Hadron interactions in lattice QCD

Sinya Aoki
 Yukawa Institute for Theoretical Physics Kyoto University

Hadrons and Hadron Interactions in QCD 2015 (HHIQCD2015) --- Effective Theories and Lattice ---
Feb. 15 - Mar. 21, 2015, YITP, Kyoto University, Kyoto, Japan

1. Introduction

HAL QCD approach to Nuclear Force

Potentials in QCD ?

"Potentials" themselves can NOT be directly measured.
scheme dependent, ambiguities in inelastic region
cf. running coupling in QCD
experimental data of scattering phase shifts

"Potentials" are still useful tools to extract observables such as scattering phase shift.

One may adopt a convenient definition of potentials as long as they reproduce correct physics of QCD.

HAL QCD strategy

Aoki, Hatsuda \& Ishii, PTP123(2010)89.

Step 1 define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function

$$
\begin{gathered}
\varphi_{\mathbf{k}}(\mathbf{r})=\langle 0| N(\mathbf{x}+\mathbf{r}, 0) N(\mathbf{x}, 0)\left|N N, W_{k}\right\rangle \quad W_{k}=2 \sqrt{\mathbf{k}^{2}+m_{N}^{2}} \\
N(x)=\varepsilon_{a b c} q^{a}(x) q^{b}(x) q^{c}(x): \text { local operator } \quad \text { energy }
\end{gathered}
$$

Key Property $1 \quad$ Lin et al., 2001; CP-PACS, 2004/2005

$$
\begin{aligned}
& \varphi_{\mathbf{k}}(\mathbf{r}) \simeq \sum_{l, m} C_{l} \frac{\sin \left(k r-l \pi / 2+\delta_{l}(k)\right)}{k r} Y_{m l}\left(\Omega_{\mathbf{r}}\right) \\
& r=|\mathbf{r}| \rightarrow \infty
\end{aligned}
$$

$\delta_{l}(k) \quad$ scattering phase shift (phase of the S-matrix by unitarity) in QCD.

$$
\epsilon_{k}=\frac{\mathbf{k}^{2}}{2 \mu} \quad \begin{gathered}
\left.\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x})=\int d^{3} y \underline{U(\mathbf{x}, \mathbf{y}}\right) \varphi_{\mathbf{k}}(\mathbf{y})
\end{gathered} \begin{gathered}
\mu=m_{N} / 2 \\
H_{0}=\frac{-\nabla^{2}}{2 \mu}
\end{gathered} \underset{\substack{U_{\mathbf{k}}(\mathbf{x}, \mathbf{y}) \rightarrow U(\mathbf{x}, \mathbf{y}) \\
\text { general }}}{\substack{\text { geduced mass }}}
$$

Key Property 2

A non-local but energy-independent potential exists.
Proof

$$
U(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{k}, \mathbf{k}^{\prime}}^{W_{k}, W_{k^{\prime}} \leq W_{\mathrm{th}}}\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x}) \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1} \varphi_{\mathbf{k}^{\prime}}^{\dagger}(\mathbf{y}) \begin{aligned}
& \text { inner product } \\
& \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1}: \text { inverse of } \eta_{\mathbf{k}, \mathbf{k}^{\prime}}=\left(\varphi_{\mathbf{k}}, \varphi_{\mathbf{k}^{\prime}}\right)
\end{aligned}
$$

For ${ }^{\forall} W_{\mathbf{p}}<W_{\mathrm{th}}=2 m_{N}+m_{\pi}$ (threshold energy)

$$
\int d^{3} y U(\mathbf{x}, \mathbf{y}) \phi_{\mathbf{p}}(\mathbf{y})=\sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(x) \eta_{\mathbf{k}, \mathbf{k}^{\prime}}^{-1} \eta_{\mathbf{k}^{\prime}, \mathbf{p}}=\left[\epsilon_{p}-H_{0}\right] \varphi_{\mathbf{p}}(x)
$$

