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Quark masses

QCD Lagrangian:

LQCD = − 1
4g2 TrGµνGµν+

∑

i

q̄i(iD/−mqi )qi +
∑

j

Q̄j(iD/−mQj
)Qj

◮ In the limit mqi → 0 and mQj
→ ∞: Mhadrons ∝ Λ

◮ Observe that mqi ≪ Λ while mQj
≫ Λ [Λ ∼ MN ]

◮ Quarks do not propagate:
quark masses are coupling constants! (not observables)

they depend on the renormalization scale µ (like αs )
for light quarks by convention: µ = 2 GeV
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How to determine quark masses

◮ From their influence on the spectrum χPT, lattice

◮ mQ ≫ Λ
MQ̄qi

= mQ +O(Λ)

◮ mq ≪ Λ

Mq̄i qj = M0 ij +O(mqi ,mqj ) M0 ij = O(Λ)

In both cases need to understand the O(Λ) term

◮ From their influence on any other observable χPT, sum rules

Quark masses are coupling constants
⇒ exploit the sensitivity to them of any observable
[e.g. η decays and spectral functions from τ decays]
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md + mu is easier to get than md − mu

md , mu ≪ Λ ⇒ Lm = −muūu − md d̄d = small perturbation

However:

Lm = −md + mu

2
(ūu + d̄d)− (md − mu)

ūu − d̄d
2

= −m̂ q̄q
︸︷︷︸

OI=0

+(md − mu) q̄τ3q
︸ ︷︷ ︸

OI=1

and selection rules make the effect of OI=1 well hidden

⇒ m̂ responsible for the mass of pions
but (md − mu) only contributes at O(p4) (a tiny δM

π
0)

better sensitivity in K masses
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First estimates

Leading-order masses of π and K :

M2
π = B0(mu +md) M2

K+ = B0(mu +ms) M2
K 0 = B0(md +ms)

Quark mass ratios:

mu

md
≃

M2
π+ − M2

K 0 + M2
K+

M2
π+ + M2

K 0 − M2
K+

≃ 0.67

ms

md
≃

M2
K 0 + M2

K+ − M2
π+

M2
K 0 − M2

K+ + M2
π+

≃ 20
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Electromagnetic corrections to the masses

According to Dashen’s theorem

M2
π0 = B0(mu + md)

M2
π+ = B0(mu + md) + ∆em

M2
K 0 = B0(md + ms)

M2
K+ = B0(mu + ms) + ∆em

Extracting the quark mass ratios gives Weinberg (77)

mu

md
=

M2
K+ − M2

K 0 + 2M2
π0 − M2

π+

M2
K 0 − M2

K+ + M2
π+

= 0.56

ms

md
=

M2
K 0 + M2

K+ − M2
π+

M2
K 0 − M2

K+ + M2
π+

= 20.1
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Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)

M2
K

M2
π

=
ms + m̂

2m̂

[

1 +∆M +O(m2)
]

M2
K 0 − M2

K+

M2
K − M2

π

=
md − mu

ms − m̂

[

1 +∆M +O(m2)
]

∆M =
8(M2

K − M2
π)

F 2
π

(2L8 − L5) + χ-logs

The same O(m) correction appears in both ratios
⇒ this double ratio is free from O(m) corrections

Q2 ≡ m2
s − m̂2

m2
d − m2

u
=

M2
K

M2
π

M2
K − M2

π

M2
K 0 − M2

K+

[

1 +O(m2)
]
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Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)

M2
K

M2
π

=
ms + m̂

2m̂

[

1 +∆M +O(m2)
]

M2
K 0 − M2

K+

M2
K − M2

π

=
md − mu

ms − m̂

[

1 +∆M +O(m2)
]

∆M =
8(M2

K − M2
π)

F 2
π

(2L8 − L5) + χ-logs

The same O(m) correction appears in both ratios
⇒ this double ratio is free from O(m) and em corrections

Q2
D ≡

(M2
K 0 + M2

K+ − M2
π+ + M2

π0)(M2
K 0 + M2

K+ − M2
π+ − M2

π0)

4M2
π0(M2

K 0 − M2
K+ + M2

π+ − M2
π0)

= 24.3
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Violation of Dashen’s theorem
In pure QCD (M̂P ≡ MP |αem=0

)

M̂K+ = B0(ms + mu) +O(m2
q)

M̂K 0 = B0(ms + md) +O(m2
q)

⇒ M̂K+ − M̂K 0 = B0(mu − md) +O(m2
q)

