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1. Introduction

HAL QCD approach to Nuclear Force 



Potentials in QCD ?

“Potentials” themselves can NOT be directly measured. 

cf. running coupling in QCDscheme dependent, ambiguities in inelastic region

“Potentials” are still useful tools to 
extract observables such as 
scattering phase shift. 

experimental data of 
scattering phase shifts 

potentials, but not unique 

One may adopt a convenient definition of 
potentials as long as they reproduce correct 
physics of QCD.  



 HAL QCD strategy

define (Equal-time) Nambu-Bethe-Salpeter (NBS) Wave function

N(x) = "abcq
a
(x)q

b
(x)q

c
(x): local operator

energy

Wk = 2
�

k2 + m2
N

�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk�

Step 1

Aoki, Hatsuda & Ishii, PTP123(2010)89.

 Key Property 1 Lin et al., 2001; CP-PACS, 2004/2005

�k(r) �
�

l,m

Cl
sin(kr � l�/2 + �l(k))

kr
Yml(�r)

r = |r|!1

�l(k) scattering phase shift  (phase of the S-matrix by unitarity) in QCD.



Step 2

ϵk =
k2

2µ
H0 =

−∇2

2µ

[�k �H0] �k(x) =
�

d3y U(x,y)�k(y) µ = mN/2
reduced mass

define non-local but energy-independent “potential” as 

 A non-local but energy-independent potential exists.

U(x,y) =
Wk,Wk��Wth�

k,k�

[�k �H0] �k(x)��1
k,k��

†
k�(y)

��1
k,k� : inverse of �k,k� = (�k, �k�)

inner product

For �Wp < Wth = 2mN + m� (threshold energy)

�
d3y U(x,y)�p(y) =

�

k,k�

[�k �H0] �k(x)��1
k,k��k�,p = [�p �H0] �p(x)

 Key Property 2

Proof

Uk(x,y)� U(x,y)

general

Vk(x)



Step 3 expand the non-local potential in terms of derivative as

U(x,y) = V (x,r)�3(x� y)

Step 4 extract the local potential. At LO, for example, we simply have

VLO(x) =
[�k �H0]�k(x)

�k(x)

Step 5 solve the Schroedinger Eq. in the infinite volume with this potential.

phase shifts and binding energy below inelastic threshold

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)
LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)

spins



Example
Ishii et al. (HALQCD), PLB712(2012) 437.

2+1 flavor QCD a=0.09fm, L=2.9fm m� � 700 MeV

NN potential
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Qualitative features of NN potential 
are reproduced.

It has a reasonable shape. 
The strength is weaker due to 
the heavier quark mass.

Need calculations at physical quark mass.



We can extend the HAL QCD method to inelastic and/or multi-particle scatterings.

 Key Property 1

 Key Property 2

Asymptotic behaviors of NBS wave functions for more than 2 particles

Existence of energy independent potentials above inelastic thresholds

Asymptotic behavior of NBS wave functions “Phases” of S-matrix

S. Aoki, N. Ishii, T. Doi, Y. Ikeda, T. Inoue, PRD88 (2013) 014036.

S. Aoki, et al. , Proc. Jpn. Acad. Ser. B, 87 (2011) 509.

A + B � C + DCoupled channel

Particle production A + B � A + B + C

S. Aoki, B. Charron, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, PRD87 (2013) 34512.



2. Applications: H-dibaryon



 2-1. Baryon Potentials in the flavor SU(3) limit
mu = md = ms

1. First setup to predict YN, YY interactions not accessible in exp.
2. Origin of the repulsive core (universal or not)

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 
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6 independent potentials in flavor-basis

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 

BB interactions
in a SU(3) symmetric world x

Six independent potentials in flavor-basis 

1. First step to predict YN, YY interactions not accessible in exp. 
2. Origin of the repulsive core (universal or not) 

Inoue et al. (HAL QCD Coll.), PTP124(2010)591 

3-flavor QCD a=0.12 fm

Inoue et al. (HAL QCD Coll.), NPA881(2012)28

L=2 fm

L=2-4 fm



   0

 500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r)

 [M
eV

]

r [fm]

V(27)

-100

 -50

   0

  50

 100

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

VC

   0

 500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r)

 [M
eV

]

r [fm]

V(8s)

   0

1000

2000

3000

4000

5000

6000

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

VC

-2500

-2000

-1500

-1000

-500

   0

 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r) 

[M
eV

]

r [fm]

V(1) VC

-150

-100

 -50

   0

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

   0

 500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r)

 [M
eV

]

r [fm]

V(10*)

-100

 -50

   0

  50

 100

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

VC
VT

   0

 500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r)

 [M
eV

]

r [fm]

V(10)

-100

 -50

   0

  50

 100

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

VC
VT

   0

 500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r)

 [M
eV

]

r [fm]

V(8a)

-100

 -50

   0

  50

 100

0.0 0.5 1.0 1.5 2.0 2.5

�u,d,s=0.13840

VC
VT

L ≃ 4 fm, mπ ≃ 470 MeV

same as NN 8s: strong repulsive core. repulsion only.
1: attractive instead of repulsive 
core ! attraction only . H-dibaryon.

same as NN 10: strong repulsive core. weak attraction.
8a: weak repulsive core. 
strong attraction.

Flavor dependences of BB interactions become manifest in SU(3) limit !



u d s

U d s

H-dibaryon:  
a possible six quark state(uuddss) 

predicted by the model but not observed yet.

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001

Binding baryons on the lattice
April 26, 2011

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.162001


 2-2. H-dibaryon in the flavor SU(3) limit

Attractive potential 
in the flavor singlet channel  

possibility of a bound state (H-dibaryon)
ΛΛ − NΞ − ΣΣ

Inoue et al. (HAL QCD Coll.), PRL106(2011)162002 a=0.12 fm
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Solve Schroedinger equation 
in the infinite volume 

One bound state (H-dibaryon) exists.
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An H-dibaryon exists in the flavor SU(3) limit.
Binding energy = 25-50 MeV at this range of quark mass.
A mild quark mass dependence.

Real world ?



 2-3. H-dibaryon with the flavor SU(3) breaking
mu = md ̸= ms

SU(3) limit

ΛΛ − NΞ − ΣΣ

H
25-50 MeV

Real world

2386 MeV
ΣΣ

NΞ

ΛΛ

2257 MeV

2232 MeV

25 MeV

129 MeV

H ?

H ?
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  S=-2 “Inelastic” scattering
mN = 939 MeV, mΛ = 1116 MeV, mΣ = 1193 MeV, mΞ= 1318 MeV

S=-2 System(I=0)

MΛΛ = 2232 MeV < MNΞ = 2257 MeV < MΣΣ= 2386 MeV

The eigen-state of QCD in the finite box is a mixture of them: 

E = 2
√

m2
Λ + p2

1 =
√

m2
Ξ + p2

2 +
√

m2
N + p2

2 = 2
√

m2
Σ + p2

3

In this situation, we can not directly extract the scattering phase shift 
in lattice QCD.

|S = −2, I = 0, E⟩L = c1(L)|ΛΛ, E⟩ + c2(L)|ΞN, E⟩ + c3(L)|ΣΣ, E⟩



  Extended method
S. Aoki, et al. , Proc. Jpn. Acad. Ser. B, 87 (2011) 509.

Consider 3x3 coupled channel potential matrix.

�

�
V��,��(x) V��,N�(x) V��,��(x)
VN�,��(x) VN�,N�(x) VN�,��(x)
V��,��(x) V��,N�(x) V��,��(x)

�

�



  Preliminary results from HAL QCD Collaboration

Sasaki for HAL QCD Collaboration

2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter

π 701±1 570±2 411±2

K 789±1 713±2 635±2

m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

In unit 
of MeV
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Gauge ensembles 

2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter

π 701±1 570±2 411±2

K 789±1 713±2 635±2

m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
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of MeV
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SU(3) breaking effects becomes larger

thresholds

Nf = 2 + 1 full QCD with L = 2.9 fm



ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS
00
 channel         channel        ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS

00
 channel         channel        

In this channel, our group found the “H-dibaryon” in the SU(3) limit.
Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

All channels have repulsive core

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Diagonal elements

Off-diagonal elements

shallow attractive pocket Deeper attractive pocket Strongly repulsive

Relatively weaker than the others

coupled channel 3x3 potentials



Preliminary !

Bound H-dibaryon
coupled to NΞ

H as resonace 
nearΛΛ threshold  
(H as bound NΞ)

H as resonance near 
NΞ threshold 
(H as bound NΞ)

This suggests that H-dibaryon becomes resonance at physical point. 
Below or above NΞ ? Need simulation at physical point.

Physically, it is essential that H-dibaryon is a bound state in the flavor SU(3) limit.

�� and N� phase shift

  

ΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shiftsΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shifts

mπ = 700 MeV : bound state

mπ = 570 MeV : resonance near ΛΛ threshold

mπ = 410 MeV : resonance near ΝΞ threshold..

mπ = 410 MeVmπ = 410 MeVmπ = 700 MeV mπ = 700 MeV mπ = 570 MeVmπ = 570 MeV

Preliminary!Nf = 2+1 full QCD with L = 2.9fm

mπ = 410 MeVmπ = 410 MeV

H-dibaryon is unlikely bound state

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

��

N�



3. Conclusion

• HAL QCD approach is a promising method to extract hadronic interactions in lattice 
QCD.  

•  LS force, Antisymmetric LS

• D-D(Ikeda), D-K, Omega-Omega, Omega-N 

• Comparison of HAL and Luescher: NN, pipi

• Extensions of the HAL QCD method to inelastic/multi-particle scatterings 

• Asymptotic behavior of the NBS wave functions

• Existence of non-local but energy-independent coupled channel potentials

• 3 nucleon force (T.Doi), coupled channel

• A treatment of bound-states ?

• “Potentials” at physical point on 京 m� � 150MeV, L � 9fm



Back up



Unitarity constraint

Using the above, for the n particle system in the center of mass frame, we have

0⟨0|ϕn([x], 0)|[k]n⟩0 =

⎛

⎝ 1
√

(2π)3

⎞

⎠
n

n∏

i=1

1
√

2Eki

eikixi

=

⎛

⎝ 1
√

(2π)3

⎞

⎠
n⎛

⎝
n∏

i=1

1
√

2Eki

⎞

⎠ exp

⎡

⎣i
n−1∑

j=1

qj · rj

⎤

⎦ , (21)

where rj and qj are modified Jacobi coordinates and momenta, respectively.

III. UNITARITY OF S-MATRIX AND PARAMETRIZATION OF T -MATRIX

The unitarity of S-matrix implies

T † − T = iT †T. (22)

Defining

0⟨[pA]n|T |[pB]n⟩0 ≡ δ(EA − EB)δ(3)(P A − P B)T ([qA]n, [q
B]n) (23)

where [pX ]n = pX
1 , pX

2 , · · · ,pX
n , [qX ]n = qX

1 , qX
2 , · · · , qX

n−1 with X = A,B, and

EA ≡
n∑

i=1

EpA
i
, EB ≡

n∑

i=1

EpB
i
, P A ≡

n∑

i=1

pA
i, P B ≡

n∑

i=1

pB
i. (24)

Here we parametrize the T -matrix element in terms of modified Jacobi momenta [qA] and

[qB]. Note that Tβα, appeared in Lippmann-Schwinger equation, is expressed as

Tβα =
1

2π
δ(3)(P A − P B)T ([qA]n, [qB]n). (25)

Using the above expression, the unitarity constraint to T -matrix can be written as

T †([qA]n, [qB]n) − T ([qA]n, [q
B]n) =

i

n3/2

∫ n−1∏

i=1

d3qC
i δ(EA − EC)

× T †([qA]n, [qC ]n)T ([qC ]n, [q
B]n). (26)

Our task is to solve this constraint.