Step 3 expand the non-local potential in terms of derivative as

$$
U(\mathbf{x}, \mathbf{y})=V(\mathbf{x}, \nabla) \delta^{3}(\mathbf{x}-\mathbf{y})
$$

$$
\begin{array}{r}
V(\mathbf{x}, \nabla)=V_{0}(r)+V_{\sigma}(r)\left(\sigma_{\mathbf{1}} \cdot \sigma_{\mathbf{2}}\right)+V_{T}(r) S_{12}+V_{\text {LO }}(r) \mathbf{L} \cdot \mathbf{S}+O\left(\nabla^{2}\right) \\
\text { NLO } \\
\text { tensor operator } \\
S_{12}=\frac{3}{r^{2}}\left(\sigma_{1} \cdot \mathbf{x}\right)\left(\sigma_{2} \cdot \mathbf{x}\right)-\left(\sigma_{1} \cdot \sigma_{\mathbf{2}}\right) \\
\text { Spins }
\end{array}
$$

Step 4 extract the local potential. At LO, for example, we simply have

$$
V_{\mathrm{LO}}(\mathbf{x})=\frac{\left[\epsilon_{k}-H_{0}\right] \varphi_{\mathbf{k}}(\mathbf{x})}{\varphi_{\mathbf{k}}(\mathbf{x})}
$$

Step 5 solve the Schroedinger Eq. in the infinite volume with this potential.
phase shifts and binding energy below inelastic threshold

NN potential

Qualitative features of NN potential are reproduced.

phase shift

It has a reasonable shape. The strength is weaker due to the heavier quark mass.

We can extend the HAL QCD method to inelastic and/or multi-particle scatterings.

Key Property 1

Asymptotic behaviors of NBS wave functions for more than 2 particles

Asymptotic behavior of NBS wave functions

"Phases" of S-matrix
S. Aoki, N. Ishii, T. Doi, Y. Ikeda, T. Inoue, PRD88 (2013) 014036.

Key Property 2

Existence of energy independent potentials above inelastic thresholds

$$
A+B \rightarrow C+D
$$

S. Aoki, et al. , Proc. Jpn. Acad. Ser. B, 87 (2011) 509.

Particle production

$$
A+B \rightarrow A+B+C
$$

S. Aoki, B. Charron, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, PRD87 (2013) 34512.

2. Applications: H-dibaryon

2-1. Baryon Potentials in the flavor $\operatorname{SU}(3)$ limit

$$
m_{u}=m_{d}=m_{s}
$$

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)

$$
8 \times 8=\frac{27+8 \mathrm{~s}+1}{\text { Symmetric }}+\frac{10^{*}+10+8 \mathrm{a}}{\text { Anti-symmetric }}
$$

6 independent potentials in flavor-basis

$$
\begin{array}{llll}
V^{(27)}(r), & V^{(8 \mathrm{~s})}(r), & V^{(1)}(r) & \longleftarrow \\
{ }^{1} S_{0} \\
V^{\left(10^{*}\right)}(r), & V^{(10)}(r), & V^{(8 \mathrm{a})}(r) & \longleftarrow
\end{array}{ }^{3} S_{1}
$$

$$
\text { 3-flavor QCD } \quad \text { a=0.12 fm }
$$

Inoue et al. (HAL QCD Coll.), PTP124(2010)591 L=2 fm
Inoue et al. (HAL QCD Coll.), NPA881 (2012)28
$L=2-4 \mathrm{fm}$

$L \simeq 4 \mathrm{fm}, \quad m_{\pi} \simeq 470 \mathrm{MeV}$

8s: strong repulsive core. repulsion only.

1: attractive instead of repulsive core ! attraction only. H-dibaryon.

same as NN
10: strong repulsive core. weak attraction.

8a: weak repulsive core. strong attraction.

Flavor dependences of BB interactions become manifest in $\mathrm{SU}(3)$ limit !

H-dibaryon:
a possible six quark state(uuddss)
predicted by the model but not observed yet.

