Selected results on hadron structure

C. Alexandrou University of Cyprus and Cyprus Institute

Hadrons and Hadron Interactions in QCD 27th February 2015

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Outline

Introduction

- Computer and algorithmic developments
- Fermion action
- Wilson twisted mass lattice QCD

2 Simulations with physical quark masses

5

Hadron masses

- Nucleon
- Hyperons and Charmed baryons

Nucleon structure

- Axial charge g_A
- Scalar and tensor charges
- Moments of parton distributions
- Proton spin puzzle
- Electromagnetic form factors

Structure of other hadrons

- Resonance parameters for baryons
- Axial charges

Conclusions

Computer and algorithmic development

Algorithm development has been decisive

Fermion actions

Observables: $\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{\{U_{\mu}\}} O(D^{-1}, U_{\mu})$

Several $\mathcal{O}(a)$ -improved fermion actions, K. Jansen, Lattice 2008 $\langle O \rangle_{cont} = \langle O \rangle_{latt} + \mathcal{O}(a^2)$

Action	Advantages	Disadvantages	
Clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement	
Twisted mass (TM)	computationally fast automatic improvement	breaks chiral symmetry violation of isospin	
Staggered	computational fast	four doublers (fourth root issue)	
Domain wall (DW)	improved chiral symmetry	computationally demanding needs tuning	
Overlap	exact chiral symmetry	computationally expensive	

Several collaborations:

Clover	QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted mass	ETMC
Staggered	MILC
Domain wall	RBC-UKQCD, JLQCD
Overlap	JLQCD

Wilson twisted mass lattice QCD

• $N_f = 2: \psi = \begin{pmatrix} u \\ d \end{pmatrix}$ Change of variables: $\psi = \frac{1}{\sqrt{2}} [\mathbf{1} + i\tau^3 \gamma_5] \chi$ $\bar{\psi} = \bar{\chi} \frac{1}{\sqrt{2}} [\mathbf{1} + i\tau^3 \gamma_5]$ \Rightarrow mass term: $\bar{\psi} m \psi = \bar{\chi} i \gamma_5 \tau^3 m \chi$

$$S = S_g + a^4 \sum_x \bar{\chi}(x) \left[\frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla^*_\mu) - \frac{ar}{2} \nabla_\mu \nabla^*_\mu + m_{\rm crit} + i \gamma_5 \tau^3 \mu \right] \chi(x)$$

Simulations by ETMC: Ph. Boucaud *et al.*, Comput.Phys.Commun. 179 (2008) 695; Phys.Lett. B650 (2007) 304 ● *N_f* = 2 + 1 + 1

$$S_{h} = \sum_{x} \bar{\chi}_{h}(x) \left[D_{W} + m_{\text{crit}} + i\gamma_{5}\tau^{1}\mu_{\sigma} + \tau^{3}\mu_{\delta} \right] \chi_{h}(x)$$

Simulations by ETMC: R. Baron et al., JHEP 1006(2010) 111

• $N_f = 2$ twisted mass plus clover with $c_{SW} = 1.57551$ \rightarrow a good formulation for simulations at the physical point, (ETMC) A. Abdel-Rehim *et al.*, arXiv:1311.4522 and arXiv:1411.6842

→ results at physical point, (ETMC) C. Alexandrou et al., PoS LATTICE2013 (2014) 292

Wilson tmQCD at maximal twist, R. Frezzotti, G. C. Rossi, JHEP 0408 (2004) 007

- Automatic O(a) improvement

European Twisted Mass Collaboration

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

A. Abdel-Rehim, K. Cichy, M. Constantinou, V. Drach, E. Garcia Ramos, K. Hadjiyiannakou, K.Jansen Ch. Kallidonis, G. Koutsou, K. Ottnad, M. Petschlies, F. Steffens, A. Strelchenko, A. Vaquero, C. Wiese

Simulations with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, ETMC

Simulation cost: $C_{\rm sim} \propto \left(\frac{300 \text{MeV}}{m_{\pi}}\right)^{c_m} \left(\frac{L}{3 \text{fm}}\right)^{c_L} \left(\frac{0.1 \text{fm}}{a}\right)^{c_a}$ We find $c_L \sim 4.5$ and $c_m \sim 2$ for a fixed lattice spacing.

