Quark Production and Anomalous Currents in Strong Fields

Kenji Fukushima The University of Tokyo

Fukushima-Sasaki (2013)

FFLO States (with mismatched Fermi surfaces)

Finite Density + Magnetic Field

Chiral Separation Effect

Anomalous current?

Metlitsky-Zhitnitsky, many others...

Quick Derivation

Axial rotation by θ

$$\delta S = \int dx \,\theta(x) \left[\partial_{\mu} j_{A}^{\mu} + \frac{q_{e}^{2}}{16\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \right]$$
$$= \int dx \,\partial_{i}\theta(x) \left[-j_{A}^{i} - \frac{q_{e}^{2}}{2\pi^{2}} \varepsilon^{0ijk} A_{0} \partial_{j} A_{k} \right]$$
$$= -\mu_{q} B^{i}$$

Anomaly induced transport?

Current vs Polarization

 $j_A^i = \langle \bar{\psi} \gamma^i \gamma_5 \psi \rangle = \phi_B^\dagger \sigma^i \phi_R + \phi_L^\dagger \sigma^i \phi_L$

Chiral Magnetic Effect

Experimental Status

STAR/RHIC (2014)

More structures from more experimental data **Something flows or static polarization**???

Derivative w.r.t. A : Electric current (Chiral Magnetic Effect)

or

Vertex of photon-photon-theta (η meson)

Dynamical (kinematical) problem!

Serious Difficulty

The formula for QCD reads:

What is μ_5 in experiment??? Possible to control μ_5 ??? Some alternative of μ_5 ???

Alternative Setup

Reality in Heavy-Ion Collisions

ĦĨŢŎĿĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĔĬŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎ

Hadronization (quarks \rightarrow hadrons)

Parametrization of B

External magnetic field created by "spectators"

Initial Gluon Configurations

Topological charge density ~ $\mathcal{E} \cdot \mathcal{B} \sim Q_s^4$

Pulsed Electro-magnetic Fields

Analytical "Benchmark"

Fukushima--Kharzeev--Warringa (2010)

Schwinger process in K'

$$\Gamma = \frac{q^2 E'_z B'_z}{4\pi^2} \coth\left(\frac{B'_z}{E'_z}\pi\right) \exp\left(-\frac{m^2\pi}{|qE'_z|}\right)$$

"Lorentz Boost"

Current generation rate

$$\partial_t j_y \simeq \frac{q^2 B_y}{2\pi^2} \frac{g \mathcal{E}_z \mathcal{B}_z^2}{\mathcal{B}_z^2 + \mathcal{E}_z^2} \coth\left(\frac{\mathcal{B}_z}{\mathcal{E}_z}\pi\right) \exp\left(-\frac{2m^2\pi}{|g\mathcal{E}_z|}\right)$$

Strategy for Numerical Simulation

Particle production in strong fields

Pair production of particles and anti-particles

Momentum asymmetry caused by a CP-odd background

Difference between particles and anti-particles

Real-time dynamics of the Chiral Magnetic Effect

Particle Production in Strong Fields

In a simple case with *E* only:

Pair production when energy conservation satisfied (Schwinger Mechanism)

Pulsed Electric Field

Scalar QED (fermion is not much fun; soon saturated)

Example of EoM solutions under a pulsed *E*

Pure anti-particle in the past

Mixture of particle in the future

$$|\beta|^2 \Leftrightarrow$$
 Produced Particles

How the CLE (stochastic quantization) works?

Closed-time Path

Reproduction of "free time evolution" already needs closed-time paths

Natural requirement in CLE

Anzaki-Fukushima-Hidaka-Oka (2014)

Example in scalar QED under a pulsed *E* (without gauge quantum fluctuations)

A remark on the positiveness $\int \mathcal{D}\phi \, e^{iS[\phi]} \mathcal{O}[\phi] = \int \mathcal{D}\phi_R \mathcal{D}\phi_I \, P[\phi_R, \phi_I] \, \mathcal{O}[\phi_R + i\phi_I]$

