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1. Introduction

++ Exotic hadrons and their structure ++
= Quark models tell us that ordinary hadrons consist of ggq and ¢g.

@)@q Baryons @q Mesons

(B, 1, A, ) (7, K, 0 -

= However, exotic hadrons --- not same quark component as
ordinary hadrons = not gqq nor gqg --- might exist at somewhere
in the hadron spectrum.
o They should be “color” singlet as well.

%ﬁb@ @gj qga g{i:jjg

Penta-quarks Tetra-quarks Hybrids Glueballs Hadronic

molecules
o Actually there are several candidates for exotic hadrons.

= Does QCD allow their existence ? And why ?
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1. Introduction

++ The lightest scalar meson nonet ++
= One of the important candidates for exotic hadrons is the member
of the lightest scalar meson nonet: g, K, f0(980) and a¢(980).
o Inverted spectrum from the gg configuration.

o In a bag model, the interaction between quarks inside a compact
qqqq system is attractive especially in the scalar channel. jaffe (1977).

o In a quark model, KK molecules can appear as weakly bound
s-wave states. Weinstein and Isgur (1982).

_Scalar meson nonet

. - I A Vector meson nonet
= A" J0(980)  a(980)™

0(1020)

x Their structure is
still controversial. —_

s e aapret K*(892)

Mass

3 L—

% K p— 9 /7 orC - p(770) @(782)
q .-
q — K (800) —
Weinstein and q or K
Isgur (1982).
\ 2 ( )J \Jaffe (1977)j I.S)= (0,0) (1,0) (172, £1) (I.S)y= (0.0) (1.0)  (1/2.+1)
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1. Introduction

++ Uniqueness of hadronic molecules ++
= Hadronic molecules should be unique, because they would

have large spatial size compared to other (compact) hadrons.

| T.S.,T.Hyodo,D. Jido (2008), (2011);

@1 @ q T.S. and T. Hyodo, (2013).
® | T e

Hadronic % D @%Jq 0) @

molecules 49 d DD | g

= The uniqueness comes from the fact that hadronic molecules are
composed of color-singlet hadrons themselves.

o Actually the deuteron was proved to be a proton-neutron bound
state by considering general wave equations (not QCD !).
--- Field renormalization const. Z in the weak binding: Weinberg (1965).
21— 2) i _ Z 1 1 _ *
a=—— R+0(m_ "), 7Te= 1_ZR+(’)(m7r )s = 2MB—4.318fm

a = 5.419 +0.007 fm, 7. =1.7513+0.008 fm --> Consistent with Z ~0 !
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1. Introduction

++ ldentifying hadronic molecules ++
= The Weinberg’s study indicates that:

o Hadronic molecules may be able to be identified without relying
directly upon QCD, since constituents are color singlet.

o In the weak binding, Z can be determined model independently.

= An extension to unstable systems and an application to ay(980)

and fy(980) were done to study whether they are KK molecules.
Baru et al. (2004).

--- They formulated in terms of S B B

the spectral density: | AN}
50 MeV | d T
Wao(fo) = / Way(fo) (E)dE. @
—50 MeV % 0,004

the “probability” for finding
the bare state (missing |
channels such as ¢gg and ¢qqq)| % 4 % 6 2% 4 &
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1. Introduction

++ ldentifying hadronic molecules ++
= The Weinberg’s study indicates that:

o Hadronic molecules may be able to be identified without relying
directly upon QCD, since constituents are color singlet.

o In the weak binding, Z can be determined model independently.

= An extension to unstable systems and an application to ay(980)

and fy(980) were done to study whether they are KK molecules.
Baru et al. (2004).

--- They formulated in terms of —
. 0,00
the spectral density: 0,008 . -
50 MeV 0.0 [ 7
Wao(fo) = / Way(fo) (E) E. N =
—50 MeV ERY F A
% 0,004 |- /,”\\I,\ 4
1] H H WL - H SETER

the “probability _for_flndlng ot / LBy
the bare state (missing il A G O
channels such as ¢g and ¢4¢qg). e |
%0 40 20 0 20 40 60
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1. Introduction

++ ldentifying hadronic molecules ++
= The Weinberg’s study indicates that:

o Hadronic molecules may be able to be identified without relying
directly upon QCD, since constituents are color singlet.

o In the weak binding, Z can be determined model independently.

= An extension to unstable systems and an application to ay(980)

and fy(980) were done to study whether they are KK molecules.
Baru et al. (2004).

