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The Pion – Nature’s strong messenger
Hideki Yukawa in 1935 postulated a strongly
interacting particle of mass ∼ 100 MeV

Yukawa called this particle a “meson”

Cecil Powell in 1947 discovered the π-meson
from cosmic ray tracks in a photographic
emulsion – a technique Cecil developed

Cavendish Lab had said method is incapable of
“reliable and reproducible precision measurements”

The measured pion mass was: 130− 150 MeV

Both Yukawa & Powell received Nobel Prize – in
1949 and 1950 respectively

Discovery of pion was beginning of particle
physics; before long there was the particle zoo

Nuclear Pion Capture
[Nature 160 (1947) 486-492]

π
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The Pion in QCD
Today the pion is understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the
Goldstone mode associated with DCSB in QCD

This dichotomous nature has numerous ramifications, e.g.:

mρ/2 ∼MN/3 ∼ 350 MeV however mπ/2 ' 0.2× 350 MeV

The pion is unusually light, the key is dynamical chiral symmetry breaking
in coming to understand the pion’s lepton-like mass, DCSB has been exposed as
the origin of more than 98% of the mass in the visible Universe

QCD is characterized by two emergent phenomena: confinement & DCSB

it is also the only known example in nature of a fundamental QFT that is innately
non-perturbative

In the quest to understand QCD must discover the origin of confinement, its
relationship to DCSB and understand how these phenomenon influence
hadronic obserables
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
must implement a symmetry preserving truncation

Most important DSE is QCD’s gap equation =⇒ dressed quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

S(p) has correct perturbative limit

M(p2) exhibits dynamical mass
generation⇐⇒ DCSB

S(p) has complex conjugate poles
no real mass shell⇐⇒ confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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QCDs Dyson-Schwinger Equations

ETC!
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DSEs – A closer look

−1
=

−1
+

Not possible to solve tower of equations – start with gap equation
need ansatz for dressed gluon propagator × dressed quark-gluon vertex

Dµν(p) =

(
δµν +

qµqν

q2

)
∆(q2) + ξ

qµqν

q4

Γa,µgqq(p
′, p) =

λa

2

∑12

i=1
Λµi fi(p

′2, p2, q2)

=
λa

2
[ΓµL(p′, p) + ΓµT (p′, p)]

usually choose Landau gauge ξ = 0
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Truncation must preserve symmetries of the theory

encapsulated by a series of Ward–Takahashi identities, which guarantee e.g.
electromagnetic current conservation and a robust realization of DCSB

A. C. Aguilar et al,
Phys. Rev. D81, 034003 (2010).
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Rainbow Ladder Truncation

−1
=

−1
+ q

p

p′

=
q

p

p′

+
q

p

p′

The most common symmetry preserving truncation is rainbow-ladder

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

Need model for αeff(k
2) – must agree with perturbative QCD for large k2

Maris–Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

αeff(k
2) = πD

ω6 k4 e−k
2/ω2

+ 24π
25

(
1− e−k2/µ2

)
ln−1

[
e2− 1+

(
1 + k2/Λ2

QCD
)2]

Satisfies vector & axial-vector WTIs

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

[em current conservation]

qµ Γµ,i5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S
−1(p)

+ 2mΓiπ(p′, p) [DCSB]

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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Light-Front Wave Functions
In equal-time quantization a hadron wave
function is a frame dependent concept

boost operators are dynamical, that is, they
are interaction dependent

In high energy scattering experiments
particles move at near speed of light

natural to quantize a theory at equal
light-front time: τ = (t+ z)/

√
2

Light-front quantization =⇒ light-front WFs; many remarkable properties:
frame-independent; probability interpretation – as close as QFT gets to QM
boosts are kinematical – not dynamical

Parton distribution amplitudes (PDAs) are (almost) observables & are
related to light-front wave functions

ϕ(x) =

∫
d2~k⊥ ψ(x,~k⊥)
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

P
D
A

P
D
A

P
D
A

P
D
A

GPDs

P
D
A

GPDs

PDAs enter numerous hard exclusive scattering processes

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

The pion’s PDA is defined by

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]
S(k) Γπ(k, p)S(k − p) is the pion’s Bethe-Salpeter wave function

in the non-relativistic limit it corresponds to the Schrodinger wave function

ϕπ(x): is the axial-vector projection of the pion’s Bethe-Salpeter wave
function onto the light-front [pseudo-scalar projection also non-zero]

