ground-state hydrogen atoms and even-
tually converted to other series as Balmer, Paschen and so
on (e.g. Heng 2010). In such a situation, for instance, the
branching ratio in Eq. (13) is effectively B3p,2s ≈ 1 (e.g.
van Adelsberg et al. 2008). It is called “Case B”. On the
other hand, for optically thin limit (known as “Case A”),

we can use the values of the branching ratio summarized in
Table 1.

In this paper, we assume that the Balmer photons emit-
ted by the absorption of Lyman photons are unpolarized.
Therefore, for Case B, the branching ratios concerning I are
approximately

B3p,2s = 1,
B4p,2s = 1 − B4p,3s − B4p,3d,

B4p,3s = 1 − B4p,2s − B4p,3d.

2.5 Polarization from the Shock Wave

Using the atomic data given in previous sections, we calcu-
late the Stokes parameters for an arbitrary velocity distri-
bution of the particle q, fq (vq, u2). The velocity distribution
function of particle q is set to a Maxwellian as

fq (vq, u2) =
(

mq

2πkTq

) 3
2

exp "#−
mq (vq − u2)2

2kTq
$
% , (18)

where mq and k are respectively the mass of particle q and
Boltzmann constant, Tq is the downstream temperature of
particle q. Substituting Eq. (18) into Eqs. (5)-(6), and inte-
grating 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π, we derive

Qn = 4πnHE2 sin2 χ
∑

q=e,p
nq

(
Dq

π

) 3
2 e−Dqu22

(2Dqu2)4

×
∫ ∞

0
αq

3e
−
(
Dqαq

2u2

)2

(σ0,q − σ1,q )

×

"
#

3
αq3 +

1
αq

$
% sinh αq −

3
αq3 cosh αq

 dαq,

(19)

and

In = 4πnHE2
∑

q=e,p
nq

(
Dq

π

) 3
2 e−Dqu22

(2Dqu2)4

∫ ∞

0
αq

3e
−
(
Dqαq

2u2

)2

×
[
(σ0,q + σ1,q )

sinh αq
αq

+
(
σ0,q − σ1,q

)
×

"
#

1 − 3 cos2 χ

αq3 − cos2 χ

αq2
$
% sinh αq

−1 − 3 cos2 χ

αq2 cosh αq

 dαq,

(20)

where

Dq =
mq

2kTq
,

αq = 2Dqu2vq,

u2 = |u2 |.
When χ = π/2, Eqs. (19) and (20) coincide with Eqs. (8)
and (9) of Laming (1990). In particular, when χ = π/2
and Dqu22 = 0, we obtain Qn = 0 and In ∝

∫ ∞
0 (σ0,q +

2σ1,q )e−Dqvq 2
vq

3dvq , that is, the observed emission is unpo-
larized due to the almost isotropic collisions. On the other
hand, when Dqu22 → ∞ leading to extremely anisotropic
collisions, the observed emission is polarized as Qn/In =∑

(σ0,q − σ1,q )/(σ0,q + σ1,q ).
When we observe the shock from right in front (i.e. χ =

0), the observed emission is unpolarized due to the isotropic
collisions between the particle q and the hydrogen atom.
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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kTRH =
3

16
µmpVsh

2 (3)

Vsh ≈ 1871± 250 km/s (4)

kTRH =
3

16
µmpVsh

2 ≈ 4.5± 1.2 keV (5)

kTdown ≈ 2.3± 0.3 keV (6)

η =
TRH − Tdown

TRH
≈ 0.6± 0.1 (7)

δ ≡ 1− u′2
u′1
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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2.6 Shock Jump Conditions

To calculate the polarization degree from Eqs. (19) and (20),
we consider the downstream temperature Tq and the down-
stream velocity u2 measured in the upstream rest frame.
Since the kinetic energy of the shock is consumed for the
acceleration of nonthermal particles, the downstream tem-
perature becomes lower than that in the adiabatic case, TRH.
If all the accelerated particles escape from the system, the
shock dynamics can be described like a radiative shock for
optically thin limit.

Cohen, Piran & Sari (1998) analyzed the self-similar so-
lution of the radiative shock. Their analysis is independent
of the details of the cooling process. They considered that
the cooling timescale is much shorter than the hydrodynam-
ical timescale and the shocked medium radiates a fixed frac-
tion of its internal energy in the cooling layer. In this case,
the shock velocity is constant during the time that a given
fluid element crosses the radiative zone and cools. Hence,
the shock and the cooling layer are stationary. They addi-
tionally assumed that the radiation does not affect the shock
structure, which remains adiabatic, and that the radiative
layer follows it. In this paper, we follow Cohen, Piran & Sari
(1998) to derive the shock jump conditions, and assume that
all the hydrogen atoms collide with the charged particles be-
hind the end of the cooling layer.

Assuming a polytropic equation of state with an adia-
batic index γ, and a sufficiently high Mach number of the
upstream flow, we obtain the downstream mass density ρ1,
velocity measured in the shock frame u′1 and pressure p1 in
the region immediately behind the shock front as

ρ1 =
γ + 1
γ − 1 ρ0,

u′1 =
γ − 1
γ + 1Vsh,

p1 =
2
γ + 1 ρ0Vsh

2, (21)

where ρ0 and Vsh are the mass density of the upstream
medium and the shock velocity, respectively. Hereafter, we
set γ = 5/3. From the conservation equations of mass flux
and momentum flux, the mass density and pressure in the
region behind the end of the cooling layer are represented as
a function of the velocity u′2,

ρ2 =
ρ1u′1
u′2
=

γ + 1
(γ − 1)(1 − δ) ρ0,

p2 = (ρ1u′1)(u′1 − u′2) + p1 =
2 + (1 − γ)δ
γ + 1 ρ0Vsh

2,

(22)

where δ = 1 − u′2/u
′
1. Let the energy flux be

F = u(
ρu2

2 + h),

where h is the enthalpy per unit volume. We find that the
fraction of energy flux lost via cooling is

ε = 1 −
F (u′2)
F (u′1)

=
δ

1 + γ
[2 + (γ − 1)δ

]
. (23)

Following Liang & Keilty (2000), we parameterize the down-

stream velocity measured in the shock frame u′2 as

u′2 =
γ1 − 1
γ1 + 1Vsh.

Then, we obtain

δ = 1 −
u′2
u′1
= 1 − γ + 1

γ − 1
γ1 − 1
γ1 + 1, (24)

ρ2 =
γ1 + 1
γ1 − 1 ρ0, (25)

p2 =
2

γ1 + 1 ρ0Vsh
2, (26)

ε =
4(γ − γ1)

(γ1 + 1)2(γ − 1)
. (27)

Note that γ1 is not an adiabatic index although it gives the
effective compression ratio as

Rc =
ρ2
ρ0
=
γ1 + 1
γ1 − 1 . (28)

Following Ghavamian et al. (2002) and
Heng & McCray (2007), we assume the downstream
temperature of protons (Tp) and electrons (Te) are related
to the shock velocity, Vsh, and given by

kTp = (1 − η)
2(γ − 1)
(γ + 1)2

(
µ# feq + 1 − feq

)
mpV2

sh,

≡ (1 − η)
2(γ − 1)
(γ + 1)2 µmpV2

sh, (29)

kTe = (1 − η)
2(γ − 1)
(γ + 1)2

{
µ# feq +

me
mp

(
1 − feq

)}
mpV2

sh

≡ βkTp (30)

respectively. The definition of the energy loss rate η is the
same as Eq. (1). We additionally define the temperature ra-
tio β = Te/Tp. The µ# = 0.62 is the mean molecular weight
for solar abundances. The situation feq = 1 ( feq = 0) repre-
sents temperature equilibration (non-equilibration) among
all the particles in the fluid. Here we consider the case in
which α particles are in the temperature equilibrium. Thus,
for feq = 1, the mean molecular weight coincides with the
value for solar abundances. The effective mean molecular
weight, µ ≡ µ# feq + 1 − feq, is rewritten as a function of β,

µ = 1 − (1 − µ#)
β − me

mp

µ# + (1 − µ#) β − me
mp

. (31)

Equations (25) and (26) also give the downstream proton
temperature as

kTp = µmp
p2
ρ2
=

2(γ1 − 1)
(γ1 + 1)2 µmpVsh

2, (32)

so that we obtain a quadratic equation for γ1,

η = 1 − (γ+1)2

γ−1
γ1−1

(γ1+1)2 . (33)

We solve Eq. (33) as

γ1 =
1

1 − η

[{
1
2

(γ + 1)2

γ − 1 − 1 + η
}

−

√{
1
2

(γ + 1)2

γ − 1 − 1 + η
}2
− (1 − η)

{
(γ + 1)2

γ − 1 + 1 − η
} 
.

(34)
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– 3 –

kTRH =
3

16
µmpVsh

2 (3)

Vsh ≈ 1871± 250 km/s (4)

kTRH =
3

16
µmpVsh

2 ≈ 4.5± 1.2 keV (5)

kTdown ≈ 2.3± 0.3 keV (6)

η =
TRH − Tdown

TRH
≈ 0.6± 0.1 (7)

δ ≡ 1− u′2
u′1

(8)

kTp =
3

16
(1− η)µmpV

2
sh (9)

kTe = βkTp (10)
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Figure 5. The relationships between η and γ1, ε, Rc and
Dqu22 = mqu22/(2kTq ). The left hand side vertical axis repre-
sents γ1 and ε, and the right hand side shows Rc and Dqu22.
The purple line is γ1. The green line represents the energy loss
fraction ε. The effective compression ratio Rc is shown by the
light blue line. The orange solid line is Dpu22 and the orange bro-
ken line is Deu22 for β = 0.05. The vertical black line in the panel
is η = 0.34, where γ1 = 4/3 and Rc = 7.

We take the minus sign in front of the square root in Eq. (34)
to derive the physical solution satisfying γ1 = γ for η = 0.
Hence, the compression ratio Rc is given by the energy loss
rate η. The downstream velocity in the region behind the
cooling layer u2, which is measured in the upstream frame,
is derived from Eqs. (28) and (29) as

u2 =
(
1 − 1

Rc

)
Vsh =

(
1 − 1

Rc

) √
(γ + 1)2

2(γ − 1)
kTp

(1 − η)µmp
. (35)

Figure 5 shows γ1, ε, Rc and Dqu22 = mqu22/(2kTq ) as func-
tion of η. The representative value of η = 0.34 is illustrated
by the vertical black line, where γ1 = 4/3 and Rc = 7. We pre-
dict that highly polarized Balmer line emissions come from
large Dqu22. From the above formulae, setting the parame-
ters Tp, η and β, we calculate the polarization degree from
Eqs. (19) and (20). Note that for given downstream proton
temperature Tp, a large energy loss rate η corresponds to a
large shock velocity Vsh.

For typical young SNR, the temperature ratio, β, is
estimated by the intensity ratio of the broad component
of H α to narrow one, and to be β ∼ 0.03-0.07 (e.g.
van Adelsberg et al. 2008). Furthermore, Laming (1990)
showed that the polarized intensity depends on the proton
temperature rather than the electron temperature. This fact
arises from the stronger anisotropy of the proton’s velocity
distribution than that for the electrons, Deu22/(Dpu22) =
me/(mp β) # 1. Hence, the polarization intensity, Qn, is
mainly determined by the proton impacts. Indeed, the
anisotropy of electron velocity distribution is very small as
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Figure 6. The anisotropy of velocity distribution of protons and
electrons, Dqu22 = mqu22/(2kTq ), and the effective mean molecu-
lar weight µ as function of β for η = 0. The left hand side vertical
axis represents Dqu22. The orange solid line is Dpu22 and the or-
ange broken line is Deu22. The purple line shows µ, whose value
is represented by the right hand side vertical axis.