Thanks B. Kostrzewa and G. Koutsou

Simulations with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass: MILC, BMW, PACS-CS, QCDSF, CLS, ETMC

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions

Inversion cost (for a lattice of 64³ x128, $Lm_{\pi} = 4$):~ $e^{(m_p - \frac{3}{2}m_{\pi})t_s}$

Deflation of lower eigenvalues essential for computations at the physical point \rightarrow reduction of cost by \sim 20 times.

Pion decay constant by BMW

NLO SU(2) chiral perturbation theory for m_π < 300 MeV, S. Durr *et al.*, 1310.3626

Hadron masses

The nucleon

- Cut-off effects small for these lattice spacings
- LO fit with $m_{\pi} < 375$ MeV does not include the physical point
- Complete agreement with experimental value
- Determine lattice spacing using the O(p³) result,
 - $\rightarrow a = 0.094(2)(2)$ fm, $\sigma_{\pi N} = 65(2)(13)$ MeV and $r_0 \sim 0.499(2)$ fm

Isospin breaking

Mass splitting for the Δ for different types of actions.

Mass splitting for the Σ for different types of actions.

Isospin breaking

Mass splitting for the Ξ_{cc} for different types of actions.

Mass splitting for the Ξ_{qq}^* for different types of actions.

SU(4) representations:

$4\otimes 4\otimes 4$	=	$20 \ \oplus \ 20 \oplus 20 \oplus \overline{4}$
	=	

First goal: reproduce the low-lying masses

Also $N_f = 2 + 1 + 1$ results: C.A., V. Drach, K. Jansen, <u>Ch. Kallidonis</u>, G. Koutsou, arXiv:1406.4310

Chiral extrapolation using SU(2) to $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$, B. Tiburzi and A. Walker-Loud, arXiv:0808.0482

- continuum limit taken
- finite volume effects checked
- systematic error due to the chiral extrapolation estimated biggest uncertainty

SU(4) representations:

$4\otimes 4\otimes 4$	=	$20 \ \oplus \ 20 \oplus 20 \oplus \overline{4}$
	=	

First goal: reproduce the low-lying masses and make predictions Also $N_f = 2 + 1 + 1$ results: C.A., V. Drach, K. Jansen, Ch. Kallidonis, G. Koutsou, arXiv:1406.4310

- continuum limit taken
- finite volume effects checked
- systematic error due to the chiral extrapolation estimated biggest uncertainty

$\begin{array}{ccc} \mathsf{SU}(4) \text{ representations:} \\ 4 \otimes 4 \otimes 4 &=& 20 \oplus 20 \oplus 20 \oplus \overline{4} \\ \Box \otimes \Box \otimes \Box &=& \Box \Box \oplus \Box \oplus \Box \oplus \Box \oplus \Box \oplus \Box \end{array}$

Results by ETM Collaboration using $N_f = 2$ simulations with physical pion mass for one lattice volume and lattice spacing a = 0.094(2)(2) fm, C. A. arXiv:1411.3495

SU(4) representations: $4 \otimes 4 \otimes 4 = 20 \oplus 20 \oplus 20 \oplus \overline{4}$ $\Box \otimes \Box \otimes \Box = \Box \Box \oplus \Box \oplus \Box \oplus \Box \oplus \Box$

Results by ETM Collaboration using $N_f = 2$ simulations with physical pion mass for one lattice volume and lattice spacing a = 0.094(2)(2) fm, C. A. arXiv:1411.3495