Table 1
Parameters and results for the ap meson. The values Mg, I, and E ¢ are given in MeV, 7, and @ in fm, and k| and k2 in MeV /c e |
Ref. Mg s Bk E E¢ re a ki k2 " Wa %
[18) 1001 70 0.224 9.6 -7.1 —0.16 — i0.59 —104 +i55 104—i111 § 049 "
[19] 999 146 0.516 7.6 -3.1 —0.07 —i0.69 —134+i71 134—i199 0.29
[20] 1003 153 0.834 11.6 -1.9 —0.16 —i1.05 —129+i44 129—-i250 § 024 37 X
[20] 992 145.3 0.56 0.6 ~2.8 —0.01 —i0.76 —126+i73 126—-i212 § 029 | 7§ Wi}
[21) 084.8 121.5 0.41 —18.0 -39 0.18 —i0.61 —-102+i97 102—-i199 0.36 4 . 0.17 |
I‘J’ e LT 7 T T 4N Ns7T 7 LA EATASS b 4 B d A" I. I : 0-23 F
[21] 973 253 2.84 —154 —-0.56 1.09 —-i0.89 —69+1100 69 — i804 0.14 |¥
[24) ) 128.8 1.31 +4.6 —-1.22 —-0.14-i1.99 -84 +1il17 84 — 351 . 021.
Ol A ] A ] A | A | A ) 4 ] ‘ '
-60 40 -20 0 20 40 60
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1. Introduction

++ ldentifying hadronic molecules ++

= The Weinberg’s study indicates that:

o Hadronic molecules may be able to be identified without relying
directly upon QCD, since constituents are color singlet.

o In the weak binding, Z can be determined model independently.

= An extension to unstable systems and an application to ay(980)
and fy(980) were done to study whether they are KK molecules.

Baru et al. (2004).

= The “probability” for finding the bare state, W,,y,

is small compared unity [or (2/x) x atan(2) = 0.70]. — Y
--> The evidence that a¢(980) and fy(980) have large  [T!! =
KK components inside them. Gt Wy 1 e
= Remark: They defined W as a real value, although = 3225 § o7
both 4(980) and fy(980) are resonances ! o i 044 |
--> Need check whether this treatment is justified. ————XF

WTD Hadrons and Hadron Interactions in QCD @ Yu E [MeV]
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1. Introduction
++ The a(980)-10(980) mixing ++

= The a9(980)-f0(980) mixing was predicted as a phenomenon @used
by the threshold difference between charged and neutral KK loops.

Achasov, Devyanin and Shestakov (1979).

K+

J0(980)
S

K-

K() P
a1,(980) £(980) % @(980) _
- o ® & . Jo(980)
A+ - K° T AK()KU

a,(980)

--- Namely, in the energy between the K* K- and K° K° thresholds
(987 ~ 995 MeV) the mixing effect is unusually enhanced:

2 2
m 0 —m +
AK+K+AK0KU=0(\/ é{ é{ )
Mm% + M
KO K+

<--> Natural size: O[(m}, —m¥.)/(mio +mi-) | [cf. 0(770)-0(782) mixing]

o0 The ao(980)- and £,(980)-KK coupling constants are
the model parameters of the mixing amplitude.
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1. Introduction
++ The a(980)-10(980) mixing ++

= The a9(980)-f0(980) mixing was predicted as a phenomenon caused

by the threshold difference between charged and neutral KK loops.
Achasov, Devyanin and Shestakov (1979).

K+ K() "”__.‘
O' K‘,
J0(980) a,(980) J0(980) voap(980) o
- - s ® . o Jo(980) a,(980)
s A
K~ A+ - K" AKOKU K i

= Recently the mixing was measured in Exp.
by using the J/A) decay, and its intensity & is
Ablikim et al. [BES I1I] (2011).
Br(J/v — ¢£0(980) — $ay(980) — ¢m'n)
Br(J/v% — ¢f0(980) — ¢m)
= 0.60 4 0.20(stat) = 0.12(sys) £ 0.26(para)%,
€ a|upper 1imit = 1.1%  (90% C.L.)

gfa

Events/(0.01GeV/c?)