Deu22 ≈ me/
(
mp β(1 − η)

)
# 1. Since the electrons colliding

with energy Ee >∼ 10 eV (equivalently ve ≈ 2500 km/s) ex-
cite the hydrogen atom, it contributes to Qn in the case of
u2 >∼ 2500 km/s and β ≈ me/mp. However, the electron im-
pacts yield unpolarized emission, that is, the polarization
degree Qn/In depends on the electron temperature. Figure 6
shows Dqu22 and µ as function of β for η = 0.

3 THE POLARIZATION DEGREE OF H α
EMISSION

In this section, we show the results of the observed polariza-
tion degree of H α emission.

First of all, we show the results for χ = π/2 and β = 0.05.
Figure 7 represents the observed polarization degree as a
function of the energy loss rate η for Case A with fixed Tp.
The solid lines show the results for Tp = 0.47-16.9 keV (cor-
responding points are shown in the panel). For large η, the
anisotropy of the proton velocity distribution becomes large
(as shown in Fig. 5), resulting in larger polarization degree.
For fixed Tp, large η yields large downstream velocity u2
(see Eq. (35)). It means that the peak of the particle veloc-
ity distribution slides to the high velocity side but its width
is fixed. When the downstream velocity u2 is larger than
≈ 2500 km s−1, the excitation rate of the hydrogen atoms
by the electron impact becomes large, because almost all
the electrons can excite the hydrogen atoms. That causes
the large unpolarized intensity In and the small polarization
degree Qn/In.

Figure 8 represents the temperature dependence of the
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We take the minus sign in front of the square root in Eq. (34)
to derive the physical solution satisfying γ1 = γ for η = 0.
Hence, the compression ratio Rc is given by the energy loss
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is derived from Eqs. (28) and (29) as
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by the vertical black line, where γ1 = 4/3 and Rc = 7. We pre-
dict that highly polarized Balmer line emissions come from
large Dqu22. From the above formulae, setting the parame-
ters Tp, η and β, we calculate the polarization degree from
Eqs. (19) and (20). Note that for given downstream proton
temperature Tp, a large energy loss rate η corresponds to a
large shock velocity Vsh.

For typical young SNR, the temperature ratio, β, is
estimated by the intensity ratio of the broad component
of H α to narrow one, and to be β ∼ 0.03-0.07 (e.g.
van Adelsberg et al. 2008). Furthermore, Laming (1990)
showed that the polarized intensity depends on the proton
temperature rather than the electron temperature. This fact
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distribution than that for the electrons, Deu22/(Dpu22) =
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anisotropy of electron velocity distribution is very small as

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

D
q
 u

2
2

µ

β

Dpu2
2

Deu2
2

µ

Figure 6. The anisotropy of velocity distribution of protons and
electrons, Dqu22 = mqu22/(2kTq ), and the effective mean molecu-
lar weight µ as function of β for η = 0. The left hand side vertical
axis represents Dqu22. The orange solid line is Dpu22 and the or-
ange broken line is Deu22. The purple line shows µ, whose value
is represented by the right hand side vertical axis.

Deu22 ≈ me/
(
mp β(1 − η)

)
# 1. Since the electrons colliding

with energy Ee >∼ 10 eV (equivalently ve ≈ 2500 km/s) ex-
cite the hydrogen atom, it contributes to Qn in the case of
u2 >∼ 2500 km/s and β ≈ me/mp. However, the electron im-
pacts yield unpolarized emission, that is, the polarization
degree Qn/In depends on the electron temperature. Figure 6
shows Dqu22 and µ as function of β for η = 0.

3 THE POLARIZATION DEGREE OF H α
EMISSION

In this section, we show the results of the observed polariza-
tion degree of H α emission.

First of all, we show the results for χ = π/2 and β = 0.05.
Figure 7 represents the observed polarization degree as a
function of the energy loss rate η for Case A with fixed Tp.
The solid lines show the results for Tp = 0.47-16.9 keV (cor-
responding points are shown in the panel). For large η, the
anisotropy of the proton velocity distribution becomes large
(as shown in Fig. 5), resulting in larger polarization degree.
For fixed Tp, large η yields large downstream velocity u2
(see Eq. (35)). It means that the peak of the particle veloc-
ity distribution slides to the high velocity side but its width
is fixed. When the downstream velocity u2 is larger than
≈ 2500 km s−1, the excitation rate of the hydrogen atoms
by the electron impact becomes large, because almost all
the electrons can excite the hydrogen atoms. That causes
the large unpolarized intensity In and the small polarization
degree Qn/In.

Figure 8 represents the temperature dependence of the
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Selng	  the	  parameter	  Tp, η,	  and β,	  we	  calculate	  the	  polarized	  
Balmer	  line	  emissions.	
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where the unit vector along the line of sight is

ŷ′ = (0, sin χ,− cos χ),

and E(t) is the electric field strength. We decompose the
observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is propor-

tional to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

l′=l±1
m′l=ml+∆m

Bnlml,n′l′m′l
σnlml,q (vq ),

Bnlml,n′l′m′l
=

Anlml,nl′m′l∑

n′,l′m′l

Anlml,n′l′m′l

, (4)

where Bnlml,n′l′m′l
is the branching ratio of the spontaneous

transition from the atomic level nlml to n′l ′m′
l
. For fixed n

and n′, we take the summation of σ∆m,q for l, l ′, m, m′

under the constraints l − l ′ = ±1, ∆m = 0 or ± 1. In the
following, we regard σ′1,q as identical to σ′−1,q because the

collision between the particle q and the hydrogen atom is
axially symmetric. The Stokes parameters of the observed
line emission are written as

Qn = 〈Eobs,z′Eobs,z′ ∗〉 − 〈Eobs,xEobs,x∗〉,
In = 〈Eobs,z′Eobs,z′ ∗〉 + 〈Eobs,xEobs,x∗〉,

where Eobs,z′ (Eobs,x) is z′ (x) components of the observed
electric field, the asterisk ∗ represents the complex conju-

gate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-time average in
the random phase approximation. Let fq (vq, u2) be a ve-
locity distribution function of particle q. We approximate
the velocity distribution function of hydrogen atom as Dirac
delta function, δ(vH). Then, the observed Stokes parameters
are

Qn = nH
∑

q

nq
∫

vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

= nHE2
∑

q

nq
∫

vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

and likewise

In = nHE2
∑

q

nq
∫

vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(6)





















       


















  




Figure 2. The atomic polarization fraction as a function of the
colliding particle velocity vq for the proton (magenta line) and
electron impacts (green line). The dotted line was assumed in
Laming (1990) for proton impact.

where nH and nq are the number density of the hydrogen
atom and particle q. In the following, we consider only pro-
tons (denoted as “p”) and electrons (denoted as “e”) as the
particle q which excite the hydrogen atoms (i.e. q = {p, e}
and np = ne). When the ionization degree of the upstream
medium is significantly low, the collisional excitation by hot
hydrogen atoms emerged from the charge-exchange reaction
would also contribute to the production of Balmer photons.
Indeed, the cross section of the collisional excitation on the
impact between proton and hydrogen atom is comparable
with that between two hydrogen atoms (e.g. Barnett et al.
1990). We neglect this process for simplicity.

2.3 Cross Sections of Impact Excitation

In order to calculate the Stokes parameters from Eqs. (5) and
(6), the data for the cross section, σ′

∆ml,q
, are required. In

the laboratory experiment, the values of σ′
∆ml,q

are derived

by measuring the polarization degree of Balmer emissions
resulting from the collision between hydrogen atoms and a
charged particle beam (e.g. McConkey 1988).

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2)
in the Eqs. (5) and (6), then the observed polarization degree
is derived as

Qn
In
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (7)

which is called the atomic polarization fraction. In the
following, we use the notations (s, p, d, f, ...) = (0, 1, 2, 3, ...)
as the orbital angular momentum quantum number, l,
which are often used in atomic spectroscopy and astronomy.

MNRAS 000, 1–15 (2017)

The	  polariza>on	  frac>on	  of	  Hα	  resul>ng	  
from	  the	  collision	  between	  hydrogen	  
atoms	  and	  electron/proton	  beam	  
(Syms+	  75,	  Laming	  90).	



Cross Section	

for Hα	 for Hβ	

Polarized Balmer Line from SNR Shocks 5

Table 1. The branching ratio of H α and H β (e.g.
Heng & Sunyaev 2008).

B3p,2s 0.1183
B4s,2p 0.5841
B4s,3p 0.4159
B4p,1s 0.8402
B4p,2s 0.1191
B4p,3s 3.643×10−2

B4p,3d 4.282×10−3

B4d,2p 0.7456
B4d,3p 0.2544

Percival & Seaton (1958) and Syms et al. (1975) theoreti-
cally gave the fraction of H α as

Pq (Hα) =
[
B3p,2s

σ3p0,q−σ3p±1,q
2 + 57σ3d0,q+σ3d±1,q−2σ3d±2,q

100

]

×
[
σ3s0,q + B3p,2s

7σ3p0,q+11σ3p±1,q
6

+
119σ3d0,q+219σ3d±1,q+162σ3d±2,q

100

]−1
, (8)

where σnl±m,q = σnl+m,q + σnl−m,q . The numerical co-
efficients are considering the spin-orbit interaction, but
neglecting hyperfine structure. For the proton impact
in the range of 1000 km s−1 <∼ vp <∼ 4000 km s−1, we can
use the data derived by Tseliakhovich, Hirata & Heng
(2012). Balança & Feautrier (1998) showed that the
atomic polarization fraction of H α is almost con-
stant (≈ 0.25) for vp <∼ 1000 km s−1. Thus, we as-
sume Pp(Hα)##vp≤1000 km s−1 = Pp(Hα)##vp=1000 km s−1 and

Pp(Hα)##vp≥4000 km s−1 = Pp(Hα)##vp=4000 km s−1 . For the frac-

tion from electron impact, we follow the approximation by
Laming (1990) given as

Pe(Hα) =



0 for Ee < 0.5,
4−3 ln Ee

14.3+11 ln Ee
for 0.794 ≤ Ee,

1.36(Ee − 0.5) for 0.5 ≤ Ee ≤ 0.794 ,

(9)

where Ee is the collision energy of the electron in the rest
frame of hydrogen atom (in atomic units). The atomic po-
larization fraction of H β is hardly studied, compared with
H α and Ly α. On the other hand, the fraction of Ly β is
almost the same as Ly α (Balança & Feautrier 1998). In the
following, we assume the polarization fraction of H β is the
same as that of H α. Figure 2 shows the atomic polarization
fraction following proton (magenta line) and the electron
impacts (green line). The dotted line represents the frac-
tion for the proton impact assumed in Laming (1990). With
the updated data of the atomic polarization fraction, we
obtain smaller polarization degree compared with the pre-
vious work by Laming (1990) at high proton temperatures,
and larger polarization at low proton temperature where he
assumed the polarization to be zero. Since the total cross
section yielding the line emission on particle q impact is
σtot,q = σ′0,q + 2σ′1,q , we can derive (Laming 1990)

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (10)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ). (11)

The total cross section σtot,q is the summation of
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Figure 3. The cross section of direct excitation to n = 3 level
for proton impact (open squares) and electron impact (closed
squares), B3l,n′l′σ3l,q . The black squares are σtot,q ##Qn (Hα ) .