Pion PDA is an essentially nonperturbative quantity whose asymptotic form
is known; in this regime governs, e.g., Q2 dependence of pion form factor

Q2 Fπ(Q2)
Q2→∞−→ 16π f2

π αs(Q
2) ⇐⇒ ϕasy

π (x) = 6x (1− x)
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QCD Evolution & Asymptotic PDA
ERBL (Q2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

µ
d

dµ
ϕ(x, µ) =

∫ 1

0

dy V (x, y)ϕ(y, µ)

This evolution equation has a solution of the form

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

α = 3/2 because in Q2 →∞ limit QCD is invariant under the collinear
conformal group SL(2;R)

Gegenbauer-α = 3/2 polynomials are irreducible representations SL(2;R)

The coefficients of the Gegenbauer polynomials, a3/2
n (Q2), evolve

logarithmically to zero as Q2 →∞: ϕπ(x)→ ϕ
asy
π (x) = 6x (1− x)

At what scales is this a good approximation to the pion PDA?

E.g., AdS/QCD find ϕπ(x) ∼ x1/2 (1− x)1/2 at Q2 = 1 GeV2; expansion in

terms of C3/2
n (2x− 1) convergences slowly: a

3/2
32 / a

3/2
2 ∼ 10 %

table of contents HHIQCD2015 11 / 36



Pion PDA from the DSEs

asymptotic

rainbow-ladder

DCSB improved
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Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ζ = 2 GeV

Broading of the pion’s PDA is directly linked to DCSB

As we shall see the dilation of pion’s PDA will influence the Q2 evolution of
the pion’s electromagnetic form factor

[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]
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Pion PDA from lattice QCD

Lattice QCD can only determine one
non-trivial moment∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

asymptotic

typical of standard analysis
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Standard practice to fit first coefficient of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
this procedure results in a double-humped pion PDA

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α−1/2(1− x)α−1/2

[
1 +

∑
n=2, 4,...

aαn(Q2)Cαn (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ' 0.30
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Pion PDA from lattice QCD

Lattice QCD can only determine one
non-trivial moment∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

asymptotic

lattice QCD

DCSB improved
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Standard practice to fit first coefficient of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
this procedure results in a double-humped pion PDA

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α−1/2(1− x)α−1/2

[
1 +

∑
n=2, 4,...

aαn(Q2)Cαn (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ' 0.30

[ICC, et al., Phys. Rev. Lett. 111, 092001 (2013)]
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When is the Pion’s PDA Asymptotic

asymptotic

Q2 = 4GeV2

Q2 = 100GeV2
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Under leading order Q2 evolution the pion PDA remains broad to well above
Q2 > 100 GeV2, compared with ϕasy

π (x) = 6x (1− x)

Consequently, the asymptotic form of the pion PDA is a poor approximation
at all energy scales that are either currently accessible or foreseeable in
experiments on pion elastic and transition form factors

Importantly, ϕasy
π (x) is only guaranteed be an accurate approximation to

ϕπ(x) when pion valence quark PDF satisfies: qπv (x) ∼ δ(x)

This is far from valid at forseeable energy scales

[I. C. Cloët, et al., Phys. Rev. Lett. 111, 092001 (2013)] [T. Nguyen, et al., Phys. Rev. C 83, 062201 (2011)]
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When is the Pion’s Valence PDF Asymptotic

LHC
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〈x qv(x)〉

〈x sea(x)〉

〈x g(x)〉

LO QCD evolution of momentum fraction carried by valence quarks

〈x qv(x)〉 (Q2) =

(
αs(Q

2)

αs(Q2
0)

)γ(0)2
qq /(2β0)

〈x qv(x)〉 (Q2
0) where

γ
(0)2
qq

2β0
> 0

therefore, as Q2 →∞ we have 〈x qv(x)〉 → 0 implies qv(x) = δ(x)

At LHC energies valence quarks still carry 20% of pion momentum
the gluon distribution saturates at 〈x g(x)〉 ∼ 55%