--> [nvestigate their structure ! M) (GeV/c?)
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1. Introduction
++ The ao(980) fo(980) mlxmg ++

= The ao(980)-fo(! ™ omenon caused
by the thresh¢ | neutral KK loops.
&;1: anin and Shestakov (1979).
K+ :.: 10 2 Q * qq 2 E
. % S Q"’_ﬁ K*
.l()(LSO) "a ™ A K_K | J5(980) a,(980)
20 * ¥ qqag
= 5 *SND | . A
K- E ww o KLOE £ !
103 F i | *BNL |+
-Recer]tlyther _' « CB
by using the J - | [=BESII 1|
10~ 16
Br(J /4 i g .
Efa = B mixing intensity Lf,fa
= 0.60 % 0.20(stat) = 0.12(sys) = 0.26(para)%, I
£ falupper limit = 1.1%  (90% C.L.) 2 R Lt TR
0.8 0.9 1.0 1.1 12
--> Investigate their structure ! M() (GeV/c)
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1. Introduction
++ The ao(980) f0(980) mlxmg ++

= The a¢(980)-fo(! ™ omenon caused
(Upper limit from Exp& | neutral KK loops.
>; _ min and Shestakov (1979).

K* = 1072¢f *qq |-
/b\ % E o |4 RF | —
l()(980) “-' e A Kl( : 1i(980) 1,(980)
[Exp. value W|th errors> i vgqag |-
P g * SND

| - A
E KA ¢ KLOE £ !
3 B *BNL |-
= Recentlyther 107 v | T
- nd 1 ¢
by using the J - | =BESII 11
10~ 1072
Br(J /4 i g .
Efa = B mixing intensity §fa
= 0.60 % 0.20(stat) = 0.12(sys) = 0.26(para)%, I
£ falupper limit = 1.1%  (90% C.L.) o AL
0.8 0.9 1.0 1.1 12
--> Investigate their structure ! M() (GeV/c)
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1. Introduction
++ The ao(980) f0(980) mlxmg ++

= The a¢(980)-fo(! ATpmenon caused
(Upper limit from Exp& heutral KK loops.

| knin and Shestakov (1979).
K* "5 10-2 s 0
15(980) = ) o

K*

J0(980) ay(980)

' ., . |
i Exp value W|th errors> s
E WK
10_3 :_ -, : s _:
_ Recently the r ; 1t
- nd 1 ¢
by using the J - | =BESII 11
10~ 16
Br(J /4 i g .
Efa = B mixing intensity §fa
= 0.60 % 0.20(stat) = 0.12(sys) = 0.26(para)%, I
£ falupper limit = 1.1%  (90% C.L.) o AL
0.8 0.9 1.0 1.1 12
--> Investigate their structure ! M() (GeV/c)
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1. Introduction

= The ao(980)-fo(!

(Upper limit from Exp

K+
£5(980) /\

|

i Exp value W|th errors> i

*qq

B 272

AKK

++ The ao(980) f0(980) lel"Q ++
—zpmenon caused

seutral KK loops.
anin and Shestakov (1979).

K*

Jo(980) . ay(980)

E N » The scenario that both
3L B3
b Recently the r 107 ay(980) and f0(980) are
1 ad
by using the J : KK molecules seems
P --'“'2 to be excluded.
10 10°
€ - BI'(J/Q/} °_ o . { . 3
fa = B mixing intensity = h |
= 0.60 £ 0.20(stat) 4= 0.12(sys) & 0.26(para)%, 2, E} Il 3 H
gfalupper limit — 1.1% (90% C.L.) ?) JRR ()0 B LTER0 P 1':.’ lﬁ.r.lal.lj.“ el
08 09 10 11 12
--> Investigate their structure ! M() (GeV/c)
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1. Introduction
++ The ao(980) fo(980) mlxmg ++

= The a¢(980)-fo(! 7 rpmenon caused
(Upper limit from Exp.l heutral KK loops.

| inin and Shestakov (1979).
K* ‘é 102 E e |29,
B K*
£(980) 2 oz | | ‘h
n -ILALAN Ji(980) _ag(980)
i Exp value W|th errors} i

= The scenario that both
ao(980) and fo(980) are
s Contradicts the evidence that a¢(980) KK molecules seems
and fy(980) have large KK components ? ae excluded.

= However, these theoretical values of &, .
are calculated using effective models ' The mixing intensity in the
of QCD such as quark models. 1(1405) decay is larger.

o — : Ablikim ef al. (2012). |
--> Their KK structure w/o relying on QCD. || 1is decay, however, seems

to be affected by KK* loop.

' SRR

=y Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. Aceti et al. (2’012)’
P & RONP \ y
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1. Introduction

++ Motivation ++

= We want to know the structure of a¢(980) and 1,(980).

o An application of the Weinberg’s study indicates that the
“probability” of finding the bare state (gq, ggqq) is small.
--> They should have large KK component.
--- However, the “probability” W was defined as a real value
even for the resonances ao(980) and fo(980).