- N_f = 2 + 1 + 1 twisted mass, 32³ × 64, a=0.082 fm, m_π = 373 MeV-high statistics analysis including disconnected contributions, 7 sink-source time separations ranging from 0.5 fm to 1.5 fm
- N_f = 2 twisted mass plus clover, 48³ × 96, a = 0.094 fm, m_π = 130 MeV, ~ 1400 confs, 4 sink-source time separations ranging from 0.9 fm to 1.5 fm
- Ground state dominance
 - nucleon axial charge g_A, tensor charge weak, S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076
 - momentum fraction $\langle x \rangle_{u-d}$, electromagnetic form factors intermediate
 - nucleon scalar charge (equivalently σ-terms) severe
- Disconnected contributions computed only for pion mass down to about 300 MeV
 - nucleon scalar charge, axial charge need to be taken into account C. Alexandrou et al., arXiv:1309.2256; A. A. Rehim et al., arXiv:1310.6339
 - small for EM form factors

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

- M the desired matrix element; t_s, t_{ins}, t₀ the sink, insertion and source time-slices; Δ(p) the energy gap with the first excited state
- Identification of hadron state of interest dependent on \mathcal{O}_{Γ} i.e. different for g_A , σ -terms, EM form factors
- Connect lattice results to measurements:

 *O*_{MS}(μ) = Z(μ, a)O_{latt}(a) ⇒ evaluate Z(μ, a) non-perturbatively

Evaluation of three-point functions:

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

Plateau method:

$$R(t_{s}, t_{ins}, t_{0}) \xrightarrow{(t_{ins}-t_{0})\Delta \gg 1}_{(t_{s}-t_{ins})\Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{ins}-t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{s}-t_{ins})}]$$

Summation method: Sum over t_{ins}:

$$\sum_{t_{ins}=t_0}^{t_s} R(t_s, t_{ins}, t_0) = \text{Const.} + \mathcal{M}[(t_s - t_0) + \mathcal{O}(e^{-\Delta(\mathbf{p})(t_s - t_0)}) + \mathcal{O}(e^{-\Delta(\mathbf{p}')(t_s - t_0)})]$$

- Excited state contributions are suppressed by exponentials decaying with $t_s t_0$, rather than $t_s t_{ins}$ and/or $t_{ins} t_0$
- Also works if one does not include t_0 and t_s in the sum \rightarrow used for the results shown here
- However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant

L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani et al., arXiv:1205.0180

Fit $R(t_s, t_{ins}, t_0)$ including the first excited state, T. Bhattacharya et al., arXiv:1306.5435

All should yield the same answer in the end of the day!

Nucleon charges

- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$

 $\implies \langle N(\vec{p'}) \mathcal{O}_{\Gamma} N(\vec{p}) \rangle |_{q^2=0}$ yeilds g_s, g_A, g_T

(i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, g_T to be measured

Planned experiment at JLab, SIDIS on ³He/Proton at 11 GeV:

Experimental values: $g_T^u = 0.39^{+0.18}_{-0.12}$ and $g_T^d = -0.25^{+0.3}_{-0.1}$

• axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$

• tensor operator:
$$\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$$

• scalar operator:
$$\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$$

High-statistics study (1200 confs) for $N_f=2+1+1$ twisted mass fermions at $m_\pi\sim 370$ MeV for the connected contributions.

Axial charge g_A

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_p(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

2.0 Summation isov. t_s = 8a isos. t_s = 8a isov 2.0 isov. t_s =12a isos. t_s =12a isos isov. t. =14a isos. t_e =14a 15 isos. t. =16a isov. t. =16a
$$\begin{split} \tilde{R}(t_{ins},t_s) \rightarrow g_A^{u\,\pm d} \\ 0.1 \\ 0.1 \\ \end{split}$$
isov. t. =18a isos. t_s =18a $\sum_{t_{ims}} \tilde{R}(t_{ims}, t_s)$ 10 5 0.5 -5 10 12 16 -10n 5 10 4 6 8 14 18 $(t_{ins}-t_s/2)/a$ t₄/a