Define em contributions to masses

Mγ
P ≡ MP − M̂P , ∆γ

P ≡ M2
P − M̂2

P

Dashen’s theorem: ∆γ

K+ = ∆γ

π+

and its violation [∆π ≡ M2
π
+ − M2

π
0 ]

∆γ

K+ −∆γ

K 0 −∆γ

π+ +∆γ

π0 = ǫ∆π
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Estimates of the size of Dashen’s theorem violation

χPT + model-based calculations:

ǫ =







0.8 Bijnens-Prades (97) Q = 22 (ENJL model)

1.0 Donoghue-Perez (97) Q = 21.5 (VMD)

1.5 Anant-Moussallam (04) Q = 20.7(Sum rules)

Lattice-based calculations (the value of Q is calculated in χPT at NLO)

ǫ =







0.50(8) Duncan et al. (96) Q = 22.9
0.5(1) RBC (07) Q = 22.9
0.78(6)(2)(9)(2) BMW (11) Q = 22.1
0.65(7)(14)(10) MILC (13) Q = 22.6
0.79(18)(18) RM123 (13) Q = 22.1

Value quoted in FLAG-2: ǫ = 0.7(3)
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FLAG-2 summary of the quark masses

all masses in MeV

Nf mu md ms mud

2+1 2.16(11) 4.68(16) 93.8(2.4) 3.42(9)

2 2.40(23) 4.80(23) 101(3) 3.6(2)

Nf mu/md ms/mud R Q

2+1 0.47(4) 27.5(4) 35.8(2.6) 22.6(9)

2 0.50(4) 28.1(1.2) – –
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Q from the decay η → 3π
Decay amplitude at leading order

A(η → π0π+π−) = −
√

3
4

mu − md

ms − m̂
s − 4M2

π/3
F 2
π
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Q from the decay η → 3π
Decay amplitude

A(η → π0π+π−) = − 1
Q2

M2
K (M

2
K − M2

π)

3
√

3M2
πF 2

π

M(s, t , u)

The decay width can be written as

Γ(η → π0π+π−) = Γ0

(
QD

Q

)4

= (295 ± 20) eV PDG (08)

◮ isospin-breaking sensitive process
◮ em contributions suppressed (Sutherland’s theorem)

⇒ mainly sensitive to mu − md

◮ main difficulty in the extraction of Q:
estimate of the strong decay width Γ0
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Q from the decay η → 3π
Decay amplitude

A(η → π0π+π−) = − 1
Q2

M2
K (M

2
K − M2

π)

3
√

3M2
πF 2

π

M(s, t , u)

The decay width can be written as

Γ(η → π0π+π−) = Γ0

(
QD

Q

)4

= (295 ± 20) eV PDG (08)

Γ0 =







(167 ± 50) eV Gasser-Leutwyler (85) Q = 21.1 ± 1.6
(219 ± 22) eV Anisovich-Leutwyler (96) Q = 22.6 ± 0.7
(209 ± 20) eV Kambor et al (96) Q = 22.3 ± 0.6

Gasser Leutwyler (85) based on one-loop CHPT
The other two evaluations based on dispersion relations

See also: full two-loop calculation of η → 3π Bijnens-Ghorbani (07)

Q = 23.2
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A new dispersive analysis of η → 3π

A new analysis is in progress S. Lanz PhD thesis (11)

GC, Lanz, Leutwyler, Passemar

◮ recent measurements of the Dalitz plot
⇒ test the calculation of the strong dynamics of the decay

◮ dispersive analysis based on ππ scattering phases
recent improvements must be taken into account

GC, Gasser, Leutwyler (01)

◮ recent progress in dealing with isospin breaking (NREFT)
can be applied also here Gasser, Rusetsky et al.

Schneider, Kubis, Ditsche (11)
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Dispersion relation for η → 3π
Based on the representation Fuchs, Sazdjian, Stern (93), Anisovich, Leutwyler (96)

M(s, t , u) = M0(s)−
2
3

M2(s) + [(s − u)M1(t) + M2(t) + (t ↔ u)]

valid if the discontinuities of D and higher waves are neglected

Dispersion relation for the MI ’s

MI(s) = ΩI(s)

{

PI(s) +
sn

π

∫ ∞

4M2
π

ds′ sin δI(s′)M̂I(s′)

|ΩI(s)|s′n(s′ − s)

}

where

Ω(s) = exp

[

s
π

∫ ∞

4M2
π

ds′ δI(s′)

s′(s′ − s)