Bnl,n′l′σ
∗
nl,q , where Bnl,n′l′ is the branching ratio of the spon-

taneous transition from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross

section for particle q impact on the ground state hydrogen
including the effect of cascading from higher atomic levels.
Here, we omit the magnetic quantum number m because it
does not contribute the total cross section and the branching
ratio. The total cross sections inducing the H α emission are
written as

σtot,q ##Qn (Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (12)

σtot,q ##In (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (13)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (14)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (15)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4f,q, (16)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization by a factor of ∼ 5 per cent (Laming
1990). Neglecting the cascades from higher atomic levels, we
give the total cross sections inducing the H β emissions as

σtot,q ##In,Qn (Hβ ) = B4s,2pσ4s,q + B4p,2sσ4p,q + B4d,2pσ4d,q . (17)

Figures 3 and 4 represent Bnl,n′l′σnl,q for H α
and H β emissions, respectively. Here we take data
from Janev & Smith (1993), Bray & Stelb (1995),
Heng & Sunyaev (2008) and Tseliakhovich, Hirata & Heng
(2012). For vp <∼ 1000 km s−1, we use the data given by
Balança & Feautrier (1998), which were calculated with
the close-coupling approximation. This approximation is
known to be applicable for the range of vp ) αc (e.g.
Tseliakhovich, Hirata & Heng 2012), where α = 1/137 is
the fine structure constant. In particular, the proton cross
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1
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Figure 4. The cross section for direct excitation to n = 4 level
by proton impact (open squares) and electron impact (closed
squares), B4l,n′l′σ4l,q . The black squares are σtot,q !!Qn (Hβ ) .

were derived by the direct numerical simulations by
Tseliakhovich, Hirata & Heng (2012). Besides, we assume
that the cross section for proton impact excitation in
the range vp >∼ 4000 km s−1 is the same as that of the
electron impact excitation. Indeed, the proton impact
cross section for n = 3 approaches to the electron’s one for
vq >∼ 3000 km s−1 (e.g. Janev & Smith 1993). The fitting
functions of these data are provided by Heng & Sunyaev
(2008) and Tseliakhovich, Hirata & Heng (2012). The data
for n = 4 are unavailable for the range vp <∼ 1000 km s−1.
We treat the cross section for proton impact to be zero in
this range. The data for electron impact and their fitting
functions are provided by International Atomic Energy
Agency (https://www-amdis.iaea.org/ALADDIN/).

The time scale of the spontaneous transition
of the hydrogen atom from the excited state to
the ground state, ∼ 10−8-10−1 s, is usually much
shorter than the mean collision time of particle q,
∼ 108 s

( nq
1 cm−3

)−1 (
σ

1016 cm2

)−1 ( vq
108 cm s−1

)−1
for SNR

shocks. Therefore, we assume that all the hydrogen atoms
are excited from the ground state (e.g. van Adelsberg et al.
2008).

2.4 Lyman Line Trapping

A part of hydrogen atoms in the states n > 2 emit Lyman-
series photons (e.g. 3p → 1s). If the system is optically
thick for the Lyman photon, the emitted Lyman photons
are absorbed by the ground-state hydrogen atoms and even-
tually converted to other series as Balmer, Paschen and so
on (e.g. Heng 2010). In such a situation, for instance, the
branching ratio in Eq. (13) is effectively B3p,2s ≈ 1 (e.g.
van Adelsberg et al. 2008). It is called “Case B”. On the
other hand, for optically thin limit (known as “Case A”),

we can use the values of the branching ratio summarized in
Table 1.

In this paper, we assume that the Balmer photons emit-
ted by the absorption of Lyman photons are unpolarized.
Therefore, for Case B, the branching ratios concerning I are
approximately

B3p,2s = 1,
B4p,2s = 1 − B4p,3s − B4p,3d,

B4p,3s = 1 − B4p,2s − B4p,3d.

2.5 Polarization from the Shock Wave

Using the atomic data given in previous sections, we calcu-
late the Stokes parameters for an arbitrary velocity distri-
bution of the particle q, fq (vq, u2). The velocity distribution
function of particle q is set to a Maxwellian as

fq (vq, u2) =
(

mq

2πkTq

) 3
2

exp "#−
mq (vq − u2)2

2kTq
$
% , (18)

where mq and k are respectively the mass of particle q and
Boltzmann constant, Tq is the downstream temperature of
particle q. Substituting Eq. (18) into Eqs. (5)-(6), and inte-
grating 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π, we derive

Qn = 4πnHE2 sin2 χ
∑

q=e,p
nq

(
Dq

π

) 3
2 e−Dqu22

(2Dqu2)4

×
∫ ∞

0
αq

3e
−
(
Dqαq

2u2

)2

(σ0,q − σ1,q )

×

"
#

3
αq3 +

1
αq

$
% sinh αq −

3
αq3 cosh αq

 dαq,

(19)

and

In = 4πnHE2
∑

q=e,p
nq

(
Dq

π

) 3
2 e−Dqu22

(2Dqu2)4

∫ ∞

0
αq

3e
−
(
Dqαq

2u2

)2

×
[
(σ0,q + σ1,q )

sinh αq
αq

+
(
σ0,q − σ1,q

)
×

"
#

1 − 3 cos2 χ

αq3 − cos2 χ

αq2
$
% sinh αq

−1 − 3 cos2 χ

αq2 cosh αq

 dαq,

(20)

where

Dq =
mq

2kTq
,

αq = 2Dqu2vq,

u2 = |u2 |.
When χ = π/2, Eqs. (19) and (20) coincide with Eqs. (8)
and (9) of Laming (1990). In particular, when χ = π/2
and Dqu22 = 0, we obtain Qn = 0 and In ∝

∫ ∞
0 (σ0,q +

2σ1,q )e−Dqvq 2
vq

3dvq , that is, the observed emission is unpo-
larized due to the almost isotropic collisions. On the other
hand, when Dqu22 → ∞ leading to extremely anisotropic
collisions, the observed emission is polarized as Qn/In =∑

(σ0,q − σ1,q )/(σ0,q + σ1,q ).
When we observe the shock from right in front (i.e. χ =

0), the observed emission is unpolarized due to the isotropic
collisions between the particle q and the hydrogen atom.
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Lyman	  Line	  Trapping	

Lyβ	

absorbed	  
reemiked	  

Hα	

Hα	  emission	  due	  to	  
3p	  →	  2s	  transi>on	

a)  A	  part	  of	  hydrogen	  atoms	  in	  the	  state	  n=3	  emit	  Lyβ	  photon	  due	  to	  3p→1s	  transi>on.	  
b)  The	  emiked	  Lyβ	  photons	  are	  absorbed	  by	  the	  ground	  state	  hydrogen	  atoms.	  
c)  Eventually,	  the	  Lyβ	  photons	  are	  converted	  Hα	  photons,	  which	  are	  op>cally	  thin	  for	  the	  

ground	  state	  hydrogen	  atoms.	

Op>cally	  	  thin	  for	  Lyβ	  	  →	  “Case	  A”	  
Op>cally	  thick	  for	  Lyβ	  	  →	  “Case	  B”	  

Hα	  photons	  are	  not	  absorbed	  
by	  the	  ground	  state	  hydrogen	  
atoms.	

Lyβ emission	  due	  to	  
3p	  →	  1s	  transi>on	

We	  assume	  that	  the	  converted	  Hα	  photons	  are	  unpolarized.	
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The	  polariza>on	  degree	  
depends	  on	  the	  energy	  
loss	  rate.	  
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Figure 7. The polarization degree of H α as a function of η for
fixed values of Tp (0.47, 1.88, 4.24, 7.53, and 16.9 keV) with given
β = 0.05 and χ = π/2 for Case A.
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Figure 8. The polarization degree of H α as a function of Tp for
fixed values of η (0, 0.1, 0.2, 0.3, 0.4, and 0.5) with given β = 0.05
and χ = π/2 for Case A and Case B. The magenta lines show the
result for η = 0 and the dashed lines are the results for η = 0.1-0.5
from bottom to top.
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Figure 9. The polarization degree of H α as a function of Tp for
fixed values of β (0.02, 0.04, 0.05, 0.06, 0.08 and 0.10) with given
η = 0.05 and χ = π/2 for Case A and Case B. The black lines
show the result for β = 0.05 and the dashed lines are the results
for β = 0.02-0.1 from bottom to top.

observed polarization degree for Cases A and B. The solid
lines show the results of η = 0 and the dashed lines repre-
sent η = 0.1-0.5 from bottom to top. In Case B, the observed
polarization degree is reduced due to the Lyman line trap-
ping, yielding larger In. As shown in Figures 7 and 8, the
significant energy loss rate is realized when the observed po-
larization degree is ∼ 4-5 per cent (∼ 1 per cent) for Case A
(Case B).

We discuss the dependence of the polarization degree
on β and χ. Figure 9 represents the observed polarization
degree for Cases A and B for various fixed β. The solid lines
correspond to the representative value of β = 0.05. The re-
sults of β = 0.02-0.1 are shown with points from bottom to
top. For Tp >∼ 5 keV(u2/1600 km/s)2, a large fraction of elec-
trons have an energy Ee >∼ 10 eV. Therefore, the β dependence
is relatively large especially for Case A. On the other hand,
for Case B, the effective cross section on electron impact
σ3p,e is dominant (see the green and black curves in Figure
3). Since the excitation rate is proportional to veσ3p,e, which
is almost constant, the electron temperature dependence be-
comes weak.

The dependence on the viewing angle is shown in Figure
10. The points show Tp = 0.47-16.9 keV from bottom to top.

The solid lines are (Qn/In)!!χ= π
2
× sin2 χ. The unpolarized

intensity In is mainly determined by the electron impact
due to the faster electron velocity than proton one. Since
the velocity distribution of electron is nearly isotropic, the
unpolarized intensity does not depend on the viewing angle.
Thus, the polarization degree follows Qn/In ∝ sin2 χ (see Eq.
(19)).

Figure 11 shows the total intensity ratio, In(Hβ )/In(Hα)
as a function of Tp for χ = π/2 and β = 0.05 with
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Figure 15. The polarized intensity ratio Qn (Hβ )/Qn (Hα ) as a
function of Tp for fixed values of β (0.02, 0.04, 0.05, 0.06, 0.08,
and 0.10) with given η = 0. The black line shows the result for
β = 0.05 and the points are the results for β = 0.02-0.1, that
overlap the black line. The gray region indicates that the lack
of cross section data for proton impact significantly affects the
results, which are not reliable.

by the polarized Balmer-intensity ratio Qn(Hβ )/Qn(Hα), ad-
ditional atomic data are necessary.

Cargill & Papadopoulos (1988) pointed out that elec-
trons may be heated at SNR shocks by plasma instabilities,
such as Buneman and ion acoustic instabilities. This elec-
tron heating would be anisotropic, directed along the shock
velocity, give rise to a different polarization signal in the
Balmer lines. Electron heating by lower hybrid waves in a
shock precursor (e.g. McClements et al. 1997; Laming et al.
2014) would be directed along the local magnetic field lead-
ing to a different polarization direction. However, the mag-
netic field can be highly disturbed by the CR-streaming in-
stability at a gyroradius scale of CRs in the GeV energy,
rg ∼ 1013 cm(E/1 GeV)(B/1 µG)−1, (e.g. Bell 1978). Since
the length scale of this disturbance is much smaller than
the size of the emission region (∼ 1016 cm), the magnetic
field orientation becomes isotropic in the emission region.
Thus on average, the highly disturbed field makes net di-
rection of electron-hydrogen atom collision isotropic on our
line of sight. As a result, the anisotropic heating of elec-
trons directed along the magnetic field does not yield net
polarization of the observed Balmer line emissions. There-
fore, the present results can be valid when the magnetic field
is highly disturbed at the scale smaller than the mean free
path of the atomic collision. Besides, when the anisotropic
electrons collide with other ionized species such as Mg, Si, S
and Fe, the polarized X-ray line emissions from these species
are detectable by future observation. We will study impacts
of the anisotropic heating on Balmer line polarization in a
separate paper.
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Figure 16. Polarization degree of H α as a function of η for SN
1006 (magenta) and Tycho’s SNR (red). The broken lines indicate
uncertainties of the observed proton temperature. The horizontal
magenta belt shows the range of observed polarization degree in
SN 1006, Qn/In = 0.16-0.24. The reddish bar illustrates predicted
polarization degree in Case B for Tycho’s SNR (η = 0.8).

For SN 1006 and Tycho’s SNR, we calculate the po-
larization degree, the total intensity ratio In(Hβ )/In(Hα)
and the polarized intensity ratio Qn(Hβ )/Qn(Hα). Figure 16
shows the polarization degree as a function of η. The to-
tal (polarized) intensity ratio is represented in Figure 17
(Figure 18). For SN 1006 (Tycho’s SNR), we set the pro-
ton temperature kTp = 9.87 ± 0.68 (kTp = 5.86 ± 0.76) and
β = 0.06 (β = 0.05) following Ghavamian et al. (2001, 2002)
and van Adelsberg et al. (2008). Here, the viewing angle is
fixed at χ = π/2.

