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Motivation

Kaon semileptonic transition K0 → π-  |Vus|  

(semi)Exclusive weak processes  
Weak generalized parton distributions  
 Vector & tensor generalized form factors at spacelike region  
 Generalized transverse distributions for the transition  

Tensor form factor for the kaon transitions  
  Relevant lattice study is done [I. Baum et al, Phys.Rev.D 84, 074503 (2011)] 
   Reveals quark spin structure 
 



Weak DVCS & GPDs
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Kaon Transition GPDs for K0 →π-

Integrating over x with xn→  nth order Generalized Form Factors

GPDs: Matrix elements
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Polynomiality



GFFs for the Kaon Transition

Generalized form factors for the kaon transition K0→π-



Generalized form factors for the kaon transition K0→π-

GFFs for the Kaon Transition



n=0 generalized form factors for the kaon transition K0→π-

GFFs for the Kaon Transition
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Polynomiality
Mellin moments of the K0→π- transition GPDs
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Nonlocal Chiral Quark Model

✤ The chiral effective action 
derived from the instanton vacuum

✤ No free parameter  
- Average Instanton size & separation

✤ Nonlocality  
- Momentum-dependent dynamical quark mass 

✤ Nicely reproduces pion properties: Fpi, EMFF
✤ Explicit SU(❨3)❩ symmetry breaking 
 
 
        [D. Diakonov, Instantons at work, arXiv:hep-ph/0212026v4]  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✤ Current quark mass correction f(❨m)❩

 

✤ Dynamical quark mass at k=0  
 
                            [M. Musakhanov Eur.Phys.J.C9,235(❨1999)❩] 
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✤ Momentum-dependent dynamical quark mass

Nonlocal Chiral Quark Model



Calculation of the Vector Form Factors

[Nam, S.-I., & Kim, H. C. (2007) Phys. Rev. D, 75(9), 094011.]
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Calculation of the Tensor Form Factor

Pseudoscalar meson decay 
constants and masses

σµν

K0 π− K0 π−

σµν σµν

k1

k2 k3 k2 k3

a ) b )



QCD RG Evolution for the tensor form factor

[Glück et al. Zeits.Für.Phys. C.67, 433
Barone et al. Phys.Repts., 359, 1.]
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Numerical Results
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Comparison to Lattice Result

 I. Baum et al, μ = 2 GeV 

(Extrapolated to Physical meson masses)
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Matrix elements of the electromagnetic operator between kaon and pion states

I. Baum,1 V. Lubicz,2, 3 G. Martinelli,4 L. Orifici,2 and S. Simula3

(for the European Twisted Mass Collaboration)
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We compute the matrix elements of the electromagnetic (EM) operator s̄Fµνσ
µνd between kaon

and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynam-
ical quarks (Nf = 2). The operator is renormalized non-perturbatively in the RI’/MOM scheme
and our simulations cover pion masses as light as 270 MeV and three values of the lattice spac-
ing from ≃ 0.07 up to ≃ 0.1 fm. At the physical point our result for the corresponding tensor
form factor at zero-momentum transfer is fKπ

T (0) = 0.417(14stat)(5syst), where the systematic error
does not include the effect of quenching the strange and charm quarks. Our result differs signifi-
cantly from the old quenched result fKπ

T (0) = 0.78(6) obtained by the SPQcdR Collaboration with
pion masses above 500 MeV. We investigate the source of this difference and conclude that it is
mainly related to the chiral extrapolation. We also study the tensor charge of the pion and obtain
the value fππ

T (0) = 0.195(8stat)(6syst) in good agreement with, but more accurate than the result
fππ
T (0) = 0.216(34) obtained by the QCDSF Collaboration using higher pion masses.

PACS numbers: 11.15.Ha,12.38.Gc, 13.20.Eb

INTRODUCTION

Accurate measurements of hadron weak decays can
constrain the parameters of the Standard Model (SM)
and can place bounds on New Physics (NP) models. In
particular, the rare decays of the kaon are ideally suited
to search for new, possibly large CP-violating effects in
the light-quark sector (see Ref. [1]).

In this work we present a lattice study of the matrix
elements of the the electromagnetic (EM) operator be-
tween kaon and pion states, which may be relevant in
the CP-violating part of the K → πℓ+ℓ− semileptonic
decays. The study has been performed using the gauge
configurations generated [2] by the European Twisted
Mass Collaboration (ETMC) with Nf = 2 maximally
twisted-mass fermions [3, 4] and preliminary results have
been presented already in Ref. [5].