]
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Dispersion relation for η → 3π
Based on the representation Fuchs, Sazdjian, Stern (93), Anisovich, Leutwyler (96)

M(s, t , u) = M0(s)−
2
3

M2(s) + [(s − u)M1(t) + M2(t) + (t ↔ u)]

valid if the discontinuities of D and higher waves are neglected

Dispersion relation for the MI ’s

MI(s) = ΩI(s)

{

PI(s) +
sn

π

∫ ∞

4M2
π

ds′ sin δI(s′)M̂I(s′)

|ΩI(s)|s′n(s′ − s)

}

where

Ω(s) = exp

[

s
π

∫ ∞

4M2
π

ds′ δI(s′)

s′(s′ − s)

]

given δI(s), the solution depends on subtraction constants only
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Subtraction constants
Extended the number of parameters w.r.t. Anisovich and
Leutwyler (96):

P0(s) = α0 + β0s + γ0s2 + δ0s3

P1(s) = α1 + β1s + γ1s2

P2(s) = α2 + β2s + γ2s2 + δ2s3

Solution linear in the subtraction constants: Anisovich, Leutwyler, unpublished

Mdisp(s, t , u) = α0Mα0(s, t , u) + β0Mβ0(s, t , u) + . . .

makes fitting of data very easy
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Taylor coefficients
Subtraction constants αI , βI , γI , . . . can be replaced by Taylor
coefficients: the relation between the two sets is linear

M0(s) = a0 + b0s + c0s2 + d0s3 + . . .

M1(s) = a1 + b1s + c1s2 + . . .

M2(s) = a2 + b2s + c2s2 + d2s3 + . . .

Not all Taylor coefficients are physically relevant:
∃ 5-parameter family of polynomials δMI(s) that added to MI(s)
do not change M(s, t , u) (reparametrization invariance)
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Taylor coefficients
Subtraction constants αI , βI , γI , . . . can be replaced by Taylor
coefficients: the relation between the two sets is linear

M0(s) = a0 + b0s + c0s2 + d0s3 + . . .

M1(s) = a1 + b1s + c1s2 + . . .

M2(s) = a2 + b2s + c2s2 + d2s3 + . . .

◮ use reparametrization invariance to arbitrarily fix 5
coefficients: tree-level ChPT or δ2 = 0

◮ fix the remaining ones with one-loop ChPT
◮ either set d0 = c1 = 0 ⇒ dispersive, one loop

or fix d0, c1 by fitting data ⇒ dispersive, fit to KLOE
◮ Dalitz-plot data are insensitive to the normalization:

ChPT fixes the normalization and allows the extraction of Q
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Isospin breaking

Dispersive calculation performed in the isospin limit:

Mπ = Mπ+ e = 0

◮ we correct for Mπ0 6= Mπ+ by “stretching” s, t , u ⇒
boundaries of isospin-symmetric phase space =
boundaries of physical phase space

◮ physical thresholds inside the phase space can also be
mimicked “by hand”

◮ analysis of Ditsche, Kubis, Meissner (09) used as guidance
and check. Same for Gullström, Kupsc and Rusetsky (09)

◮ e 6= 0 effects partly corrected for in the data analysis
for the rest we rely on one-loop ChPT – formulae given by
Ditsche, Kubis, Meissner (09)
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Isospin breaking I: boundary preserving map
Phase space boundary in the limit M

π
0 = M

π
+ : z = zcrit

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-Y

Boundary of physical region
Z = Zcrit
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Isospin breaking I: boundary preserving map
Mandelstam variables in the isospin limit (Mπi = Mπ ≡ isoB)
used in our dispersive treatment: s, t , u

s + t + u = M2
η + 3M2

π

Mandelstam variables in the physical channels:

sc + tc + uc = Mη + 2M2
π + M2

π0 sn + tn + un = Mη + 3M2
π0

Define a mapping (si , ti , ui) → (sbpm
i , tbpm

i , ubpm
i ), for i = c, n

such that
boundary of physical region → boundary of isoB phase space

Mbpm(sc , tc , uc) ≡ Mdisp(sbpm
c (sc), t

bpm
c (sc), u

bpm
c (sc))

is used to fit the data in the charged channel
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Isospin breaking I: boundary preserving map
A similar recipe might be used to fit the data in the neutral
channel however, this would miss the presence of cusps at the
boundary of the isoB phase space

Quick fix:

Mλ(sn, tn, un) ≡ (1 − λ)Mbpm(sn, tn, un) + λMdisp(sn, tn, un)

with λ a smooth function of sn, tn, un

Actually, λ = 0.5 works quite well, and is what will be used to fit
the data in the neutral channel
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