Sparks et al. (2015) observed the polarized H α emis-
sion, whose polarization degree is ≈ 2.0 ± 0.4 per cent, and
that of H β simultaneously in north-west region of SN 1006.
If we consider Case A for SN 1006, the observed polarization
degree implies very high energy loss rate as η >∼ 0.8 (see Fig-
ure 16). In this case, the total intensity ratio In(Hβ )/In(Hα)
ranges between 0.3 and 0.35 (see Figure 17). On the other
hand, in Case B, the predicted polarization degree is smaller
than ∼ 1 per cent. As shown in Figures 8 and 16, the po-
larization degree of H α emission is significantly affected by
the optical depth of Ly β photon, τ(Lyβ ), which is evalu-
ated from In(Hβ )/In(Hα). Ghavamian et al. (2002) analyzed
the spectra of Balmer line emissions at the same region
as Sparks et al. (2015) did, and obtained In(Hβ )/In(Hα) =
0.25-0.37. Combining the model of Balmer line spectra,
Ghavamian et al. (2002) concluded that τ(Lyβ ) ∼ 0.5. In
our calculation for the optically thin and thick limits with
η = 0, the ratio In(Hβ )/In(Hα) ranges between 0.26 and
0.41, which is consistent with observational consequences
that SN 1006 is in between Cases A and B without CR
acceleration. Extending the present model to an arbitrary

MNRAS 000, 1–15 (2017)

The	  polariza>on	  degree	  
for	  SN	  1006	  and	  Tycho’s	  
SNR.	  
	  
If	  SN	  1006	  is	  Case	  A,	  the	  
energy	  loss	  rate	  is	  η≈0.8.	  
	  
Extending	  the	  model	  to	  
an	  arbitrary	  	  op>cal	  
depth	  of	  Ly	  β	  photon	  is	  
required.	  



The	  polarized	  Hα	  line	  emission	  from	  
the	  SNR	  shock	

The	  total	  intensity	  ra>o	  
for	  SN	  1006	  and	  Tycho’s	  
SNR.	  
	  
If	  SN	  1006	  is	  Case	  A,	  the	  
energy	  loss	  rate	  is	  η≈0.8.	  
	  
Extending	  the	  model	  to	  
an	  arbitrary	  	  op>cal	  
depth	  of	  Ly	  β	  photon	  is	  
required.	  

Polarized Balmer Line from SNR Shocks 13

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

SN 1006 (Observed)

Tycho’s SNR (Observed)

Case A

Case B

I n
 (

H
β)

/I
n
 (

H
α

)

η

SN 1006
Tycho

Figure 17. Total intensity ratio In (Hβ )/In (Hα ) for SN 1006 (ma-
genta) and Tycho’s SNR (red). The broken lines indicate uncer-
tainties of the observed proton temperature. The observed inten-
sity ratio in SN 1006, In (Hβ )/In (Hα ) = 0.25-0.37, is represented by
horizontal magenta belt. The width between the two horizontal
red dotted lines represents range of observed intensity ratio for
Tycho’s SNR (In (Hβ )/In (Hα ) = 0.17-0.3).
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Figure 18. Polarized intensity ratio Qn (Hβ )/Qn (Hα ) for SN 1006
(magenta) and Tycho’s SNR (red). The broken lines indicate un-
certainties of the observed proton temperature. The reddish bar
indicates predicted intensity ratio for Tycho’s SNR (η = 0.8).

τ(Lyβ ), we will precisely estimate the energy loss rate η
from the polarization degree of H α emissions, which will
be studied in the separate paper. Note that the energy loss
rate η is also related to the ratio Qn(Hβ )/Qn(Hα) and in-
dependent of τ(Lyβ ). For η >∼ 0.8, we predict that the polar-
ized intensity ratio has Qn(Hβ )/Qn(Hα) = 0.31-0.42 (see Fig-
ure 18), whereas the observed value is poorly constrained,
Qn(Hβ )/Qn(Hα) ≈ 0.33 ± 0.18, because the emission is too
faint.

The eastern region of Tycho’s SNR has H α emissions,
that is known as “knot g” (Kamper & Bergh 1978). The
proper motion of “knot g”was measured as ≈ 0.2 arcsec yr−1

(Kamper & Bergh 1978). On the other hand, Hayato et al.
(2010) observed the expansion velocity, ≈ 4700 km s−1, from
the Doppler shift of Si X-ray line. Combining the proper
motion of the Si-rich layer (≈ 0.25 arcsec yr−1) measured
by Katsuda et al. (2010), they concluded that the distance
of Tycho’s SNR is ≈ 4.0 ± 1.0 kpc. Thus, we expect the
shock velocity of the “knot g” region to be Vsh ≈ 4000 km/s.
The predicted temperature from Rankine-Hugoniot relation,
TRH ≈ 31 keV, is much higher than the observed down-
stream temperature, Tdown ≈ 6 keV. Combining these mea-
surements, the energy loss rate is estimated as η ≈ 0.8 from
Eq. (1). Furthermore, Warren et al. (2005) showed that the
ratio of the forward shock radius to that of the contact dis-
continuity is 1 : 0.93, which implies significant energy loss
around the forward shock. This argument is independent
of the uncertain distance. However, the eastern region of
Tycho’s SNR (“knot g”) was not considered in their anal-
ysis. Ghavamian et al. (2001) measured the intensity ratio
In(Hβ )/In(Hα) to be 0.087–0.115 (undereddened), which be-
comes 0.17-0.3 after correcting for the visual extinction of
1.6 ≤ Av ≤ 3.2, where we take the lower and the upper
limits from optical (Chevalier, Kirshner & Raymond 1980)
and X-ray absorption measurements (Cassam-Chenäı et al.
2007), respectively. Observational results, η = 0.8 and
In(Hβ )/In(Hα) = 0.17-0.3, prefer Case B. Then, Qn/In ≈
0.6-0.8 per cent is expected. Note that the energy loss rate
inferred from the polarization measurements does not de-
pend on the distance of SNR.

The polarization degree depends on the electron tem-
perature, the optical depth and the viewing angle of the
shock. These unknowns cause uncertainty of the observed
polarization degree, although the optical depth of the Ly-
man line emissions and the electron temperature can be
measured by observations of In(Hα)/In(Hβ ) and the ratio of
the intensity of broad component of H α emission to that of
narrow component, Ib(Hα)/In(Hα). A large energy loss rate
measured by the polarization degree of Hα emissions can be
confirmed by the polarized intensity ratio, Qn(Hβ )/Qn(Hα),
which does not depend on the above values. As the energy
loss rate is expected to be η ≈ 0.8 in Tycho’s SNR, we predict
Qn(Hβ )/Qn(Hα) ≈ 0.60 (see Figure 18).

Shimoda et al. (2015) pointed out that the density fluc-
tuations in realistic ISM make the SNR shock rippled and
oblique everywhere. In such a situation, the kinetic energy
flux in the direction perpendicular to the shock normal is
not completely dissipated, which causes lower downstream
temperature compared with the uniform, ideal ISM case and
yields apparent energy loss. The non-dissipating kinetic en-
ergy goes to the downstream fluid motions with the appar-
ent energy loss rate is estimated as η ≈ (∆ρ/〈ρ〉0)2 (see Ap-
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The	  polarized	  Hα	  line	  emission	  from	  
the	  SNR	  shock	

The	  polarized	  intensity	  ra>o	  of	  
Hβ 	  to	  Hα	  is	  also	  calculated.	  
	  
The	  ra>o	  is	  not	  affected	  by	  the	  
Lyman	  line	  trapping.	  
	  
For	  SN	  1006,	  the	  accelera>on	  
efficiency	  is	  not	  constrained.	  
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certainties of the observed proton temperature. The reddish bar
indicates predicted intensity ratio for Tycho’s SNR (η = 0.8).

τ(Lyβ ), we will precisely estimate the energy loss rate η
from the polarization degree of H α emissions, which will
be studied in the separate paper. Note that the energy loss
rate η is also related to the ratio Qn(Hβ )/Qn(Hα) and in-
dependent of τ(Lyβ ). For η >∼ 0.8, we predict that the polar-
ized intensity ratio has Qn(Hβ )/Qn(Hα) = 0.31-0.42 (see Fig-
ure 18), whereas the observed value is poorly constrained,
Qn(Hβ )/Qn(Hα) ≈ 0.33 ± 0.18, because the emission is too
faint.

The eastern region of Tycho’s SNR has H α emissions,
that is known as “knot g” (Kamper & Bergh 1978). The
proper motion of “knot g”was measured as ≈ 0.2 arcsec yr−1

(Kamper & Bergh 1978). On the other hand, Hayato et al.
(2010) observed the expansion velocity, ≈ 4700 km s−1, from
the Doppler shift of Si X-ray line. Combining the proper
motion of the Si-rich layer (≈ 0.25 arcsec yr−1) measured
by Katsuda et al. (2010), they concluded that the distance
of Tycho’s SNR is ≈ 4.0 ± 1.0 kpc. Thus, we expect the
shock velocity of the “knot g” region to be Vsh ≈ 4000 km/s.
The predicted temperature from Rankine-Hugoniot relation,
TRH ≈ 31 keV, is much higher than the observed down-
stream temperature, Tdown ≈ 6 keV. Combining these mea-
surements, the energy loss rate is estimated as η ≈ 0.8 from
Eq. (1). Furthermore, Warren et al. (2005) showed that the
ratio of the forward shock radius to that of the contact dis-
continuity is 1 : 0.93, which implies significant energy loss
around the forward shock. This argument is independent
of the uncertain distance. However, the eastern region of
Tycho’s SNR (“knot g”) was not considered in their anal-
ysis. Ghavamian et al. (2001) measured the intensity ratio
In(Hβ )/In(Hα) to be 0.087–0.115 (undereddened), which be-
comes 0.17-0.3 after correcting for the visual extinction of
1.6 ≤ Av ≤ 3.2, where we take the lower and the upper
limits from optical (Chevalier, Kirshner & Raymond 1980)
and X-ray absorption measurements (Cassam-Chenäı et al.
2007), respectively. Observational results, η = 0.8 and
In(Hβ )/In(Hα) = 0.17-0.3, prefer Case B. Then, Qn/In ≈
0.6-0.8 per cent is expected. Note that the energy loss rate
inferred from the polarization measurements does not de-
pend on the distance of SNR.

The polarization degree depends on the electron tem-
perature, the optical depth and the viewing angle of the
shock. These unknowns cause uncertainty of the observed
polarization degree, although the optical depth of the Ly-
man line emissions and the electron temperature can be
measured by observations of In(Hα)/In(Hβ ) and the ratio of
the intensity of broad component of H α emission to that of
narrow component, Ib(Hα)/In(Hα). A large energy loss rate
measured by the polarization degree of Hα emissions can be
confirmed by the polarized intensity ratio, Qn(Hβ )/Qn(Hα),
which does not depend on the above values. As the energy
loss rate is expected to be η ≈ 0.8 in Tycho’s SNR, we predict
Qn(Hβ )/Qn(Hα) ≈ 0.60 (see Figure 18).

Shimoda et al. (2015) pointed out that the density fluc-
tuations in realistic ISM make the SNR shock rippled and
oblique everywhere. In such a situation, the kinetic energy
flux in the direction perpendicular to the shock normal is
not completely dissipated, which causes lower downstream
temperature compared with the uniform, ideal ISM case and
yields apparent energy loss. The non-dissipating kinetic en-
ergy goes to the downstream fluid motions with the appar-
ent energy loss rate is estimated as η ≈ (∆ρ/〈ρ〉0)2 (see Ap-
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Summary	
•  SNRs	  are	  believed	  as	  accelera>on	  sites	  of	  Galac>c	  CRs.	  
•  The	  energy	  density	  of	  CR	  around	  the	  Earth	  can	  be	  explained	  if	  the	  

10%	  of	  SN	  kine>c	  energy	  is	  used	  for	  CR	  accelera>on.	  
•  We	  show	  that	  the	  polariza>on	  measurements	  of	  the	  Balmer	  line	  

emissions	  from	  SNR	  shock	  could	  provide	  the	  CR	  accelera>on	  
efficiency	  (without	  the	  argument	  of	  the	  distance).	  