The EM operator involved in the weak s → d transi-
tion is given by s̄ Fµνσµνd, where Fµν is the EM field
tensor. Therefore its matrix elements between kaon and
pion states involve the ones of the weak tensor current,
which can be written in terms of a single form factor,
fKπ
T (q2), as

⟨π0|s̄σµνd|K0⟩ = (pµπp
ν
K − pνπp

µ
K)

√
2fKπ

T (q2)

MK +Mπ
, (1)

where q = (pK−pπ) is the 4-momentum transfer and the
factor (MK +Mπ)−1 is conventionally inserted in order
to make the tensor form factor dimensionless.

Our simulations cover pion masses as light as 270 MeV
and three values of the lattice spacing from ≃ 0.07 up to
≃ 0.1 fm. At the physical point our result for the K → π

tensor form factor at zero-momentum transfer is

fKπ
T (0) = 0.417 (14stat) (5syst) = 0.417 (15) . (2)

where the systematic error does not include any estimate
of the effect of quenching the strange and charm quarks.
Our finding differs significantly from the old quenched re-
sult fKπ

T (0) = 0.78(6) obtained in Ref. [6] by the SPQcdR
Collaboration with pion masses above ∼ 500 MeV. The
reason is mainly due to the non-analytic behavior of the
tensor form factor fKπ

T (0) in terms of the quark masses
introduced by the factor (MK+Mπ)−1 in the parameter-
ization (1). Such a behavior was not taken into account
in Ref. [6] (see later on).
In the case of the degenerate π → π transition, us-

ing the predictions of the Chiral Perturbation Theory
(ChPT) carried out in Ref. [7], we obtain for the tensor
form factor fππ

T (0), known as the tensor charge of the
pion, the following value

fππ
T (0) = 0.195 (8stat) (6syst) = 0.195 (10) , (3)

which improves the result fππ
T (0) = 0.216(34) obtained

by the QCDSF Collaboration [8] with simulations at
higher pion masses.

K → π RESULTS

We have performed the calculations of the relevant 2-
point and 3-point correlation functions using the ETMC
gauge configurations with Nf = 2 dynamical twisted-
mass quarks generated [2] at three values of the lattice
coupling β, namely the ensembles A2 − A4 at β = 3.8
(a = 0.098(4) fm), B1 − B7 at β = 3.9 (a = 0.085(3)
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Accurate measurements of hadron weak decays can
constrain the parameters of the Standard Model (SM)
and can place bounds on New Physics (NP) models. In
particular, the rare decays of the kaon are ideally suited
to search for new, possibly large CP-violating effects in
the light-quark sector (see Ref. [1]).

In this work we present a lattice study of the matrix
elements of the the electromagnetic (EM) operator be-
tween kaon and pion states, which may be relevant in
the CP-violating part of the K → πℓ+ℓ− semileptonic
decays. The study has been performed using the gauge
configurations generated [2] by the European Twisted
Mass Collaboration (ETMC) with Nf = 2 maximally
twisted-mass fermions [3, 4] and preliminary results have
been presented already in Ref. [5].

The EM operator involved in the weak s → d transi-
tion is given by s̄ Fµνσµνd, where Fµν is the EM field
tensor. Therefore its matrix elements between kaon and
pion states involve the ones of the weak tensor current,
which can be written in terms of a single form factor,
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T (q2), as

⟨π0|s̄σµνd|K0⟩ = (pµπp
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where q = (pK−pπ) is the 4-momentum transfer and the
factor (MK +Mπ)−1 is conventionally inserted in order
to make the tensor form factor dimensionless.
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≃ 0.1 fm. At the physical point our result for the K → π
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fKπ
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where the systematic error does not include any estimate
of the effect of quenching the strange and charm quarks.
Our finding differs significantly from the old quenched re-
sult fKπ

T (0) = 0.78(6) obtained in Ref. [6] by the SPQcdR
Collaboration with pion masses above ∼ 500 MeV. The
reason is mainly due to the non-analytic behavior of the
tensor form factor fKπ

T (0) in terms of the quark masses
introduced by the factor (MK+Mπ)−1 in the parameter-
ization (1). Such a behavior was not taken into account
in Ref. [6] (see later on).
In the case of the degenerate π → π transition, us-

ing the predictions of the Chiral Perturbation Theory
(ChPT) carried out in Ref. [7], we obtain for the tensor
form factor fππ

T (0), known as the tensor charge of the
pion, the following value

fππ
T (0) = 0.195 (8stat) (6syst) = 0.195 (10) , (3)

which improves the result fππ
T (0) = 0.216(34) obtained

by the QCDSF Collaboration [8] with simulations at
higher pion masses.

K → π RESULTS

We have performed the calculations of the relevant 2-
point and 3-point correlation functions using the ETMC
gauge configurations with Nf = 2 dynamical twisted-
mass quarks generated [2] at three values of the lattice
coupling β, namely the ensembles A2 − A4 at β = 3.8
(a = 0.098(4) fm), B1 − B7 at β = 3.9 (a = 0.085(3)

 Present work @ μ = 2 GeV
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p-pole Parametrization

p-pole parametrization

p 1.31 2.2

M [GeV] 0.85 0.78

t=0 0.95 0.71

is this slide necessary?

