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The Issues 

• A new approach to nuclear structure? 

 

• Start from a QCD-inspired model of hadron structure 

 

• Ask how that structure is modified in-medium 

 

• This naturally leads to saturation  

  + predictions for all hadrons 

 

• Fit n-p matter:  

  ρ0 , E/A , symmetry energy, compressibility etc. 

 

• Predict dense matter; hyper-nuclei; finite nuclei 
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Relativity 

• In n-star core densities > 2-3 ρ0 : must have a  

  relativistic EoS 

 

 − pF
n ~ m*

n  

 

 − e.g. velocity of sound: 
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Hyperons in Dense Matter? 

• Baryons in medium are not complicated – in a sense 

 

• EH (p) – EN (p) ~ constant (not Σ-N ) 

 

− Λ – N ~ 170 MeV 

− Ξ – N ~ 380 MeV  but μe/muon ~ 230 – 250 MeV max. 

 which means Ξ-  competes with Λ 

 

• Clearly, as pF
n increases Λ or Ξ-  must enter 

 

 − typically around 3 ρ0   

 

• Effect is obviously to soften EoS  
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Summary:  
 

We need a relativistic EoS 
  

including hyperons 
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Where to get the interactions? 

• Familiar approach: 

 

−  Fit NN interaction to NN data – typically 20-30  

     parameters to fit 1000’s  of data points 

 

−  BUT to fit nuclear data also need 3-body force: 

      typically 4 parameters fit to energy levels light nuclei 

 

• ΛN : very limited data plus systematic Λ-hypernuclei 

 

− cannot determine 20-30 parameters of a “realistic” 

    potential and certainly no 3-body force!  
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Interactions (cont.) 

• Σ N : no elastic data. Few dozen data on ΛN −> ΣN 

 

− Contrary to first results in early 80’s there are  

    no Σ – hypernuclei (one exceptional, very light case) 

 

− Phenomenologically :  

     Σ – nucleus interaction is somewhat repulsive 

 

• Ξ N : No elastic data. 

 

Nothing known about Ξ – hypernuclei BUT at J-PARC  

 experimental study just beginning 

 

• H H : Nothing known empirically 
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Suggests a different approach : QMC Model 

• Start with quark model (MIT bag/NJL...) for all hadrons 

 

• Introduce a relativistic Lagrangian  

with σ, ω and ρ mesons coupling  

to non-strange quarks 

 

• Hence only 3 parameters 

 

− determine by fitting to saturation  

   properties of nuclear matter  

   (ρ0 ,  E/A and symmetry energy) 

 

• Must solve self-consistently for the internal structure  of 

baryons in-medium 

(Guichon, Saito, Tsushima et al., Rodionov et al. 

- see Saito et al., Prog. Part. Nucl .Phys. 58 (2007) 1 for a review) 
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Effect of scalar field on quark spinor  

• MIT bag model: quark spinor modified in bound nucleon 

 

 

 

• Lower component enhanced by attractive scalar field 

 

 

 

• This leads to a very small (~1% at ρ0 ) increase in bag radius 

 

• It also suppresses the scalar coupling to the nucleon as the 

scalar field increases 

 

 

 

• This is the “scalar polarizability”: a new saturation mechanism 

    for nuclear matter 
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Quark-Meson Coupling Model (QMC):  
Role of the Scalar Polarizability of the Nucleon 

The response  of the nucleon internal structure to the  

  scalar field is of great interest… and importance 

     
2
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M R M g R g R

Non-linear dependence through the scalar polarizability 

                            d ~ 0.22 R in original QMC (MIT bag) 

Indeed, in nuclear matter at mean-field level (e.g. QMC), 

 this is the ONLY place the response of the internal  

structure of the nucleon enters.   
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Summary : Scalar Polarizability 

• Can always rewrite non-linear coupling as linear coupling 

   plus non-linear scalar self-coupling – likely physical  

   origin of some non-linear versions of QHD  

 

 

• Consequence of polarizability in atomic physics is 

   many-body forces: 

 

 

 

 

  

 − same is true in nuclear physics 

V = V12 + V23 + V13 + V123 
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Summary so far ..... 