•  For	  precise	  measurement	  of	  the	  efficiency,	  we	  must	  extend	  the	  
model	  to	  an	  arbitrary	  op>cal	  depth	  of	  Lyman	  line	  emissions.	  

•  The	  observa>on	  of	  Tycho’s	  SNR	  by	  SUBARU	  is	  coming	  soon	  (Katsuda	  
et	  al.	  2019-‐).	  



Measurements	  of	  the	  shock	  velocity	  	
ü  The	  shock	  velocity	  Vsh	  is	  measured	  by	  the	  proper	  mo>on	  of	  

Ηα	  filaments.	  
Surface	  brightness	  profile	  of	  region	  6	 ü  The	  proper	  mo>on	  

measured	  by	  the	  shit	  of	  
surface	  brightness	  profile.	

χ 2 = dx L2010 (x −Δx)− L2007(x)( )2∫

ü  The	  shit	  is	  determined	  so	  
that	  the	  χ2	  takes	  minimum	  
value	  (Helder+	  13).	  

ü  The	  distance	  of	  RCW	  86	  is	  
es>mated	  as	  2.5	  kpc	  (Helder
+	  09)	  

The	  northeastern	  region	  of	  RCW	  86.	  
The	  proper	  mo>on	  is	  measured	  in	  boxes.	  
The	  downstream	  temperature	  measured	  along	  the	  long	  slit.	  
(Helder+	  09,	  13)	

up	 down	



Measurements	  of	  the	  downstream	  
temperature	

up	 down	

MAX	  3000	  km/s	

Hα	  emission	  emerged	  from	  charge-‐exchange	  reac>on	  
between	  hydrogen	  atoms	  and	  shocked	  protons	

H	  +	  p	  →	  p	  +	  H	

emits	  broad	  Hα	


H	

p	

e	

upstream	 downstream	

SNR	  shock	  

The	  downstream	  proton	  temperature	  Tdown	  is	  
measured	  directly	  by	  the	  spectrum	  of	  the	  broad	  
component	  of	  Hα.	  

charge-‐exchange	  reac>on	



Measurements	  of	  downstream	  
temperature	

ü  The	  downstream	  temperature	  is	  measured	  by	  the	  
spectrum	  of	  broad	  Hα	  component	  along	  the	  long	  slit.	  

The	  observed	  downstream	  proton	  temperature	  
kTdown	  =	  2.3±0.3	  keV　(Helder+	  09).	

Helder+	  09	

up	 down	

MAX	  3000	  km/s	



The	  es>ma>on	  of	  the	  CR	  accelera>on	  
efficiency.	

ü  The	  downstream	  temperature	  :	

ü  The	  CR	  accelera>on	  efficiency:	

(	  for	  Region	  6)	

up	 down	

ü  The	  expansion	  speed	  measured	  by	  the	  proper	  
mo>on	  of	  the	  Ηα filament:	

up	 down	
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Hα偏光放射モデル	

p 偏光放射なので、ストークスパラメーターを計算する。	

考えている座標	

ü  上流静止系を考え、衝撃波下流で水
素原子が荷電粒子（q）との衝突によ
りどれだけ励起されるかを考える。	  

	  
ü  光子の偏極は粒子qの速度ベクトル

成分を用いて表す。	  
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1 INTRODUCTION

2 PHYSICAL MODEL

Laming (1990) studied that the polarized Hα emission from
the adiabatic shock wave, but only considered for the case of
viewing angle orthogonal to the shock normal. In this paper,
we extend his study, and investigate the polarized Balmer
emission from the shock, which loses its kinetic energy due
to the CR acceleration, with general viewing angle.

2.1 The Model Geometry

Figure 1 shows the schematic diagram of the shock geometry.
The bule sheet is the z = 0 plane and represents the shock
wave. The bule arrow shows the downstream velocity in the
upstream rest frame, which is parallel to the z axis. The
purple vector is the velosity of the particle q,

vq = (vq sin θ cos ϕ, vq sin θ sin ϕ, vq cos θ),

that enters the hydrogen atom at the origin. The red y′

axis is parallel to the line of sight and the red z′ axis is
perpendicular, which makes the angle χ between z axis. The
red sheet represents the sky, which is orthogonal to the line
of sight.

2.2 The Polarized Line Emission

The polarized atomic line emissions induced by collisional
excitation is reviewed by Percival & Seaton (1958). In this
paper, we treat the dipole transition that makes Balmer line
emission.

Let σnlm,s be the cross-section on the particle s colli-
sional excitation for the ground state hydrogen atom, where
n is the principal quantum number, l = 0, 1, ..., n − 1 is the
azimuthal quantum number and m = −l,−l + 1, ..., l is the

! E-mail: s-jiro@phys.aoyama.ac.jp (JS)

magnetic quantum number. We evaluate the orbital angu-
lar momentum of the electron, which is bound by the hy-
drogen atom, along the incident direction of the particle s.
Then, the azimuthal quantum number, l, represents the or-
bital angular momentum magnitude of the bounded elec-
tron, L =

√
l (l + 1)!, while the magnetic quantum number

m gives the component of the orbital augular momentum
parallel to vs , Lr = m!. Let Anlm,n′l′m′ be the spontaneous
transion rate per unit time from the atomic state of nlm
to n′l ′m′. The spontaneous transition is only allowed for
∆l = l − l ′ = ±1 and |∆m | = |m − m′ | ≤ 1.

By the conservation of the angular momentum, the po-
larization of emitted photon is characterized by the subtrac-
tion of the relates of Lr before and after the transition. We
presume that the transition of the hydrogen atom induces
second time derivative of electric dipole moment whose po-

larization vector is ˆ̈d∆m. The polarization vector can be writ-
ten as

ˆ̈d0 = v̂q,r eiωBt,

ˆ̈d±1 =
1√
2

(v̂q,θ ± iv̂q,ϕ )eiωBt, (1)

where unit vectors are define as

v̂q,r = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
v̂q,θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ),
v̂q,ϕ = v̂q,r × v̂q,θ = (− sin ϕ, cos ϕ, 0),

and i is imaginary unit, and ωB is the angular freqency of
the Balmer series emission. The electric field of the photon
emitted to the line of sight direction is given by

E∆m(t) =
{
ŷ′ × ( ŷ′ × ˆ̈d∆m)

}
E(t) ≡ ε̂∆mE(t) (2)

where the unit vector along the line of sight is

ŷ′ = (0, sin χ,− cos χ),

and E(t) is the electric field strength. The polarization vector
of photon is written as

ε̂∆m = ( ŷ′ · ˆ̈d∆m) ŷ′ − ˆ̈d∆m.
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1 INTRODUCTION

2 PHYSICAL MODEL

Laming (1990) studied that the polarized Hα emission from
the adiabatic shock wave, but only considered for the case of
viewing angle orthogonal to the shock normal. In this paper,
we extend his study, and investigate the polarized Balmer
emission from the shock, which loses its kinetic energy due
to the CR acceleration, with general viewing angle.

2.1 The Model Geometry

Figure 1 shows the schematic diagram of the shock geometry.
The bule sheet is the z = 0 plane and represents the shock
wave. The bule arrow shows the downstream velocity in the
upstream rest frame, which is parallel to the z axis. The
purple vector is the velosity of the particle q,

vq = (vq sin θ cos ϕ, vq sin θ sin ϕ, vq cos θ),

that enters the hydrogen atom at the origin. The red y′

axis is parallel to the line of sight and the red z′ axis is
perpendicular, which makes the angle χ between z axis. The
red sheet represents the sky, which is orthogonal to the line
of sight.

2.2 The Polarized Line Emission

The polarized atomic line emissions induced by collisional
excitation is reviewed by Percival & Seaton (1958). In this
paper, we treat the dipole transition that makes Balmer line
emission.

Let σnlm,s be the cross-section on the particle s colli-
sional excitation for the ground state hydrogen atom, where
n is the principal quantum number, l = 0, 1, ..., n − 1 is the
azimuthal quantum number and m = −l,−l + 1, ..., l is the
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magnetic quantum number. We evaluate the orbital angu-
lar momentum of the electron, which is bound by the hy-
drogen atom, along the incident direction of the particle s.
Then, the azimuthal quantum number, l, represents the or-
bital angular momentum magnitude of the bounded elec-
tron, L =

√
l (l + 1)!, while the magnetic quantum number

m gives the component of the orbital augular momentum
parallel to vs , Lr = m!. Let Anlm,n′l′m′ be the spontaneous
transion rate per unit time from the atomic state of nlm
to n′l ′m′. The spontaneous transition is only allowed for
∆l = l − l ′ = ±1 and |∆m | = |m − m′ | ≤ 1.

By the conservation of the angular momentum, the po-
larization of emitted photon is characterized by the subtrac-
tion of the relates of Lr before and after the transition. We
presume that the transition of the hydrogen atom induces
second time derivative of electric dipole moment whose po-

larization vector is ˆ̈d∆m. The polarization vector can be writ-
ten as

ˆ̈d0 = v̂q,r eiωBt,

ˆ̈d±1 =
1√
2

(v̂q,θ ± iv̂q,ϕ )eiωBt, (1)

where unit vectors are define as

v̂q,r = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
v̂q,θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ),
v̂q,ϕ = v̂q,r × v̂q,θ = (− sin ϕ, cos ϕ, 0),

and i is imaginary unit, and ωB is the angular freqency of
the Balmer series emission. The electric field of the photon
emitted to the line of sight direction is given by

E∆m(t) =
{
ŷ′ × ( ŷ′ × ˆ̈d∆m)

}
E(t) ≡ ε̂∆mE(t) (2)

where the unit vector along the line of sight is

ŷ′ = (0, sin χ,− cos χ),

and E(t) is the electric field strength. The polarization vector
of photon is written as

ε̂∆m = ( ŷ′ · ˆ̈d∆m) ŷ′ − ˆ̈d∆m.
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ͷͷҟํੑͰܾఆ͞ΕΔɻඇํͳিಥͷ݁Ռɺࢠཻ
͕ۉಓ֯ӡಈྔͷҟํੑͷΞϯαϯϒϧฏيͷࢠΕͨి͞ىྭ
ΔͨΊͰ͋Δ (e.g. Sparks et al. 2014)ɻ͜ͷҟํੑিܸ
ԼྲྀͷԹͱ্ྲྀ੩ܥࢭͰͷԼྲྀͷʹΑܾͬͯ·Δɻ͜
ͷͨΊɺԼྲྀͷԹΛಠཱͳ؍ଌ (e.g. spectroscopy of broad
Hα) ʹΑΓܾఆ͢Εɺภޫ؍ଌ͔ΒԼྲྀͷ͕ଌఆ͞Ε
Δɻภޫ؍ଌͰܾఆ͞ΕͨԼྲྀͷ͔Βিܸ͕ܾ·Δ
ͷͰɺఱମ·ͰͷڑʹґΒͣʹ CRՃʹΑΔΤωϧΪʔ
ͷଛࣦ η ΛੵݟΔ͜ͱ͕Ͱ͖Δɻ͜ͷจͰ Balmerً
ઢ์ࣹͷภޫ؍ଌΛ༻͍ͯ SNRিܸͰͷӉઢՃʹΑΔ
ΤωϧΪʔͷଛࣦ͕ଌఆͰ͖͏Δ͜ͱΛࣔ͢ɻ