 $N_f = 2 + 1 + 1$ twisted mass. a = 0.082 fm. $m_{\pi} = 373$ MeV. 1200 statistics

- No detectable excited states contamination ۰
- ۲ Consistent results between summation and plateau methods

Scalar charge

• High statistics analysis with $N_f = 2 + 1 + 1$ TMF, a = 0.082 fm, $m_{\pi} = 373$ MeV

Agreement of summation, plateau and two-states fits give confidence to the correctness of the final result

g_A: No detectable excited states

g_T: similar to g_A

g_s: severe contamination from excited states

Nucleon charges

• axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$

• tensor operator:
$$\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$$

• scalar operator:
$$\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$$

(

1400 confs for $N_f=2$ twisted mass fermions at $m_\pi\sim$ 130 MeV for the connected contributions \rightarrow need more statistics to reach the same accuracy as that at $m_\pi\sim$ 370 MeV.

Axial charge g_A

The good news:

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_{\rho}(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally & ii) no quark loop contributions

ETM Collaboration

 g_A at the physical point mass indicates agreement with the physical value → important to reduce error

many results from other collaborations e.g.

• N_f = 2 + 1 Clover, LHPC, J. R. Green *et al.*, arXiv:1209.1687

- N_f = 2 Clover, QCDSF, R.Hosley et al., arXiv:1302.2233
- N_f = 2 Clover, CLS, S. Capitani et al. arXiv:1205.0180

• N_f = 2 + 1 Clover, CSSM, B. J. Owen *et al.*, arXiv:1212.4668

- N_f = 2 + 1 + 1 Mixed action (HISQ/Clover), PNDME, T. Bhattacharya *et al.*, arXiv:1306.5435
- N_f = 2 Clover G. Bali *et al.*, arXiv:1412.7336

Nucleon isovector charges: gA, gs, gT

- g_A at the physical point mass indicates agreement with the physical value → important to reduce error - many results from other collaborations
- Experimental value of $g_T \sim 0.54^{+0.30}_{-0.13}$ from global analysis of HERMES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013)
- Large excited state contributions to g_s: increasing the sink-source time separation to ~ 1.5 fm is crucial

Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x̄_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise → large statistics

- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes

Disconnected quark loop contributions

Notoriously difficult

- L(x_{ins}) = Tr [ΓG(x_{ins}; x_{ins})] → need quark propagators from all x̄_{ins} or L³ more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics
- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_r$ more expensive that hadron masses with $N_r \ll L^3$
- Reduce noise by increasing statistics ⇒ take advantage of graphics cards (GPUs) → need to develop special multi-GPU codes

A Fermi card

Cluster of 8 nodes of Fermi GPUs

Notoriously difficult

- $L(x) = Tr [\Gamma G(x; x)] \rightarrow \text{need all-to-all propagator}$
- Large gauge noise → large statistics

- Use stochastic noise $\eta \to \text{solve } Dv_r = \eta_r, r = 1, \dots, N_r \to D^{-1} = \lim_{N_r \to \infty} \frac{1}{N_r} \sum_{j=1}^{N_r} |s_j\rangle \langle \eta_j|$
- Reduce noise by increasing statistics
 ⇒ Take advantage of graphics cards (GPUs) → Develop fast contraction multi-GPU codes in QUDA package
- For scalar charge (and σ-terms) a good signal is obtained with N_r = 24 in combination of using advantages of the twisted mass formulation
- For other disconnected contributions one has large stochastic noise → Reduce noise by increasing statistics at low cost → use low precision inversions and correct bias (truncated solver method (TSM)), G. Bali, S. Collins and A. Schäfer, PoSLat2007, 141; G. Bali et al., arXiv:1111.1600