BK⇡
T1,0(t)AK⇡

1,0 (t)



Transverse Charge Density
Transverse charge density for the kaon transition K0→π- 
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How the quark with polarized spin is distributed 

in the transverse plane during the K-π transition process

Transverse Quark Spin Density

Quarks with definite transverse polarization s

Transverse quark spin density, ξ=0
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[M. Diehl & Ph. Hägler, Eur. Phys. J. C 44, 87–101 (2005)]



Transverse Quark Spin Density
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Transverse Quark Spin Density

µ = 0.6 GeV µ = 2.0 GeV



Transverse Quark Spin Density
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Transverse Quark Spin Density
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Summary & Outlook

• K → π generalized transition form factors (n=0)


• In good agreement with the lattice result 

• Distorted quark spin structure when the quark 
spin is polarized 


• Further studies on the wGPDs & GFFs



Thank you very much!



Generalized Parton Distributions

[D. Brömmel, Pion Structure Frome the Lattice, Regensburg Univ., Thesis] 
2 Generalised Parton Distributions
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a | Form factor
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b | GPD, ξ = 0
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q(x, b⊥)
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!! ∆→0 ""

c | Parton density

0

q(x)

x

Figure 2.1 | A simplified sketch of the different phenomenological observables and their
interpretation in the infinite momentum frame: a | The form factor as a charge density in
the perpendicular plane (after a Fourier transform, Sec. 1.2). b | A probabilistic interpre-
tation for GPDs in the case of vanishing longitudinal momentum transfer, ξ = 0, with a
resolution ∼ 1/Q2. c | A parton distribution for the forward momentum case (Sec. 1.3).
For a detailed explanation see text. [Pictures inspired by [17]]

(conventionally the z-direction) they can be seen as Lorentz contracted ‘discs’ rather than
spherical objects.1 We will later argue that this infinite momentum frame is necessary for
the GPDs. For the moment, we thus think of a two-dimensional distribution with respect
to b⊥ in the transverse plane, sketched in Fig. 2.1.a. The z-direction is also suppressed in
favour of the fractional (longitudinal) momentum x of the partons.

The second process led to parton distribution functions (PDFs) q(x) with the momentum
fraction x carried by the parton. They give the probability of finding the parton q with
this momentum inside the hadron and they are sketched in Fig. 2.1.c. One can also give a
resolution ∼ 1/Q2 that can be resolved inside the hadron. So for different Q2 partons of
a ‘different size’ can be probed, consequently the parton content of the hadron changes.

To achieve a deeper understanding of the distribution of the quarks inside the hadron, it
would be nice to combine the two cases, i.e. know the distribution in the transverse plane
for quarks with a given momentum fraction. This is exactly one interpretation of GPDs.
During the discussion of the form factor and the PDFs, we already mentioned the similarity
of the matrix elements appearing in Eqs. (1.5) and (1.10). The initial and final states of
the two processes differed only in their momenta (after applying the optical theorem).
There are indeed processes with different asymptotic states that can be related to the two
aforementioned, thus coining the term generalised distributions. We will later consider
the problems arising from the complete freedom of the two momenta. For the moment,
note that a density interpretation is possible if the longitudinal momentum transfer ξ
vanishes. A Fourier transform of the remaining transverse momentum transfer then yields

1Neglecting relativistic corrections, this would not be necessary for the form factor where we have elastic
scattering with momenta down to zero.

10

GPD, ξ=0 Parton distributionForm factors



DVCS & GPDs

DVCS
GPDs

pQCD

e(k)

e(k’)

e(k)

e(k’)

γ*

γ

γ*
γ

φ(pi) φ(pi)φ(pf) φ(pf)

X+ξ X-ξ

Light cone frame

Factorization : [Collins, J., & Freund, A. (1999).Phys. Rev. D, 59(7), 074009.]



Kaon l3 decay

The decay amplitude

Weak leptonic element

Hadronic matrix element



Hadronic Matrix Elements

✤  Vector transition

✤  Tensor transition

✤  Scalar transition



[S.-i. Nam and H.-Ch. Kim, Phys. Rev. D 75, 094011 (❨2007)❩.]

where
!!!!!!!!!!!!!
Mf!k"

q
# @

!!!!!!!!!!!!!
Mf!k"

q
=@k!!. The local (a), nonlocal

(b), and nonlocal (c) contributions correspond to the dia-
grams (a), (b), and (c) in Fig. 1, respectively.