2 PHYSICAL MODEL

Laming (1990)  CR ͷӨڹͷͳ͍Ұݩ࣍ͷฏߦিܸΛਅ
ԣ͔Β؍ଌͨ͠߹ʹଌఆ͞ΕΔ Hα ์ࣹͷภޫΛཧࢉܭ
ͨ͠ɻ͜ͷจͰ CRՃʹΑΔΤωϧΪʔଛࣦͷӨڹΛߟ
ྀ͠ɺҰݩ࣍ͷฏߦিܸΛҰൠͷࢹઢํͰ؍ଌͨ͠߹ͷ
Balmerًઢͷภޫ์ࣹڧΛ͢ࢉܭΔɻ

2.1 The Model Geometry

ਤ 1িܸͷزԿֶʹ͍ͭͯͷμΠΞάϥϜͰ͋Δɻিܸ
໘੨͍γʔτ͕ද͠ɺz = 0ͷฏ໘Ͱ͋Δɻ্ྲྀྖҬͱԼྲྀ
ྖҬͦΕͧΕɺz < 0ͱ z > 0Ͱ͋Δɻ্ྲྀ੩ܥࢭͰͷԼྲྀ
ͷ u2 ੨͍ҹ͕ද͠ɺিܸ໘ʹਨͱͳΔʢz ࣠ʹ
ฏߦʣɻࢵͷҹ੩͍ͯ͠ࢭΔਫૉࢠݪʹೖࣹ͢Δݸʑͷཻ
ͷࢠ vs Λද͢ɻ͜͜Ͱ vs = vs (sin θ cos ϕ, sin θ sin ϕ, cos θ)
ͱ͢Δɻ৭ͷ y′ͱ z′࣠ͦΕͧΕ؍ଌऀͷࢹઢํʹฏߦɺ
ਨͰ͋Δɻz′ ࣠ͱ y ࣠ͱͷͳ֯͢Λ χ ͱ͢Δɻ͍γʔτ
ࢹઢʹਨͳฏ໘Ͱ͋Γɺఱٿ໘Λද͢ɻ

2.2 The Polarized Line Emission

ઢͷภޫ์ࣹPercivalًࢠݪিಥʹΑΔࢠཻ & Seaton (1958)
͕·ͱΊ͍ͯΔɻຊจͰৼಈࢠΛͨ͠ࣅۙࢠۃ߹ʹڐ
͞ΕΔભҠʹΑΔ BalmerًઢͷΈΛ͑ߟΔɻ

ࢠཻ s ͷিಥʹΑΓجఈঢ়ଶͷਫૉ͕ࢠݪ४Ґ nlm ʹྭ
ΔԠஅ໘ੵΛ͢ى σnlm,s ͱ͢Δɻ͜͜Ͱ n ओྔࢠͰ
0 ≤ l ≤ n−1يಓ֯ӡಈྔྔࢠͰ m࣓ࢠྔؾͰ |m | ≤ l
Ͱ͋Δɻيಓྔࢠ lmཻࢠͷೖࣹํΛ࣠ʹͱΓධՁ͢Δɻ
͜ͷͱ͖ɺl ਫૉࢠݪʹଋറ͞Ε͍ͯΔిࢠͷيಓ֯ӡಈྔ
ͷେ͖͞ L =

√
l (l + 1)! Λද͠ɺm ೖࣹํͷେ͖͞

Lr = m! Λද͢ɻ४Ґ nlm Λ์ग़ࢠޫ͕ࢠݪਫૉͨ͠ىྭʹ
͠४Ґ n′l ′m′ ʹࣗൃભҠ͢Δ֬Λ Anlm,n′l′m′ ͱ͢Δɻ͜ͷ
ͱ͖ ∆l = l − l ′ = ±1͔ͭ |∆m | = |m − m′ | ≤ 1ͱͳΔભҠ͚ͩ
ΕΔɻ͞ڐ

֯ӡಈྔͷอଘʹΑΓɺ์ग़͞ΕͨޫࢠͷภۃભҠͷલ
Ͱͷޙ Lr ͷมԽΛද͢ ∆mͰಛ͚ΒΕΔɻྭͨ͠ىਫૉ
ͷ̎ճඍ͕ൃੜͨؒ࣌͠ͷࢠۃؾભҠͨ݁͠Ռɺి͕ࢠݪ
ͱΈͳ͠ɺͦͷภۃΛ d̈∆m ͱ͢Δɻ͜ͷͱ͖ ∆mʹͯ͠ɺ

d̈0 = v̂s,r eiωBt,

d̈±1 =
1√
2

(v̂s,θ ± iv̂s,ϕ )eiωBt, (1)

ͱॻ͚Δɻ͜͜Ͱ

v̂s,r = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
v̂s,θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ),
v̂s,ϕ = v̂s,r × v̂s,θ = (− sin ϕ, cos ϕ, 0),

Ͱ͋Γɺiڏ୯ҐɺωB ์ࣹͨ͠ Balmerًઢͷ֯ৼಈ
Ͱ͋Δɻ·ͨɺࢹઢํʹൃͤΒΕͨ์ࣹͷిϕΫτϧ

E∆m(t) =
{
n × (n × d̈∆m)

}
E(t) ≡ ε∆mE(t) (2)

ͱॻ͚Δɻ͜͜Ͱ n = (0, sin χ,− cos χ) ؍ଌऀͷࢹઢʹฏߦ
ͳ୯ҐϕΫτϧͰ͋ΓɺE(t)ిڧͰ͋ΔɻภۃϕΫτϧ
 ε∆m = (n · d̈∆m)n − d̈∆m Λຬͨ͢ɻఱٿ໘্ͷిϕΫτ
ϧ E∆m,z′ = (E∆m · ẑ′) ẑ′ ͱ E∆m,x = (E∆m · x̂) x̂ ͷͰද
͢ɻ͜͜Ͱɺẑ′ = (0, cos χ, sin χ)ɺx̂ = (1, 0, 0) Ͱ͋Δɻ

ʹݸͷࢠݪΔਫૉ࡞ɺd̈∆mΛڧଌ͞ΕΔภޫ์ࣹ؍
ൺྫ͢Δͱ͢Δɻཻࢠ s ͷিಥͷ݁Ռɺ࠷ऴతʹ d̈∆m Λൃੜ
ͤ͞ΔԠஅ໘ੵΛ σ′

∆m,s ͱ͢Δͱɺ

σ′∆m,s (vs ) =
∑

∆m

σs,nlm(vs )Bnlm,n′l′m′,

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

(3)

ͱॻ͚Δɻ͜͜Ͱɺओྔࢠ n ͱ n′ ͑ߟΔ Balmerًઢʹ
Ԡͯ͡ݻఆ͠ɺ∆l = ±1ͱ ∆m Λຬͨ͢Α͏ʹ l, l ′,m,m′ ʹͭ
͍ͯ σ′

∆m,s ͷΛͱΔɻBnlm,n′l′m′  branching ratioͱݺ
ΕΔɻҎԼɺཻࢠͷিಥೖࣹํʹରͯ࣠͠ରশͰ͋ΔͷͰ
σ′1,s = σ

′
−1,s ͱ͢Δɻ؍ଌ͞ΕΔภޫ์ࣹͷ Stokes ύϥϝʔ

λʔ

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,s |E0,z′ |2 + σ′1,s |E1,z′ |2 + σ′−1,s |E−1,z′ |2

−
{
σ′0,s |E0,x |2 + σ′1,s |E1,x |2 + σ′−1,s |E−1,x |2

}]
d3vs

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,,s | ẑ′ · v̂s,r |

2 + σ′1,s
(
| ẑ′ · v̂s,θ |2 + | ẑ′ · v̂s,ϕ |2

)

−
{
σ′0,s | x̂ · v̂s,r |

2 + σ′1,s
(
| x̂ · v̂s,θ |2 + | x̂ · v̂s,ϕ |2

)}]
d3vs,

(4)

·ͨɺಉ༷ʹɺ

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,s | ẑ′ · v̂s,r |

2 + σ′1,s
(
| ẑ′ · v̂s,θ |2 + | ẑ′ · v̂s,ϕ |2

)

+
{
σ′0,s | x̂ · v̂s,r |

2 + σ′1,s
(
| x̂ · v̂s,θ |2 + | x̂ · v̂s,ϕ |2

)}]
d3vs,

(5)

ͱͳΔɻ͜͜Ͱ Eobs,z′ ͱ Eobs,x ͦΕͧΕ؍ଌ͞ΕΔ์ࣹͷ
ిͷ z′ ͱ x Ͱ͋Γɺఴ͑ࣈ ∗ ෳૉڞΛද͢ɻ
〈EE∗〉 =

∫ T
0 EE∗/Tdt ؒ࣌ฏۉΛҙຯ͠ɺݸʑͷਫૉࢠݪ

͔Βͷ์ࣹͷҐ૬શʹϥϯμϜͰ͋Δͱͨ͠ɻ fs (vs, u2)
ਫૉࢠݪ੩ܥࢭͰͷཻࢠ s ͷവͰ͋Γɺd3vs =
vs

2 sin θdvsdθdϕͰ͋Δ ɻ͜͜ͰਫૉࢠݪͷԹθϩͱۙࣅ
ͨ͠ɻҎԼͰཻࢠ sཅࢠ (p)ͱిࢠ (e)ͷΈΛ͑ߟΔ (i.e.
s = {e, p})ɻ

2.3 Cross Sections of Impact Exicitation

ࣜ (4) ͱ (5) ʹ͓͍ͯ χ = π/2, fs = δ(vs − v′s ) ͔ͭ v′s =
(0, 0, v′s ) ͱ͢ΔͱɺQ/I =

∑

s

(σ′0,s − σ
′
1,s )/(σ′0,s + σ

′
1,s ) ͱͳ

ΔɻͳͷͰɺཻࢠ sͷিಥʹΑͬͯݸʑͷਫૉ͔ࢠݪΒೖࣹํ
ΒΕΔ์ࣹͷภޫΛͤൃʹਨͳํʹ Ps ͱ͢Δͱɺ

Ps =
σ′0,s − σ

′
1,s

σ′0,s + σ
′
1,s

(6)
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ʹݸͷࢠݪΔਫૉ࡞ɺd̈∆mΛڧଌ͞ΕΔภޫ์ࣹ؍
ൺྫ͢Δͱ͢Δɻཻࢠ s ͷিಥͷ݁Ռɺ࠷ऴతʹ d̈∆m Λൃੜ
ͤ͞ΔԠஅ໘ੵΛ σ′

∆m,s ͱ͢Δͱɺ

σ′∆m,s (vs ) =
∑

∆m

σs,nlm(vs )Bnlm,n′l′m′,

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

(3)

ͱॻ͚Δɻ͜͜Ͱɺओྔࢠ n ͱ n′ ͑ߟΔ Balmerًઢʹ
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ΕΔɻҎԼɺཻࢠͷিಥೖࣹํʹରͯ࣠͠ରশͰ͋ΔͷͰ
σ′1,s = σ

′
−1,s ͱ͢Δɻ؍ଌ͞ΕΔภޫ์ࣹͷ Stokes ύϥϝʔ

λʔ

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,s |E0,z′ |2 + σ′1,s |E1,z′ |2 + σ′−1,s |E−1,z′ |2

−
{
σ′0,s |E0,x |2 + σ′1,s |E1,x |2 + σ′−1,s |E−1,x |2

}]
d3vs

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,,s | ẑ′ · v̂s,r |

2 + σ′1,s
(
| ẑ′ · v̂s,θ |2 + | ẑ′ · v̂s,ϕ |2

)

−
{
σ′0,s | x̂ · v̂s,r |

2 + σ′1,s
(
| x̂ · v̂s,θ |2 + | x̂ · v̂s,ϕ |2

)}]
d3vs,

(4)

·ͨɺಉ༷ʹɺ

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

s

∫
vs fs (vs, u2)

[
σ′0,s | ẑ′ · v̂s,r |

2 + σ′1,s
(
| ẑ′ · v̂s,θ |2 + | ẑ′ · v̂s,ϕ |2

)

+
{
σ′0,s | x̂ · v̂s,r |

2 + σ′1,s
(
| x̂ · v̂s,θ |2 + | x̂ · v̂s,ϕ |2

)}]
d3vs,

(5)