• QMC looks superficially like QHD but it’s fundamentally 

different from all other approaches 

 

• Self-consistent adjustment of hadron structure opposes 

applied scalar field (“scalar polarizability”)  

 

• Naturally leads to saturation of nuclear matter 

 − effectively because of natural 3- and 4-body forces 

 

• Only 3- 4 parameters: σ, ω and ρ couplings to light 

quarks (4th because mσ  ambiguous under quantisation) 

 

• Fit to nuclear matter properties and then predict the 

interaction of any hadrons in-medium 
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• Observation stunned and electrified the  

 HEP and Nuclear communities 20 years ago 

 

• Nearly 1,000 papers have been generated….. 

 

• What is it that alters the quark momentum in the nucleus?  

Classic Illustration:  The EMC effect 

J. Ashman et al., Z. 

Phys. C57, 211 (1993) 

 

J. Gomez et al., Phys. 

Rev. D49, 4348 (1994) 

The EMC Effect: Nuclear PDFs 
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Calculations for Finite Nuclei 

Cloët, Bentz &Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061) 

(Spin dependent EMC effect TWICE as large as unpolarized) 
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Linking QMC to Familiar Nuclear Theory 

• Since early 70’s tremendous amount of work  

 in nuclear theory is based upon effective forces 

 

• Used for everything from nuclear astrophysics to  

 collective excitations of nuclei 

 

• Skyrme Force: Vautherin and Brink 

 

       Guichon and  Thomas, Phys. Rev. Lett. 93, 132502 (2004) 

 

    explicitly obtained effective force, 2- plus 3- body, of Skyrme type 

 

    -  density-dependent forces now used more widely 
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• Where analytic form of (e.g. H0 + H3 ) piece of energy 

   functional derived from QMC is: 

highlights  

scalar polarizability  

      ~ 4%        ~ 1% 

Paper II: N P A772 (2006) 1 (nucl-th/0603044)  
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Nuclear Densities from QMC-Skyrme 

Calculation of Furong Xu (2010) 
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Spin-Orbit Splitting  

Neutrons 

   (Expt) 

Neutrons 

   (QMC) 

Protons 

  (Expt) 

Protons 

  (QMC) 

 16O 

1p1/2-1p3/2 

   6.10    6.01    6.3    5.9 

  40Ca 

1d3/2-1d5/2 

   6.15    6.41    6.0    6.2 

  48Ca 

1d3/2-1d5/2 

   6.05 

  (Sly4) 

   5.64 

   

   6.06 

  (Sly4) 

   5.59 

   

 208Pb 

2d3/2-2d5/2 

   2.15 

  (Sly4) 

   2.04 

   

   1.87 

  (Sly4) 

   1.74 

   

     Agreement generally very satisfactory – NO parameter adjusted to fit 
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Shell Structure Away from Stability 

• Use Hartree – Fock – Bogoliubov calculation 

 

• Calculated variation of two-neutron removal energy 

   at N = 28 as Z varies from Z = 32 (proton drip-line  

    region) to Z = 18 (neutron drip-line region) 

 

•  S2n  changes by 8 MeV at Z=32  

   S2n  changes by 2–3 MeV at Z = 18 

 

•  This strong shell quenching is very similar to  

    Skyrme – HFB calculations of Chabanat et al.,  

    Nucl. Phys. A635 (1998) 231  

 

•  2n drip lines appear at about N = 60 for Ni and N = 82 for Zr 

                   (/// to predictions for Sly4 – c.f. Chabanat et al.) 



Page 20 

Global search on Skyrme forces 

These authors tested 233  

widely used Skyrme forces  

against  12 standard nuclear  

properties: only 17 survived  

including two QMC potentials 

Truly remarkable – force derived from quark level does 

a better job of fitting nuclear structure constraints than 

phenomenological fits with many times # parameters! 