IV. RESULTS AND DISCUSSIONS

We now discuss various numerical results for the kaon
semileptonic decay (Kl3) form factors in the present work.
We facilitate the Breit-momentum framework for the cal-
culation, since we are free to choose an arbitrary momen-
tum framework because of the Lorentz invariance. The
relevant momenta for the calculation are defined as follows
($Q2 % t > 0):
 

p #
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0; 0; i

!!
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p

2
;

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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K $m2

" & t
4
!!
t
p

s #
; q # !0; 0;$i

!!
t
p
; 0";

k # !kr sin# sin cos$; kr sin# sin sin$;

kr sin# cos ; kr cos#; ": (28)

We first consider the case ofKe3. Since the electron mass
is negligible in comparison to those of the pion and the
kaon, it can be set to be zero. In the left panel of Fig. 2, we
draw the numerical results for fe&!t" (solid), fe$!t" (dot-
ted), and fe0!t" (dashed) within the physically accessible
regions constrained by Eq. (13). Note that the scalar form
factor fe0!t" is derived by using Eq. (6). We observe that
the fe&!t" and fe0!t" are almost linearly increasing func-
tions of t, whereas fe$!t" decreases. At t # 0, our results
demonstrate that fe&!0" # fe0!0" # 0:947 and fe$!0" #
$0:137. In the chiral limit, fe&!0" and fe$!0" should be
unity and zero, respectively, which is related to the
Ademollo-Gatto theorem in the case of pseudo-
Goldstone bosons [3–5]:

 lim
q!0

Flocal!a"
! ’ 2p! &O!mq": (29)

The Ademollo-Gatto theorem in Eq. (29) can be easily
tested in the nonlocal %QM. Considering q! 0 and ignor-
ing the terms being proportional to k ' p, we can rewrite the
leading contribution of Eq. (26) to order O!mq" as follows:

 lim
q!0

Flocal!a"
! ’ 2(1& R!ms")p!; (30)

where
 

R!ms" #
1

2

$Z d4k
!2""4

M2!k"ms(ms & 2M!k")
(k2 &M2!k")3

%

*
$Z d4k
!2""4

M2!k"
(k2 &M2!k")2

%$1
: (31)

To evaluate Eq. (30), we employ the ratio FK=F" com-
puted within the same framework and expanded in terms of
the strange quark mass (ms) (see Refs. [20,33–38] for
more details):

 

FK
F"
’ 1& R!ms": (32)

We also use that kb # kc ! k& p=4 since these two mo-
menta share p=2 as q! 0. Note that we consider only the
local contribution for FM in Eq. (32). We, however, veri-
fied that the nonlocal contributions in Eq. (27) also satisfy
the Ademollo-Gatto theorem analytically.

The effect of flavor SU(3) symmetry breaking is found
to be rather small in the Ke3 form factor, i.e. its effect is
around 5%. In other approaches, for example, in %PT, the
Ke3 form factor is known to be fe&!t" # 0:961+ 0:008
[2], in LQCD, fe&!0" # 0:960+ 0:009 [12], and 0:952+
0:006 [11].

In the right panel of Fig. 2 we draw the ratio of fe&!t"
and fe&!0" with respect to the CPLEAR experimental data
[39], and linear (dashed) and quadratic (dotted) fits for the
ratio using the PDG data [8]: &e& # !2:960+ 0:05" *
10$2, &0e& # !2:485+ 0:163" * 10$2, and &00e& #
!1:920+ 0:062" * 10$3. In the present calculation, we
obtain &e& # 3:028* 10$2 for the linear fit, which is
very close to the experimental one, 2:960* 10$2. Since
our result for fe& is almost linear as shown in Fig. 1, we get
almost a negligible value for the slope parameter &00 when
the quadratic fit is taken into account. Being compared
with other model calculations, the present results are com-
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FIG. 2. Ke3 form factors, fe&!t" (solid), fe$!t" (dotted), and fe0!t" (dashed) are shown in the left panel, while in the right panel the
ratio of fe&!t" and fe&!0" is given (solid). We also draw the CPLEAR experimental data [39], and linear (dashed) and quadratic
(dotted) fits using the PDG data [8].
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Vector form factors
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GFFs & Transverse Densities for the Kaon Transition
K^0 스테이트에 ( p_i)가 빠져있다 ㅠㅠㅠㅠ
ㅠ

Transverse densities:  
2D Fourier transformation into the impact parameter b⊥ at ξ=0

Probability distribution of the partons inside the hadrons

in the transverse impact parameter plane

Generalised form factors for kaon transitions: n =1



Transverse Spin Density
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Singular Behaviour of Transverse Densities

Perturbative QCD prediction: Form factor

[G.A. Miller, Phys.Rev.C 79, 055204(❨2009)❩]

Fourier transformation
Logarithmically divergent 

 at b=0 for p=1.
Singular when p<1.5