Asymptotia is a long way away!
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Pion Elastic Form Factor
Direct, symmetry-preserving
computation of pion form factor
predicts maximum in Q2 Fπ(Q2)

at Q2 ≈ 6 GeV2

magnitude of this product is
determined by strength of DCSB at
all accessible scales

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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Q2The QCD prediction can be expressed as

Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Within DSEs there is consistency between the direct pion form factor
calculation and that obtained using the DSE pion PDA

15% disagreement explained by higher order/higher-twist corrections

We predict that QCD power law behaviour – with QCD’s scaling law
violations – sets in at Q2 ∼ 8 GeV2

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Pion Transition Form Factor
using DCSB-broadened PDA

conformal QCD limit

γ∗ γ → π0
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using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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At large Q2 the hard gluon exchange in the γ∗ + π → π form factor – needed
to keep the pion intact – results in distinctly different behaviour to the pion
transition form factor γ∗ + π → γ

Q2Fγ∗πγ(Q2)→ 2 fπ w2
π c.f. Q2Fπ(Q2)→ 16π f2

π αs(Q
2) w2

π

Therefore approach to asymptotic limit gives inter alia a unique window
into quark-gluon dynamics in QCD

In full DSE calculation of γ∗π → γ conformal limit approached from below
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Measuring onset of Perturbative scaling

forthcoming JLab data

differentiate from monopole
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Amendolia fit

To observe onset of perturbative power law behaviour – to differentiate from
a monopole – optimistically need data at 8 GeV2 but likely also at 10 GeV2

this is a very challenging task experimentally

Scaling predictions are valid for both spacelike and timelike momenta
timelike data show promise as the means of verifying modern predictions
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PDFs and lattice QCD
PDFs enter DIS cross-sections & are critial components of hadron structure

PDFs – e.g. q(x,Q2) – are Lorentz invariant and are functions of the light-cone
momentum fraction x = k+

p+ and the scale Q2

q(x,Q2): probability to strike a quark of flavour q with light-cone momentum
fraction x of the target momentum

PDFs represent parton correlations along the light-cone and are inherently
Minkowski space objects

lattice QCD, which is definied in Euclidean space, cannot directly calculate PDFs

further, since lattice only possesses hypercubic symmetry, only the first few
moments of a PDF can be accessed in contemporary simulations

q(x,Q2) =

∫
dξ−

2π
eip

+ ξ− x

× 〈P |ψq(0) γ+ ψq(ξ
−)|P 〉
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PDFs and Quasi-PDFs
In PRL 110 (2013) 262002 Xiangdong Ji proposed a method to access PDFs
on the lattice via Quasi-PDFs

may people where already aware of this idea but Ji put it on a firmer footing
theoretically – through developing 1/pz perturbation theory

Quasi-PDFs represent parton correlations along the z-direction [x̃ = kz
pz

]

q̃(x̃, Q2, pz) =

∫
dξz
2π

eipz ξz x̃〈P |ψq(0) γz ψq(ξz)|P 〉

c.f. q(x,Q2) =

∫
dξ−

2π
eip

+ ξ− x〈P |ψq(0) γ+ ψq(ξ
−)|P 〉

in limit pz →∞ then q̃(x̃, Q2, pz)→ q(x,Q2) ; corrections O
[
M2

p2
z
,

Λ2
QCD
p2
z

]
q̃ depends on pz & is therefore not a Lorentz invariant; x̃ not bounded by pz:

−∞ < x̃ =
kz
pz

<∞; c.f. 0 < x =
k+

p+
< 1

Need to put fast moving hadron on a lattice; but when is pz large enough?
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Pion Quasi-PDFs from DSEs
Using the DSEs we can determine both the PDFs and Quasi-PDFs

can then infer how large pz must be to have q̃(x̃, Q2, pz) ' q(x,Q2)

For pz . 1 GeV find that quark distribution has sizeable support for x̃ < 0

this is in constrast to PDFs, however it is natural since kz can be negative

For pz ' 4 GeV find that the pion PDF and quasi-PDF are rather similar

pion likely best case scenario, e.g., nucleon likely has large M2

p2
z

corrections

Quasi-PDFs do not give parton momentum fractions [Y. Ma & J. Qiu - arXiv:1404.6860]
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All results in chiral limit