0 The Exp. of the 40(980)-fo(980) mixing implies that both 2((980) and
f0(980) are simultaneously KK molecules seems to be excluded.
--- However, the conclusion relies on effective models of QCD.

--> Investigate their KK structure without relying directly on QCD nor

= For this purpose, we formulate: %
o0 The ao(980)-f0(980) mixing intensity.

?

effective models.

o The KK compositeness for the a¢(980) and f,(980) resonances.
and constrain their structure in terms of the KK component.

@

£ RCNP
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2. a0(980)-10(980) mixing

++ Amplitude of a¢(980)-f0(980) mixing ++
= Calculate the a¢(980)-/0(980) mixin

m diagrams:

K+
Jo(980) a,(980) £,(980) &
o o o ..

0

.
‘s
R() Seo

.Q
-

,
> ‘00
-

g amplitude A fro

K+
%4, (980) £(980) a,(980)
"i - = P
A KOKO K~ A’Y

--- Parameters: only the a0(980)-KK and £,(980)-KK coupling constants.

= The Flatte parameterization is used for the propagators: Fiatte (1976).

1

1

-

a(8)

s — M2 +1iy/s[lg, (s) + T2 . (s)]

1

s — M?% +iy/s[[hr(s) + T o (s))

--- Parameters: M., M; and ap-KK, 7 and fo-KK, nx coupling consts.

--> The propagators with the mixing Is expressed as:

. .

mix

Jo(980) 5(980)

Py(s) =

1

D; — A2/D,

(;)

£ RCNP

.- .

o mix

£5(980)

Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015)

a,(980) Pf_,a(s) e

A
D,D; — A2
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2. a0(980)-10(980) mixing

++ Formulation of their mixing ++
= The a0(980)-f0(980) mixing intensity &, was experimentally defined:

¢, = BrlJ/% = 6/o(980) — $a5(980) — ¢°n)
Jo = Br(J/4% — 60(980) — ¢rr)

Ablikim et al. (2011).

--> Therefore, we define the mixing intensity as the ratio of two
branching fractions of a parent particle X: ;

§fa =

D(X — Y £5(980) — Ya2(980) — Y7°n)"

"X — Y fo(980) — Y7m) ]

= Assuming that the phenomena on a¢(980) and f,(980) takes

place particularly at the KK thresholds,
we obtain

P

3 RCNP

Mpr =~ My~ My, ~ M, =2mg

/dMﬂn M2 ' (M,,En)|})f—>a(1\47377)|2

TN~ TN

ffa = '
/ dMor M2, TS (M2,)|Ps(M2,)[?

Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015)
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2. a0(980)-10(980) mixing

++ EXercise ++
= The a¢(980)-/0(980) mixing intensity &, can be evaluated by using
Flatte parameters from Exp. fittings. --- Errors only for KK coup.

ao(980) | _ f0(980) )
Collaboration M, [MeV] g.xi ([GeV]  Gary (GeV] Collaboration M [MeV] QIKK [GCV] gynx [GeV]
CLEO (2011) 998 3.97 +0.77 4.25 CDF (2011) 989.6  4.02 T}y 2.65
KLOE (2006) 977.3 245+ 0.17 1.21
KLOE (2009)  982.5  2.84 +0.41 2.46 Y
CB (2008 987.4  2.94+0.12 2.87 Belle (2006) 950 107 o9 228
(2008) | 93 +10.54 ' BES (2005) 965 5.80 +0:22 2.83
SND (2000) 995 5.93 Z3 39 3.11 FOCUS (2005) 957 3.39 1052 2.15
E852 (1999) 1001 2.36 = 0.13 2.47 SND (2000) 969.8 7.88 +109 3.19

Efa = 0.60 £ 0.20(g¢ar) £ 0.12(5ys) £ 0.26(para) %,

fo(980) §falupper limit = 1.1%  Aplikim ef al. (2011).
ao(980) CDF (2011) KLOE (2006) Belle (2006) BES (2005) FOCUS (2005) SND (200) | Red:
CLEO (2011) 021733 053733 0260 043%0%  020%5% 073 R | consistent
KLOE (2009) T s o B eplo B T Ry E sy 5 § g with Exp.
CB (2008) 026 1037 0647315 0.81%0%F 05210y 024701 089X | g .
SND (2000) 06085 1% om0lf 12 ossfNE 22718 | above the
E852 (1999) 0197513 047 Tgn; 02275 089 Tghy 08755  0.66 Igzy | upper limit.

--- Many combinations of Flatte params. reproduce the Exp. value !

¢ RCNP Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015) 21
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3. Compositeness

++ Compositeness for two-body systems ++
= The Weinberg’s study on deuteron

indicates that hadronic molecules

c

Chinese Physics C may be able to be identified without
o — relying directly upon QCD,
rnmmne moemen since constituents are color singlet.
B s \
-y = In this context, the compositeness

was recently introduced so as to
observe the two-body components
inside a resonance as well as

| 2 -/ Y
-If Composite. B bound state. .
e 2 Hyodo, Jido, Hosaka (2012),
e l Aceti-Oset (2012),
®» . Hyodo (2013), Nagahiro-Hosaka (2014), ... .
;,  - ° See also T. S. , Hyodo and Jido arXiv:1411.2308.

" ~J
IOP Publishing

Particle Data Group (2014)

Gt Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015) 23
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o Ex.) A(1405):

++ Physical meaning of compositeness ++
= Compositeness ( X ) = amount of the two-body components
in a resonance as well as a bound state.

&

3. Compositeness

D

Hyodo, Jido, Hosaka (2012).

oty

= Compositeness can be defined as the contribution of the two-body

-~

D

S

~/

/\

component to the normalization of the total wave function.
(A(1405)|A(1405)) = Xgn + Xas + -+ Z2 =1

-~

N\

&

oty

J

--- For a bound state with zero width --> Interpreted as a probability:
Molecule<=>X~=1,Z~0. Elementary<=>7Z~1, X*0.

@

£ RCNP
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3. Compositeness

++ Formulation ++

= The two-body wave function for a general separable interaction:
T.S.,T. Hyodo and D. Jido, arXiv:1411.2308.

{ ¥(q) = e Y@=V, J@=Ymi T

--- g: the coupling constant of the resonance to the two-body state.
spole: the pole position of the resonance in the complex s plane.

N
.~

A 7

B S ™ —"  —— S S

= The compositeness is defined as the “norm” for the two-body w.f.:

x= [rafi@] =[] P G i

--- G(s) is the two-body loop function = Green function.

LA L) G(s) = z/ d*q 1 1 B / d3q w+ o' 1
x -5 o (2m)% ¢ — m? (P — q)? — m/'? N (27)3 2ww' s — [w+ W']?

Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015) 25
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3. Compositeness

++ Formulation ++

= The two-body wave function for a general separable interaction:
T.S.,T. Hyodo and D. Jido, arXiv:1411.2308.

G — g (@) =/m2 +a2. (@) =/m?2 + g2
VD= o W@ = VT, W@ = VT

--- g: the coupling constant of the resonance to the two-body state.
spole: the pole position of the resonance in the complex s plane.

l Tis(s) = s —gigiole 2 A

m The elementariness is defined as the bare state W, contribution:
A% --- Measures genuine
Z = (%) (ol¥) = —¢* | G* 5, | g
ds |o—s .. compact systems
and missing channels.

= The sum of the compositeness X and the elementariness Z

coincides with the normalization of the total wave function:
(TP =X+Z=1

WTD Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015) 26
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3. Compositeness

++ Formulation ++
= The compositeness / elementariness has following properties:
T.S.,T. Hyodo and D. Jido, arXiv:1411.2308.

o Model dependent. --> we employ the following expressions:

x=[oaft@] -7 |G| | z=wmawn -7 @G|

ds

--- which correctly reproduces the Weinberg’s relation for

the scattering length and effective range in the weak binding
limit (with non-rel. Green function).

o Correct normalization even for resonances:| (¥*|¥)=X+2 =1

o Cut-off for the Green function is not necessary.

o From the pole position sy and the residue g as the coupling

constant, one can calculate the composneness without knowing

the details of the interaction. 9:9;
T,,;j (8) ~

8 — Spole
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3. Compositeness

++ Model calculation ++

= Compositeness X and elementariness Z for scalar mesons in
the chiral unitary approach. --> Complex values for resonances !

__2|dGi Nl %] (T = L7
Xi=—9; [ ds ]stpow 3 Z zz,j:gzgj [GzGJ ds — (U™ %) Z:Xz +Z=1

fo(500) or o fo(980) ao(980) K;(800) or &

V/Spole 471 — 1811 MeV 987 — 18 MeV 979 — 53¢ MeV 750 — 227: MeV

p, —0.16 + 0.352 0.01 + 0.01z — —

Xur  —0.01—0.014 0.74 —0.113  0.38 — 0.29 —

X _ o —0.06 + 0.10i _

Xk _ % _ _ 0.32 + 0.364

X,k — — — —0.01 + 0.00i

Z 1.17 — 0.342 0.25 + 0.10z2 0.68 + 0.18¢2 0.70 — 0.36¢

= We interpret complex compositeness / elementariness on the

basis of the similarity to the wave function of the bound state:

1.ReX)~1,Im(X)~1Z1<<1 <=> Dominated by a molecular state.
2.1X;il<<1 <=> i-th channel component is very small.

¢
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3. Compositeness

++ Model calculation ++
= Compositeness X and elementariness Z for scalar mesons in
the chiral unitary approach. --> Complex values for resonances !

X¢=—g¢2[dsl Z ==Y gig; [Gido_sJ] (T 0) = "X;+Z =1
S=3S8pole 2,) $=8pole ,_,-,_,_i-,_, ]

fo(500) or o fo(980) ao(980) K;(800) or &
V/Spole 471 — 1811 MeV 987 — 18 MeV 979 — 53¢ MeV 750 — 227: MeV
p, ¢ —0.16 + 0.352 0.01 4 0.01 — —
Xpr  —0.01—0.017 0.74 —0.115  0.38 — 0.29i —
X _ r— —0.06 + 0.10 _
XrK — % — - 0.32 4 0.36:
X,k — — — —0.01 + 0.00i
Z 1.17 — 0.342 0.25 + 0.102 0.68 + 0.182 0.70 — 0.362

= We interpret complex compositeness / elementariness on the
basis of the similarity of the wave function of the bound state:

--> £0(980) in this model is dominated by the KK component.
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3. Compositeness

++ EXxercise ++

» The KK ompositeness of a((980) and £,(980) from the Flatte params.
--- We employ the Flatte parametrization to calculate the pole

position and their residue by the analytical continuation.

1

1

s Mj+ iVl (o) + T (o)

ImX

1 1
= , :

Do(s)  s— MZ+iy/s[lg,(s) + T4z (s)]"  Dg(s)
ao(980)

Collaboration M, [MeV] g,x% [GeV]  Gary [GeV]

CLEO (2011) 998 3.97 +£0.77 4.25

KLOE (2009) 982.5  2.84 +0.41 2.46

CB (2008) 987.4  2.94+0.12 2.87

SND (2000) 995 5.93 13954 3.11

E852 (1999) 1001 2.36 + 0.13 2.47
£0(980)

Collaboration ~ My [MeV] Grxr [GeV] Girr [GeV]

CDF (2011) 989.6  4.02 "i3; 2.65

KLOE (2006) 977.3  245+0.17 1.21

Belle (2006) 950 4.07 -7 2.28

BES (2005) 965 5.80 1022 2.83

FOCUS (2005) 957 3.39 +9-22 2.15

SND (2000) 969.8  7.88 t1% 3.19

P & RONP

-0.1
-0.2 E
-0.3 decna : p—
- +
-0.4
-05 ¢ %
-0.6 : : : :
0 0.2 0.4 0.6 0.8
Re X
ao(980) J0(980)
CLEO == SND =X§= CDF =<ll== BES ==-
KLOE == E852 =4= KLOE =-@=+ FOCUS ==@==

CB —A— Belle ===+ SND -
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3. Compositeness

L ++ Exercise ++
= The KK ompositeness of a¢(980) and f(980) from the Flatte params.
--- We employ the Flatte parametrization to calculate the pole

position and their residue by the analytical continuation.

1 1 1 1
D,(s) s— M2+iy/s[l'e,(s) +T%(s)]" Dj(s) s— M? + iv/8[C2x(s) +T7 . (s)]
= Compared with the previous work °
by Baru et al., we obtain complex 0.1 I
KK compositeness, which is 02 ?*"’" g
however necessary to get correct |5 os| f---d----- S S S
normalization (with appropriate 04 ‘ '
interaction and elementariness). 05| -
--- ¢f. Baru et al. used the fO"OWing' hatr 0.2 0.4 06 08 |
Re X
> _ . /=3 VElg(E)? a0(980) £0(980)
X = /0 w(E)dE’ w = dm 2” |E + Bl2 CLEO =f3= SND =%§— CDF =-ll=» BES ===
KLOE == 852 == KLOE ==@=+ FOCUS =fp==
Hyodo (2013). B e Belle =ohee SND =
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3. Compositeness

L ++ Exercise ++
= The KK ompositeness of a¢(980) and f(980) from the Flatte params.
--- We employ the Flatte parametrization to calculate the pole

position and their residue by the analytical continuation.

1 1 1 1
Do(s) — s — Mg +iv/s[0q,(s) + T g (s)]"  Dy(s) s — M2 +iy/s[Dfr(s) + T o (s)]
0
» The imaginary part of the KK 0.
compositeness is not small, so 02 g
we cannot clearly conclude the |5 s I S
structure of a((980) and fy(980). M ‘
= The real part of the KK >° v
CompOSiteness for f0(980) IS Rt 0.2 0.4 06 08 |
non-negligible compared to unity, ao(980) Re X £0(980)
which mlght |mply d Iarger KK CLEO =f= SND =%§= CDF =4ll=- BES ===
L : KLOE == 852 == KLOE ==@=+ FOCUS ==fp==
component inside f,(980). B e elle  =oher SND = ofhes
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4. Constraint on the structure
of ap(980) and f0(980)
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4. Constraint on their structure

++ Constructing a relation ++
= Again we consider the structure of the ay(980)-f0(980) mixing:

K+ K() T K+
J0(980) a(980) J0(980) a,(980) J0(980) a,(980)
o o —— ——= . s
K~ AK+K— K" e AK()R(] K~ A’Y

--- The ay(980) w.f. (—-> a0(980)-KK _coupling const.) x the KK loops
x the 15(980) w.f. (--> f0(980)-KK coupling const.).

= Therefore, the mixing intensity is sensitive to the KK component
both in a¢(980) and in f,(980).

= Especially, for a small mixing amplitude A, we expect:
£ra ~ A2 ~ |gags|? o | XaX]] ‘ [ X, and X;: the KK compositeness
of a0(980) and £,(980), respectively]

--> Small &, may imply small | X, X I.
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4. Constraint on their structure

++ Constructing a relation ++
= Again we consider the structure of the a(980)-f0(980) mixing:

Kt K" .-»-.
£(980) a,(980) £(980) 1 N ay(980) £(980) 1,(980)
K~ A+ k- I?“\'"""' AKOI—{(] A,Y

--- The ao(980) w.f. (--> ao(980)-KK
x the f0(980) w.f. (--> f0(980)-K = Notice: in general X..should be

complex, and | X | cannot be

interpreted as a probability.

Eabaciall foraarmalloniingl However, | X | will have a piece
m : . :
: Y of information on the structure.

Efa ~ [A]* ~ |gags|* o< | Xa X Especially, | X | <<1 implies

= Therefore, the mixing intensit
both in a¢(980) and in f,(980).

> Small &, may imply small | 3 that molecular component
bl sE Is very small.
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4. Constraint on their structure

++ Test with Flatte parameters ++
= Now we examine the relation between the a¢(980)-/0(980) mixing
intensity & and the product of the two KK compositeness | X, X;1,
with the Flatte parameters from Exp. fittings.

a0 (980) £5a = 0.60 £ 0.20(ga1) £ 0.12(0y5) % 0.26(para) %,
Collaboration M, [MeV] g.xi% [GeV]  Gary [GeV] £fal limic = 1.1% o
CLEO (2011) 998 397 + 077 425 08 T ’ fa upper himit Abllklm et al. (2011).
KLOE (2009) 9825  2.84 +0.41 2.46 — i
CB (2008) 987.4  2.94+0.12 2.87 0.7
SND (2000) 995 5.93 T3%0° 3.11
 E852 (1999) 1001 2.36 +0.13 247 0.6 |
f0(980) — 0.5}
Collaboration ~ My [MeV] grxg [GeV]  Grrx [GeV] N\'
CDF (2011) 989.6  4.02 F10 2.65 04
KLOE (2006) 977.3  2.45+0.17 1.21 Nc
Belle (2006) 950 4.07 fg;g,‘g‘ 2.28 = 03l
BES (2005) 965 5.80 t§;'z., 2.83 '
FOCUS (2005) 957 3.39 +0&2 2.15
SND (2000) 969.8  7.88 1309 3.19 0.2
. 0.1 ¢
= There is not a clear
[ n 0 1 1 1
proportional connection, 0 0.5 1 15 > > 5 3
c £ T oL
but there is actually S [ %]
a tendency.
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4. Constraint on their structure

++ Test with Flatte parameters ++
= Now we examine the relation between the a¢(980)-/0(980) mixing
intensity & and the product of the two KK compositeness | X, X;1,
with the Flatte parameters from Exp. fittings.