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001
Binding baryons on the lattice

2-2. H-dibaryon in the flavor $\operatorname{SU}(3)$ limit

$$
a=0.12 \mathrm{fm}
$$

Attractive potential in the flavor singlet channel

Inoue et al. (HAL QCD Coll.), PRL106(2011)162002
possibility of a bound state (H-dibaryon)

$$
\Lambda \Lambda-N \Xi-\Sigma \Sigma
$$

volume dependence

pion mass dependence

$\mathrm{L}=3 \mathrm{fm}$ is enough for the potential. lighter the pion mass, stronger the attraction
fit potentials at $L=4 \mathrm{fm}$ by

$$
V(r)=a_{1} e^{-a_{2} r^{2}}+a_{3}\left(1-e^{-a_{4} r^{2}}\right)^{2}\left(\frac{e^{-a_{5} r}}{r}\right)^{2}
$$

Solve Schroedinger equation

 in the infinite volume
One bound state (H-dibaryon) exists.

An H-dibaryon exists in the flavor SU(3) limit. Binding energy $=25-50 \mathrm{MeV}$ at this range of quark mass.
A mild quark mass dependence.

2-3. H-dibaryon with the flavor SU(3) breaking

$\mathrm{S}=-2$ "Inelastic" scattering

$$
m_{N}=939 \mathrm{MeV}, m_{\Lambda}=1116 \mathrm{MeV}, m_{\Sigma}=1193 \mathrm{MeV}, m_{\Xi}=1318 \mathrm{MeV}
$$

S=-2 System (l=0)

$$
M_{\Lambda \Lambda}=2232 \mathrm{MeV}<M_{N \Xi}=2257 \mathrm{MeV}<M_{\Sigma \Sigma}=2386 \mathrm{MeV}
$$

The eigen-state of QCD in the finite box is a mixture of them:

$$
\begin{array}{r}
|S=-2, I=0, E\rangle_{L}=c_{1}(L)|\Lambda \Lambda, E\rangle+c_{2}(L)|\Xi N, E\rangle+c_{3}(L)|\Sigma \Sigma, E\rangle \\
E=2 \sqrt{m_{\Lambda}^{2}+\mathbf{p}_{1}^{2}}=\sqrt{m_{\Xi}^{2}+\mathbf{p}_{2}^{2}}+\sqrt{m_{N}^{2}+\mathbf{p}_{2}^{2}}=2 \sqrt{m_{\Sigma}^{2}+\mathbf{p}_{3}^{2}}
\end{array}
$$

In this situation, we can not directly extract the scattering phase shift in lattice QCD.

Extended method

Consider 3×3 coupled channel potential matrix.

$$
\left(\begin{array}{ccc}
V_{\Lambda \Lambda, \Lambda \Lambda}(\mathbf{x}) & V_{\Lambda \Lambda, N \Xi}(\mathbf{x}) & V_{\Lambda \Lambda, \Sigma \Sigma}(\mathbf{x}) \\
V_{N \Xi, \Lambda \Lambda}(\mathbf{x}) & V_{N \Xi, N \Xi}(\mathbf{x}) & V_{N \Xi, \Sigma \Sigma}(\mathbf{x}) \\
V_{\Sigma \Sigma, \Lambda \Lambda}(\mathbf{x}) & V_{\Sigma \Sigma, N \Xi}(\mathbf{x}) & V_{\Sigma \Sigma, \Sigma \Sigma}(\mathbf{x})
\end{array}\right)
$$

Preliminary results from HAL QCD Collaboration

$$
N_{f}=2+1 \text { full QCD with } L=2.9 \mathrm{fm}
$$

Gauge ensembles

ln unit of MeV	Esb 1		Esb 2	Esb 3
	701 ± 1	570 ± 2	411 ± 2	
	789 ± 1	713 ± 2	635 ± 2	
$\mathrm{~m}_{\pi} / \mathrm{m}_{\mathrm{K}}$	0.89	0.80	0.65	
N	1585 ± 5	1411 ± 12	1215 ± 12	
Λ	1644 ± 5	1504 ± 10	1351 ± 8	
Σ	1660 ± 4	1531 ± 11	1400 ± 10	
Ξ	1710 ± 5	1610 ± 9	1503 ± 7	