$$D^{-1} = \lim_{N_{HP} \to \infty} \frac{1}{N_{HP}} \sum_{j=1}^{N_{HP}} \left[|s_j| > <\eta_j|_{HP} - |s_j| > <\eta_j|_{LP} \right] + \frac{1}{N_{LP}} \sum_{j=N_{HP}+1}^{N_{HP}+N_{LP}} |s_j| > <\eta_j|_{LP}$$

with $D|s_j >= |\eta_j >$

- Need to tune in addition to the high precision noise vectors N_{HP} and number of low precision vectors N_{LP}
- Since the LP sources don't require an accurate inversion, we can take advantage of the half precision algorithms for GPUs - use the QUDA library
- To compute the isoscalar disconnected contribution to g_A , we use $N_{\rm HP} = 24$ and $N_{\rm LP} \ge 500$

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Selected results on hadron structure

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

Tunning of Truncated solver parameters

 $N_f = 2 + 1 + 1$ twisted mass, *a* = 0.082 fm, *m*_{π} = 373 MeV

Singlet renormalization deviates from non-singlet starting at $O(a^2)$ in perturbation theory, found to be small, A. Skouroupathis and H. Panagopoulos, Phys. Rev. D 79, 094508 (2009) We neglected this difference as well as the mixing for now

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadijiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadijiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

Singlet renormalization deviates from non-singlet starting at $\mathcal{O}(a^2)$ in perturbation theory, found to be small, A. Skouroupathis and H. Panagopoulos, Phys. Rev. D 79, 094508 (2009) We neglected this difference as well as the mixing for now

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, $\sim 150,000$ statistics (on 4700 confs)

Singlet renormalization deviates from non-singlet starting at $O(a^2)$ in perturbation theory, found to be small, A. Skouroupathis and H. Panagopoulos, Phys. Rev. D 79, 094508 (2009) We neglected this difference as well as the mixing for now

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadijiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126 C.A., K. Hadijiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

Nucleon scalar charge g_s^{u+d}

- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV
- \bullet Disconnected part, \sim 150 000 statistics using GPUs

Use property of TFM: $D_u - D_d = 2i\mu a\gamma_5 \rightarrow D_u^{-1} - D_d^{-1} = -2i\mu aD_d^{-1}\gamma_5 D_u^{-1}$

 \implies Fluctuations are reduced by the μ factor and product brings a sum over V terms leading to improved signal-to-noise

Nucleon scalar charge g_s^{u+d}

- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV
- \bullet Disconnected part, \sim 150 000 statistics using GPUs

Nucleon charges: g_s^{u+d} , g_T^q

- $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV
- \bullet Disconnected part, \sim 150 000 statistics using GPUs

Large source-sink separation and inclusion of disconnected is required

Experimental values from global analysis of HER-MES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013)

Nucleon moments of parton distribution

What is the distribution of the nucleon momentum among the nucleon constituents? \rightarrow needs knowledge of the parton distribution functions (PDFs) One measures moments of parton distributions,in DIS:

- Unpolarized moments: $\langle x^n \rangle_q = \int_0^1 dx x^n \left[q(x) (-1)^n \bar{q}(x) \right] , \qquad q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$
- Helicity moments: $\langle x^n \rangle_{\Delta q} = \int_0^1 dx x^n \left[\Delta q(x) + (-1)^n \Delta \bar{q}(x) \right] , \qquad \Delta q(x) = q(x)_{\downarrow} q(x)_{\uparrow}$
- Transversity moments: $\langle x^n \rangle_{\delta q} = \int_0^1 dx x^n \left[\delta q(x) (-1)^n \delta \bar{q}(x) \right] , \qquad \delta q(x) = q(x)_\perp + q(x)_\perp$
- $q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$ $\Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow}$ $\delta q(x) = q(x)_{\perp} + q(x)_{\top}$

Nucleon moments of parton distribution

Nucleon spin puzzle

Since 1987 we know that quarks can account for only a small portion of a proton spin

Who carries the rest?