◮ we remove the corrections due to real photons and to the
Coulomb pole

◮ we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

Nn ≡ |MDKM
n (sn0, tn0, un0)|2

|MDKM,lambda
n (sn0, tn0, un0)|2

, Nc ≡ |MDKM
c (sc0, tc0, uc0)|2

|MDKM,bpm
c (sc0, tc0, uc0)|2

pn(Xn,Yn) ≡ 1
Nn

|MDKM
n (sn, tn, un)|2

|MDKM,lambda
n (sn, tn, un)|2

pc(Xc ,Yc) ≡ 1
Nc

|MmDKM
c (sc , tc , uc)|2

|MmDKM,bpm
c (sc , tc , uc)|2
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

◮ we remove the corrections due to real photons and to the
Coulomb pole

◮ we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

◮ we fit the data with

|Mn(sn, tn, un)|2 = |Mλ(sn, tn, un)|2Nnpn(Xn,Yn)

|Mc(sc , tc , uc)|2 = |Mbpm(sc , tc , uc)|2Ncpc(Xc ,Yc)
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

◮ we remove the corrections due to real photons and to the
Coulomb pole

◮ we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

◮ we fit the data with

|Mn(sn, tn, un)|2 = |Mλ(sn, tn, un)|2Nnpn(Xn,Yn)

|Mc(sc , tc , uc)|2 = |Mbpm(sc , tc , uc)|2Ncpc(Xc ,Yc)

◮ Numerical example - for illustration only!; fit to KLOE data:
w/o em corr.: Qc = 20.92, Qn = 21.35, χ2

dof = 1.054
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

◮ we remove the corrections due to real photons and to the
Coulomb pole

◮ we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

◮ we fit the data with

|Mn(sn, tn, un)|2 = |Mλ(sn, tn, un)|2Nnpn(Xn,Yn)

|Mc(sc , tc , uc)|2 = |Mbpm(sc , tc , uc)|2Ncpc(Xc ,Yc)

◮ Numerical example - for illustration only!; fit to KLOE data:
w/o em corr.: Qc = 20.92, Qn = 21.35, χ2

dof = 1.054
w/ pn,c : Qc = 20.90, Qn = 21.33, χ2

dof = 1.034
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

◮ we remove the corrections due to real photons and to the
Coulomb pole

◮ we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

◮ we fit the data with

|Mn(sn, tn, un)|2 = |Mλ(sn, tn, un)|2Nnpn(Xn,Yn)

|Mc(sc , tc , uc)|2 = |Mbpm(sc , tc , uc)|2Ncpc(Xc ,Yc)

◮ Numerical example - for illustration only!; fit to KLOE data:
w/o em corr.: Qc = 20.92, Qn = 21.35, χ2

dof = 1.054
w/ pn,c : Qc = 20.90, Qn = 21.33, χ2

dof = 1.034
w/ pn,c & Nn,c : Qc = 21.21, Qn = 21.22, χ2

dof = 1.034
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Isospin breaking corrections: a better treatment

◮ NREFT approach (Schneider, Kubis, Ditsche (11)):
systematic method to take into account isospin breaking

◮ matching between dispersive representation and NREFT
in the isospin limit ⇒
determine NREFT isospin-conserving parameters

◮ switch on isospin breaking and fit the data

◮ for the future
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Our framework

◮ our dispersive amplitude, linear in the subtraction
constants, dressed in order to correct for isospin breaking

◮ some of the subtraction constants are fixed by a matching
to the ChPT (one- and two-loop) amplitude
estimated uncertainties: 20 − 30% at LO, 4 − 10% at NLO

◮ the Adler zero position sA along s = u:
ReM(sA, 3s0 − 2sA, sA) = 0 and the derivative DA receive
very small NLO corrections and are used as constraint
(with uncertainty = 10%)

◮ the remaining ones are fitted to the data
◮ available data are from:

◮ KLOE (2008) (kindly provided by A. Kupsc)
◮ Crystal Ball@MAMI (2009) (kindly provided by S. Prakhov)
◮ WASA@COSY (2014) (kindly provided by P. Adlarson)
◮ several values for α are in the PDG
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Dalitz plot in η → π
+
π
−
π

0

5 6 7 8
s

0

0.5

1

1.5

2

LO χPT
Subtraction constants estimated with χPT
KLOE
WASA

t = u

Preliminary
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Dalitz plot in η → π
+
π
−
π