u,d quark masses lighter
thresholds

SU(3) breaking effects becomes larger

coupled channel 3×3 potentials

Diagonal elements

Deeper attrádtive pocket

Off-diagonal elements

$\Lambda \Lambda$ and $N \Xi$ phase shift

Bound H－dibaryon coupled to N三

H as resonace
near $\wedge \wedge$ threshold
（ H as bound N 三）

Preliminary ！

H as resonance near
N 三 threshold
（H as bound N N ）

This suggests that H－dibaryon becomes resonance at physical point． Below or above N三 ？Need simulation at physical point．

Physically，it is essential that H－dibaryon is a bound state in the flavor $\operatorname{SU}(3)$ limit．

3. Conclusion

- HAL QCD approach is a promising method to extract hadronic interactions in lattice QCD.
- LS force, Antisymmetric LS
- D-D(Ikeda), D-K, Omega-Omega, Omega-N
- Comparison of HAL and Luescher: NN, pipi
- Extensions of the HAL QCD method to inelastic/multi-particle scatterings
- Asymptotic behavior of the NBS wave functions
- Existence of non-local but energy-independent coupled channel potentials
- 3 nucleon force (T.Doi), coupled channel
- A treatment of bound-states ?
- "Potentials" at physical point on 京 $\quad m_{\pi} \simeq 150 \mathrm{MeV}, L \simeq 9 \mathrm{fm}$

Back up

Unitarity constraint

$$
T^{\dagger}-T=i T^{\dagger} T
$$

parametrization

$$
{ }_{0}\left\langle\left[\boldsymbol{p}^{A}\right]_{n}\right| T\left|\left[\boldsymbol{p}^{B}\right]_{n}\right\rangle_{0} \equiv \delta\left(E^{A}-E^{B}\right) \delta^{(3)}\left(\boldsymbol{P}^{A}-\boldsymbol{P}^{B}\right) T \underline{\left(\left[\boldsymbol{q}^{A}\right]_{n},\left[\boldsymbol{q}^{B}\right]_{n}\right)}
$$

(modified) Jacobi coordinates and momenta

$$
\boldsymbol{r}_{k}=\sqrt{\frac{k}{k+1}} \times \boldsymbol{r}_{k}^{J}, \quad \boldsymbol{q}_{k}=\sqrt{\frac{k+1}{k}} \times \boldsymbol{q}_{k}^{J} \quad \boldsymbol{r}_{k}^{J}=\frac{1}{k} \sum_{i=1}^{k} \boldsymbol{x}_{i}-\boldsymbol{x}_{k+1}, \quad \boldsymbol{q}_{k}^{J}=\frac{k}{k+1}\left(\frac{1}{k} \sum_{i=1}^{k} \boldsymbol{p}_{i}-\boldsymbol{p}_{k+1}\right),
$$

$$
\begin{aligned}
& T\left(\left[\boldsymbol{q}^{A}\right]_{n},\left[\boldsymbol{q}^{B}\right]_{n}\right) \equiv T\left(\boldsymbol{Q}_{A}, \boldsymbol{Q}_{B}\right) \\
&=\sum_{[L],[K]} T_{[L][K]}\left(Q_{A}, Q_{B}\right) Y_{[L]}\left(\Omega_{\boldsymbol{Q}_{A}}\right) \overline{Y_{[K]}\left(\Omega_{\boldsymbol{Q}_{B}}\right)} \\
& \boldsymbol{Q}_{X}=\left(\boldsymbol{q}^{X}{ }_{1}, \boldsymbol{q}^{X}{ }_{2}, \cdots, \boldsymbol{q}^{X}{ }_{n-1}\right) \quad \text { momentum in D=3(n-1) dim. }
\end{aligned}
$$

$$
\hat{L}^{2} Y_{[L]}\left(\Omega_{s}\right)=L(L+D-2) Y_{[L]}\left(\Omega_{s}\right)
$$

solution to the unitarity constraint with non-relativistic approximation

$$
T_{[L][K]}(Q, Q)=\sum_{[N]} U_{[L][N]}(Q) T_{[N]}(Q) U_{[N][K]}^{\dagger}(Q),
$$

$$
T_{[L]}(Q)=-\frac{2 n^{3 / 2}}{m Q^{3 n-5}} e^{i \delta_{[L]}(Q)} \sin \delta_{[L]}(Q)
$$