ͱͳΔɻ͜͜Ͱ Eobs,z′ ͱ Eobs,x ͦΕͧΕ؍ଌ͞ΕΔ์ࣹͷ
ిͷ z′ ͱ x Ͱ͋Γɺఴ͑ࣈ ∗ ෳૉڞΛද͢ɻ
〈EE∗〉 =

∫ T
0 EE∗/Tdt ؒ࣌ฏۉΛҙຯ͠ɺݸʑͷਫૉࢠݪ

͔Βͷ์ࣹͷҐ૬શʹϥϯμϜͰ͋Δͱͨ͠ɻ fs (vs, u2)
ਫૉࢠݪ੩ܥࢭͰͷཻࢠ s ͷവͰ͋Γɺd3vs =
vs

2 sin θdvsdθdϕͰ͋Δ ɻ͜͜ͰਫૉࢠݪͷԹθϩͱۙࣅ
ͨ͠ɻҎԼͰཻࢠ sཅࢠ (p)ͱిࢠ (e)ͷΈΛ͑ߟΔ (i.e.
s = {e, p})ɻ

2.3 Cross Sections of Impact Exicitation

ࣜ (4) ͱ (5) ʹ͓͍ͯ χ = π/2, fs = δ(vs − v′s ) ͔ͭ v′s =
(0, 0, v′s ) ͱ͢ΔͱɺQ/I =

∑

s

(σ′0,s − σ
′
1,s )/(σ′0,s + σ

′
1,s ) ͱͳ

ΔɻͳͷͰɺཻࢠ sͷিಥʹΑͬͯݸʑͷਫૉ͔ࢠݪΒೖࣹํ
ΒΕΔ์ࣹͷภޫΛͤൃʹਨͳํʹ Ps ͱ͢Δͱɺ

Ps =
σ′0,s − σ

′
1,s

σ′0,s + σ
′
1,s

(6)
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1 INTRODUCTION

2 PHYSICAL MODEL

Laming (1990) studied that the polarized Hα emission from
the adiabatic shock wave, but only considered for the case of
viewing angle orthogonal to the shock normal. In this paper,
we extend his study, and investigate the polarized Balmer
emission from the shock, which loses its kinetic energy due
to the CR acceleration, with general viewing angle.

2.1 The Model Geometry

Figure 1 shows the schematic diagram of the shock geometry.
The bule sheet is the z = 0 plane and represents the shock
wave. The bule arrow shows the downstream velocity in the
upstream rest frame, which is parallel to the z axis. The
purple vector is the velosity of the particle q,

vq = (vq sin θ cos ϕ, vq sin θ sin ϕ, vq cos θ),

that enters the hydrogen atom at the origin. The red y′

axis is parallel to the line of sight and the red z′ axis is
perpendicular, which makes the angle χ between z axis. The
red sheet represents the sky, which is orthogonal to the line
of sight.

2.2 The Polarized Line Emission

The polarized atomic line emissions induced by collisional
excitation is reviewed by Percival & Seaton (1958). In this
paper, we treat the dipole transition that makes Balmer line
emission.

Let σnlm,s be the cross-section on the particle s colli-
sional excitation for the ground state hydrogen atom, where
n is the principal quantum number, l = 0, 1, ..., n − 1 is the
azimuthal quantum number and m = −l,−l + 1, ..., l is the

! E-mail: s-jiro@phys.aoyama.ac.jp (JS)

magnetic quantum number. We evaluate the orbital angu-
lar momentum of the electron, which is bound by the hy-
drogen atom, along the incident direction of the particle s.
Then, the azimuthal quantum number, l, represents the or-
bital angular momentum magnitude of the bounded elec-
tron, L =

√
l (l + 1)!, while the magnetic quantum number

m gives the component of the orbital augular momentum
parallel to vs , Lr = m!. Let Anlm,n′l′m′ be the spontaneous
transion rate per unit time from the atomic state of nlm
to n′l ′m′. The spontaneous transition is only allowed for
∆l = l − l ′ = ±1 and |∆m | = |m − m′ | ≤ 1.

By the conservation of the angular momentum, the po-
larization of emitted photon is characterized by the subtrac-
tion of the relates of Lr before and after the transition. We
presume that the transition of the hydrogen atom induces
second time derivative of electric dipole moment whose po-

larization vector is ˆ̈d∆m. The polarization vector can be writ-
ten as

ˆ̈d0 = v̂q,r eiωBt,

ˆ̈d±1 =
1√
2

(v̂q,θ ± iv̂q,ϕ )eiωBt, (1)

where unit vectors are define as

v̂q,r = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
v̂q,θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ),
v̂q,ϕ = v̂q,r × v̂q,θ = (− sin ϕ, cos ϕ, 0),

and i is imaginary unit, and ωB is the angular freqency of
the Balmer series emission. The electric field of the photon
emitted to the line of sight direction is given by

E∆m(t) =
{
ŷ′ × ( ŷ′ × ˆ̈d∆m)

}
E(t) ≡ ε̂∆mE(t) (2)

where the unit vector along the line of sight is

ŷ′ = (0, sin χ,− cos χ),

and E(t) is the electric field strength. The polarization vector
of photon is written as

ε̂∆m = ( ŷ′ · ˆ̈d∆m) ŷ′ − ˆ̈d∆m.

© 2017 The Authors
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}
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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放射強度はこの光子の偏極を与え
る反応をした水素原子の個数に比
例するとする。	



Hα偏光放射モデル	

p 偏光放射なので、ストークスパラメーターを計算する。	
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∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′
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where Bnlm,n′l′m′ is the branching ratio of the spontaneous
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the principal quantum number n and n′ according to the
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∗〉
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∑
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2 + σ′1,q
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2 + σ′1,q
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where Eobs,z′ and Eobs,x are respectively z′ and x components
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complex conjugate, and 〈EE∗〉 =
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0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
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as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation
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the Eqs. (4) and (5), then the observed polarization degree
is derived as
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=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
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1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive
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1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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ABSTRACT
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1 INTRODUCTION

2 PHYSICAL MODEL

Laming (1990) studied that the polarized Hα emission from
the adiabatic shock wave, but only considered for the case of
viewing angle orthogonal to the shock normal. In this paper,
we extend his study, and investigate the polarized Balmer
emission from the shock, which loses its kinetic energy due
to the CR acceleration, with general viewing angle.

2.1 The Model Geometry

Figure 1 shows the schematic diagram of the shock geometry.
The bule sheet is the z = 0 plane and represents the shock
wave. The bule arrow shows the downstream velocity in the
upstream rest frame, which is parallel to the z axis. The
purple vector is the velosity of the particle q,

vq = (vq sin θ cos ϕ, vq sin θ sin ϕ, vq cos θ),

that enters the hydrogen atom at the origin. The red y′

axis is parallel to the line of sight and the red z′ axis is
perpendicular, which makes the angle χ between z axis. The
red sheet represents the sky, which is orthogonal to the line
of sight.

2.2 The Polarized Line Emission

The polarized atomic line emissions induced by collisional
excitation is reviewed by Percival & Seaton (1958). In this
paper, we treat the dipole transition that makes Balmer line
emission.

Let σnlm,s be the cross-section on the particle s colli-
sional excitation for the ground state hydrogen atom, where
n is the principal quantum number, l = 0, 1, ..., n − 1 is the
azimuthal quantum number and m = −l,−l + 1, ..., l is the

! E-mail: s-jiro@phys.aoyama.ac.jp (JS)

magnetic quantum number. We evaluate the orbital angu-
lar momentum of the electron, which is bound by the hy-
drogen atom, along the incident direction of the particle s.
Then, the azimuthal quantum number, l, represents the or-
bital angular momentum magnitude of the bounded elec-
tron, L =

√
l (l + 1)!, while the magnetic quantum number

m gives the component of the orbital augular momentum
parallel to vs , Lr = m!. Let Anlm,n′l′m′ be the spontaneous
transion rate per unit time from the atomic state of nlm
to n′l ′m′. The spontaneous transition is only allowed for
∆l = l − l ′ = ±1 and |∆m | = |m − m′ | ≤ 1.

By the conservation of the angular momentum, the po-
larization of emitted photon is characterized by the subtrac-
tion of the relates of Lr before and after the transition. We
presume that the transition of the hydrogen atom induces
second time derivative of electric dipole moment whose po-

larization vector is ˆ̈d∆m. The polarization vector can be writ-
ten as

ˆ̈d0 = v̂q,r eiωBt,

ˆ̈d±1 =
1√
2

(v̂q,θ ± iv̂q,ϕ )eiωBt, (1)

where unit vectors are define as

v̂q,r = (sin θ cos ϕ, sin θ sin ϕ, cos θ),
v̂q,θ = (cos θ cos ϕ, cos θ sin ϕ,− sin θ),
v̂q,ϕ = v̂q,r × v̂q,θ = (− sin ϕ, cos ϕ, 0),

and i is imaginary unit, and ωB is the angular freqency of
the Balmer series emission. The electric field of the photon
emitted to the line of sight direction is given by

E∆m(t) =
{
ŷ′ × ( ŷ′ × ˆ̈d∆m)

}
E(t) ≡ ε̂∆mE(t) (2)

where the unit vector along the line of sight is

ŷ′ = (0, sin χ,− cos χ),

and E(t) is the electric field strength. The polarization vector
of photon is written as

ε̂∆m = ( ŷ′ · ˆ̈d∆m) ŷ′ − ˆ̈d∆m.

© 2017 The Authors
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2
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∝
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×
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2 + σ′1,q
(
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−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2
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(4)

and likewise

I = 〈Eobs,z′Eobs,z′
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+
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2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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の場合は	

2 J. Shimoda et al.

We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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p 偏光放射なので、ストークスパラメーターを計算する。	
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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とおけば、粒子qのビームを照射したときに観測される偏光度となり、実験などで与
えられている（e.g.	  Kleinpoppen	  &	  Krais	  1968）。	
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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ここで、	

だから、	
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Table 1. The branching ratio of Hα and Hβ (e.g.
Heng & Sunyaev 2008).

B3p,2s 0.1183
B4s,2p 0.5841
B4s,3p 0.4159
B4p,1s 0.8402
B4p,2s 0.1191
B4p,3s 3.643×10−2

B4p,3d 4.282×10−3

B4d,2p 0.7456
B4d,3p 0.2544

Figure 1. The schematic diagram of the shock geometry.
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p 偏光放射なので、ストークスパラメーターを計算する。	

2 J. Shimoda et al.

We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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の理論計算（Syms+1975	  for	  proton、
Laming1990	  for	  electron）。	  
今後はこれを用いる。	
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
to σ−1,q because the collision between the particle q and the
hydrogen atom is axially symmertric. The Stokes parameters
of the observed line emission are written as

Q = 〈Eobs,z′Eobs,z′
∗〉 − 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q |E0,z′ |2 + σ′1,q |E1,z′ |2 + σ′−1,q |E−1,z′ |2

−
{
σ′0,q |E0,x |2 + σ′1,q |E1,x |2 + σ′−1,q |E−1,x |2

}]
d3vq

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

−
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(4)

and likewise

I = 〈Eobs,z′Eobs,z′
∗〉 + 〈Eobs,xEobs,x

∗〉

∝
∑

q

∫
vq fq (vq, u2)

×
[
σ′0,q | ẑ′ · v̂s,r |

2 + σ′1,q
(
| ẑ′ · v̂q,θ |2 + | ẑ′ · v̂q,ϕ |2

)

+
{
σ′0,q | x̂ · v̂q,r |

2 + σ′1,q
(
| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
d3vq,

(5)

where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as

Q
I
=

∑

q

σ′0,q − σ
′
1,q

σ′0,q + σ
′
1,q
.