 \rightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

Nucleon spin puzzle

Who carries the rest?

ightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{q} + J^{G}$$

 $J^q = \frac{1}{2} \left(A^q_{20}(0) + B^q_{20}(0) \right)$ and $\Delta \Sigma^q = g^q_A$

Connected only, except for one ensemble at $m_{\pi} = 373$ MeV where we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- $L^d \sim -L^u$
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Contributions from J^G?

 \rightarrow on-going efforts to measure J_G at RHIC using polarized protons, E. R.Nocera *et al.* (NNPDF Collaboration), arXiv:1406.5539

 \rightarrow first efforts to compute J_G in lattice QCD e.g. K.-F. Liu (χ QCD), arXiv:1203.6388; C.A. *et al.*, arXiv:1311.3174

Nucleon spin puzzle

Who carries the rest?

ightarrow needs knowledge of the parton distribution functions (PDFs) measured in DIS

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{q} + J^{G}$$

 $J^q = \frac{1}{2} \left(A^q_{20}(0) + B^q_{20}(0) \right)$ and $\Delta \Sigma^q = g^q_A$

Connected only, except for one ensemble at $m_{\pi} = 373$ MeV where we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- $L^d \sim -L^u$
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Contributions from J^G?

 \rightarrow on-going efforts to measure J_{G} at RHIC using polarized protons, E. R.Nocera *et al.* (NNPDF Collaboration), arXiv:1406.5539

 \rightarrow first efforts to compute J_G in lattice QCD e.g. K.-F. Liu (χ QCD), arXiv:1203.6388; C.A. *et al.*, arXiv:1311.3174

Selected results on hadron structure

The quark content of the nucleon

- σ_I ≡ m_I⟨N|ūu + dd|N⟩: measures the explicit breaking of chiral symmetry Extracted from analysis of low-energy pion-proton scattering data Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ_I, J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$
- Similarly $\sigma_s \equiv m_s \langle N | \bar{s}s | N \rangle >= m_s \frac{\partial m_N}{\partial m_s}$
- The strange quark content of the nucleon: $y_N = \frac{2\langle N|\hat{s}s|N\rangle}{\langle N|\hat{u}u+\hat{\sigma}d|N\rangle} = 1 \frac{\sigma_0}{\sigma_1}$, where σ_0 is the flavor non-singlet
- A number of groups have used the spectral method to extract the σ-terms, R. Young, Lattice 2012 But they can be also calculated directly

The quark content of the nucleon

- $\sigma_l \equiv m_l \langle N | \bar{u}u + \bar{d}d | N \rangle$:
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$
- Similarly $\sigma_s \equiv m_s \langle N | \bar{s}s | N \rangle >= m_s \frac{\partial m_N}{\partial m_s}$
- The strange quark content of the nucleon: $y_N = \frac{2\langle N|\frac{3s}{N}N\rangle}{\langle N|\frac{3u}{2u}+\frac{3d}{d}|N\rangle} = 1 \frac{\sigma_0}{\sigma_1}$, where σ_0 is the flavor non-singlet
- A number of groups have used the spectral method to extract the σ -terms, R. Young, Lattice 2012 But they can be also calculated directly

Using $\sigma_s = \frac{1}{2} \frac{m_s}{m_l} y_N \sigma_l$ we find σ_s to be less $\sim 150 \text{ MeV}$

Electromagnetic form factors

 $\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$

- Proton radius extracted from muonic hydrogen is 7.7 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate

Electromagnetic form factors

$$\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$$
The good news

ood news

Two studies at near physical pion mass:

- ETMC: $N_f = 2$ twisted mass with clover, a = 0.094 fm, $m_{\pi} = 130$ MeV, 1020 statistics
- MIT: $N_f = 2 + 1$ clover produced by the BMW collaboration, a = 0.116 MeV, $m_{\pi} = 149$ MeV, ~ 7750 statistics, J.M. Green et al. 1404,4029

Agreement even before taking the continuum limit

σ

ß =====

Dirac and Pauli radii

Dipole fits:
$$\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2}|_{Q^2=0} = \frac{12}{M_i^2}$$

Dirac and Pauli radii

Dipole fits:
$$\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2} |_{Q^2=0} = \frac{12}{M_i^2}$$

Need better accuracy at the physical point

Using results from summation method, J. M. Green et al., 1404.4029

Momentum dependence of form factors

Avoid model dependence-fits: As a first step we calculated $G_M(0)$ (equivalently $F_2(0)$) at $m_{\pi} = 373$ MeV.