0

◮ current algebra prediction for s-dependence not bad!
(in contrast to the failure in the total decay rate)

◮ current data very precise and well described by our
dispersive amplitude with ChPT input (only)

◮ uncertainties in the dispersive representation much larger
than those in the data

◮ ⇒ data allow for a better determination of some
subtraction constants
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Dalitz plot in η → 3π0

0 0.2 0.4 0.6 0.8 1

Z
0

0.1

0.2

0.3

0.4
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0.6
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0.8

0.9

1

LO χPT
Subtraction constants estimated with χPT
MAMI data
PDG result for the slope α
Gullström, Kuspc and Rusetsky, NREFT
fit to KLOE without e.m. corrections
fit to KLOE with e.m. corrections



Intro mu − md η → 3π dispersive Summary iso-breaking Fits to data

Dalitz plot in η → 3π0
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Subtraction constants estimated with χPT
MAMI data
PDG result for the slope α
Gullström, Kuspc and Rusetsky, NREFT

Preliminary
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Dalitz plot in η → 3π0
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1

LO χPT
Subtraction constants estimated with χPT
MAMI data
fit to KLOE without e.m. corrections
fit to KLOE with e.m. corrections

Preliminary
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Dalitz plot in η → 3π0

◮ current algebra prediction not bad here too! (slope is tiny)
◮ current data very precise and well described by our

dispersive amplitude with ChPT input (only)
◮ uncertainties in the dispersive representation much larger

than those in the data
◮ ⇒ data allow for a better determination of some

subtraction constants
◮ fit to data in the charged channel + isospin transf. ⇒

prediction for the neutral channel
outcome is close but does not go through the data

◮ applying isospin breaking corrections brings the curve into
a nice agreement with the data
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Results for Q (preliminary)
Results for Q in the following slides are for illustration purposes
only:

◮ Details of how one does the matching matter (at the level of
the last digit) – we haven’t yet identified the “optimal” way

◮ the error propagation analysis from the uncertainties of all
input parameters in the final value of Q is not finished yet

◮ we are working towards a completion of the analysis...



Intro mu − md η → 3π dispersive Summary iso-breaking Fits to data

Results for Q (preliminary)
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Results for Q (preliminary)
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Results for Q (preliminary)
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Results for Q (preliminary)
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Why are the data pulling Q down?
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Why are the data pulling Q down?
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Summary

◮ Quark masses are fundamental and yet unexplained
parameters of the standard model

◮ I have reviewed the status of the determination of md − mu
based on

◮ lattice
◮ chiral perturbation theory + model estimates

◮ I have discussed the extraction of the quark mass ratio Q
from η → 3π decays based on dispersion relations:

◮ role of the theory input
◮ role of data (pull the value of Q down)
◮ isospin-breaking corrections

(bring the two values Qn and QC into agreement)

work in progress with S. Lanz, H. Leutwyler and E. Passemar



Leutwyler’s ellipse
Information on Q amounts to an elliptic constraint in the plane
of ms

md
and mu

md
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Lattice determinations of mu and md

Collaboration pu
bl

.
m

u,
d
→

0
a
→

0
FV re

no
rm

.

mu md

PACS-CS 12 A ⋆ ¥ ¥ ⋆ 2.57(26)(7) 3.68(29)(10)
LVdW 11 C • ⋆ ⋆ • 1.90(8)(21)(10) 4.73(9)(27)(24)
HPQCD 10 A • ⋆ ⋆ ⋆ 2.01(14) 4.77(15)
BMW 10A, 10B A ⋆ ⋆ ⋆ ⋆ 2.15(03)(10) 4.79(07)(12)
Blum et al. 10 P • ¥ • ⋆ 2.24(10)(34) 4.65(15)(32)
MILC 09A C • ⋆ ⋆ • 1.96(0)(6)(10)(12) 4.53(1)(8)(23)(12)
MILC 09 P • ⋆ ⋆ • 1.9(0)(1)(1)(1) 4.6(0)(2)(2)(1)
MILC 04, HPQCD/
MILC/UKQCD 04

A • • • ¥ 1.7(0)(1)(2)(2) 3.9(0)(1)(4)(2)

RM123 13 A • ⋆ • ⋆ 2.40(15)(17) 4.80(15)(17)
RM123 11 A • ⋆ • ⋆ 2.43(20)(12) 4.78(20)(12)
Dürr 11 A • ⋆ • − 2.18(6)(11) 4.87(14)(16)
RBC 07 A ¥ ¥ ⋆ ⋆ 3.02(27)(19) 5.49(20)(34)
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