Thus, the polarization degree, Pq , of the line emission radi-
ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as

Pq =
σ′0,q − σ

′
1,q

σ′0,q + σ
′
1,q
, (6)

which is called as the atomic polarization fraction. Since the
total cross-section yielding the line emission on particle q
impact is σtot,q = σ′0,q + 2σ′1,q , we can derive

σ′0,q + σ
′
1,q =

2
3 − Pq

σtot,q, (7)

σ′0,q − σ
′
1,q = Pq (σ′0,q + σ

′
1,q ), (8)

these eqations correspond to Eqs. (13) and (14) in Laming
(1990). The total cross-section, σtot,s, is the summation of
Bnl,n′l′σ

∗
nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as

σtot,q %%Q(Hα ) = σ3s,q + B3p,2sσ3p,q + σ3d,q, (9)

σtot,q %%I (Hα ) = σ∗3s,q + B3p,2sσ
∗
3p,q + σ

∗
3d,q, (10)

σ∗3s,q = σ3s,q + B4p,3sσ4p,q, (11)

σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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We decompose the observed electric field as

E∆m,z′ = (E∆m · ẑ′) ẑ′,
E∆m,x = (E∆m · x̂) x̂,

where the basic vectors are written as

ẑ′ = (0, cos χ, sin χ),
x̂ = (1, 0, 0).

The observed intensity of the line emission is proporti-

nal to the number of hydrogen atoms that yield ˆ̈d∆m. Let
σ′
∆m,q be the cross-section inducing ˆ̈d∆m resulting from the

collision between the particle q and the hydrogen atom as

σ′∆m,q (vq ) =
∑

∆m

Bnlm,n′l′m′σnlm,s (vq ),

Bnlm,n′l′m′ =
Anlm,n′l′m′∑

n′,l′m′
Anlm,n′l′m′

, (3)

where Bnlm,n′l′m′ is the branching ratio of the spontaneous
transition from the atomic level nlm to n′l ′m′. Here we fix
the principal quantum number n and n′ according to the
considering Balmer line, and take the summation of σ∆m,q
for l, l ′, m, m′ under the constraints ∆l = ±1 and given
∆m = 0 or ± 1. In the follwing, we regard as σ1,q is identical
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Q = 〈Eobs,z′Eobs,z′
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∝
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σ′0,q | ẑ′ · v̂q,r |

2 + σ′1,q
(
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| x̂ · v̂q,θ |2 + | x̂ · v̂q,ϕ |2

)}]
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and likewise

I = 〈Eobs,z′Eobs,z′
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where Eobs,z′ and Eobs,x are respectively z′ and x components
of the observed electric field. The symbol ∗ represents the

complex conjugate, and 〈EE∗〉 =
∫ T

0 EE∗/Tdt means long-
time average on the assumption of the random phase. The
fq (vq, u2) is the velocity distribution function of particle q
and we approximate the velosity function of hydrogen atom
as Dirac delta function, δ(vH). In the following, we consider
only proton (denoted as ”p”) and electron (denoted as ”e”)
as the particle s which hit on the hydrogen atoms (i.e. q =
{p, e}).

2.3 Cross Sections of Impact Excitation

If we set χ = π/2 and fq = δ(vq − u2) with u2 = (0, 0, u2) in
the Eqs. (4) and (5), then the observed polarization degree
is derived as
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ated from the hydrogen atom in the direction perpendicular
to the incident direction of particle q is written as
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which is called as the atomic polarization fraction. Since the
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(1990). The total cross-section, σtot,s, is the summation of
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nl,s, where Bnl,n′l′ is the branching ratio of the spon-

taneous transtion from the atomic state nl to n′l ′, which
is summarized in Table 1. The σ∗

nl,q is the effective cross-

section on the particle q impact to the ground state hy-
drogen included the effect of cascading from higher atomic
level. Here, we omit the magnetic quantum number, m,
because it does not contribute the total cross-section and
the branching ratio. In the following, we use the notations
(s, p, d, f , ...) = (0, 1, 2, 3, ...) as the azimuthal quantum num-
ber, l, which is often used in atomic spectroscopy and As-
tronomy. The total cross-sections of Hα can be written as
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σ∗3p,q = σ3p,q + B4s,3pσ4s,q + B4d,3pσ4d,q, (12)

σ∗3d,q = σ3d,q + B4p,3dσ4p,q + σ4 f ,q, (13)

where we assume the emission resulting from the cascade
from the level with n > 3 is unpolarized. The cascade affects
the observed polarization degree up to ∼ 5% (Laming 1990).

The upper and middle panels of Figure 2 represents the
effective cross-sections, Bnl,n′l′σnl,q , for Hα and Hβ emis-
sions, respectively, where we take data from Janev & Smith
(1993); Bray & Stelb (1995); Heng & Sunyaev (2008);
Tseliakhovich et al. (2012). In this paper, we assume that
the cross-section on proton impact excitation in the range
vp >∼ 4000 km s−1 is the same as that of electron. Indeed,
the proton impact cross-section for n = 3 approaches
asymptotically to the electron’s one for vq >∼ 3000 km s−1

(e.g. Janev & Smith 1993). In particular, the proton cross-
section data in the range 1000 km s−1 <∼ vp <∼ 4000 km s−1

were derived by the direct numerical simulations by
Tseliakhovich et al. (2012). Besides, for vp <∼ 1000 km s−1, we
use the data given by Balança & Feautrier (1998), which
was calculated using the close-coupling approximation. The
close-couping approximation is known to be applicable for
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Table 1. The branching ratio of Hα and Hβ (e.g.
Heng & Sunyaev 2008).

B3p,2s 0.1183
B4s,2p 0.5841
B4s,3p 0.4159
B4p,1s 0.8402
B4p,2s 0.1191
B4p,3s 3.643×10−2

B4p,3d 4.282×10−3

B4d,2p 0.7456
B4d,3p 0.2544

Figure 1. The schematic diagram of the shock geometry.
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ライマン輝線捕獲によって変換される分を全て無偏光とした。	  
Case	  Aの場合のBnl,n’l’は左の文献値を用いる。	  
Case	  Bの場合はBnl,1s=1として計算する。	  
Hβ光子についても同様に計算する。	
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Figure 7. The polarization degree of H α as a function of η for
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β = 0.05 and χ = π/2 for Case A.
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Figure 8. The polarization degree of H α as a function of Tp for
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Figure 9. The polarization degree of H α as a function of Tp for
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η = 0.05 and χ = π/2 for Case A and Case B. The black lines
show the result for β = 0.05 and the dashed lines are the results
for β = 0.02-0.1 from bottom to top.

observed polarization degree for Cases A and B. The solid
lines show the results of η = 0 and the dashed lines repre-
sent η = 0.1-0.5 from bottom to top. In Case B, the observed
polarization degree is reduced due to the Lyman line trap-
ping, yielding larger In. As shown in Figures 7 and 8, the
significant energy loss rate is realized when the observed po-
larization degree is ∼ 4-5 per cent (∼ 1 per cent) for Case A
(Case B).

We discuss the dependence of the polarization degree
on β and χ. Figure 9 represents the observed polarization
degree for Cases A and B for various fixed β. The solid lines
correspond to the representative value of β = 0.05. The re-
sults of β = 0.02-0.1 are shown with points from bottom to
top. For Tp >∼ 5 keV(u2/1600 km/s)2, a large fraction of elec-
trons have an energy Ee >∼ 10 eV. Therefore, the β dependence
is relatively large especially for Case A. On the other hand,
for Case B, the effective cross section on electron impact
σ3p,e is dominant (see the green and black curves in Figure
3). Since the excitation rate is proportional to veσ3p,e, which
is almost constant, the electron temperature dependence be-
comes weak.

The dependence on the viewing angle is shown in Figure
10. The points show Tp = 0.47-16.9 keV from bottom to top.

The solid lines are (Qn/In)!!χ= π
2
× sin2 χ. The unpolarized

intensity In is mainly determined by the electron impact
due to the faster electron velocity than proton one. Since
the velocity distribution of electron is nearly isotropic, the
unpolarized intensity does not depend on the viewing angle.
Thus, the polarization degree follows Qn/In ∝ sin2 χ (see Eq.
(19)).

Figure 11 shows the total intensity ratio, In(Hβ )/In(Hα)
as a function of Tp for χ = π/2 and β = 0.05 with
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Figure 10. The polarization degree of H α as a function of the
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lines are (Qn/In)!!χ= π
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fixed η. The dashed lines represent η = 0-0.5 from bot-
tom to top. In Case A, the ratio of total cross sec-
tions, σtot,p!!In (Hβ )/σtot,p!!In (Hα ) , is an increasing function of

temperature in the range 1000 km s−1 <∼ vp <∼ 2000 km s−1

(equivalently, 2 keV<∼ kTp <∼ 7.5 keV). Therefore, the total
intensity ratio is increasing with Tp. On the other hand,
in Case B, In(Hα) increases by a factor of ∼ 1.5 be-
cause of B3p,2s = 1 and B4p,3s ≈ 1 (see the green and
black curves in Figures 3 and 4). Therefore, the value of
In(Hβ )/In(Hα) is suppressed. Moreover, the ratio of total
cross sections, σtot,p!!In (Hβ )/σtot,p!!In (Hα ) , is almost constant for

1000 km s−1 <∼ vp <∼ 2000 km s−1. Thus, the intensity ratio is
constant with Tp. Likewise, the ratio depends on the electron
temperature (Figure 12).

4 THE RATIO OF BALMER POLARIZED
INTENSITIES

The polarization degree Qn/In of Balmer line emission de-
pends on the effective branching ratio, Bnl,n′l′ , which in-
cludes the effect of Lyman line trapping. On the other hand,
the polarized intensity Qn is determined by the intrinsic
Bnl,n′l′ , which only depends on the spontaneous transition
rates. Therefore, the polarized intensity ratio of Balmer line
emission is not affected by Lyman line trapping. Moreover,
the dependence of the viewing angle is also weak (see Eq.
(19)). In addition, the electron velocity distribution is usu-
ally isotropic in SNRs for β >∼ 0.01 (see Figure 6). Thus, the
electron temperature does not affect Qn. Hence, the polar-
ized intensity ratio measurements could be better than the

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  2  4  6  8  10  12  14  16  18  20

No data for Hβ 
 cross-sections 
 on proton impact

Case A

Case B

I n
 (

H
β)

/I
n
 (

H
α

)

kTp [keV]

β=0.05
η=  0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5

Figure 11. The total intensity ratio In (Hβ )/In (Hα ) as a function
of Tp for fixed values of η (0, 0.1, 0.2, 0.3, 0.4, and 0.5) with given
β = 0.05 and χ = π/2 for Case A and Case B. The magenta lines
show the result for η = 0 and the dashed lines are the results for
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the results, which are not reliable.

measurements of the polarization degree for the estimation
of η.

Figure 13 shows the polarized intensity ratio of H β to
H α, Qn(Hβ )/Qn(Hα), as a function of the energy loss rate η
for β = 0.05 and Tp = 0.47-16.9 keV (corresponding points are
showed in the panel). The Tp dependence of Qn(Hβ )/Qn(Hα)
is plotted in Figure 14. The lines show β = 0.05 and η = 0-0.5
from bottom to top. In particular, the ratio is increasing with
η for kTp <∼ 15 keV. The ratio of cross sections for proton
impact of H β to H α, σtot,p(Hβ )/σtot,p(Hα), is increasing
with vp for vp <∼ 4000 km/s. Since higher loss rates η yield
a larger number of high velocity protons with fixed Tp, the
polarized intensity ratio is large. Figure 15 shows the ratio
for different values of β, where all points with different colors
are close to with each other. Thus, the polarized intensity
ratio is not affected by β.

5 SUMMARY AND DISCUSSION

We have studied the linearly polarized Balmer line emission
from the shocks that efficiently accelerate CRs. Our calcu-
lation has been generalized for arbitrary viewing angle. The
Balmer line emission is polarized when collisions between the
hydrogen atoms and the charged particles are anisotropic.
In the downstream region of the shock with shock velocity
Vsh, the charged particles (in particular protons) collide with
the hydrogen atoms as a mildly-collimated beam in the rest
frame of the hydrogen atoms. When a large fraction of SNR
shock energy goes into CRs, the downstream temperature is
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