"phase shift" $\quad \delta_{[L]}(Q)$

$$
|\alpha\rangle_{\text {in }}=|\alpha\rangle_{0}+\int d \beta \frac{|\beta\rangle_{0} T_{\beta \alpha}}{E_{\alpha}-E_{\beta}+i \varepsilon}, \quad \frac{T_{\beta \alpha}={ }_{0}\langle\beta| V|\alpha\rangle_{\text {in }}}{\text { off-shell }}, \quad \frac{{ }_{0}\langle\beta| T|\alpha\rangle_{0}}{\text { on-shell }}=2 \pi \delta\left(E_{\alpha}-E_{\beta}\right) T_{\alpha \beta} \text {. }
$$

$$
\left(H_{0}+V\right)|\alpha\rangle_{\mathrm{in}}=E_{\alpha}|\alpha\rangle_{\mathrm{in}}, \quad \text { full }
$$

$$
H_{0}|\alpha\rangle_{0}=E_{\alpha}|\alpha\rangle_{0} . \quad \text { free }
$$

NBS wave functions

$$
\Psi_{\alpha}^{n}([\boldsymbol{x}])={ }_{\text {in }}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\alpha\rangle_{\text {in }},
$$

n-scalar fields with different flavors

$$
\varphi^{n}([\boldsymbol{x}], t)=T\left\{\prod_{i=1}^{n} \varphi_{i}\left(\boldsymbol{x}_{i}, t\right)\right\}
$$

$$
\Psi_{\alpha}^{n}([\boldsymbol{x}])=\frac{1}{Z_{\alpha}}{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\alpha\rangle_{0}+\int d \beta \frac{1}{Z_{\beta}} \frac{{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)|\beta\rangle_{0} T_{\beta \alpha}}{E_{\alpha}-E_{\beta}+i \varepsilon}
$$

$$
\uparrow
$$

$$
{ }_{0}\langle 0| \varphi^{n}([\boldsymbol{x}], 0)\left|[\boldsymbol{k}]_{n}\right\rangle_{0}=\left(\frac{1}{\sqrt{(2 \pi)^{3}}}\right)^{n} \prod_{i=1}^{n} \frac{1}{\sqrt{2 E_{k_{i}}}} e^{i \boldsymbol{k}_{i} \boldsymbol{x}_{i}}
$$

D-dimensional hyper-coordinates

$$
\Psi^{n}\left(\boldsymbol{R}, \boldsymbol{Q}_{A}\right)=C\left[e^{i \boldsymbol{Q}_{A} \cdot R}+\frac{2 m}{2 \pi n^{3 / 2}} \int d^{D} Q \frac{e^{i \boldsymbol{Q} \cdot R}}{Q_{A}^{2}-Q^{2}+i \varepsilon} T\left(\boldsymbol{Q}, \boldsymbol{Q}_{A}\right)\right]
$$

Expansion in terms of hyper-spherical harmonic function

$$
\begin{aligned}
& e^{i \boldsymbol{Q} \cdot \boldsymbol{R}}=(D-2)!!\frac{2 \pi^{D / 2}}{\Gamma(D / 2)} \sum_{[L]} i^{L} \frac{j_{L}^{D}(Q R)}{\text { hyper-spherical Bessel function }} Y_{[L]}\left(\Omega_{\boldsymbol{R}}\right) \overline{Y_{[L]}\left(\Omega_{\boldsymbol{Q}}\right)} \\
& \Psi^{n}\left(\boldsymbol{R}, \boldsymbol{Q}_{A}\right)=\sum_{[L],[K]} \Psi_{[L],[K]}^{n}\left(R, Q_{A}\right) Y_{[L]}\left(\Omega_{\boldsymbol{R}}\right) \overline{Y_{[K]}\left(\Omega_{\boldsymbol{Q}_{A}}\right)}
\end{aligned}
$$

Asymptotic behavior of NBS wave functions

$$
\begin{aligned}
\Psi_{[L],[K]}^{n}\left(R, Q_{A}\right) & \simeq C i^{L} \frac{(2 \pi)^{D / 2}}{\left(Q_{A} R\right)^{\frac{D-1}{2}}} \sum_{[N]} U_{[L][N]}\left(Q_{A}\right) e^{i \delta_{[N]}\left(Q_{A}\right)} U_{[N][K]}^{\dagger}\left(Q_{A}\right) \\
& \times \sqrt{\frac{2}{\pi}} \sin \left(Q_{A} R-\Delta_{L}+\delta_{[N]}\left(Q_{A}\right)\right) \quad \Delta_{L}=\frac{2 L_{D}-1}{4} \pi
\end{aligned}
$$

$$
\text { energy } \quad W \in \Delta_{1}
$$

2 states
$\left|N N, W, c_{0}\right\rangle$
$\left|N N+\pi, W, \underline{c_{1}}\right\rangle$
other quantum numbers

4 NBS wave functions

$$
\begin{aligned}
Z_{N} \varphi_{W, c_{0}}^{00}\left(\boldsymbol{x}_{0}\right) & =\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right)\right\}\left|N N, W, c_{0}\right\rangle_{\mathrm{in}} \\
Z_{N} Z_{\pi}^{1 / 2} \varphi_{W, c_{0}}^{10}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) & =\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right) \pi\left(\boldsymbol{x}+\boldsymbol{x}_{1}, 0\right)\right\}\left|N N, W, c_{0}\right\rangle_{\mathrm{in}} \\
Z_{N} \varphi_{W, c_{1}}^{01}\left(\boldsymbol{x}_{0}\right) & =\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right)\right\}\left|N N+\pi, W, c_{1}\right\rangle_{\mathrm{in}} \\
Z_{N} Z_{\pi}^{1 / 2} \varphi_{W, c_{1}}^{11}\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}\right) & =\langle 0| T\left\{N(\boldsymbol{x}, 0) N\left(\boldsymbol{x}+\boldsymbol{x}_{0}, 0\right) \pi\left(\boldsymbol{x}+\boldsymbol{x}_{1}, 0\right)\right\}\left|N N+\pi, W, c_{1}\right\rangle_{\mathrm{in}},
\end{aligned}
$$

$\varphi_{W, c_{j}}^{i j}\left([\mathbf{x}]_{i}\right) \quad i(j):$ number of π 's in the operator(state $) \quad[\boldsymbol{x}]_{0}=\boldsymbol{x}_{0} \quad[\boldsymbol{x}]_{1}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}$

$$
\begin{aligned}
& \uparrow \quad W_{\mathrm{th}}^{2}=2 m_{N}+2 m_{\pi} \\
& \Delta_{1}=\left[W_{\mathrm{th}}^{1}, W_{\mathrm{th}}^{2}\right) \\
& W_{\text {th }}^{1}=2 m_{N}+m_{\pi} \\
& \Delta_{0}=\left[W_{\mathrm{th}}^{0}, W_{\mathrm{th}}^{1}\right) \\
& W_{\mathrm{th}}^{0}=2 m_{N}
\end{aligned}
$$

$$
\left(E_{W}^{k}-H_{0}^{k}\right) \varphi_{W, c_{i}}^{k i}=\sum_{l=0,1} \int \prod_{n=0}^{l} d^{3} y_{n} \underline{\left.U^{k l}\left([\boldsymbol{x}]_{k},[\boldsymbol{y}]_{l}\right) \varphi_{W, c_{i}}^{l i}\left([\boldsymbol{y}]_{l}\right), \quad k, i \in(0,1)\right) .}
$$

$$
E_{W}^{n}=\frac{\boldsymbol{p}_{1}^{2}}{2 m_{N}}+\frac{\boldsymbol{p}_{2}^{2}}{2 m_{N}}+\sum_{i=1}^{n} \frac{\boldsymbol{k}_{i}^{2}}{2 m_{\pi}}: \quad W=\sqrt{m_{N}^{2}+\boldsymbol{p}_{1}^{2}}+\sqrt{m_{N}^{2}+\boldsymbol{p}_{2}^{2}}+\sum_{i=1}^{n} \sqrt{m_{\pi}^{2}+\boldsymbol{k}_{i}^{2}}
$$

kinetic energy

non-relativistic approx. for $n=1$
total energy

$$
\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\sum_{i=1}^{n} \boldsymbol{k}_{i}=0
$$

Proof of existence for U

Define a vector of NBS wave functions as

$$
\begin{array}{rll}
\varphi_{W, c_{i}}^{i} & \equiv\left(\varphi_{W, c_{i}}^{0 i}\left([\boldsymbol{x}]_{0}\right), \varphi_{W, c_{i}}^{1 i}\left([\boldsymbol{x}]_{1}\right)\right)^{T}, & \begin{array}{l}
\text { state index } \\
i=0,1,
\end{array} \\
\varphi_{W, c_{0}}^{0} \equiv\left(\varphi_{W, c_{0}}^{00}\left([\boldsymbol{x}]_{0}\right), \varphi_{W, c_{0}}^{10}\left([\boldsymbol{x}]_{1}\right)\right)^{T}, & W \in \Delta_{1} \\
& W \in \Delta_{0}
\end{array}
$$

Norm kernel

$$
\mathcal{N}_{W_{1} c_{i}, W_{2} d_{j}}^{i j}=\left(\varphi_{W_{1}, c_{i}}^{i}, \varphi_{W_{2}, d_{j}}^{j}\right) \equiv \sum_{k=0,1} \int \prod_{l=0}^{k} d^{3} x_{l} \overline{\varphi_{W_{1}, c_{i}}^{k i}\left([\boldsymbol{x}]_{k}\right)} \varphi_{W_{2}, d_{j}}^{k j}\left([\boldsymbol{x}]_{k}\right) .
$$

Inverse

$$
\sum_{W \in \Delta_{0}+\Delta_{1}} \sum_{h \in I(W), e_{h}}\left(\mathcal{N}^{-1}\right)_{W_{1} c_{i}, W e_{h}}^{i h} \mathcal{N}_{W e_{h}, W_{2} d_{j}}^{h j}=\delta^{i j} \delta_{W_{1}, W_{2}} \delta_{c_{i}, d_{j}}
$$

Structure

$$
\mathcal{N}=\left(\begin{array}{cc}
\mathcal{N}^{00}\left(\Delta_{0}, \Delta_{0}\right), & \mathcal{N}^{00}\left(\Delta_{0}, \Delta_{1}\right), \\
\mathcal{N}^{01}\left(\Delta_{0}, \Delta_{1}\right) \\
\mathcal{N}^{00}\left(\Delta_{1}, \Delta_{0}\right), & \mathcal{N}^{00}\left(\Delta_{1}, \Delta_{1}\right), \\
\mathcal{N}^{01}\left(\Delta_{1}, \Delta_{1}\right) \\
\mathcal{N}^{10}\left(\Delta_{1}, \Delta_{0}\right), & \mathcal{N}^{10}\left(\Delta_{1}, \Delta_{1}\right), \\
\text { energy } & \mathcal{N} \frac{11}{1-}\left(\Delta_{1}, \Delta_{1}\right)
\end{array}\right)
$$

bra, ket

$$
\begin{aligned}
\left\langle[\boldsymbol{x}]_{k} \mid \varphi_{W, c_{i}}^{i}\right\rangle & =\varphi_{W, c_{i}}^{k i}\left([\boldsymbol{x}]_{k}\right), \\
\left\langle\psi_{W, c_{i}}^{i} \mid[\boldsymbol{x}]_{k}\right\rangle & =\sum_{W_{1} \in \Delta_{o} \cup \Delta_{1}} \sum_{j \in I\left(W_{1}\right), d_{j}}\left(\mathcal{N}^{-1}\right)_{W c_{i}, W_{1} d_{j}}^{i j} \frac{\psi_{W_{1}, d_{j}}^{k j}\left([\boldsymbol{x}]_{k}\right)}{\varphi_{0}}
\end{aligned}
$$

orthogonality $\quad\left\langle\psi_{W_{1}, c_{i}}^{i} \mid \varphi_{W_{2}, d_{j}}^{j}\right\rangle=\sum_{k=0,1} \int \prod_{l=0}^{k} d^{3} x_{l}\left\langle\psi_{W_{1}, c_{i}}^{i} \mid[\boldsymbol{x}]_{k}\right\rangle\left\langle[\boldsymbol{x}]_{k} \mid \varphi_{W_{2}, d_{j}}^{j}\right\rangle=\left(\mathcal{N}^{-1} \cdot \mathcal{N}\right)_{W_{1} c_{i}, W_{2} d_{j}}^{i j}$

$$
=\delta^{i j} \delta_{W_{1}, W_{2}} \delta_{c_{i}, d_{j}} .
$$

Abstract operators

$$
\begin{aligned}
\left\langle[\boldsymbol{x}]_{k}\right|\left(E_{W}-H_{0}\right)\left|[\boldsymbol{y}]_{l}\right\rangle & \equiv \delta_{k l}\left(E_{W}^{k}-H_{0}^{k}\right) \prod_{n=0}^{k} \delta^{(3)}\left(\boldsymbol{x}_{n}-\boldsymbol{y}_{n}\right) \\
\left\langle[\boldsymbol{x}]_{k}\right| U\left|[\boldsymbol{y}]_{l}\right\rangle & \equiv U^{k l}\left([\boldsymbol{x}]_{k},[\boldsymbol{y}]_{l}\right)
\end{aligned}
$$

Abstract coupled channel equation

$$
\left(E_{W}-H_{0}\right)\left|\varphi_{W, c_{i}}^{i}\right\rangle=U\left|\varphi_{W, c_{i}}^{i}\right\rangle
$$

construction of non-local coupled channel potential

$$
U=\sum_{W \in \Delta_{0} \cup \Delta_{1}} \sum_{i \in I(W)} \sum_{c_{i}}\left(E_{W}-H_{0}\right)\left|\varphi_{W, c_{i}}^{i}\right\rangle\left\langle\psi_{W, c_{i}}^{i}\right|
$$

\because

$$
U\left|\varphi_{W, c_{i}}^{i}\right\rangle=\sum_{W_{1} \in \Delta_{0} \cup \Delta_{1}} \sum_{j \in I\left(W_{1}\right)} \sum_{d_{j}}\left(E_{W}-H_{0}\right)\left|\varphi_{W_{1}, d_{j}}^{j}\right\rangle\left\langle\psi_{W_{1}, d_{j}}^{j} \mid \varphi_{W, c_{i}}^{i}\right\rangle=\left(E_{W}-H_{0}\right)\left|\varphi_{W, c_{i}}^{i}\right\rangle
$$

Energy independent (coupled channel) potential exists above the inelastic threshold.

The construction of U can easily be generalized to $\quad N N+n \pi \rightarrow N N+k \pi$

$$
\text { or to } \quad \Lambda \Lambda \rightarrow \Lambda \Lambda, N \Xi, \Sigma \Sigma
$$

QCD at given energy
$W_{\text {total }}$

resonance
bound-state?
deuteron, H, \ldots

Quantum mechanics with coupled channel potentials for stable particles

$$
N, \bar{N}, \pi, \cdots
$$

$$
N \pi, \pi \pi, \cdots
$$

D, H, \cdots