〈x̃ q̃z(x)〉pz=1 GeV = 0.53 (14%)

〈x̃ q̃z(x)〉pz=2 GeV = 0.49 (5%)

〈x̃ q̃z(x)〉pz=4 GeV = 0.48 (3%)

〈x̃ q̃z(x)〉pz=∞ = 0.47
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The Nucleon
The nucleon is a bound state of 3 dressed-quarks and in QCD appears as the
lowest lying pole in a 6-point Green functions

In DSEs wave function obtained from a Poincaré covariant Faddeev equation

sums all possible interactions between three dressed-quarks
strong diquark correlations a dynamical consequence of strong coupling in QCD

A tractable Faddeev equation is based on the observation that an interaction
which describes colour-singlet mesons also generates non-pointlike diquark
correlations in the colour-3̄ channel

scalar and axial-vector diquarks are most important for the nucleon

Diquarks are directly related to DCSB, as this single mechanism produces
both the (almost) massless pion and strong scalar diquark correlations
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Nucleon Electromagnetic Form Factors
Nucleon electromagnetic current

Provide vital information about the

ℓ

q

k

k′

pN
p′

N

θ

structure and composition of the most basic elements of nuclear physics

elastic scattering – therefore form factors probe confinement at all energy scales

Today accurate form factor measurements are creating a paradigm shift in
our understanding of nucleon structure:

proton radius puzzle

µpGEp/GMp ratio and a possible zero-crossing

flavour decomposition and evidence for diquark correlations

meson-cloud effects

seeking verification of perturbative QCD scaling predictions & scaling violations
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Nucleon Sachs Form Factors
Experiment gives Sachs form factors: GE = F1 − Q2

4M2 F2 GM = F1 + F2

Until the late 90s Rosenbluth
separation experiments found that
the µpGEp/GMp ratio was flat

Polarization transfer experiments
completely altered our picture of
nucleon structure

distribution of charge and
magnetization are not the same

Proton charge radius puzzle [5σ]
〈
r2
E

〉
= −6 ∂

∂Q2 GE(Q2)
∣∣
Q2=0

rEp = 0.84184± 0.00067 fm rEp = 0.8768± 0.0069 fm

muonic hydrogen [Pohl et al. (2010)] ep elastic scattering [PDG]

one of the most interesting puzzles in hadron physics
so far defies explanation
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Nucleon EM Form Factors from DSEs
A robust description of form factors is only possible if electromagnetic
gauge invariance is respected; equivalently all relevant Ward-Takahashi
identities (WTIs) must be satisfied

For quark-photon vertex WTI implies:

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

transverse structure unconstrained

Diagrams needed for a gauge invariant nucleon EM current in DSEs

p p′

q

p p′
q

p p′

q

p p′

q

p p′q

Feedback with experiment can constrain elements of QCD via DSEs

q

p

p′

=
q

p

p′

+
q

p

p′
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Beyond Rainbow Ladder Truncation
Include “anomalous chromomagnetic
term” in gap equation

1
4π g

2Dµν(p− k) Γν(p, k)

→ αeff(`)D
free
µν (`) [γν + iσµνqν τ5(p′, p)]

In chiral limit acm term can only
appear through DCSB, since operator
flips quark helicity

EM properties of a spin- 1
2 point particle are characterized by two quantities:

charge: e & magnetic moment: µ

Expect strong gluon cloud dressing to produce non-trivial electromagnetic
structure for a dressed quark

recall dressing produces – from massless quark – a M ∼ 400 MeV dressed quark

A large quark anomalous chromomagnetic moment in the quark-gluon
vertex – produces a large quark anomalous electromagnetic moment

dressed quarks are not point particles

[L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]

table of contents HHIQCD2015 27 / 36



Proton GE/GM Ratio
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with acm/aem term

without acm/aem term

Quark anomalous magnetic moment required for good agreement with data
important for low to moderate Q2

power law suppressed at large Q2

Illustrates how feedback with EM form factor measurements can constrain
QCDs quark–photon vertex and therefore the quark–gluon vertex within the
DSE framework

knowledge of quark–gluon vertex provides αs(Q2) within DSEs⇔ confinement

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)] [ICC, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)]
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Proton GE form factor and DCSB
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Find that slight changes in M(p) on the domain 1 . p . 3 GeV have a
striking effect on the GE/GM proton form factor ratio

strong indication that position of a zero is very sensitive to underlying dynamics
and the nature of the transition from nonperturbative to perturbative QCD