a0 (980) E5a = 0.60 £ 0.20(510t) £ 0.12(0ys) £ 0.26(para) %,
Collaboration M, [MeV] g.xx [GeV] Garn [GeV] €alupper limit = 1.1% o
CLEO (1) — 098 850077 2 0.8 35 falupper limit o Ablikim et al. (2011).
KLOE (2009) 982.5  2.84 +0.41 2.46 s
CB (2008) 987.4  2.94+0.12 2.87 0.7
SND (2000) 995 5.93 13%5° 3.11
E852 (1999) 1001 2.36 +0.13 247 0.6 |
. | Xo Xr1<0.4
f0(980) e =N
Collaboration ~ My [MeV] grxg [GeV]  Grrx [GeV] N\' from Exp- value?
CDF (2011) 989.6  4.02 T1U 2.65 0.4
KLOE (2006) 0773 245+ 0.17 1.21 Nc
Belle (2006) 950 4.07 fg;g,‘g‘ 2.28 = 03l
BES (2005) 965 5.80 t§;'z., 2.83 '
FOCUS (2005) 957 3.39 +0&2 2.15
SND (2000) 969.8  7.88 *1U9 3.19 0.2
. 0.1 ¢
= There is not a clear
[ n 0 1 1 1
proportional connection, 0 0.5 1 5 5 o 3
= = 7.
but there is actually Sfa [ %]

a tendency.

@ RCNP Hadrons and Hadron Interactions in QCD @ Yukawa Inst. (Feb. 15th - Mar. 21st, 2015) 37
@x R J




4. Constraint on their structure

++ In a more general way ++
= We further see the relation between &, and | X, Xy in a more
general way. --> 4 of Flatte parameters are fixed as

M, =990 MeV, ory = 3.0GeV, M; =970 MeV, gfrr = 2.4 GeV | ---Rough average

while the 4¢(980)-KK and

of Exp. params.

0.7
"y - MC events -
f0(980)-KK coupling consts. 06 | Uppe N R
are allowed to be arbitrary. Tpon i
05} i o‘. '., + “
(generated by random num.) gr e
. T ::T‘ el AR R
= There Is an upper limit of & Rt
0.3 | RS LW X A
| X, Xr| for each &g, . = oot 4t
--- Especially, from 021 NSRRI
‘ §fa|upper limit — 1.1% 0.1 ’. ':’ ';z.g;
we have | X, X;1<0.47. 0 e iy
0 0.5 1 1.5 2
€5a = 0.60 £ 0.20(gcar) £ 0.12(sys) % 0.26(para) %, S [ %]
§falupper limit = 1.1% Ablikim et al. (2011).
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4. Constraint on their structure

++ Favored | X, |-1 Xr| area ++

p
Border line for Exp.:

e D
| &ralupper tmie = 1.1% 1 | Unfavored area:

\ Inevitably &, > 1.1 %
>+ N _
0.8 [ \/

Favored | X, |-l Xyl area from EXxp.:
Era = 0.60 % 0.20(tar) & 0.12(cye) £ 0.26(para) % \

2

0.6

A

<
=

f0(980), not KK

0

0 0.2 0.4 0.6 0.8 1

a0(980), not KK X, |
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4. Constraint on their structure

++ Favored | X, |-l X;| area ++

-
Border line for Exp.:

molecules” Is not favored.

L ‘ §fa|upper limit — 1.1%

[‘Both a0(980) and f5(980) are KEJ

Era = 0.60 % 0.20(tar) & 0.12(cye) £ 0.26(para) % \
N

= | X, |~ Xr1=1is not favored.
--> We find that
“both a¢(980) and fo(980) are KK
molecules” is questionable.

= “One of them has large KK
component” is not ruled out.

--- Especially | X¢1 > 0.3 for every
| X, I. --> Not small KK in fy ?

IX}I

p \
Favored | X, |-l Xy | area from EXxp.: 0.8

0.6

<
=

f0(980), not KK

0

\|

Upper limit from EXp.

From Exp. result w/ errors “l:l

0

0.2

a0(980), not KK

0.4
X |

0.6

0.8
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5. Summary

++ Summary ++

= Hadronic molecules are unique because

they are composed of color-singlet hadrons themselves.

--> They may be able to be identified w/o relying directly on QCD.

= We have formulated the @¢(980)-/0(980) mixing intensity.

--> Many combinations of Flatte params. reproduce the Exp. value !

= We have formulated the compositeness as the “nhorm” for the two-

body w.f., and obtained correct normalization even for resonances.

--> The KK compositeness for ao(980) and fo(980)becomes complex,
and their imaginary parts are not negligible, which did not
appear in the previous study by Baru et al..

= The 40(980)-f0(980) mixing intensity can constrain their KK compos-

iteness via the a¢(980)- and fo(980)-KK coupling constants.

--> From EXxp. value of the mixing intensity,
“both are simultaneously KK molecules” is questionable.

@
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for your kind attention !
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Thank you very much
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