Phys. Rev. C85 (2012) 035201 
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Constraints from Heavy Ion Reactions 
− from Dutra et al. (2010) 

[24] Danielewicz, Nucl Phys A727 (2003) 233 



Page 22 

More on derived Skyrme force later 

• Last part of the talk will deal with recent unpublished 

studies of the derived Skyrme force, with it’s 

unusual density dependence 

 

• Across the entire periodic table 



Page 23 

Mesons in Nuclei 

• At Hartree level mesons like ω, η and η’ contain light 

quark-anti-quark pairs  

 

• Repulsive vector potential cancels for q and q 

 (s and s do not couple to σ, ω and ρ) 

 

• Thus they must feel attraction associated with the  

  mean scalar field (Saito et al., Phys.Rev. C55 (1997) 2637-2648) 

 

• Initial estimates significantly underestimated 

absorption of the ω, which adds repulsion 

 

 − but V. Metag finds hint of mild  

     attraction in C : -20 ± 25 ± 10 MeV  

 

 

_ 

_ 
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η’ in Nuclei 

• Complicated/made more interesting by axial anomaly 

 

 

 

• But absorption significantly less than the ω 

      (Kotulla et al., Phys. Rev. Lett. 100 (2008) 192302) 

 

• M. Nanova (arXiv:1311.0122 )  finds that the  

η’ feels attraction of -37 ± 10 ± 10 MeV in 12C 

 

• This is very similar to Bass and Thomas (Acta Phys Pol B41 (2010) 2239) 

 

 

(Bass, Jido, Hirenzaki, Lu, Nagahiro, Saito, Tsushima....) 
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η’ in Nuclei 

    Nanova  arXiv:1311.0122 :  

η’ feels attraction of -37 ± 10 ± 10 MeV in 12C 

 

 

 

 

•This, plus weak absorption, suggests a search for η’ bound  

   states is very worthwhile! 

 

• Note that search for bound charmed mesons also attractive 

   − QMC predicts D-  bound in Pb by 10-30 MeV 

                  ( Saito et al., Phys. Rev. C59 (1999) 2824-2828 ) 
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Modified Electromagnetic Form Factors In-Medium 
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NJL Model  

Horikawa and Bentz, nucl-th/0506021 

ρ=0, 0.5, 1.0 and 1.5ρ0 

( scalar di-quarks only) 
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Longitudinal response function 

Horikawa and Bentz, nucl-th/0506021 

Free Hartree 

In-medium Hartree 

In-medium RPA 

(New results from JLab, Meziani et al., eagerly awaited) 
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Hyperons 

 

•  Derive  N,  N,   … effective forces in-medium   

  with no additional free parameters 

 

• Attractive and repulsive forces (σ and ω mean fields)  

both decrease as # light quarks decreases 

 

• NO Σ hypernuclei are bound! 

 

• Λ bound by about 30 MeV in nuclear matter (~Pb) 

 

• Nothing known about Ξ hypernuclei – JPARC!  
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Λ- and Ξ-Hypernuclei in QMC 

Predicts Ξ – hypernuclei bound by 10-15 MeV 

  − to be tested soon at J-PARC 
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Σ – hypernuclei  

-hypernuclei unbound : 

   because of increase of hyperfine  interaction with density 

– e.g. for Σ0  in 40Ca:  

     central potential +30 MeV and few MeV attraction  

          in surface  (-10MeV at 4fm)   

Guichon et al., Nucl. Phys.  A814  (2008)  66 



Consequences for Neutron Star  

Rikovska-Stone et al., NP A792 (2007) 341 
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Report a very accurate pulsar 

mass much larger than seen  

before : 1.97 ± 0.04 solar mass 

 

Claim it rules out hyperons 

 (particles with strange quarks 

 - ignored published work!) 