Zero in GE = F1 − Q2

4M2
N
F2 largely determined by evolution of Q2 F2

F2 is sensitive to DCSB through the dynamically generated quark anomalous
electromagnetic moment – vanishes in perturbative limit
the quicker the perturbative regime is reached the quicker F2 → 0

[ICC, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Proton GE form factor and DCSB
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Only GE is senitive to these small
changes in the mass function

Accurate determination of zero
crossing would put important
contraints on quark-gluon
dynamics within DSE framework

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Neutron GE/GM Ratio
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Quark anomalous chromomagnetic moment – which drives the large
anomalous electromagnetic moment – has only a minor impact on neutron
Sachs form factor ratio

Predict a zero-crossing in GEn/GMn at Q2 ∼ 11 GeV2

DSE predictions were confirmed on domain 1.5 . Q2 . 3.5 GeV2

[ICC, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)] [S. Riordan et al, Phys. Rev. Lett. 105, 262302 (2010)]
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Nucleon Dirac & Pauli form factors
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quark aem term has important influence on Pauli form factors at low Q2

[ICC, G. Eichmann, B. El-Bennich, T. Klahn and C. D. Roberts„ Few Body Syst. 46, 1 (2009)]
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Flavour separated proton form factors
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Prima facie, these experimental results are remarkable
u and d quark sector form factors have very different scaling behaviour

However, when viewed in context of diquark correlations results are
straightforward to understand

e.g. in the proton the d quark is much more likely to be in a scalar diquark than
the doubly-represented u quark; diquark =⇒ 1/Q2 suppression

Results for F q2p are influenced at low Q2 by of magnetic moment
enhancement from axial-vector diquarks and dressed quarks: |µd| � |µu|

[ICC, W. Bentz, A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
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Nucleon to Resonance Transitions
Given the challenges posed by non-perturbative QCD it is not sufficient to
study hadron ground-states alone

Nucleon to resonance transition form factors provide a critical extension to
elastic form factors – providing many more windows and different
perspectives on quark-gluon dynamics

e.g. nucleon resonances are more sensitive to long-range effects in QCD than the
properties of ground states . . . analogous to exotic and hybrid mesons

Important example is N → ∆ transition – parametrized by three form factors

G∗E(Q2), G∗M (Q2), G∗C(Q2)

if both N and ∆ were purely S-wave then G∗E(Q2) = 0 = G∗C(Q2)

When analyzing the N → ∆ transition
it is common to construct the ratios:

REM = −G
∗
E

G∗M
, RSM = − |q|

2M∆

G∗C
G∗M

ℓ

q

k

k′

pN N

π

∆

θ
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N → ∆ form factor from the DSEs

Find that REM = − G∗
E

G∗
M

is a particular sensitive measure of quark orbital
angular momentum corrections in the nucleon and ∆

For RSM = − |q|
2M∆

G∗
C

G∗
M

DSEs reproduces rapid fall off with Q2

Perturbative QCD predictions are reproduced: REM → 1, RSM → constant
however these asymptotic results are not reached until incredibility large Q2; will
not be accessible at any present or foreseeable facility
analogous to PDFs, where asymptotic valence PDFs are delta functions, however
even at LHC energies this is far from the case

[J. Segovia, ICC, C. D. Roberts and S. M. Schmidt, Few Body Syst. 57, (2014)]
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Conclusion
QCD and therefore hadron physics is unique:

must confront a fundamental theory in which the elementary degrees-of-freedom
are confined and only hadrons reach detectors

A solid understanding of the pion is critical

DSEs & lattice agree that pion PDA is much broader than asymptotic result

using LO evolution find dilation remains significant for Q2 � 100 GeV2

Determined the pion form factor for all spacelike momenta

Q2 Fπ(Q2) peaks at 6 GeV2, with maximum directly related to DCSB
predict that QCD power law behaviour – with QCD’s scaling law violations – sets
in at Q2 ∼ 8 GeV2