In a free scalar theory *P* is calculable:

$$P[\phi_{\rm R}, \phi_{\rm I}] = N \exp\left[-\epsilon \int \frac{\mathrm{d}\omega}{2\pi} (\phi_{\rm R}, \phi_{\rm I}) \begin{pmatrix} 1 & -\frac{\epsilon}{\omega^2 - m^2} \\ -\frac{\epsilon}{\omega^2 - m^2} & 1 + \frac{2\epsilon^2}{(\omega^2 - m^2)^2} \end{pmatrix} \begin{pmatrix} \phi_{\rm R} \\ \phi_{\rm I} \end{pmatrix} \right]$$

Real and a converging Gaussisn (with the $i\varepsilon$ prescription)

Why real? Always real? Interaction effects? still many open (and interesting) questions... March 10, 2015 @ YITP 23

What to be calculated numerically

Put them for a finite period (pulse — sudden switch on/off)

Results: Momentum Distribution

Results:Produced Net R-particles

Weyl Fermions (right-hended sector) in al. altow, altow, altow, alto altow, altow, altow, altow, altow, altow, altow **Two-component chiral fermions**

$$(i\sigma^{\mu}\partial_{\mu} - e\sigma^{\mu}A_{\mu})\phi_R = 0$$

tion (with constant vector notentials) $e^{i\theta(p_A)} = \frac{p_A^x + ip_A^y}{\sqrt{(p_A^x)^2 + (p_A^y)}}$

Free solution (with constant vector potentials)

$$u_R(\boldsymbol{p};\boldsymbol{A}) = u_R(\boldsymbol{p}_A = \boldsymbol{p} - e\boldsymbol{A}) = \begin{pmatrix} \sqrt{|\boldsymbol{p}_A| + p_A^z} \\ e^{i\theta(\boldsymbol{p}_A)}\sqrt{|\boldsymbol{p}_A| - p_A^z} \end{pmatrix}$$

Very singular at zero momentum — Berry's phase

Chiral anomaly from monopole singularity

Son-Yamamoto / Stephanov-Yin (2010)

Bogoliubov Coefficients

philose.philose.philose.philose.philose.philose.philose.philose.philose.philose.philose.philo

$$\frac{u_{R}(\boldsymbol{p}_{A})e^{-i|\boldsymbol{p}_{A}|x^{0}+i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{A}|}} \longrightarrow \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} \left[\alpha_{\boldsymbol{q},\boldsymbol{p}} \frac{u_{R}(\boldsymbol{q}_{A'})e^{-i|\boldsymbol{q}_{A'}|x^{0}+i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} - \beta_{-\boldsymbol{q},-\boldsymbol{p}}^{*} \frac{v_{R}(-\boldsymbol{q}_{A'})e^{i|\boldsymbol{q}_{A'}|x^{0}+i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} \right],$$

$$\frac{v_{R}(\boldsymbol{p}_{-A})e^{i|\boldsymbol{p}_{-A}|x^{0}-i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A}|}} \longrightarrow \int \frac{d^{3}\boldsymbol{q}}{(2\pi)^{3}} \left[\alpha_{\boldsymbol{q},\boldsymbol{p}}^{*} \frac{v_{R}(\boldsymbol{q}_{-A'})e^{i|\boldsymbol{q}_{-A'}|x^{0}-i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{-A'}|}} + \beta_{-\boldsymbol{q},-\boldsymbol{p}} \frac{u_{R}(-\boldsymbol{q}_{-A'})e^{-i|\boldsymbol{q}_{-A'}|x^{0}-i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{-A'}|}} \right]$$

$$f_{\boldsymbol{p}}(x^0 \sim -\infty, \boldsymbol{x}) \longrightarrow \frac{v_R(\boldsymbol{p}_{-A})e^{i|\boldsymbol{p}_{-A}|x^0 - i\boldsymbol{p}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{p}_{-A}|}}$$