J1614-2230 
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Most Recent Development 
(Whittenbury, Carroll, Stone & Tsushima) 

 
• Include in Fock terms the effect of the Pauli coupling 

 (i.e. F2 σ
μλ qλ  term) in ρ and ω exchanges between 

all baryons 

 

• This introduces more parameters  

−  because of short-distance suppression of relative    

 wave function and possible form factors 

 

• In line with recent work of Stone, Stone and 

Moszkowski , require compressibility at ρ0  

     in the range 250-330 MeV 

 see : Whittenbury et al., arXiv:1307.4166 (PRC 89 (2014) 065801) 

 (related work: Miyatsu et al., Phys.Lett. B709 (2012) 242 

  and  Long et al., Phys. Rev. C85 (2012) 025806 ) 
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Pure Neutron Matter (PNM) c.f. EFT 

Whittenbury et al., PRC 89 (2014) 065801 

- Details EFT Tews et al., PRL 110 (2103) 

032504 
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Heavy Ion Constraints 

Danielewicz et al., Nucl Phys A727 (2003) 233 

and Dutra et al (2010) 
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Equation of State 
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Equation of State 



Page 40 

Particle content 

Standard Hypernuclei corrected 

 

Whittenbury et al., PRC 89 (2014) 065801 
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Mass vs Radius 

Whittenbury et al., PRC 89 (2014) 065801 
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New work: 
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Systematic approach to finite nuclei 

( This work is in preparation for publication: collaborators 

   are P.A.M. Guichon, P. G. Reinhard and J. R. Stone) 

• Allow 3 basic quark-meson couplings to vary so  

  that nuclear matter properties reproduced within errors 

 

  -17 < E/A < -15 MeV 

   0.15 < ρ0  < 0.17 fm-3   

         28 < J < 34 MeV 

          L > 25 MeV 

   250 < K0 < 350 MeV 

 

• Fix at overall best fit for binding energies of finite nuclei 
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Overview of Nuclei Studied – Across Periodic Table 

Element Z N Element Z N 

C 6 6 -16 Pb 82 116 - 132 

O 8 4 -20 Pu 94 134 - 154 

Ca 20 16 – 32 Fm 100 148 - 156 

Ni 28 24 – 50 No 102 152 - 154 

Sr 38 36 – 64 Rf 104 152 - 154 

Zr 40 44 -64 Sg 106 154 - 156 

Sn 50 50 – 86 Hs 108 156 - 158 

Sm 62 74 – 98 Ds 110 160 

Gd 64 74 -100 

N Z N Z 

20 10 – 24 64 36 - 58 

28 12 – 32 82 46 - 72 

40 22 – 40 126 76 - 92 

50 28 – 50 

i.e. We look at more challenging cases of p- or n-rich nuclei 
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Overall agreement better than 0.5% 
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Even Gd isotopes 

136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166
Mass number

0

0.1

0.2

0.3

0.4

b
2

QMC

SV-bas
FDRM

Gd

SV-bas: P. Klupfel et al.,  Phys. Rev.  C 79, 034310 (2009) 

  FDRM:  P. Moller et al., ADNDT, 59, 185 (1995) 
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Charge Distributions 
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Summary 

• Relativity is essential 

 

• Intermediate attraction in NN force is STRONG scalar 

 

• This modifies the intrinsic structure of the bound nucleon 

  −  profound change in shell model :  

     what occupies shell model states are NOT free nucleons 

 

• Scalar polarizability is a natural source of three-body  

   force/ density dependence of effective forces 

           − clear physical interpretation 

 

• Derived, density-dependent effective force gives  

    results better than most phenomenological Skyrme forces  
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Summary2   

• Same model also yields realistic, density dependent 

     N,  N,  N forces (not yet published) 

 − with NO additional parameters 

 

• Availability of realistic, density dependent  

    H N  and H H forces is essential for  > 3 0    

 

• Already important results for n stars : mass as large as  

 2.1 solar masses possible with hyperons 

 

•  Inclusion of Pauli terms in Fock calculation presents  

   new challenges: Λ hypernuclei no longer bound 

 

• Can modify couplings to bind Λ hypernuclei and still get  

   massive n-stars – but many open questions 

  - not least, transition to quark matter?  
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Summary3 

• Initial systematic study of finite nuclei very promising 

 

 − remember just 3 parameters fixed by nuclear matter 

 

• Super-heavies (Z > 100) especially good (typically better 

than 0.25%)! 

 

• Binding energies typically within 0.5% or better across 

the periodic table 

 

• Deformation, spin-orbit splitting and charge distributions 

all look good (NOT fit – only binding) 
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Special Mentions…… 

Guichon Whittenbury Stone 

Tsushima Bentz 
Cloët 
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September 11-16 2016 
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Key papers on QMC 

• Two major, recent papers: 

         1. Guichon, Matevosyan, Sandulescu, Thomas, 

               Nucl. Phys. A772 (2006) 1. 

           2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502  

 

• Built on earlier work on QMC: e.g.          

         3. Guichon, Phys. Lett. B200 (1988) 235 

           4.  Guichon, Saito, Rodionov, Thomas, 

               Nucl. Phys. A601 (1996) 349 

 

• Major review of applications of QMC to many 

      nuclear systems: 

         5.    Saito, Tsushima, Thomas,  

                    Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)   
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References to: Covariant Version of QMC 

• Basic Model: (Covariant, chiral, confining version of NJL) 

 

•Bentz & Thomas, Nucl. Phys. A696 (2001) 138 

 

• Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95 

 

• Applications to DIS: 

 

• Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302 

 

• Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210  

 

• Applications to neutron stars – including SQM: 

 

• Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495 

 

• Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667  



Page 55 

Most recent nuclear structure results 

• Results obtained using SKYAX code of P. G. 

Reinhard 

 

• 2 BCS pairing parameters (density dependent,  

contact pairing force) fitted from pairing gaps  

in Sn isotopes 
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Experimental Test of QMC at Mainz & JLab* 

e 

e' 

p 
4He 

L 

T 

T / L ~ GE/GM : Compare ratio in 4He and in free space 

S. Dieterich et al. , Phys. Lett. B500 (2001) 47; and JLab report 2002 

Capacity to measure polarization in coincidence:  
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Super-ratio – in-medium to free space  

from - Cloet, Miller et al., arXiv:0903.1312 

(Bentz et al.) 

(Smith & Miller) 



Page 59 

Jefferson Lab & Mainz : more from S. Strauch  

  
QMC medium effect  predicted more than  

a decade years before the experiment  
(D.H. Lu et al., Phys. Lett. B 417 (1998) 217) 

 

Polarized 
4He(e,e’p)  

measuring  

recoil p  

polarization 

 (T/L : GE/GM) 

Strauch et al., EPJ Web of Conf. 36 (2012) 00016 
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ORIGIN …. in QMC Model 

Source of  

changes: 

and hence mean scalar field changes… 

 

and hence quark wave function changes…. 

SELF-CONSISTENCY 

      THIS PROVIDES A NATURAL SATURATION MECHANISM 

(VERY EFFICIENT BECAUSE QUARKS ARE ALMOST MASSLESS) 

     

      source is suppressed as mean scalar field increases  

        (i.e. as density increases) 
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Can we Measure Scalar Polarizability  
in Lattice QCD ? 

18th Nishinomiya Symposium:  nucl-th/0411014 

    −  published in Prog. Theor. Phys.  

• IF we can, then in a real sense we would be linking 

   nuclear structure to QCD itself, because scalar  

   polarizability is sufficient in simplest, relativistic  

   mean field theory to produce saturation 

 

 

• Initial ideas on this published :  

  the trick is to apply a chiral invariant scalar field 

  − do indeed find polarizability opposing applied  σ field 
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 Symmetry Energy in β-Equilibrium (n,p,e,μ only) 

Rikovska-Stone et al., NP A792 (2007) 341 
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