Found that the location of a zero-crossing, or lack thereof, in proton GE/GM
form factor ratio is a senitive measure of underlying quark-gluon dynamics

Continuum-QCD approaches are essential; are at the forefront of guiding
experiment & provide rapid feedback; building intuition & understanding
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Form Factors in Conformal Limit (Q2 →∞)
At asymptotic energies hadron form factors factorize into parton distribution
amplitudes (PDAs) and a hard scattering amplitude [Brodsky, Lepage 1980]

only the valence Fock state (q̄q or qqq) can contribute as Q2 →∞
both confinement and asymptotic freedom in QCD are important in this limit

Most is known about q̄q bound states, e.g., for the pion:

P
D
A

P
D
A

P
D
A

For nucleon normalization is unknown

GE,M (Q2 →∞) ∝ α2
s(Q

2)/Q4

orbital angular momentum effects approach

P
D
A

P
D
A

Q2 Fπ(Q2)

→ 16π f2
π αs(Q

2)

Q2 Fγ∗γπ(Q2)→ 2 fπ
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Pion Cloud Contributions
When adding pion effects at the quark level there are two basic diagrams:

self-energy terms
+

exchange terms

This quark-level treatment should be equivalent to standard nucleon level
treatments

We will consider only self-energy terms
nucleon wave function does not change in this case
quark–photon vertex does however develop addition structures

p p′

µ

q

Z × +
p p′

µ

q

k

+
p p′k

µ

q

e.g. an anomalous magnetic moments, much larger charge and magnetic radii, etc
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Dressed Quark Form Factors
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Here results are in the Nambu–Jona Lasino (NJL) model
that is, gluon propagator is a delta function in position space

At intermediate Q2 inhomogeneous BSE quenches from factors
effect driven by ρ and ω poles at time-like Q2

Probability of striking quark with no pion is Z ' 0.8; key results:

rUE = 0.59 fm, rUM = 0.60 fm rDE = 0.73 fm, rDM = 0.67 fm

κU = 0.10 κD = −0.17 =⇒ κuU = 0.02 κdU = −0.25

[ICC, W. Bentz, A. W. Thomas, to be published]
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Pion contribution to PDFs
Dress quarks with pions
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Gottfried Sum Rule: NMC 1994: SG = 0.258± 0.017 [Q2 = 4 GeV2]

SG =

∫ 1

0

dx

x
[F2p(x)− F2n(x)] =

1

3
− 2

3

∫ 1

0

dx
[
d̄(x)− ū(x)

]
We find: SG = 1

3 − 4
9 (1− Z) = 0.252 [Z = 0.817]
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Proton Form Factor Results
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Results:

µp = 2.78µN µexp
p = 2.79µN

〈rE〉p = 0.86 fm 〈rM 〉p = 0.83 fm 〈rE〉exp
p = 0.85 fm 〈rM 〉exp

p = 0.84 fm

Pion increases anomalous magnetic moment by ∼ 30% & radii by ∼ 10%

No parameters are tuned to the proton form factors or in the pion cloud
contribution

Pion cloud contribution has correct chiral behaviour

[ICC, W. Bentz, A. W. Thomas, to be published]
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Neutron Form Factor Results
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Results:

µp = 1.81µN µexp
p = 1.91µN

〈rE〉p = −0.34 fm 〈rM 〉p = 0.86 fm 〈rE〉exp
p = −0.35 fm 〈rM 〉exp

p = 0.89 fm

Pion increases anomalous magnetic moment by ∼ 45%,
charge radius by ∼ 65% & magnetic radius by ∼ 20%

Effects driven by large d-quark anomalous magnetc moment

Pion cloud contribution has correct chiral behaviour

[ICC, W. Bentz, A. W. Thomas, to be published]

table of contents HHIQCD2015 43 / 36



Proton Quark Sector Form Factors
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Dramatic effect for F d2p, driven by very large κdU

[ICC, W. Bentz, A. W. Thomas, to be published]
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