Gelis-Kajantie-Lappi (2006) Shuryak-Zahed (2003)

$$\beta_{\boldsymbol{q},\boldsymbol{p}} = \int d^3\boldsymbol{x} \, \frac{u_R^{\dagger}(\boldsymbol{q}_{A'})e^{i|\boldsymbol{q}_{A'}|x^0 + i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} \, f_{-\boldsymbol{p}}(x^0,\boldsymbol{x})$$

$$|\beta_{\boldsymbol{q}}|^2 \equiv \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \, |\beta_{\boldsymbol{q},\boldsymbol{p}}|^2$$

Particle from "pair" production Repeat the same calc. for anti-particles

Results: Momentum Distribution

Particle Distribution

30

March 10, 2015 @ YITP

Remarks on the doubler problem

$$\beta_{\boldsymbol{q},\boldsymbol{p}} = \int d^3 \boldsymbol{x} \, \frac{u_R^{\dagger}(\boldsymbol{q}_{A'})e^{i|\boldsymbol{q}_{A'}|x^0 + i\boldsymbol{q}\cdot\boldsymbol{x}}}{\sqrt{2|\boldsymbol{q}_{A'}|}} \, f_{-\boldsymbol{p}}(x^0,\boldsymbol{x})$$
$$|\beta_{\boldsymbol{q}}|^2 \equiv \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \, |\beta_{\boldsymbol{q},\boldsymbol{p}}|^2$$

Integrations of p and q limited to a half Brillouin zone

OK... as long as momentum distributions are localized (Note: dominant contribution comes from IR singularity)

$$Density and Currents$$

$$J^{\mu} = eV \int \frac{d^{3}p}{(2\pi)^{3}} \frac{|\beta_{p}|^{2}}{2|p_{A'}|} u_{R}^{\dagger}(p_{A'}) \sigma^{\mu} u_{R}(p_{A'}) - eV \int \frac{d^{3}p}{(2\pi)^{3}} \frac{|\bar{\beta}_{p}|^{2}}{2|p_{-A'}|} u_{R}^{\dagger}(p_{-A'}) \bar{\sigma}^{\mu} u_{\bar{R}}(p_{-A'})$$

$$J^{0}/eV = \int \frac{d^{3}p}{(2\pi)^{3}} (|\beta_{p}|^{2} - |\bar{\beta}_{p}|^{2}), \quad J/eV = \int \frac{d^{3}p}{(2\pi)^{3}} \left(\frac{p_{A'}}{|p_{A'}|} |\beta_{p}|^{2} - \frac{p_{-A'}}{|p_{-A'}|} |\bar{\beta}_{p}|^{2} \right)$$
Excess of particles due to CP-breaking
Anomalous currents

Results:Produced Net R-particles

Net particles are produced as soon as $E \cdot B \neq 0$ (vanishing if doublers are all picked up)

Technical Remarks

To treat the momentum with manifest reflection symmetry:

 $-N_x$ to $+N_x \Rightarrow (2N_x+1)$ -lattices

To treat the IR singularity in a symmetric way:

Anti-periodic
$$\Rightarrow p^i a = \frac{2\pi k^i}{2N_i + 1}$$

 $k^i = -N_i + 1/2 \sim +N_i + 1/2$ No zero mode

To treat the CME current without artifact from induced E:

$$A^{x} = B^{y}(t)z - B^{z}(t)y$$
, $A^{z} = -E^{z}(t)t$

 j^y is not contaminated by $\partial_t A^y$

Results: Pulse Duration Dependence

Future Extensions

ĦĨŢĸĿĿĦĨŢĸĿĦĨŢĸĿĦĨŢĸĿĦĨŢĸĿĦĨŢĸĿĔĨŢĸĔĿĦĨŢĸĿĦĨŢĸĿĦĨŢĸĿĦĬŢĸĿĦĬŢĸĿĔĬŢĸĿĔĬŢ

Backreaction from the gauge sector

□ Solving the Maxwell equations numerically chiral plasma instability (Akamatsu-Yamamoto) could be simulated to find a stable configuration

Introduction of finite baryon density

□ Equation of motion slightly changed chiral magnetic wave (Kharzeev-Liao-Yee) could be simulated

More realistic background profiles

- □ Real-time counterpart of instanton (Luscher-Schecheter solution)
- □ Convolution with the Glasma simulation for HIC

Dec. 16, 2014 @ Heidelberg