Use position space methods: Apply derivative to ratio

$$\lim_{Q^2 \to 0} \frac{\partial}{\partial q_j} R(t_{s}, t_{\text{ins}}, t_0) = \lim_{Q^2 \to 0} \frac{\langle \frac{\partial}{\partial q_j} C^{3pt}(t_{s}, t_{\text{ins}}, \vec{q}) \rangle}{\langle C^{2pt}(t_{s}, \vec{0}) \rangle}$$

C.A., G. Koutsou, K. Ottnad, M. Petschlies, PoS(Lattice2014), 144

Structure of other hadrons

Decay width of baryons

Use the transition amplitude method, C. McNeile, C. Michael, P. Pennanen, PRD 65 094505 (2002) Test the method for the Δ

• Restrict to the Δ and πN states \rightarrow transfer matrix $T = e^{-a\tilde{E}} \begin{pmatrix} e^{-a\delta/2} & ax \\ ax & e^{+a\delta/2} \end{pmatrix}$

• Need $E_{\Delta} \sim E_{\pi} + E_N$

 \implies compute transition amplitude $x = \langle \Delta | N\pi \rangle$ from the correlator $G^{\Delta \rightarrow N\pi}$ Hybrid calculation at $m_{\pi} \sim 360$ MeV with L = 3.6 fm

$$R(t) = \frac{G^{\Delta \to \pi N}(t, \vec{Q}, \vec{q})}{\sqrt{G^{\Delta}(t, \vec{q}) G^{N\pi}(t, \vec{Q}, \vec{q})}} \sim A + B \frac{\sinh(\Delta t/2)}{\sinh(a\Delta/2)}$$
$$\sim A + Bt$$

To leading order we connect using effective field theory to the coupling constant $g_{\Delta\pi N} = 27.0(0.6)(1.5) \rightarrow \Gamma_{\Delta} = 99(12) \text{ MeV}$

Axial charges of hyperons

- Hyperon axial charges: g_{ΛΣ} ~ 0.60, g_{ΣΣ}, g_{ΞΞ} not known experimentally
- Calculation equivalent to g_A: ⟨h|ψ
 γ_µγ₅ψ|h⟩|_{q²=0} Efficient to calculate with fixed current method

If exact SU(3) flavor symmetry:

• $g_A^N = F + D, g_A^\Sigma = 2F, g_A^\Xi = -D + F \Longrightarrow g_A^N - g_A^\Sigma + g_A^\Xi = 0$

Probe deviation: $\delta_{\text{SU}(3)} = g_A^N - g_A^\Sigma + g_A^\Xi$ versus $x = (m_K^2 - m_\pi^2)/4\pi^2 f_\pi^2$, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009)

Axial charges of hyperons

- Hyperon axial charges: g_{ΛΣ} ~ 0.60, g_{ΣΣ}, g_{ΞΞ} not known experimentally
- Calculation equivalent to g_A: ⟨h|ψγ_µγ₅ψ|h⟩|_{q²=0} Efficient to calculate with fixed current method

If exact SU(3) flavor symmetry:

• $g_A^N = F + D, g_A^\Sigma = 2F, g_A^\Xi = -D + F \Longrightarrow g_A^N - g_A^\Sigma + g_A^\Xi = 0$

Probe deviation: $\delta_{SU(3)} = g_A^N - g_A^\Sigma + g_A^\Xi$ versus $x = (m_K^2 - m_\pi^2)/4\pi^2 f_\pi^2$, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009)

Conclusions

Simulations at the physical point \rightarrow that's where we always wanted to be!