A. n = 2

Let me consider the simplest case, n = 2. In this case, we can parametrize T -matrix, in

terms of the spherical harmonic functions Ylm as follows.

T (qA, qB) =
∑

l,m

Tl(q
A, qB)Ylm(ΩqA)Ylm(ΩqB) (27)

7

parametrization

Using the above, for the n particle system in the center of mass frame, we have
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EA ≡
n∑

i=1

EpA
i
, EB ≡

n∑

i=1

EpB
i
, P A ≡

n∑

i=1

pA
i, P B ≡

n∑

i=1

pB
i. (24)

Here we parametrize the T -matrix element in terms of modified Jacobi momenta [qA] and

[qB]. Note that Tβα, appeared in Lippmann-Schwinger equation, is expressed as

Tβα =
1

2π
δ(3)(P A − P B)T ([qA]n, [qB]n). (25)

Using the above expression, the unitarity constraint to T -matrix can be written as

T †([qA]n, [qB]n) − T ([qA]n, [q
B]n) =

i

n3/2

∫ n−1∏

i=1

d3qC
i δ(EA − EC)

× T †([qA]n, [qC ]n)T ([qC ]n, [q
B]n). (26)

Our task is to solve this constraint.

A. n = 2

Let me consider the simplest case, n = 2. In this case, we can parametrize T -matrix, in

terms of the spherical harmonic functions Ylm as follows.

T (qA, qB) =
∑

l,m

Tl(q
A, qB)Ylm(ΩqA)Ylm(ΩqB) (27)
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(modified) Jacobi coordinates and momenta

The HAL QCD method has also been applied to investigate three nucleon forces(3NF)[23,

24], even though asymptotic behaviors of NBS wave function for three nucleons have not

been derived yet. The 3NF is necessary to explain the experimental binding energies of light

nuclei [25, 26] and high precision deuteron-proton elastic scattering data at intermediate

energies [27]. It may also play an important role for various phenomena in nuclear physics

and astrophysics [28–31].

The purpose of this paper is to derive asymptotic behaviors of NBS wave functions for

n particles with n ≥ 3 at large distances where separations among n operators become all

large. To avoid complications due to non-zero spins of particles, we consider scalar fields in

this paper. The results of this paper, together with an extension to spin 1/2 particles, fills

the logical gap in the derivation of 3NF by the HAL QCD method[23, 24].

In Sec. II, we explain our notations and definitions such as the modfied Jacobi coordinate,

the Lippmann-Schwinger equation, and the NBS wave function for n scalar particles. In

Sec. III we parametrize one-shell T -matrix for n particles, by solving the unitarity constraint

of S-matrix. For explicit calculations for n-particle systems, we introduce the spherical

coordinates in D = 3(n − 1) dimensions, which is equal to a number of degrees of freedom

for n particle in 3-dimensions in the center of mass flame, together with non-relativistic

approximations. In Sec. IV, using these techniques and results obtained in Sec. III, we

derive asymptotic behaviors of NBS wave functions for n-particles, in terms of phase shifts

and mixing angles of the n-particle scattering. Conclusions and discussions are given in

Sec. V. Some technical details are collected in three appendices.

II. SOME DEFINITIONS AND NOTATIONS

In this paper, to avoid complications arising from nucleon spins, we consider an n-scalar

particle system which have the same mass m in the center of mass frame, whose coordinates

and momenta are denoted by xi, pi (k = 1, 2, · · · , n ) with
n∑

i=1

pi = 0. We introduce modified

Jacobi coordinates and corresponding momenta as

rk =

√
k

k + 1
× rJ

k , qk =

√
k + 1

k
× qJ

k (4)

where the standard Jacobi coordinates and momenta are given by

rJ
k =

1

k

k∑

i=1

xi − xk+1, qJ
k =

k

k + 1

(
1

k

k∑

i=1

pi − pk+1

)

, (5)
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where [L] = L,M1,M2, · · · are a set of ”quantum” numbers specifying the hyper-spherical

harmonic function. The hyper-spherical harmonic function is orthogonal such that

∫
dΩs Y[L](Ωs)Y[L′](Ωs) = δ[L][L′] (34)

and complete

∑

[L]

Y[L](Ωs)Y[L](Ωt)δ(s − t) = sD−1δ(D)(s − t), (35)

so that an arbitrary function f(s) of s ∈ RD can be expanded as

f(s) =
∑

[L]

f[L](s)Y[L](Ωs). (36)

Using the hyper spherical function, we expand the T -matrix as

T ([qA]n, [qB]n) ≡ T (QA, QB)

=
∑

[L],[K]

T[L][K](QA, QB)Y[L](ΩQA
)Y[K](ΩQB

) (37)

where QX = (qX
1, q

X
2, · · · , qX

n−1) for X = A,B is a momentum vector in D = 3(n − 1)

dimensions. With the non-relativistic approximation and orthogonal property, the unitarity

relation eq. (26) after ΩQC integration leads to

T †
[L][K](QA, QA) − T[L][K](QA, QA) =

i

n3/2

∫
QD−1dQ δ(EA − E) T †

[L][N ](QA, Q)T[N ][K](Q,QA)

= i
m(QA)D−2

n3/2

∑

[N ]

T †
[L][N ](QA, QA)T[N ][K](QA, QA) (38)

where QA = QB is used. By diagonalizing T with an unitary matrix U as

T[L][K](Q, Q) =
∑

[N ]

U[L][N ](Q)T[N ](Q)U †
[N ][K](Q), (39)

the above constraint can be solved as

T[L](Q) = − 2n3/2

mQ3n−5
eiδ[L](Q) sin δ[L](Q), (40)

where δ[L](Q) is a real phase, which depends on Q and [L] in D = 3(n − 1) dimensions.

This is a main result of this section. Unfortunately, a relation of the phase shifts in the

hyper-spherical coordinates with physical observables for n-particles in the standard Jacobi
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momentum in D=3(n-1) dim.

hyper-spherical harmonic function

where qA,B = |qA,B| and Ωq is the solid angle of the vector q. Using orthogonal property of

Ylm, the constraint becomes

Tl(q, q) − Tl(q, q) =
i

23/2

∫
(qC)2dqC δ(E − EC)Tl(q, q

C)Tl(q
C , q) (28)

where q = qA = qB, E = EA = EB = 2
√

m2 + q2/2 and EC = 2
√

m2 + (qC)2/2. After qC

integral, the constraint is now becomes

Tl(q, q) − Tl(q, q) = i
qE

2 × 23/2
Tl(q, q)Tl(q, q), (29)

which can be solved as

Tl(q) ≡ Tl(q, q) = −4 × 23/2

qE
eiδl(E) sin δl(E), (30)

where δl(q) is the phase shift for the partial wave with the angular momentum l at energy

E = 2
√

m2 + q2/2.

B. General n

For general n case, we introduce the non-relativistic approximation for the energy in the

delta-function as

EA − EC ≃ (pA)2 − (pC)2

2m
=

(qA)2 − (qC)2

2m
(31)

where (qA,C)2 =
∑n

i=1(q
A,C
i )2 for modified Jacobi momenta [qA,C ]n. To perform 3 dimensional

momentum integral (n − 1) times, we consider D = 3(n − 1) dimensional space. Denoting

s = |s| is a D-dimensional hyper-radius and Ωs are angular variables for the vector s in D

dimensions, the Laplacian operator is decomposed as

∇2 =
∂2

∂s2
+

D − 1

s

∂

∂s
− L̂2

s2
(32)

where L̂2 is angular-momentum in D-dimensions. The hyper-spherical harmonic

function[33], an extension of spherical harmonic function in 3-dimension to general D-

dimensions satisfies

L̂2Y[L](Ωs) = L(L + D − 2)Y[L](Ωs) (33)

8
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Lippmann-Schwinger equation in QFT

for k = 1, 2, · · · , n − 1. It is easy to see

n∑

i=1

pi · xi =
n−1∑

i=1

qi · ri, E =
1

2m

n∑

i=1

p2
i =

1

2m

n−1∑

i=1

q2
i , (6)

where m is the mass of the scalar particle. The integration measure for modified Jacobi

momenta is given by

n∏

i=1

d3pi δ
(3)

(
n∑

i=1

pi

)

=
1

n3/2

n−1∏

i=1

d3qi. (7)

A. Lippmann-Schwinger equation

As mentioned in the introduction, the asymptotic behavior of the NBS wave functions

for a two-particle system has already been derived in Refs. [8, 20–22]. It is not straightfor-

ward, however, to extend their derivations to multi-particle systems. Instead, we utilize the

Lippmann-Schwinger equation[32],

|α⟩in = |α⟩0 +
∫

dβ
|β⟩0Tβα

Eα − Eβ + iε
, Tβα = 0⟨β|V |α⟩in, (8)

which is found to be a powerful tool to study multi-particle systems. We assume in this

paper that no bound state appears in two or more particle systems. Here the asymptotic

in-state |α⟩in satisfies

(H0 + V )|α⟩in = Eα|α⟩in, (9)

whereas the non-interacting state |α⟩0 satisfies

H0|α⟩0 = Eα|α⟩0. (10)

The off-shell T -matrix element or the ”potential” Tβα = 0⟨β|V |α⟩in is related to the on-shell

S-matrix element as

Sβα ≡ out⟨β|α⟩in ≡ 0⟨β|S|α⟩0 = δ(β − α) − 2πiδ(Eα − Eβ)Tβα. (11)

If we define S = 1 − iT , we obtain

0⟨β|T |α⟩0 = 2πδ(Eα − Eβ)Tαβ. (12)

5
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full

free

NBS wave functions

B. NBS wave functions

The equal-time Nambu-Bethe-Salpeter(NBS) wave function for n scalar particles is de-

fined by

Ψn
α([x]) = in⟨0|ϕn([x], 0)|α⟩in, (13)

where

ϕn([x], t) = T{
n∏

i=1

ϕi(xi, t)}, (14)

with the time-ordered product T , [x] = x1, x2, · · · , xn, and i represents a ”flavor” of scalar

field. For simplicity, we regard all n scalar particles are different but have the same mass m.

From the Lippmann-Schwinger equation (8), the vacuum instate is given by

|0⟩in = |0⟩0 +
∫

dγ
|γ⟩0Tγ0

E0 − Eγ + iε
. (15)

As shown in Appemdix A, however, the contribution from the second term to the NBS wave

function at large distances amounts to

in⟨0|ϕn([x], 0)|α⟩0 ≃
1

Zα
0⟨0|ϕn([x], 0)|α⟩0, (16)

where Zα is the normalization factor whose deviation from the unity comes from the off-shell

T -matrix Tγ0. Using this and the Lippmann-Schwinger equation (8), the NBS wave function

can be written as

Ψn
α([x]) =

1

Zα
0⟨0|ϕn([x], 0)|α⟩0 +

∫
dβ

1

Zβ

0⟨0|ϕn([x], 0)|β⟩0Tβα

Eα − Eβ + iε
. (17)

To evaluate the above expression explicitly, we quantize all complex scalar fields in the

Heisenberg representation at t = 0 as

ϕi(x, 0) =
∫ d3k
√

(2π)32Eki

{
ai(k)eikx + b†i (k)e−ikx

}
(18)

|α⟩0 ≡ |[k]n⟩0 =
n∏

i=1

a†
i (ki)|0⟩0, Eki =

√
k2

i + m2, (19)

where [k]n = k1,k2, · · · , kn with
∑n

i=1 ki = 0, and the full time evolution is given by

ϕn([x], t) = eiHtϕn([x], 0)e−iHt while H → H0 for the free field. Our state normalization is

given by

0⟨βm|αn⟩0 = δ(βm − αn). (20)
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Using the above, for the n particle system in the center of mass frame, we have

0⟨0|ϕn([x], 0)|[k]n⟩0 =

⎛

⎝ 1
√

(2π)3

⎞

⎠
n

n∏

i=1

1
√

2Eki

eikixi

=

⎛

⎝ 1
√

(2π)3

⎞

⎠
n⎛

⎝
n∏

i=1

1
√

2Eki

⎞

⎠ exp

⎡

⎣i
n−1∑

j=1

qj · rj

⎤

⎦ , (21)

where rj and qj are modified Jacobi coordinates and momenta, respectively.

III. UNITARITY OF S-MATRIX AND PARAMETRIZATION OF T -MATRIX

The unitarity of S-matrix implies

T † − T = iT †T. (22)

Defining

0⟨[pA]n|T |[pB]n⟩0 ≡ δ(EA − EB)δ(3)(P A − P B)T ([qA]n, [q
B]n) (23)

where [pX ]n = pX
1 , pX

2 , · · · ,pX
n , [qX ]n = qX

1 , qX
2 , · · · , qX

n−1 with X = A,B, and

EA ≡
n∑

i=1

EpA
i
, EB ≡

n∑

i=1

EpB
i
, P A ≡

n∑

i=1

pA
i, P B ≡

n∑

i=1

pB
i. (24)

Here we parametrize the T -matrix element in terms of modified Jacobi momenta [qA] and

[qB]. Note that Tβα, appeared in Lippmann-Schwinger equation, is expressed as

Tβα =
1

2π
δ(3)(P A − P B)T ([qA]n, [qB]n). (25)

Using the above expression, the unitarity constraint to T -matrix can be written as

T †([qA]n, [qB]n) − T ([qA]n, [q
B]n) =

i

n3/2

∫ n−1∏

i=1

d3qC
i δ(EA − EC)

× T †([qA]n, [qC ]n)T ([qC ]n, [q
B]n). (26)

Our task is to solve this constraint.

A. n = 2

Let me consider the simplest case, n = 2. In this case, we can parametrize T -matrix, in

terms of the spherical harmonic functions Ylm as follows.

T (qA, qB) =
∑

l,m

Tl(q
A, qB)Ylm(ΩqA)Ylm(ΩqB) (27)
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D-dimensional hyper-coordinates
we have

Ψn(R,QA) = C

[

eiQA·R +
2m

2πn3/2

∫
dDQ

eiQ·R

Q2
A − Q2 + iε

T (Q,QA)

]

. (55)

In D-dimensions, we have[33]

eiQ·R = (D − 2)!!
2πD/2

Γ(D/2)

∑

[L]

iL jD
L (QR) Y[L](ΩR) Y[L](ΩQ), (56)

which is the generalization of the D = 3 formula in eq. (45), where jD
L is the hyperspherical

Bessel function of the first kind defined by

jD
L (x) =

Γ(D−2
2 ) 2

D−4
2

(D − 4)!! x
D−2

2

JLD(x), (57)

with LD = L + D−2
2 and the Bessel function of the first kind, JLD(x).

Using an expansion that

Ψn(R,QA) =
∑

[L],[K]

Ψn
[L],[K](R, QA)Y[L](ΩR)Y[K](ΩQA

), (58)

with eqs. (37) and (56), and performing d ΩQ integral, we obtain

Ψn
[L],[K](R, QA) = CiL

(2π)D/2

(QAR)
D−2

2

[

JLD(QAR)δLK +
∫

dQ
JLD(QR)

Q2
A − Q2 + iε

H[L],[K](Q, QA)

]

(59)

where

H[L],[K](Q, QA) =
m

πn3/2
QD/2QD/2−1

A T[L],[K](Q,QA). (60)

We now perform the Q integral, assuming that T[L],[K](Q, QA) does not have any poles on

the positive real axis at QA below inelastic thresholds. We consider n = 2k and n = 2k + 1

cases separately.

1. n = 2k case

In this case,

JLD(x) = jLk
(x)

√
2

π
x1/2 (61)
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Asymptotic behavior of NBS wave functions

where Lk = L + 3(k − 1) and jLk
is the spherical Bessel function of the first kind. Using

eq. (48), the second term in eq. (59) can be evaluated as[34]

∫
dQ

jLk
(QR)

Q2
A − Q2 + iε

√
2

π
(QR)1/2H[L],[K](Q, QA)

≃ − [nLk
(QAR) + ijLk

(QAR)]
π

2QA

√
2

π
(QAR)1/2H[L],[K](QA, QA)

= [HLD(QAR) + iJLD(QAR)]
∑

[N ]

U[L][N ](QA)eiδ[N ](QA) sin δ[N ](QA)U †
[N ][K](QA) (62)

for R ≫ 1, where the unitarity constraint to T in eq. (40) is used to obtain the last line,

and JLD and HLD are Bessel functions of the first and second kinds, respectively.

2. n = 2k + 1 case

In this case, LD = L + 3k − 1 is an integer, and for large R, JLD(x) becomes

JLD(x) ≃
√

2

πx
sin (x − ∆L) , HLD(x) ≃

√
2

πx
cos (x − ∆L) , ∆L =

2LD − 1

4
π. (63)

Using this asymptotic behavior, the Q integral in eq. (59) can be performed, and we obtain

for R ≫ 1

I ≡
∫

dQ
JLD(QR)

Q2
A − Q2 + iε

H[L],[K](Q, QA)

≃ −
√

2

πQAR

[
πei(QAR−∆L)

2QA
H[L],[K](QA, QA) + O

(
R(3−D)/2

)]

(64)

≃ [HLD(QAR) + iJLD(QAR)]
∑

[N ]

U[L][N ](QA)eiδ[N ](QA) sin δ[N ](QA)U †
[N ][K](QA), (65)

where, in the last line, the O(1/R) contribution is neglected for large R and the unitarity

condition for T in eq. (40) is used, and ei(QAR−∆D) is replaced by the asymptotic behaviors

of Jn and Hn. The detailed calculation of the Q integral is given in Appendix B.

C. Asymptotic behavior

For both n = 2k and n = 2k + 1, we finally obtain

Ψn
[L],[K](R, QA) ≃ CiL

(2π)D/2

(QAR)
D−2

2

∑

[N ]

U[L][N ](QA)eiδ[N ](QA)U †
[N ][K](QA)

×
[
JLD(QAR) cos δ[N ](QA) + HLD(QAR) sin δ[N ](QA)

]
(66)
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≃ CiL
(2π)D/2

(QAR)
D−1

2

∑

[N ]

U[L][N ](QA)eiδ[N ](QA)U †
[N ][K](QA)

×
√

2

π
sin

(
QAR − ∆L + δ[N ](QA)

)
(67)

for R ≫ 1, which agrees with eq. (51) at n = 2. Eq. (67) is the main result of this paper,

which tells us that the NBS wave function of n-particles for large R can be considered as the

generalized scattering wave of n particles, whose generalized scattering phase shift δ[N ](QA)

is nothing but the phase of the S-matrix in QCD, determined in eq. (40) by the unitarity.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the asymptotic behaviors of the NBS wave functions

at large separations for n complex scalar fields. We have first solved the unitarity constraint

of the S-matrix for n ≥ 3, using the D = 3(n − 1) coordinate space and employing the

hyper-spherical harmonic function, together with the non-relativistic approximation for the

energy. The results are summarized in eqs. (39) and (40). We then have calculated the

asymptotic behaviors of the NBS wave functions at large separations for n ≥ 3, using again

the hyper-spherical harmonic function, which is found to be quiet useful for this purpose. We

finally obtain eq. (67), which is the main result in this paper. In appendix C, we generalize

our results to the coupled channels, where the particle mixing occurs during the scattering.

Using the results in this paper, we can generalize the HAL QCD method to hadron in-

teractions for the n-particle system with n ≥ 3. This give a firm theoretical background to

the extraction of interactions among many hadrons by the HAL QCD method, in partic-

ular, the three nucleon force[23, 24], together with an extension to systems with spin 1/2

particles, which is a straightforward but much more complicated task in future. Moreover,

combining it with the results in our previous paper[35], which shows that non-local but

energy independent potentials can be constructed from the NBS wave functions above the

inelastic threshold, the HAL QCD method can be extended to hadronic interactions above

the inelastic threshold energy, where particle productions such as NN → NNπ can occur.
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Let us consider NN � NN, NN�

W 0
th = 2mN

W 1
th = 2mN + m�

W 2
th = 2mN + 2m�

�0 = [W 0
th, W 1

th)

�1 = [W 1
th, W 2

th)

W � �1

Therefore we may consider up to NN + 6π with roughly 5% relativistic corrections. Note

that some configurations of momenta may become relativistic for a given value of W . We

exclude such configurations in our consideration of this paper.

A. Simplest case

To illustrate our strategy to construct energy-independent potentials, let us consider the

simplest case at W < W 2
th = 2mN + 2mπ in this subsection. If W ∈ ∆1 ( 2mN + mπ ≤ W <

2mN + 2mπ ), the inelastic scattering with one pion production (NN → NN + π) becomes

possible. We can define in this case a set of 4-independent equal time NBS wave function as

ZNϕ
00
W,c0(x0) = ⟨0|T{N(x, 0)N(x + x0, 0)}|NN, W, c0⟩in, (10)

ZNZ1/2
π ϕ10

W,c0(x0,x1) = ⟨0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN,W, c0⟩in, (11)

ZNϕ
01
W,c1(x0) = ⟨0|T{N(x, 0)N(x + x0, 0)}|NN + π, W, c1⟩in, (12)

ZNZ1/2
π ϕ11

W,c1(x0,x1) = ⟨0|T{N(x, 0)N(x + x0, 0)π(x + x1, 0)}|NN + π, W, c1⟩in, (13)

where ZN and Zπ are renormalization factors for nucleon and pion fields, such that N(x) =

Z1/2
N N r(x) and π(x) = Z1/2

π πr(x), where N r(x) and πr(x) are renormalized nucleon and pion

fields, respectively. We here consider two asymptotic in states |NN, W, c0⟩in and |NN +

π, W, c1⟩in corresponding to two nucleons and two nucleons plus one pion, where c0 and c1

represent quantum numbers other than the total energy W . In the present case, (W, c0)

and (W, c1) are equivalent to (s1, s2, p1) and (s1, s2,p1,k1) where si is the helicity of the

i-th nucleon and p2 is not independent due to the momentum conservation. As mentioned

before, W ≃ W0 + E0
W ≃ W1 + E1

W . If distances between all operators become large

(|x0|, |x1|, |x1−x0| → ∞), we expect (and will indeed show in the separated paper[22]) that
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)
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)
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We consider the coupled channel Schrödinger equations for NN and NN + π, which is

given by

(Ek
W − Hk

0 )ϕki
W,ci

=
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∫ l∏

n=0

d3yn Ukl([x]k, [y]l)ϕ
li
W,ci

([y]l), k, i ∈ (0, 1), (15)
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�ij
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([x]i) i(j): number of �’s in the operator(state)where [x]0 = x0 and [x]1 = x0,x1. Note that E1
W ≃ W − W 1

th < 0 if W ∈ ∆0. Our task is

to show that a W -independent 2 × 2 potential matrix Ukl exists.

For this purpose, we define vectors from these NBS wave functions at W ∈ ∆1 as

ϕi
W,ci

≡
(
ϕ0i

W,ci
([x]0),ϕ

1i
W,ci

([x]1)
)T

, i = 0, 1, (16)

while at W ∈ ∆0 we take only ϕ0
W,c0 as

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0),ϕ
10
W,c0([x]1)

)T
, (17)

where the second component ϕ10
W,c1([x]1) vanishes as distances between all operators go to

infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
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k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =

⎛

⎜⎜⎜⎜⎝

N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)

⎞

⎟⎟⎟⎟⎠
(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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coupled channel equation
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potentials. In Sec. III, using results obtained in the previous section, we generalize the time

dependent method for the extraction of the potential[23] to the case at W ≥ Wth, in order to

treat inelastic processes. Conclusions and discussions are given in Sec. IV. In Appendix A,

we compare the construction of the energy-independent potential above inelastic threshold

given in the main text with other possible variations.

II. CONSTRUCTION OF ENERGY-INDEPENDENT POTENTIALS ABOVE IN-

ELASTIC THRESHOLDS

We here construct energy-independent (non-local) potentials even above inelastic thresh-

olds for the NN scattering in the center of mass system. In this report we only consider

pion productions whose n-th threshold energy is given by W n
th = 2mN + n × mπ with mπ

being the pion mass. Extensions to other particle productions such as NN̄ or KK̄, etc. are

straightforward.

We introduce energy intervals defined by ∆n = [W n
th, W

n+1
th ) for n = 0, 1, 2, · · ·. Given

the total energy W , the kinetic energy of the NN + nπ system is denoted by En
W , which is

given by

En
W =

p2
1

2mN
+

p2
2

2mN
+

n∑

i=1

k2
i

2mπ
, W =

√
m2

N + p2
1 +

√
m2

N + p2
2 +

n∑

i=1

√
m2

π + k2
i , (9)

where p1+p2+
∑n

i=1 ki = 0. The corresponding free hamiltonian is denoted by Hn
0 . Note that

En
W cannot be determined from the total energy W alone, except for the elastic scattering at

n = 0, where E0
W is uniquely determined from a given value of W . Since the determination of

En
W from W is important to construct potentials from the Schrödinger equation and En

W for

n ≥ 1 cannot be determined from W in general, we restrict our considerations in this paper

to cases where all momenta p1,p2,k1, k2, · · · , kn are non-relativistic, so that we can write

W ≃ W k
th + Ek

W for k = 1, 2, · · · , n at W ∈ ∆n. (We can exclude k = 0 case since E0
W can

always be determined from W without non-relativistic approximation.) This condition is

explicitly written as p2
i < m2

N for i = 1, 2 and k2
i < m2

π for i = 1, 2, · · · , n. Unless otherwise

stated, we assume this condition in this paper. We roughly estimate how many pions can be

treated within this approximation. If the total energy of two nucleons with one pion at rest is

equal to the minimum energy of n-pion production such that 2
√

m2
N + p2+mπ = 2mN+nmπ,

the non-relativistic condition, say p2 ≃ 0.9 × m2
N , leads to n − 1 ≤ mN

mπ
(
√

7.6 − 2) ≃ 5.
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Proof of existence for U

Define a vector of NBS wave functions as

where [x]0 = x0 and [x]1 = x0,x1. Note that E1
W ≃ W − W 1

th < 0 if W ∈ ∆0. Our task is

to show that a W -independent 2 × 2 potential matrix Ukl exists.

For this purpose, we define vectors from these NBS wave functions at W ∈ ∆1 as

ϕi
W,ci

≡
(
ϕ0i

W,ci
([x]0),ϕ

1i
W,ci

([x]1)
)T

, i = 0, 1, (16)

while at W ∈ ∆0 we take only ϕ0
W,c0 as

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0),ϕ
10
W,c0([x]1)

)T
, (17)

where the second component ϕ10
W,c1([x]1) vanishes as distances between all operators go to

infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
≡

∑

k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =

⎛

⎜⎜⎜⎜⎝

N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)

⎞

⎟⎟⎟⎟⎠
(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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infinity. (No asymptotic NN + π state exists at W < 2mN + mπ.) Note that, instead of

eq. (17), we may define

ϕ0
W,c0 ≡

(
ϕ00

W,c0([x]0), 0
)T

, (18)

at W ∈ ∆0. Since the definition of ϕ0
W,c0 at W ∈ ∆0 in eq. (17) will be required in Sec. III for

the time-dependent method, we use it in the main text of this paper, and the construction

with eq. (18) and other variations will be discussed in Appendix A.

As in the elastic case, we introduce the norm kernel in the space spanned by ϕi
W,ci

as

N ij
W1ci,W2dj

=
(
ϕi

W1,ci
,ϕj

W2,dj

)
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∑

k=0,1

∫ k∏

l=0

d3xl ϕki
W1,ci

([x]k)ϕ
kj
W2,dj

([x]k). (19)

Here indices i, j run over different ranges depending on values of W1,W2 such that i ∈ I(W1)

and j ∈ I(W2), where I(W ) = {0} for W ∈ ∆0 and I(W ) = {0, 1} for W ∈ ∆1. Otherwise

stated, we assume this in this subsection.

As long as ϕi
W,ci

are linearly independent, the Hermitian operator N has an inverse as

∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =

⎛

⎜⎜⎜⎜⎝

N 00(∆0, ∆0), N 00(∆0, ∆1), N 01(∆0, ∆1)

N 00(∆1, ∆0), N 00(∆1, ∆1), N 01(∆1, ∆1)

N 10(∆1, ∆0), N 10(∆1, ∆1), N 11(∆1, ∆1)

⎞

⎟⎟⎟⎟⎠
(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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∑

W∈∆0+∆1

∑

h∈I(W ), eh

(N−1)ih
W1ci,Weh

N hj
Weh,W2dj

= δijδW1,W2δci,dj . (20)

Schematically N has a following structure:

N =
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(21)

where N ab(∆i, ∆j) represent a sub-matrix whose components are given by N ab
Wica,Wjdb

with

Wi ∈ ∆i and Wj ∈ ∆j for i, j, a, b = 0 or 1. The corresponding inverse N−1 has of course

the same structure.
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energy state

bra, ket

Using this inverse, we define the ket vector |ϕi
W,ci

⟩ and the corresponding bra vector

⟨ψi
W,ci

|, whose k-th components are given by

⟨[x]k|ϕi
W,ci

⟩ = ϕki
W,ci

([x]k), (22)

⟨ψi
W,ci

|[x]k⟩ =
∑

W1∈∆0∪∆1

∑

j∈I(W1),dj

(N−1)ij
Wci,W1dj

ϕkj
W1,dj

([x]k) (23)

for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

⟨ψi
W1,ci

|ϕj
W2,dj

⟩ =
∑

k=0,1

∫ k∏

l=0

d3xl ⟨ψi
W1,ci

|[x]k⟩⟨[x]k|ϕj
W2,dj

⟩ = (N−1 · N )ij
W1ci,W2dj

= δijδW1,W2δci,dj . (24)

Introducing operators EW , H0 and U such that

⟨[x]k|(EW − H0)|[y]l⟩ ≡ δkl(E
k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

⟨[x]k|U |[y]l⟩ ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

⟩ = U |ϕi
W,ci

⟩. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

⟩⟨ψi
W,ci

|, (28)

since

U |ϕi
W,ci

⟩ =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

⟩⟨ψj
W1,dj

|ϕi
W,ci

⟩ = (EW − H0)|ϕi
W,ci

⟩.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ ⟨ϕi
W1,ci

|U |ϕj
W2,dj

⟩ = ⟨ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

⟩, (30)

3 Here and hereafter the sum over ci with i ̸= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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orthogonality
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, so that the resulting potential
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Abstract operators
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Abstract coupled channel equation

Using this inverse, we define the ket vector |ϕi
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for k = 0, 1, where dj runs over states which satisfies non-relativistic condition. It is then

easy to see that

⟨ψi
W1,ci

|ϕj
W2,dj

⟩ =
∑

k=0,1

∫ k∏

l=0

d3xl ⟨ψi
W1,ci

|[x]k⟩⟨[x]k|ϕj
W2,dj
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k
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k∏
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δ(3)(xn − yn) (25)
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the coupled channel Schrödinger equation (15) can be compactly written as3

(EW − H0)|ϕi
W,ci

⟩ = U |ϕi
W,ci

⟩. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑
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∑

i∈I(W )

∑
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An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
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, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as
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⟩, (30)

3 Here and hereafter the sum over ci with i ̸= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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construction of non-local coupled channel potential 

Using this inverse, we define the ket vector |ϕi
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⟩ =
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Introducing operators EW , H0 and U such that
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k
W − Hk

0 )
k∏

n=0

δ(3)(xn − yn) (25)

⟨[x]k|U |[y]l⟩ ≡ Ukl([x]k, [y]l), (26)

the coupled channel Schrödinger equation (15) can be compactly written as3
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⟩ = U |ϕi
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⟩. (27)

Now it is easy to construct U which satisfies the above equation as

U =
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An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ ⟨ϕi
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⟩ = ⟨ϕi
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3 Here and hereafter the sum over ci with i ̸= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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W,ci

⟩ = U |ϕi
W,ci

⟩. (27)

Now it is easy to construct U which satisfies the above equation as

U =
∑

W∈∆0∪∆1

∑

i∈I(W )

∑

ci

(EW − H0)|ϕi
W,ci

⟩⟨ψi
W,ci

|, (28)

since

U |ϕi
W,ci

⟩ =
∑

W1∈∆0∪∆1

∑

j∈I(W1)

∑

dj

(EW − H0)|ϕj
W1,dj

⟩⟨ψj
W1,dj

|ϕi
W,ci

⟩ = (EW − H0)|ϕi
W,ci

⟩.(29)

An energy-independent potential matrix U indeed exists. Note that U is not unique since,

for example, one can use eq. (18) instead of eq. (17) for ϕi
W,ci

, so that the resulting potential

from eq. (28) differs from the one with eq. (17).

Finally let us consider the Hermiticity of U . A matrix element of U is evaluated as

U ij
W1ci,W2dj

≡ ⟨ϕi
W1,ci

|U |ϕj
W2,dj

⟩ = ⟨ϕi
W1,ci

|(EW2 − H0)|ϕj
W2,dj

⟩, (30)

3 Here and hereafter the sum over ci with i ̸= 0 is always restricted to non-relativistic states if the number
of particles is more than 2.
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Energy independent (coupled channel) potential exists above the inelastic threshold.
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