Future Perspectives

- Confirm g_A , $\langle x \rangle_{u-d}$, etc, at the physical point
- Provide predictions for g_s, g_T, tensor moment, sigma-terms, etc.
- Provide accurate results on proton radius
- Develop methods for resonances
- Develop methods for calculating the neutron electic dipole moment and other challenging obsrervables

Conclusions

Simulations at the physical point \rightarrow that's where we always wanted to be!

Future Perspectives

- Confirm g_A , $\langle x \rangle_{u-d}$, etc, at the physical point
- Provide predictions for g_s, g_T, tensor moment, sigma-terms, etc.
- Provide accurate results on proton radius
- Develop methods for resonances
- Develop methods for calculating the neutron electic dipole moment and other challenging obsrervables

Many challenges ahead ...

But as simulations at the physical pion mass and more computer resources are becoming available we expect many physical results on key hadron observables that will impact both experiments and phenomenology

ORGANISERS

Conference: Constantia Alexandrou (Chair) Richard G. Milner (Vice-Chair)

Workshops: Zein-Eddine Meziani (Chair) Marc Vanderhaeghen (Co-chair)

Pre-conference Or Hen and Charlotte Van Hulse

IMPORTANT DEADLINE 15TH SEP 2015

- Registration
- · Abstract submission

CONTACT DETAILS.

Academic Matters Prof. Constantia Alexandrou i⊠ alexand@ucv.ac.cv (C) +357 22892829

Organisational Matters Easy Conferences M info@easyconferences.org (Q) +357 22591900

EINN2015

11th European Research Conference on "Electromagnetic Interactions with Nucleons and Nuclei" 1-7 November 2015

Annabelle Hotel, Paphos, Cyprus

OVERVIEW

Pre-conference: 1-2 November 2015

- · Frontiers and Careers in Photonuclear Physics skill development and talks for students
- Introductory talks

Main conference: 3-7 November 2015

Conference Topics

- · Nucleon form factors and low-energy hadron structure
- Partonic structure of nucleons and nuclei
- Precision electroweak physics and new physics searches Meson structure
- Barvon and light-meson spectroscopy
- · Nuclear effects and few-body physics

Parallel Workshops

I. Spin structure of nucleons and nuclei from low to large energy scales Spectroscopy - status and future prospects

Poster Session

We invite you to submit abstracts for talks at the workshops and for the poster session. Contributions not selected for talks will be given the option of a poster presentation.

INTERNATIONAL ADVISORY COMMITTEE

- · Karl Jansen (DESY, NIC, Germany) Mauro Anaelmino (University of Torino, Italy) · Xiangdong Ji (University of Maryland, USA) Sinva Acki (University of Kyoto, Japan) Reinhard Beck (University of Bonn, Germany) . Max Klein (DESY, Germany) Andrea Bressen (CERN, Switzerland)
- Annaliaa D'Annelo (University of Rome-II, Italy) · Gerhard Mallot (CERN, Switzerland)
- Rolf Ent (JLab, USA)
- Hidelo Enyo (Riken, Japan)
- Halyan Gao (Duke, USA)
- Michail Garren (Sarlay Franca)
- · Paola Gianoti (Frascati, Italy) Michel Guidel (Orsay, France)

- Kartheinz Lancanke (GSI, Germany)
- Achim Denig (University of Mainz, Germany) · William Marciano (BNL, USA)
 - · Robert McKeown (JLab, USA)
 - · Plet Mulders (VU University, The Netherlands
 - · Costas Papanicolas (The Cyprus Institute, Cyprus) · Barnard Dire (Frode Doluterheimen Franze)
 - Xiaoyan Shen (IHEP, China)
 - Toshimi Suda (Tohoku University, Japan)

Cyprusconferences.org/einn2015

Join us!

Acknowledgments

The Project Cy-Tera (NEA YITOAOMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation